1
|
de Amaral M, Von Dentz MC, Cubas GK, de Oliveira DR, Simões LAR, Model JFA, Oliveira GT, Kucharski LC. Coping with dry spells: Investigating oxidative balance and metabolic responses in the subtropical tree frog Boana pulchella (Hylidae) during dehydration and rehydration exposure. Comp Biochem Physiol A Mol Integr Physiol 2024; 297:111728. [PMID: 39147093 DOI: 10.1016/j.cbpa.2024.111728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/11/2024] [Accepted: 08/11/2024] [Indexed: 08/17/2024]
Abstract
In the face of climate change, understanding the metabolic responses of vulnerable animals to abiotic stressors like anurans is crucial. Water restriction and subsequent dehydration is a condition that can threaten populations and lead to species decline. This study examines metabolic variations in the subtropical frog Boana pulchella exposed to dehydration resulting in a 40% loss of body water followed by 24 h of rehydration. During dehydration, the scaled mass index decreases, and concentrations of metabolic substrates alter in the brain and liver. The activity of antioxidant enzymes increases in the muscle and heart, emphasizing the importance of catalase in the rehydration period. Glycogenesis increases in the muscle and liver, indicating a strategy to preserve tissue water through glycogen storage. These findings suggest that B. pulchella employs specific metabolic mechanisms to survive exposure to water restriction, highlighting tissue-specific variations in metabolic pathways and antioxidant defenses. These findings contribute to a deeper understanding of anuran adaptation to water stress and emphasize the importance of further research in other species to complement existing knowledge and provide physiological tools to conservation.
Collapse
Affiliation(s)
- Marjoriane de Amaral
- Laboratory of Metabolism and Comparative Endocrinology, Department of Physiology, Federal University of Rio Grande do Sul, 2600 Ramiro Barcelos Street, 90035003 Porto Alegre, Rio Grande do Sul, Brazil.
| | - Maiza Cristina Von Dentz
- Laboratory of Metabolism and Comparative Endocrinology, Department of Physiology, Federal University of Rio Grande do Sul, 2600 Ramiro Barcelos Street, 90035003 Porto Alegre, Rio Grande do Sul, Brazil
| | - Gustavo Kasper Cubas
- Laboratory of Metabolism and Comparative Endocrinology, Department of Physiology, Federal University of Rio Grande do Sul, 2600 Ramiro Barcelos Street, 90035003 Porto Alegre, Rio Grande do Sul, Brazil
| | - Diogo Reis de Oliveira
- Conservation Physiology Laboratory, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, 6681 Ipiranga Avenue, 90619900, Rio Grande do Sul, Brazil
| | - Leonardo Airton Ressel Simões
- Laboratory of Metabolism and Comparative Endocrinology, Department of Physiology, Federal University of Rio Grande do Sul, 2600 Ramiro Barcelos Street, 90035003 Porto Alegre, Rio Grande do Sul, Brazil
| | - Jorge Felipe Argenta Model
- Laboratory of Metabolism and Comparative Endocrinology, Department of Physiology, Federal University of Rio Grande do Sul, 2600 Ramiro Barcelos Street, 90035003 Porto Alegre, Rio Grande do Sul, Brazil
| | - Guendalina Turcato Oliveira
- Conservation Physiology Laboratory, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, 6681 Ipiranga Avenue, 90619900, Rio Grande do Sul, Brazil
| | - Luiz Carlos Kucharski
- Laboratory of Metabolism and Comparative Endocrinology, Department of Physiology, Federal University of Rio Grande do Sul, 2600 Ramiro Barcelos Street, 90035003 Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
2
|
Valgas AAN, Cubas GK, de Oliveira DR, Araujo JF, Altenhofen S, Bonan CD, Oliveira GT, Verrastro L. Ecophysiological responses of Liolaemus arambarensis juveniles to experimental temperature variations. Comp Biochem Physiol A Mol Integr Physiol 2024; 290:111577. [PMID: 38228266 DOI: 10.1016/j.cbpa.2024.111577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/18/2024]
Abstract
Climate change increasingly influences the loss of biodiversity, especially in ectothermic organisms, which depend on environmental temperatures to obtain heat and regulate their life cycle. Studies that aim to understand the impact of temperature variation are important to better understand the possible impacts generated on the homeostasis of ectothermic organisms. Our objective was to characterize the responses of juvenile Liolaemus arambarensis lizards to abrupt changes in temperature, quantifying markers of body condition, intermediary and hormonal metabolism and oxidative balance. We collected 45 juvenile individuals of L. arambarensis (winter: 20 and summer: 25) in Barra do Ribeiro, Brazil. We transported the animals to the laboratory, where they were acclimatized for five days at a temperature of 20 °C, then divided and exposed to temperatures of 10 °C, 20 °C, 30 °C and 40 °C for 24 h. After exposure, the animals were euthanized and the brain, caudal muscle, thigh, and liver tissues were extracted for quantification of biomarkers of metabolism (glycogen and total proteins) and oxidative balance (acetylcholinesterase, superoxide dismutase, catalase, glutathione-S-transferase and lipoperoxidation) and plasma for corticosterone quantification. The results show that L. arambarensis is susceptible to sudden temperature variations, where higher temperatures caused greater activity of antioxidant enzymes, increased lipoperoxidation and higher plasma levels of corticosterone in animals eliminated in winter. The present study demonstrated that abrupt changes in temperature could significantly modify the homeostatic mechanisms of animals, which could lead to oxidative stress and a potential trade-off between survival and growth/reproduction. In this context, the organism mobilizes energy resources for survival, with possible damage to growth and reproduction. Demonstrate that a change in temperature can be a potential factor in extinction for a species given the profile of global climate change.
Collapse
Affiliation(s)
- Artur Antunes Navarro Valgas
- Universidade Federal do Rio Grande do Sul, Departamento de Zoologia, Laboratório de Herpetologia, Bento Gonçalves Avenue, 9500 Pd. 43435, Block IV, class 102, Campus do Vale, 91510-000, Porto Alegre, RS, Brazil; Pontifícia Universidade Católica do Rio Grande do Sul, Escola de Ciências da Saúde e da Vida, Laboratório de Fisiologia da Conservação, Ipiranga Avenue, 6681 Pd. 12, Block C, class 250, 90619-900, Porto Alegre, RS, Brazil.
| | - Gustavo Kasper Cubas
- Universidade Federal do Rio Grande do Sul, Departamento de Zoologia, Laboratório de Herpetologia, Bento Gonçalves Avenue, 9500 Pd. 43435, Block IV, class 102, Campus do Vale, 91510-000, Porto Alegre, RS, Brazil; Pontifícia Universidade Católica do Rio Grande do Sul, Escola de Ciências da Saúde e da Vida, Laboratório de Fisiologia da Conservação, Ipiranga Avenue, 6681 Pd. 12, Block C, class 250, 90619-900, Porto Alegre, RS, Brazil
| | - Diogo Reis de Oliveira
- Universidade Federal do Rio Grