1
|
Ahmed SS, Goswami N, Sirek A, Green DA, Winnard A, Fiebig L, Weber T. Systematic review of the effectiveness of standalone passive countermeasures on microgravity-induced physiologic deconditioning. NPJ Microgravity 2024; 10:48. [PMID: 38664498 PMCID: PMC11045828 DOI: 10.1038/s41526-024-00389-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
A systematic review of literature was conducted to evaluate the effectiveness of passive countermeasures in ameliorating the cardiopulmonary and musculoskeletal effects of gravitational unloading on humans during spaceflight. This systematic review is the third of a series being conducted by the European Space Agency to evaluate the effectiveness of countermeasures to physiologic deconditioning during spaceflight. With future long-duration space missions on the horizon, it is critical to understand the effectiveness of existing countermeasures to promote astronaut health and improve the probability of future mission success. An updated search for studies examining passive countermeasures was conducted in 2021 to supplement results from a broader search conducted in 2017 for all countermeasures. Ground-based analogue and spaceflight studies were included in the search. A total of 647 articles were screened following removal of duplicates, of which 16 were included in this review. Data extraction and analysis, quality assessment of studies, and transferability of reviewed studies to actual spaceflight based on their bed-rest protocol were conducted using dedicated tools created by the Aerospace Medicine Systematic Review Group. Of the 180 examined outcomes across the reviewed studies, only 20 were shown to have a significant positive effect in favour of the intervention group. Lower body negative pressure was seen to significantly maintain orthostatic tolerance (OT) closer to baseline as comparted to control groups. It also was seen to have mixed efficacy with regards to maintaining resting heart rate close to pre-bed rest values. Whole body vibration significantly maintained many balance-related outcome measures close to pre-bed rest values as compared to control. Skin surface cooling and centrifugation both showed efficacy in maintaining OT. Centrifugation also was seen to have mixed efficacy with regards to maintaining VO2max close to pre-bed rest values. Overall, standalone passive countermeasures showed no significant effect in maintaining 159 unique outcome measures close to their pre-bed rest values as compared to control groups. Risk of bias was rated high or unclear in all studies due to poorly detailed methodologies, poor control of confounding variables, and other sources of bias (i.e. inequitable recruitment of participants leading to a higher male:female ratios). The bed-rest transferability (BR) score varied from 2-7, with a median score of 5. Generally, most studies had good BR transferability but underreported on factors such as control of sunlight or radiation exposure, diet, level of exercise and sleep-cycles. We conclude that: (1) Lack of standardisation of outcome measurement and methodologies has led to large heterogeneity amongst studies; (2) Scarcity of literature and high risk of bias amongst existing studies limits the statistical power of results; and (3) Passive countermeasures have little or no efficacy as standalone measures against cardiopulmonary and musculoskeletal deconditioning induced by spaceflight related to physiologic deterioration due to gravity un-loading.
Collapse
Affiliation(s)
- Syed Shozab Ahmed
- Department of Family Medicine, Postgraduate Medical Education, Queen's University School of Medicine, Kingston, ON, Canada
| | - Nandu Goswami
- Division of Physiology, Otto Löwi Research Center for Vascular Biology, Immunity and Inflammation, Medical University of Graz, Graz, Austria.
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates.
- Integrative Health Department, Alma Mater Europaea Maribor, Maribor, Slovenia.
| | - Adam Sirek
- Faculty of Medicine, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
- Institute for Earth and Space Exploration, Western University, London, ON, Canada
| | - David Andrew Green
- King's College London, Centre of Human & Applied Physiological Sciences, London, UK
- Space Medicine Team, HRE-OM, European Astronaut Centre, European Space Agency, Cologne, Germany
- KBRwyle Laboratories GmbH, Cologne, Germany
| | | | - Leonie Fiebig
- Space Biomedicine Systematic Review Methods, Wylam, UK
| | - Tobias Weber
- Space Medicine Team, HRE-OM, European Astronaut Centre, European Space Agency, Cologne, Germany
- KBRwyle Laboratories GmbH, Cologne, Germany
| |
Collapse
|
2
|
Stahn AC, Bucher D, Zu Eulenburg P, Denise P, Smith N, Pagnini F, White O. Paving the way to better understand the effects of prolonged spaceflight on operational performance and its neural bases. NPJ Microgravity 2023; 9:59. [PMID: 37524737 PMCID: PMC10390562 DOI: 10.1038/s41526-023-00295-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 06/15/2023] [Indexed: 08/02/2023] Open
Abstract
Space exploration objectives will soon move from low Earth orbit to distant destinations like Moon and Mars. The present work provides an up-to-date roadmap that identifies critical research gaps related to human behavior and performance in altered gravity and space. The roadmap summarizes (1) key neurobehavioral challenges associated with spaceflight, (2) the need to consider sex as a biological variable, (3) the use of integrative omics technologies to elucidate mechanisms underlying changes in the brain and behavior, and (4) the importance of understanding the neural representation of gravity throughout the brain and its multisensory processing. We then highlight the need for a variety of target-specific countermeasures, and a personalized administration schedule as two critical strategies for mitigating potentially adverse effects of spaceflight on the central nervous system and performance. We conclude with a summary of key priorities for the roadmaps of current and future space programs and stress the importance of new collaborative strategies across agencies and researchers for fostering an integrative cross- and transdisciplinary approach from cells, molecules to neural circuits and cognitive performance. Finally, we highlight that space research in neurocognitive science goes beyond monitoring and mitigating risks in astronauts but could also have significant benefits for the population on Earth.
Collapse
Affiliation(s)
- A C Stahn
- Unit of Experimental Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Physiology, Berlin, Germany.
| | - D Bucher
- IZN-Neurobiology, University of Heidelberg, Heidelberg, Germany
| | - P Zu Eulenburg
- Institute for Neuroradiology & German Center for Vertigo and Balance Disorders, Ludwig-Maximilians-University Munich, Munich, Germany
| | - P Denise
- Normandie Univ. UNICAEN, INSERM, COMETE, CYCERON, Caen, France
| | - N Smith
- Protective Security and Resilience Centre, Coventry University, Coventry, United Kingdom
| | - F Pagnini
- Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy
| | - O White
- Université de Bourgogne INSERM-U1093 Cognition, Action, and Sensorimotor Plasticity, Dijon, France.
| |
Collapse
|
3
|
Sater SH, Conley Natividad G, Seiner AJ, Fu AQ, Shrestha D, Bershad EM, Marshall-Goebel K, Laurie SS, Macias BR, Martin BA. MRI-based quantification of posterior ocular globe flattening during 60 days of strict 6° head-down tilt bed rest with and without daily centrifugation. J Appl Physiol (1985) 2022; 133:1349-1355. [PMID: 36326472 PMCID: PMC9744655 DOI: 10.1152/japplphysiol.00082.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Spaceflight associated neuro-ocular syndrome (SANS) is associated with acquired optic disc edema, hyperopia, and posterior globe flattening in some astronauts during long-duration spaceflight possibly due to the headward fluid redistribution in microgravity. The goal of this study was to assess whether strict head-down tilt (HDT) bed rest as a spaceflight analog would produce globe flattening and whether centrifugation could prevent these changes. Twenty-four healthy subjects separated into three groups underwent 60 days of strict 6° HDT bed rest: one control group with no countermeasure (n = 8) and two countermeasure groups exposed to 30 min daily of short-arm centrifugation as a means of artificial gravity (AG), either intermittent (iAG, n = 8) or continuous (cAG, n = 8). Magnetic resonance images (MRI) were collected at baseline, HDT-day 14, HDT-day 52, and 3 days after bed rest. An automated method was applied to quantify posterior globe volume displacement compared with baseline scans. On average, subjects showed an increasing degree of globe volume displacement with bed rest duration (means ± SE: 1.41 ± 1.01 mm3 on HDT14 and 4.04 ± 1.19 mm3 on HDT52) that persisted post-bed rest (5.51 ± 1.26 mm3). Application of 30 min daily AG did not have a significant impact on globe volume displacement (P = 0.42 for cAG and P = 0.93 for iAG compared with control). These results indicate that strict 6° HDT bed rest produced displacement of the posterior globe with a trend of increasing displacement with longer duration that was not prevented by daily 30 min exposure to AG.NEW & NOTEWORTHY Head-down tilt (HDT) bed rest is commonly used as a spaceflight analog for investigating spaceflight associated neuro-ocular syndrome (SANS). Posterior ocular globe flattening has been identified in astronauts with SANS but until now has not been investigated during HDT bed rest. In this study, posterior ocular globe volume displacement was quantified before, during, and after HDT bed rest and countermeasures were tested for their potential to reduce the degree of globe flattening.
Collapse
Affiliation(s)
| | | | - Akari J. Seiner
- 2Department of Chemical and Biological Engineering, University of Idaho, Moscow, Idaho
| | - Audrey Q. Fu
- 3Department of Mathematics and Statistical Science, Institute of Bioinformatics and Evolutionary Studies, Institute for Modeling Collaboration & Innovation, University of Idaho, Moscow, Idaho
| | - Dev Shrestha
- 2Department of Chemical and Biological Engineering, University of Idaho, Moscow, Idaho
| | - Eric M. Bershad
- 4Department of Neurology, Baylor College of Medicine, Houston, Texas
| | | | | | - Brandon R. Macias
- 6Cardiovascular and Vision Laboratory, Johnson Space Center, National Aeronautics and Space Administration, Houston, Texas
| | - Bryn A. Martin
- 1Alcyone Therapeutics Inc., Lowell, Massachusetts,2Department of Chemical and Biological Engineering, University of Idaho, Moscow, Idaho
| |
Collapse
|
4
|
Isasi E, Isasi ME, van Loon JJWA. The application of artificial gravity in medicine and space. Front Physiol 2022; 13:952723. [PMID: 36105282 PMCID: PMC9465481 DOI: 10.3389/fphys.2022.952723] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Gravity plays a crucial role in physiology. The lack of gravity, like in long duration spaceflight missions, cause pathologies in e.g., the musculoskeletal system, cardiovascular deconditioning, immune system deprivation or brain abnormalities, to just mention a few. The application of artificial gravity through short-arm human centrifugation (SAHC) has been studied as a possible countermeasure to treat spaceflight deconditioning. However, hypergravity protocols applied by using SAHC have also been used to treat different, ground-based pathologies. Such gravitational therapies have been applied in Uruguay for more than four decades now. The aim of this overview is to summarize the most important findings about the effects of gravitational therapy in different, mainly vascular based pathologies according to the experience in the Gravitational Therapy Center and to discuss the current research in the field of hypergravity applications in medicine but also as multisystem countermeasure for near weightlessness pathologies. New insight is needed on the use of hypergravity in medicine and space research and application.
Collapse
Affiliation(s)
- Eugenia Isasi
- Centro de Terapia Gravitacional, Montevideo, Uruguay
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Maria E. Isasi
- Centro de Terapia Gravitacional, Montevideo, Uruguay
- *Correspondence: Jack J. W. A. van Loon, ; Maria E. Isasi,
| | - Jack J. W. A. van Loon
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam Movement Sciences & Amsterdam Bone Center (ABC), Amsterdam UMC location Vrije Universiteit Amsterdam & Academic Center for Dentistry Amsterdam (ACTA), Amsterdam, Netherlands
- Life Support and Physical Sciences Section (TEC-MMG), European Space Agency (ESA), European Space Research and Technology Centre (ESTEC), Noordwijk, Netherlands
- *Correspondence: Jack J. W. A. van Loon, ; Maria E. Isasi,
| |
Collapse
|
5
|
Frett T, Lecheler L, Speer M, Marcos D, Pesta D, Tegtbur U, Schmitz MT, Jordan J, Green DA. Comparison of trunk muscle exercises in supine position during short arm centrifugation with 1 g at centre of mass and upright in 1 g. Front Physiol 2022; 13:955312. [PMID: 36060705 PMCID: PMC9428406 DOI: 10.3389/fphys.2022.955312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/26/2022] [Indexed: 12/02/2022] Open
Abstract
Spaceflight is associated with reduced antigravitational muscle activity, which results in trunk muscle atrophy and may contribute to post-flight postural and spinal instability. Exercise in artificial gravity (AG) performed via short-arm human centrifugation (SAHC) is a promising multi-organ countermeasure, especially to mitigate microgravity-induced postural muscle atrophy. Here, we compared trunk muscular activity (mm. rectus abdominis, ext. obliques and multifidi), cardiovascular response and tolerability of trunk muscle exercises performed during centrifugation with 1 g at individual center of mass on a SAHC against standard upright exercising. We recorded heart rate, blood pressure, surface trunk muscle activity, motion sickness and rating of perceived exertion (BORG) of 12 participants (8 male/4 female, 34 ± 7 years, 178.4 ± 8.2 cm, 72.1 ± 9.6 kg). Heart rate was significantly increased (p < 0.001) during exercises without differences in conditions. Systolic blood pressure was higher (p < 0.001) during centrifugation with a delayed rise during exercises in upright condition. Diastolic blood pressure was lower in upright (p = 0.018) compared to counter-clockwise but not to clockwise centrifugation. Target muscle activation were comparable between conditions, although activity of multifidi was lower (clockwise: p = 0.003, counter-clockwise: p < 0.001) and rectus abdominis were higher (clockwise: p = 0.0023, counter-clockwise: < 0.001) during centrifugation in one exercise type. No sessions were terminated, BORG scoring reflected a relevant training intensity and no significant increase in motion sickness was reported during centrifugation. Thus, exercising trunk muscles during centrifugation generates comparable targeted muscular and heart rate response and appears to be well tolerated. Differences in blood pressure were relatively minor and not indicative of haemodynamic challenge. SAHC-based muscle training is a candidate to reduce microgravity-induced inter-vertebral disc pathology and trunk muscle atrophy. However, further optimization is required prior to performance of a training study for individuals with trunk muscle atrophy/dysfunction.
Collapse
Affiliation(s)
- Timo Frett
- German Aerospace Center, Institute of Aerospace Medicine, Cologne, Germany
- *Correspondence: Timo Frett,
| | - Leopold Lecheler
- German Aerospace Center, Institute of Aerospace Medicine, Cologne, Germany
| | | | | | - Dominik Pesta
- German Aerospace Center, Institute of Aerospace Medicine, Cologne, Germany
- Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Uwe Tegtbur
- Hannover Medical School, Institutes of Sports Medicine, Hannover, Germany
| | - Marie-Therese Schmitz
- German Aerospace Center, Institute of Aerospace Medicine, Cologne, Germany
- Informatics and Epidemiology, Institute of Medical Biometry, Medical Faculty, University of Bonn, Bonn, Germany
| | - Jens Jordan
- German Aerospace Center, Institute of Aerospace Medicine, Cologne, Germany
- Chair of Aerospace Medicine, University of Cologne, Cologne, Germany
| | - David Andrew Green
- European Space Agency, Cologne, Germany
- King’s College London, London, United Kingdom
- Space Medicine Team, European Astronaut Centre, European Space Agency, Cologne, Germany
- KBRwyle GmbH, Cologne, Germany
| |
Collapse
|
6
|
Ekman R, Green DA, Scott JPR, Huerta Lluch R, Weber T, Herssens N. Introducing the Concept of Exercise Holidays for Human Spaceflight - What Can We Learn From the Recovery of Bed Rest Passive Control Groups. Front Physiol 2022; 13:898430. [PMID: 35874509 PMCID: PMC9307084 DOI: 10.3389/fphys.2022.898430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
In an attempt to counteract microgravity-induced deconditioning during spaceflight, exercise has been performed in various forms on the International Space Station (ISS). Despite significant consumption of time and resources by daily exercise, including around one third of astronauts' energy expenditure, deconditioning-to variable extents-are observed. However, in future Artemis/Lunar Gateway missions, greater constraints will mean that the current high volume and diversity of ISS in-flight exercise will be impractical. Thus, investigating both more effective and efficient multi-systems countermeasure approaches taking into account the novel mission profiles and the associated health and safety risks will be required, while also reducing resource requirements. One potential approach is to reduce mission exercise volume by the introduction of exercise-free periods, or "exercise holidays". Thus, we hypothesise that by evaluating the 'recovery' of the no-intervention control group of head-down-tilt bed rest (HDTBR) campaigns of differing durations, we may be able to define the relationship between unloading duration and the dynamics of functional recovery-of interest to future spaceflight operations within and beyond Low Earth Orbit (LEO)-including preliminary evaluation of the concept of exercise holidays. Hence, the aim of this literature study is to collect and investigate the post-HDTBR recovery dynamics of current operationally relevant anthropometric outcomes and physiological systems (skeletal, muscular, and cardiovascular) of the passive control groups of HDTBR campaigns, mimicking a period of 'exercise holidays', thereby providing a preliminary evaluation of the concept of 'exercise holidays' for spaceflight, within and beyond LEO. The main findings were that, although a high degree of paucity and inconsistency of reported recovery data is present within the 18 included studies, data suggests that recovery of current operationally relevant outcomes following HDTBR without exercise-and even without targeted rehabilitation during the recovery period-could be timely and does not lead to persistent decrements differing from those experienced following spaceflight. Thus, evaluation of potential exercise holidays concepts within future HDTBR campaigns is warranted, filling current knowledge gaps prior to its potential implementation in human spaceflight exploration missions.
Collapse
Affiliation(s)
- Robert Ekman
- Riga Stradins University, Faculty of Medicine, Riga, Latvia
- Space Medicine Team (HRE-OM), European Astronaut Centre, European Space Agency, Cologne, Germany
| | - David A. Green
- Space Medicine Team (HRE-OM), European Astronaut Centre, European Space Agency, Cologne, Germany
- Centre of Human and Applied Physiological Sciences, King’s College London, London, United Kingdom
- KBR GmbH, Cologne, Germany
| | - Jonathon P. R. Scott
- Space Medicine Team (HRE-OM), European Astronaut Centre, European Space Agency, Cologne, Germany
- Institut Médecine Physiologie Spatiale (MEDES), Toulouse, France
| | - Roger Huerta Lluch
- Space Medicine Team (HRE-OM), European Astronaut Centre, European Space Agency, Cologne, Germany
- KBR GmbH, Cologne, Germany
| | - Tobias Weber
- Space Medicine Team (HRE-OM), European Astronaut Centre, European Space Agency, Cologne, Germany
- KBR GmbH, Cologne, Germany
| | - Nolan Herssens
- Space Medicine Team (HRE-OM), European Astronaut Centre, European Space Agency, Cologne, Germany
- MOVANT, Department of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
7
|
De Martino E, Hides J, Elliott JM, Hoggarth MA, Zange J, Lindsay K, Debuse D, Winnard A, Beard D, Cook JA, Salomoni SE, Weber T, Scott J, Hodges PW, Caplan N. Intramuscular lipid concentration increased in localized regions of the lumbar muscles following 60 day bedrest. Spine J 2022; 22:616-628. [PMID: 34813960 DOI: 10.1016/j.spinee.2021.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 10/18/2021] [Accepted: 11/15/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Prolonged bedrest induces accumulation of intramuscular lipid concentration (ILC) in the lumbar musculature; however, spatial distribution of ILC has not been determined. Artificial gravity (AG) mitigates some adaptations induced by 60 day bedrest by creating a head-to-feet force while participants are in a supine position. PURPOSE To quantify the spatial distribution of accumulation of ILC in the lumbar musculature after 60 day bedrest, and whether this can be mitigated by AG exposure. STUDY DESIGN Prospective longitudinal study. PATIENT SAMPLE Twenty-four healthy individuals (8 females) participated in the study: Eight received 30 min continuous AG (cAG); Eight received 6 × 5 min AG (iAG), interspersed with rests; Eight were not exposed to AG (CRTL). OUTCOME MEASURES From 3T magnetic resonance imaging (MRI), axial images were selected to assess lumbar multifidus (LM), lumbar erector spinae (LES), quadratus lumborum (QL), and psoas major (PM) muscles from L1/L2 to L5/S1 intervertebral disc levels. Chemical shift-based 2-echo lipid and/or water Dixon sequence was used to measure tissue composition. Each lumbar muscle was segmented into four equal quartiles (from medial to lateral). METHODS Participants arrived at the facility for the baseline data collection before undergoing a 60 day strict 6° head-down tilt (HDT) bedrest period. MRI of the lumbopelvic region was conducted at baseline and Day-59 of bedrest. Participants performed all activities, including hygiene, in 6° HDT and were discouraged from moving excessively or unnecessarily. RESULTS At the L4/L5 and L5/S1 intervertebral disc levels, 60-day bedrest induced a greater increase in ILC in medial and lateral regions (∼+4%) of the LM than central regions (∼+2%; p<.05). A smaller increase in ILC was induced in the lateral region of LES (∼+1%) at L1/L2 and L2/L3 than at the centro-medial region (∼+2%; p<.05). There was no difference between CRTL and intervention groups. CONCLUSIONS Inhomogeneous spatial distribution of accumulation of ILC was found in the lumbar musculature after 60 day bedrest. These findings might reflect pathophysiological mechanisms related to muscle disuse and contribute to localized lumbar spine dysfunction. Altered spatial distribution of ILC may impair lumbar spine function after prolonged body unloading, which could increase injury risk to vulnerable soft tissues, such as the lumbar intervertebral discs. These novel results may represent a new biomarker of lumbar deconditioning for astronauts, bedridden, sedentary individuals, or those with chronic back pain. Changes are potentially modifiable but not by the AG protocols tested here.
Collapse
Affiliation(s)
- Enrico De Martino
- Aerospace Medicine and Rehabilitation Laboratory, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom.
| | - Julie Hides
- School of Health Sciences and Social Work, Griffith University, Nathan Campus, Brisbane, Australia
| | - James M Elliott
- Northwestern University, Feinberg School of Medicine Department of Physical Therapy and Human Movement Sciences, Chicago, IL, USA; Northern Sydney Local Health District and The University of Sydney, Faculty of Medicine and Health, The Kolling Institute Sydney, Australia
| | - Mark A Hoggarth
- Northwestern University, Feinberg School of Medicine Department of Physical Therapy and Human Movement Sciences, Chicago, IL, USA; Northwestern University, McCormick School of Engineering, Department of Biomedical Engineering, Evanston, IL, USA
| | - Jochen Zange
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Kirsty Lindsay
- Aerospace Medicine and Rehabilitation Laboratory, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Dorothée Debuse
- Aerospace Medicine and Rehabilitation Laboratory, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Andrew Winnard
- Aerospace Medicine and Rehabilitation Laboratory, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - David Beard
- NIHR Oxford Biomedical Research Center, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Jonathan A Cook
- NIHR Oxford Biomedical Research Center, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom; Center for Statistics in Medicine, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Sauro E Salomoni
- The University of Queensland, NHMRC Center for Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, Brisbane, Australia
| | - Tobias Weber
- Space Medicine Team (HRE-OM), European Astronaut Center, Cologne, Germany; KBR GmbH, Cologne, Germany
| | - Jonathan Scott
- Space Medicine Team (HRE-OM), European Astronaut Center, Cologne, Germany; KBR GmbH, Cologne, Germany
| | - Paul W Hodges
- The University of Queensland, NHMRC Center for Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, Brisbane, Australia
| | - Nick Caplan
- Aerospace Medicine and Rehabilitation Laboratory, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
8
|
Liu HY, Zhao CH, Zhang H, Wang W, Liu QJ. Simulation study on the effect of resistance exercise on the hydrodynamic microenvironment of osteocytes in microgravity. Comput Methods Biomech Biomed Engin 2022; 25:1757-1766. [PMID: 35170387 DOI: 10.1080/10255842.2022.2037130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Osteoporosis occurs in astronauts after long-term space flight owing to the lack of gravity. The mechanical microenvironment of osteocytes in load-bearing bone are changed during resistance exercise, which prevents massive bone loss in the human body. A cylindrical fluid-structure coupling finite element model for osteons with a two-stage pore structure (i.e., Haversian canal, lacunar-canalicular system) was established with the software COMSOL. In the Earth's gravity field and in microgravity, considering the effects of pulsating pressure of arterioles, a comparative study was performed on the changes in hydrodynamic microenvironment of osteocytes during human body high-intensity exercise at different frequencies (defined as causing bone to produce 3000 με) and the body is at rest. Positive and negative liquid pressure (with respect to one atmosphere pressure) alternately acted on osteocytes during human exercising, but only positive pressure acted on osteocytes during human resting. The variation range of liquid pressure acted on osteocytes during human exercising was significantly higher than that during resting. The liquid flow velocity around osteocytes during body exercise was about four orders of magnitude higher than that during resting. In microgravity, moderate physical exercise can obviously improve the hydrodynamic microenvironment of osteocytes in load-bearing bone, which could compensate for the lack of mechanical stimulation to osteocytes caused by the lack of gravity, thereby promoting the normal physiological function of osteocytes. To a certain extent, these results revealed the biomechanical mechanism by which exercise has an effect in fighting osteoporosis in astronauts.
Collapse
Affiliation(s)
- Hai-Ying Liu
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, People's Republic of China.,National Demonstration Center for Experimental Mechanical and Electrical Engineering Education (Tianjin University of Technology), Tianjin, People's Republic of China
| | - Chao-Hui Zhao
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, People's Republic of China.,National Demonstration Center for Experimental Mechanical and Electrical Engineering Education (Tianjin University of Technology), Tianjin, People's Republic of China
| | - Hao Zhang
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, People's Republic of China.,National Demonstration Center for Experimental Mechanical and Electrical Engineering Education (Tianjin University of Technology), Tianjin, People's Republic of China
| | - Wei Wang
- Department of Mechanics, School of Mechanical Engineering, Tianjin University, Tianjin, People's Republic of China
| | - Qing-Jian Liu
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, People's Republic of China.,National Demonstration Center for Experimental Mechanical and Electrical Engineering Education (Tianjin University of Technology), Tianjin, People's Republic of China
| |
Collapse
|
9
|
Tran V, De Martino E, Hides J, Cable G, Elliott JM, Hoggarth M, Zange J, Lindsay K, Debuse D, Winnard A, Beard D, Cook JA, Salomoni SE, Weber T, Scott J, Hodges PW, Caplan N. Gluteal Muscle Atrophy and Increased Intramuscular Lipid Concentration Are Not Mitigated by Daily Artificial Gravity Following 60-Day Head-Down Tilt Bed Rest. Front Physiol 2021; 12:745811. [PMID: 34867450 PMCID: PMC8634875 DOI: 10.3389/fphys.2021.745811] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/13/2021] [Indexed: 11/27/2022] Open
Abstract
Exposure to spaceflight and head-down tilt (HDT) bed rest leads to decreases in the mass of the gluteal muscle. Preliminary results have suggested that interventions, such as artificial gravity (AG), can partially mitigate some of the physiological adaptations induced by HDT bed rest. However, its effect on the gluteal muscles is currently unknown. This study investigated the effects of daily AG on the gluteal muscles during 60-day HDT bed rest. Twenty-four healthy individuals participated in the study: eight received 30 min of continuous AG; eight received 6 × 5 min of AG, interspersed with rest periods; eight belonged to a control group. T1-weighted Dixon magnetic resonance imaging of the hip region was conducted at baseline and day 59 of HDT bed rest to establish changes in volumes and intramuscular lipid concentration (ILC). Results showed that, across groups, muscle volumes decreased by 9.2% for gluteus maximus (GMAX), 8.0% for gluteus medius (GMED), and 10.5% for gluteus minimus after 59-day HDT bed rest (all p < 0.005). The ILC increased by 1.3% for GMAX and 0.5% for GMED (both p < 0.05). Neither of the AG protocols mitigated deconditioning of the gluteal muscles. Whereas all gluteal muscles atrophied, the ratio of lipids to intramuscular water increased only in GMAX and GMED muscles. These changes could impair the function of the hip joint and increased the risk of falls. The deconditioning of the gluteal muscles in space may negatively impact the hip joint stability of astronauts when reexpose to terrestrial gravity.
Collapse
Affiliation(s)
- Vienna Tran
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Enrico De Martino
- Aerospace Medicine and Rehabilitation Laboratory, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Julie Hides
- School of Health Sciences and Social Work, Griffith University, Brisbane, QLD, Australia
| | - Gordon Cable
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- School of Medicine, University of Tasmania, Hobart, TAS, Australia
| | - James M. Elliott
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Faculty of Medicine and Health, The Kolling Research Institute Sydney, Northern Sydney Local Health District, The University of Sydney, Sydney, NSW, Australia
| | - Mark Hoggarth
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, United States
| | - Jochen Zange
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Kirsty Lindsay
- Aerospace Medicine and Rehabilitation Laboratory, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Dorothée Debuse
- Aerospace Medicine and Rehabilitation Laboratory, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Andrew Winnard
- Aerospace Medicine and Rehabilitation Laboratory, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - David Beard
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Jonathan A. Cook
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Centre for Statistics in Medicine, University of Oxford, Oxford, United Kingdom
| | - Sauro E. Salomoni
- NHMRC Centre for Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Tobias Weber
- Space Medicine Team (HRE-OM), European Astronaut Centre, Cologne, Germany
- KBR GmbH, Cologne, Germany
| | - Jonathan Scott
- Space Medicine Team (HRE-OM), European Astronaut Centre, Cologne, Germany
- KBR GmbH, Cologne, Germany
| | - Paul W. Hodges
- NHMRC Centre for Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Nick Caplan
- Aerospace Medicine and Rehabilitation Laboratory, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
10
|
Kramer A, Venegas-Carro M, Zange J, Sies W, Maffiuletti NA, Gruber M, Degens H, Moreno-Villanueva M, Mulder E. Daily 30-min exposure to artificial gravity during 60 days of bed rest does not maintain aerobic exercise capacity but mitigates some deteriorations of muscle function: results from the AGBRESA RCT. Eur J Appl Physiol 2021; 121:2015-2026. [PMID: 33811556 PMCID: PMC8192329 DOI: 10.1007/s00421-021-04673-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 03/28/2021] [Indexed: 11/29/2022]
Abstract
PURPOSE Spaceflight impairs physical capacity. Here we assessed the protective effect of artificial gravity (AG) on aerobic exercise capacity and muscle function during bed rest, a spaceflight analogue. METHODS 24 participants (33 ± 9 years, 175 ± 9 cm, 74 ± 10 kg, 8 women) were randomly allocated to one of three groups: continuous AG (cAG), intermittent AG (iAG) or control (CTRL). All participants were subjected to 60 days of six-degree head-down tilt bed rest, and subjects of the intervention groups completed 30 min of centrifugation per day: cAG continuously and iAG for 6 × 5 min, with an acceleration of 1g at the center of mass. Physical capacity was assessed before and after bed rest via maximal voluntary contractions, cycling spiroergometry, and countermovement jumps. RESULTS AG had no significant effect on aerobic exercise capacity, flexor muscle function and isometric knee extension strength or rate of force development (RFD). However, AG mitigated the effects of bed rest on jumping power (group * time interaction of the rmANOVA p < 0.001; iAG - 25%, cAG - 26%, CTRL - 33%), plantar flexion strength (group * time p = 0.003; iAG - 35%, cAG - 31%, CTRL - 48%) and plantar flexion RFD (group * time p = 0.020; iAG - 28%, cAG - 12%, CTRL - 40%). Women showed more pronounced losses than men in jumping power (p < 0.001) and knee extension strength (p = 0.010). CONCLUSION The AG protocols were not suitable to maintain aerobic exercise capacity, probably due to the very low cardiorespiratory demand of this intervention. However, they mitigated some losses in muscle function, potentially due to the low-intensity muscle contractions during centrifugation used to avoid presyncope.
Collapse
Affiliation(s)
- Andreas Kramer
- Human Performance Research Centre, Department of Sport Science, University of Konstanz, 78457, Konstanz, Germany.
| | - María Venegas-Carro
- Human Performance Research Centre, Department of Sport Science, University of Konstanz, 78457, Konstanz, Germany
| | - Jochen Zange
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Wolfram Sies
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | | | - Markus Gruber
- Human Performance Research Centre, Department of Sport Science, University of Konstanz, 78457, Konstanz, Germany
| | - Hans Degens
- Department of Life Sciences, Manchester Metropolitan University, Manchester, UK.,Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - María Moreno-Villanueva
- Human Performance Research Centre, Department of Sport Science, University of Konstanz, 78457, Konstanz, Germany
| | - Edwin Mulder
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| |
Collapse
|
11
|
Marusic U, Narici M, Simunic B, Pisot R, Ritzmann R. Nonuniform loss of muscle strength and atrophy during bed rest: a systematic review. J Appl Physiol (1985) 2021; 131:194-206. [PMID: 33703945 DOI: 10.1152/japplphysiol.00363.2020] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Muscle atrophy and decline in muscle strength appear very rapidly with prolonged disuse or mechanical unloading after acute hospitalization or experimental bed rest. The current study analyzed data from short-, medium-, and long-term bed rest (5-120 days) in a pooled sample of 318 healthy adults and modeled the mathematical relationship between muscle strength decline and atrophy. The results show a logarithmic disuse-induced loss of strength and muscle atrophy of the weight-bearing knee extensor muscles. The greatest rate of muscle strength decline and atrophy occurred in the earliest stages of bed rest, plateauing later, and likely contributed to the rapid neuromuscular loss of function in the early period. In addition, during the first 2 wk of bed rest, muscle strength decline is much faster than muscle atrophy: on day 5, the ratio of muscle atrophy to strength decline as a function of bed rest duration is 4.2, falls to 2.4 on day 14, and stabilizes to a value of 1.9 after ∼35 days of bed rest. Positive regression revealed that ∼79% of the muscle strength loss may be explained by muscle atrophy, while the remaining is most likely due to alterations in single fiber mechanical properties, excitation-contraction coupling, fiber architecture, tendon stiffness, muscle denervation, neuromuscular junction damage, and supraspinal changes. Future studies should focus on neural factors as well as muscular factors independent of atrophy (single fiber excitability and mechanical properties, architectural factors) and on the role of extracellular matrix changes. Bed rest results in nonuniform loss of isometric muscle strength and atrophy over time, where the magnitude of change was greater for muscle strength than for atrophy. Future research should focus on the loss of muscle function and the underlying mechanisms, which will aid in the development of countermeasures to mitigate or prevent the decline in neuromuscular efficiency.NEW & NOTEWORTHY Our study contributes to the characterization of muscle loss and weakness processes reflected by a logarithmic decline in muscle strength induced by chronic bed rest. Acute short-term hospitalization (≤5 days) associated with periods of disuse/immobilization/prolonged time in the supine position in the hospital bed is sufficient to significantly decrease muscle mass and size and induce functional changes related to weakness in maximal muscle strength. By bringing together integrated evaluation of muscle structure and function, this work identifies that 79% of the loss in muscle strength can be explained by muscle atrophy, leaving 21% of the functional loss unexplained. The outcomes of this study should be considered in the development of daily countermeasures for preserving neuromuscular integrity as well as preconditioning interventions to be implemented before clinical bed rest or chronic gravitational unloading (e.g., spaceflights).
Collapse
Affiliation(s)
- Uros Marusic
- Institute for Kinesiology Research, Science and Research Centre Koper, Koper, Slovenia.,Department of Health Sciences, Alma Mater Europaea-European Center of Maribor, Maribor, Slovenia
| | - Marco Narici
- Institute for Kinesiology Research, Science and Research Centre Koper, Koper, Slovenia.,Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Bostjan Simunic
- Institute for Kinesiology Research, Science and Research Centre Koper, Koper, Slovenia
| | - Rado Pisot
- Institute for Kinesiology Research, Science and Research Centre Koper, Koper, Slovenia
| | | |
Collapse
|
12
|
Ganse B, Bosutti A, Drey M, Degens H. Sixty days of head-down tilt bed rest with or without artificial gravity do not affect the neuromuscular secretome. Exp Cell Res 2020; 399:112463. [PMID: 33385417 DOI: 10.1016/j.yexcr.2020.112463] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 01/13/2023]
Abstract
Artificial gravity is a potential countermeasure to attenuate effects of weightlessness during long-term spaceflight, including losses of muscle mass and function, possibly to some extent attributable to disturbed neuromuscular interaction. The 60-day AGBRESA bed-rest study was conducted with 24 participants (16 men, 8 women; 33 ± 9 years; 175 ± 9 cm; 74 ± 10 kg; 8 control group, 8 continuous (cAG) and 8 intermittent (iAG) centrifugation) to assess the impact of bed rest with or without daily 30-min continuous/intermittent centrifugation with 1G at the centre of mass. Fasting blood samples were collected before and on day 6, 20, 40 and 57 during 6° head-down tilt bed rest. Concentrations of circulating markers of muscle wasting (GDF-8/myostatin; slow skeletal muscle troponin T; prostaglandin E2), neurotrophic factors (BDNF; GDNF) and C-terminal Agrin Fragment (CAF) were determined by ELISAs. Creatine kinase activity was assessed by colorimetric enzyme assay. Repeated-measures ANOVAs were conducted with TIME as within-subject, and INTERVENTION and SEX as between-subject factors. The analyses revealed no significant effect of bed rest or sex on any of the parameters. Continuous or intermittent artificial gravity is a safe intervention that does not have a negative impact of the neuromuscular secretome.
Collapse
Affiliation(s)
- Bergita Ganse
- Manchester Metropolitan University, Research Centre for Musculoskeletal Science & Sports Medicine, Faculty of Science and Engineering, John Dalton Building, Manchester, United Kingdom.
| | | | - Michael Drey
- Department of Medicine IV, Geriatrics, University Hospital of LMU Munich, Munich, Germany
| | - Hans Degens
- Manchester Metropolitan University, Research Centre for Musculoskeletal Science & Sports Medicine, Faculty of Science and Engineering, John Dalton Building, Manchester, United Kingdom; Lithuanian Sports University, Institute of Sport Science and Innovations, Kaunas, Lithuania
| |
Collapse
|
13
|
Kramer A, Venegas-Carro M, Mulder E, Lee JK, Moreno-Villanueva M, Bürkle A, Gruber M. Cardiorespiratory and Neuromuscular Demand of Daily Centrifugation: Results From the 60-Day AGBRESA Bed Rest Study. Front Physiol 2020; 11:562377. [PMID: 33041861 PMCID: PMC7518067 DOI: 10.3389/fphys.2020.562377] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/19/2020] [Indexed: 12/13/2022] Open
Abstract
Purpose Long stays in space require countermeasures for the degrading effects of weightlessness on the human body, and artificial gravity (AG) has been proposed as an integrated countermeasure. The aim of this study was to assess the cardiorespiratory and neuromuscular demand of AG elicited via daily centrifugation during 60 days of bed rest. Methods Twenty four participants (33 ± 9 y, 175 ± 9 cm, 74 ± 10 kg, 8 female) were subjected to 60 days of strict six-degree head-down tilt (HDT) bed rest and were randomly allocated to one of three experimental groups: 30 min of daily centrifugation with an acceleration of 1 g at the center of mass and 2 g at the feet applied continuously (cAG) or intermittently in 6 epochs of 5 min each, separated by 3 min breaks (iAG), or non-centrifuged control (CTRL). Cardiorespiratory demand during centrifugation was assessed at the beginning (HDT3) and end (HDT60) of the bed rest phase via spirometry and heart rate monitoring, leg muscle activation was monitored via electromyography. Results On average, analyses of variance revealed that heart rate during centrifugation increased by 40% (iAG) and 60% (cAG) compared to resting values (p < 0.001), while oxygen uptake did not change significantly (p = 0.96). There was a preference for calf over knee extensor muscle activation (active time soleus 57 ± 27%, gastrocnemius medialis 45 ± 27% and vastus lateralis 27 ± 27%, p < 0.001), with large inter-individual differences in leg muscle active time. AG could not prevent the increase in resting heart rate after bed rest. For most of the recorded parameters, there were little differences between cAG and iAG, with the increase in heart rate during centrifugation being a notable exception (greater increase for cAG, p = 0.01). Conclusion Daily 30 min bouts of artificial gravity elicited by centrifugation put a substantial demand on the heart as a pump without increasing oxygen consumption. If centrifugation is to be used as a countermeasure for the deteriorating effects of microgravity on physical performance, we recommend combining it with strenuous exercise.
Collapse
Affiliation(s)
- Andreas Kramer
- Department of Sport Science, University of Konstanz, Konstanz, Germany
| | | | - Edwin Mulder
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Jessica K Lee
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | | | - Alexander Bürkle
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Markus Gruber
- Department of Sport Science, University of Konstanz, Konstanz, Germany
| |
Collapse
|
14
|
Head-down tilt bed rest with or without artificial gravity is not associated with motor unit remodeling. Eur J Appl Physiol 2020; 120:2407-2415. [PMID: 32797257 PMCID: PMC7557493 DOI: 10.1007/s00421-020-04458-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 07/31/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE The objective of this study was to assess whether artificial gravity attenuates any long-duration head-down 60 bed rest (HDBR)-induced alterations in motor unit (MU) properties. METHODS Twenty-four healthy participants (16 men; 8 women; 26-54 years) underwent 60-day HDBR with (n = 16) or without (n = 8) 30 min artificial gravity daily induced by whole-body centrifugation. Compound muscle action potential (CMAP), MU number (MUNIX) and MU size (MUSIX) were estimated using the method of Motor Unit Number Index in the Abductor digiti minimi and tibialis anterior muscles 5 days before (BDC-5), and during day 4 (HDT4) and 59 (HDT59) of HDBR. RESULTS The CMAP, MUNIX, and MUSIX at baseline did not change significantly in either muscle, irrespective of the intervention (p > 0.05). Across groups, there were no significant differences in any variable during HDBR, compared to BDC-5. CONCLUSION Sixty days of HDBR with or without artificial gravity does not induce alterations in motor unit number and size in the ADM or TA muscles in healthy individuals.
Collapse
|
15
|
Bosutti A, Mulder E, Zange J, Bühlmeier J, Ganse B, Degens H. Effects of 21 days of bed rest and whey protein supplementation on plantar flexor muscle fatigue resistance during repeated shortening contractions. Eur J Appl Physiol 2020; 120:969-983. [PMID: 32130485 PMCID: PMC7181505 DOI: 10.1007/s00421-020-04333-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 02/07/2020] [Indexed: 11/25/2022]
Abstract
PURPOSE Space flight and bed rest (BR) lead to a rapid decline in exercise capacity. Whey protein plus potassium bicarbonate diet-supplementation (NUTR) could attenuate this effect by improving oxidative metabolism. We evaluated the impact of 21-day BR and NUTR on fatigue resistance of plantar flexor muscles (PF) during repeated shortening contractions, and whether any change was related to altered energy metabolism and muscle oxygenation. METHODS Ten healthy men received a standardized isocaloric diet with (n = 5) or without (n = 5) NUTR. Eight bouts of 24 concentric plantar flexions (30 s each bout) with 20 s rest between bouts were employed. PF muscle size was assessed by means of peripheral quantitative computed tomography. PF muscle volume was assessed with magnetic resonance imaging. PF muscle force, contraction velocity, power and surface electromyogram signals were recorded during each contraction, as well as energy metabolism (31P nuclear magnetic resonance spectroscopy) and oxygenation (near-infrared spectroscopy). Cardiopulmonary parameters were measured during an incremental cycle exercise test. RESULTS BR caused 10-15% loss of PF volume that was partly recovered 3 days after re-ambulation, as a consequence of fluid redistribution. Unexpectedly, PF fatigue resistance was not affected by BR or NUTR. BR induced a shift in muscle metabolism toward glycolysis and some signs of impaired muscle oxygen extraction. NUTR did not attenuate the BR-induced-shift in energy metabolism. CONCLUSIONS Twenty-one days' BR did not impair PF fatigue resistance, but the shift to glycolytic metabolism and indications of impaired oxygen extraction may be early signs of developing reduced muscle fatigue resistance.
Collapse
Affiliation(s)
- Alessandra Bosutti
- Department of Life Sciences, and Centre for Neuroscience B.R.A.I.N, University of Trieste, Via A. Fleming 22, 34127, Trieste, Italy.
| | - Edwin Mulder
- Institute of Aerospace Medicine, German Aerospace Center DLR, Cologne, Germany
| | - Jochen Zange
- Institute of Aerospace Medicine, German Aerospace Center DLR, Cologne, Germany
| | - Judith Bühlmeier
- Department of Child and Adolescent Psychiatry, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Bergita Ganse
- Department of Life Sciences, Musculoskeletal Science and Sports Medicine Research Centre, Manchester Metropolitan University, Manchester, UK
| | - Hans Degens
- Department of Life Sciences, Musculoskeletal Science and Sports Medicine Research Centre, Manchester Metropolitan University, Manchester, UK.
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania.
- University of Medicine and Pharmacy of Targu Mures, Târgu Mureș, Rumania.
| |
Collapse
|
16
|
Piotrowski T, Rittweger J, Zange J. A Comparison of Squatting Exercise on a Centrifuge and With Earth Gravity. Front Physiol 2018; 9:1759. [PMID: 30568604 PMCID: PMC6290078 DOI: 10.3389/fphys.2018.01759] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 11/21/2018] [Indexed: 12/31/2022] Open
Abstract
Purpose: Long-duration space missions require countermeasures against the muscular wasting and cardiovascular deconditioning associated with microgravity. Replacing gravitational acceleration by means of centrifugation is a promising alternative as it challenges all physiological systems at once. The aim of this study is to examine the metabolic energy costs of squatting on a centrifuge in comparison with squatting in an upright standing posture under natural gravity. Methods: 24 subjects (11 male, 13 female) performed continuous squatting exercise for 9 min with increasing cadence (10, 12, and 15 squats min-1). This was done under three conditions: Upright under natural gravity and lying supine on a centrifuge at two radii (2.5 and 3.5 m) at 1 g of centrifugal acceleration at the subject’s average center of mass during the exercise. Results: Generally, subjects did not suffer from motion sickness. Exercise under natural gravity led to a higher Δ V’O2/body mass (7.1 ± 2.0, ml min-1 kg-1, mean ± SD) compared with exercise on the centrifuge (6.1 ± 1.6, ml min-1 kg-1, mean ± SD). Exercise efficiency was also reduced under natural 1 g at 28.2 ± 1.0% compared to 40.4 ± 1.5% on the centrifuge. As expected, oxygen consumption increased with increasing cadences. The Coriolis effect had a negligible impact as there was no significant difference in V’O2 between the two radii. However, during centrifugation and upward movement the right leg was more loaded than the leg left and vice versa during downward movement (centrifuge running clockwise looking down, so to the subjects’ right). Conclusion: The lower V’O2 on the centrifuge may be attributed to the unloading of trunk muscles while subjects were lying on the sled, which in the upright condition leaning against the sled were still working to stabilize the torso. Subjects tolerated high rotational rates combined with exercise very well.
Collapse
Affiliation(s)
- Timothy Piotrowski
- Institute of Aerospace Medicine, Muscle and Bone Metabolism, German Aerospace Center, Cologne, Germany
| | - Jörn Rittweger
- Institute of Aerospace Medicine, Muscle and Bone Metabolism, German Aerospace Center, Cologne, Germany
| | - Jochen Zange
- Institute of Aerospace Medicine, Muscle and Bone Metabolism, German Aerospace Center, Cologne, Germany
| |
Collapse
|
17
|
Li WY, Li XY, Tian YH, Chen XR, Zhou J, Zhu BY, Xi HR, Gao YH, Xian CJ, Chen KM. Pulsed electromagnetic fields prevented the decrease of bone formation in hindlimb-suspended rats by activating sAC/cAMP/PKA/CREB signaling pathway. Bioelectromagnetics 2018; 39:569-584. [PMID: 30350869 DOI: 10.1002/bem.22150] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 09/30/2018] [Indexed: 12/21/2022]
Abstract
Microgravity is one of the main threats to the health of astronauts. Pulsed electromagnetic fields (PEMFs) have been considered as one of the potential countermeasures for bone loss induced by space flight. However, the optimal therapeutic parameters of PEMFs have not been obtained and the action mechanism is still largely unknown. In this study, a set of optimal therapeutic parameters for PEMFs (50 Hz, 0.6 mT 50% duty cycle and 90 min/day) selected based on high-throughput screening with cultured osteoblasts was used to prevent bone loss in rats induced by hindlimb suspension, a commonly accepted animal model to simulate the space environment. It was found that hindlimb suspension for 4 weeks led to significant decreases in femoral and vertebral bone mineral density (BMD) and their maximal loads, severe deterioration in bone micro-structure, and decreases in levels of bone formation markers and increases in bone resorption markers. PEMF treatment prevented about 50% of the decreased BMD and maximal loads, preserved the microstructure of cancellous bone and thickness of cortical bone, and inhibited decreases in bone formation markers. Histological analyses revealed that PEMFs significantly alleviated the reduction in osteoblast number and inhibited the increase in adipocyte number in the bone marrow. PEMFs also blocked decreases in serum levels of parathyroid hormone and its downstream signal molecule cAMP, and maintained the phosphorylation levels of protein kinase A (PKA) and cAMP response element-binding protein (CREB). The expression level of soluble adenylyl cyclases (sAC) was also maintained. It therefore can be concluded that PEMFs partially prevented the bone loss induced by weightless environment by maintaining bone formation through signaling of the sAC/cAMP/PKA/CREB pathway. Bioelectromagnetics. 39:569-584, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Wen-Yuan Li
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China.,Institute of Orthopaedics, Lanzhou General Hospital of CPLA, Lanzhou, China
| | - Xue-Yan Li
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Yong-Hui Tian
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Xin-Ru Chen
- College of Life Sciences, Northwest A & F University, Yanglin, China
| | - Jian Zhou
- Institute of Orthopaedics, Lanzhou General Hospital of CPLA, Lanzhou, China
| | - Bao-Ying Zhu
- Institute of Orthopaedics, Lanzhou General Hospital of CPLA, Lanzhou, China
| | - Hui-Rong Xi
- Institute of Orthopaedics, Lanzhou General Hospital of CPLA, Lanzhou, China
| | - Yu-Hai Gao
- Institute of Orthopaedics, Lanzhou General Hospital of CPLA, Lanzhou, China
| | - Cory J Xian
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Ke-Ming Chen
- Institute of Orthopaedics, Lanzhou General Hospital of CPLA, Lanzhou, China
| |
Collapse
|
18
|
Anderson AP, Butterfield JS, Subramanian PS, Clark TK. Intraocular pressure and cardiovascular alterations investigated in artificial gravity as a countermeasure to spaceflight associated neuro-ocular syndrome. J Appl Physiol (1985) 2018; 125:567-576. [PMID: 29745798 DOI: 10.1152/japplphysiol.00082.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Artificial gravity (AG) has been proposed as a countermeasure to spaceflight-associated neuro-ocular syndrome (SANS). The etiology of SANS is unknown but mimicking gravitational loading through AG may mitigate these negative adaptations. Seventeen subjects (nine men, eight women; 18-32 yr) were analyzed in four experimental conditions: 1) standing, 2) supine, 3) AG with the center of rotation at the eye (AGEC), and 4) AG with 2 Gs at the feet (AG2G). In both AG conditions, subjects were spun to produce 1 G at their center of mass. Data included self-administered intraocular pressure (IOP, Tono-pen AVIA, Depew, NY), heart rate (HR), and mean arterial blood pressure (MAP, Omron Series 10, Omron Healthcare, Kyoto, Japan). Data were analyzed with repeated measures ANOVAs with Tukey-Kramer corrections for multiple pairwise comparisons. IOP was 15.7 ± 1.4 mmHg (mean ± 95% confidence interval) standing, 18.8 ± 1.3 mmHg supine, 18.5 ± 1.7 mmHg in AGEC, and 17.5 ± 1.5 mmHg in AG2G. Postures showed a main effect [F(3,48) = 11.0, P < 0.0005], with standing significantly lower than supine ( P = 0.0009), AGEC ( P = 0.002), and AG2G (0.036). Supine, AGEC, and AG2G were not statistically different. HR and MAP were lower in supine compared with all other postures ( P = 0.002 to P < 0.0005), but there were no differences between standing, AGEC, and AG2G. IOP in supine and standing was consistent with previous studies, but contrary to our hypothesis, remained elevated in both AG conditions. Cardiovascular parameters and hydrostatic gradients determine IOP, which remain unchanged compared with standing. These results suggest additional influence on IOP from previously unconsidered factors. NEW & NOTEWORTHY This is the first study, to the authors' knowledge, to measure intraocular pressure in short-radius centrifuge artificial gravity (AG), which has been proposed as a countermeasure to the spaceflight-associated neuro-ocular syndrome (SANS). If the etiology of SANS is related to intraocular pressure, these results have implications for whether or not short-radius AG can be used to prevent ocular changes relevant to it. Our results indicate this proposed countermeasure merits further investigation.
Collapse
Affiliation(s)
- Allison P Anderson
- Smead Department of Aerospace Engineering Sciences, University of Colorado Boulder, Colorado
| | - Joseph S Butterfield
- Smead Department of Aerospace Engineering Sciences, University of Colorado Boulder, Colorado.,Department of Integrative Physiology, University of Colorado Boulder, Colorado
| | | | - Torin K Clark
- Smead Department of Aerospace Engineering Sciences, University of Colorado Boulder, Colorado
| |
Collapse
|
19
|
|
20
|
LI XT, YANG CB, ZHU YS, SUN J, SHI F, WANG YC, GAO Y, ZHAO JD, SUN XQ. Moderate Exercise Based on Artificial Gravity Preserves Orthostatic Tolerance and Exercise Capacity During Short-Term Head-Down Bed Rest. Physiol Res 2017; 66:567-580. [DOI: 10.33549/physiolres.933493] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Numerous countermeasures have been proposed to minimize microgravity-induced physical deconditioning, but their benefits are limited. The present study aimed to investigate whether personalized aerobic exercise based on artificial gravity (AG) mitigates multisystem physical deconditioning. Fourteen men were assigned to the control group (n=6) and the countermeasure group (CM, n=8). Subjects in the CM group were exposed to AG (2 Gz at foot level) for 30 min twice daily, during which time cycling exercise of 80-95 % anaerobic threshold (AT) intensity was undertaken. Orthostatic tolerance (OT), exercise tests, and blood assays were determined before and after 4 days head-down bed rest (HDBR). Cardiac systolic function was measured every day. After HDBR, OT decreased to 50.9 % and 77.5 % of pre-HDBR values in control and CM groups, respectively. Exercise endurance, maximal oxygen consumption, and AT decreased to 96.5 %, 91.5 % and 91.8 % of pre-HDBR values, respectively, in the control group. Nevertheless, there were slight changes in the CM group. HDBR increased heart rate, sympathetic activity, and the pre-ejection period, but decreased plasma volume, parasympathetic activity and left-ventricular ejection time in the control group, whereas these effects were eliminated in the CM group. Aldosterone had no change in the control group but increased significantly in the CM group. Our study shows that 80-95 % AT aerobic exercise based on 2 Gz of AG preserves OT and exercise endurance, and affects body fluid regulation during short-term HDBR. The underlying mechanisms might involve maintained cardiac systolic function, preserved plasma volume, and improved sympathetic responses to orthostatic stress.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - X.-Q. SUN
- Department of Aerospace Biodynamics, Faculty of Aerospace Medicine, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
21
|
Demontis GC, Germani MM, Caiani EG, Barravecchia I, Passino C, Angeloni D. Human Pathophysiological Adaptations to the Space Environment. Front Physiol 2017; 8:547. [PMID: 28824446 PMCID: PMC5539130 DOI: 10.3389/fphys.2017.00547] [Citation(s) in RCA: 196] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 07/14/2017] [Indexed: 12/29/2022] Open
Abstract
Space is an extreme environment for the human body, where during long-term missions microgravity and high radiation levels represent major threats to crew health. Intriguingly, space flight (SF) imposes on the body of highly selected, well-trained, and healthy individuals (astronauts and cosmonauts) pathophysiological adaptive changes akin to an accelerated aging process and to some diseases. Such effects, becoming manifest over a time span of weeks (i.e., cardiovascular deconditioning) to months (i.e., loss of bone density and muscle atrophy) of exposure to weightlessness, can be reduced through proper countermeasures during SF and in due time are mostly reversible after landing. Based on these considerations, it is increasingly accepted that SF might provide a mechanistic insight into certain pathophysiological processes, a concept of interest to pre-nosological medicine. In this article, we will review the main stress factors encountered in space and their impact on the human body and will also discuss the possible lessons learned with space exploration in reference to human health on Earth. In fact, this is a productive, cross-fertilized, endeavor in which studies performed on Earth yield countermeasures for protection of space crew health, and space research is translated into health measures for Earth-bound population.
Collapse
Affiliation(s)
| | - Marco M Germani
- MedLab, Institute of Life Sciences, Scuola Superiore Sant'AnnaPisa, Italy
| | - Enrico G Caiani
- Department of Electronics, Information and Biomedical Engineering, Politecnico di MilanoMilan, Italy
| | - Ivana Barravecchia
- Department of Pharmacy, University of PisaPisa, Italy.,MedLab, Institute of Life Sciences, Scuola Superiore Sant'AnnaPisa, Italy
| | - Claudio Passino
- MedLab, Institute of Life Sciences, Scuola Superiore Sant'AnnaPisa, Italy.,Fondazione Toscana G. MonasterioPisa, Italy
| | - Debora Angeloni
- MedLab, Institute of Life Sciences, Scuola Superiore Sant'AnnaPisa, Italy
| |
Collapse
|
22
|
Heacox HN, Gillman PL, Zwart SR, Smith SM. Excretion of Zinc and Copper Increases in Men during 3 Weeks of Bed Rest, with or without Artificial Gravity. J Nutr 2017; 147:1113-1120. [PMID: 28490676 PMCID: PMC5443469 DOI: 10.3945/jn.117.247437] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 01/21/2017] [Accepted: 04/05/2017] [Indexed: 01/21/2023] Open
Abstract
Background: Zinc and copper have many physiologic functions and little or no functional storage capability, so persistent losses of either element present health concerns, especially during extended-duration space missions.Objectives: We evaluated the effects of short-term bed rest (BR), a spaceflight analog, on copper and zinc metabolism to better understand the role of these nutrients in human adaptation to (simulated) spaceflight. We also investigated the effect of artificial gravity on copper and zinc homeostasis.Methods: Zinc and copper balances were studied in 15 men [mean ± SD age: 29 ± 3 y; body mass index (in kg/m2): 26.4 ± 2.2] before, during, and after 21 d of head-down tilt BR, during which 8 of the participants were subjected to artificial gravity (AG) by centrifugation for 1 h/d. Control subjects were transferred onto the centrifuge but were not exposed to centrifugation. The study was conducted in a metabolic ward; all urine and feces were collected. Data were analyzed by 2-factor repeated-measures ANOVA.Results: Urinary zinc excretion values for control and AG groups were 33% and 14%, respectively, higher during BR than before BR, and fecal zinc excretion values for control and AG groups were 36% and 19%, respectively, higher during BR, resulting in 67% and 82% lower net zinc balances for controls and AG, respectively (both P < 0.01), despite lower nutrient intake during BR. Fecal copper values for control and AG groups were 40% and 33%, respectively, higher during BR than before BR (P < 0.01 for both). Urinary copper did not change during BR, but a 19% increase was observed after BR compared with before BR in the AG group (P < 0.05).Conclusions: The increased fecal excretion of copper and zinc by men during BR suggests that their absorption of these minerals from the diet was reduced, secondary to the release of minerals from bone and muscle. These findings highlight the importance of determining dietary requirements for astronauts on space missions and ensuring provision and intake of all nutrients.
Collapse
Affiliation(s)
- Hayley N Heacox
- Department of Chemistry, University of Central Arkansas, Conway, AR
| | | | - Sara R Zwart
- University of Texas Medical Branch, Galveston, TX; and
| | | |
Collapse
|
23
|
Grimm D, Grosse J, Wehland M, Mann V, Reseland JE, Sundaresan A, Corydon TJ. The impact of microgravity on bone in humans. Bone 2016; 87:44-56. [PMID: 27032715 DOI: 10.1016/j.bone.2015.12.057] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 11/17/2015] [Accepted: 12/18/2015] [Indexed: 12/22/2022]
Abstract
Experiencing real weightlessness in space is a dream for many of us who are interested in space research. Although space traveling fascinates us, it can cause both short-term and long-term health problems. Microgravity is the most important influence on the human organism in space. The human body undergoes dramatic changes during a long-term spaceflight. In this review, we will mainly focus on changes in calcium, sodium and bone metabolism of space travelers. Moreover, we report on the current knowledge on the mechanisms of bone loss in space, available models to simulate the effects of microgravity on bone on Earth as well as the combined effects of microgravity and cosmic radiation on bone. The available countermeasures applied in space will also be evaluated.
Collapse
Affiliation(s)
- Daniela Grimm
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark.
| | - Jirka Grosse
- Department of Nuclear Medicine Germany, University of Regensburg, D-93042 Regensburg, Germany
| | - Markus Wehland
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke University, D-39120 Magdeburg, Germany
| | - Vivek Mann
- Department of Biology, Texas Southern University, 3100 Cleburne, Houston, TX 77004, USA
| | - Janne Elin Reseland
- Department of Biomaterials, Faculty of Dentistry, University of Oslo, N-0317 Oslo, Norway
| | - Alamelu Sundaresan
- Department of Biology, Texas Southern University, 3100 Cleburne, Houston, TX 77004, USA
| | | |
Collapse
|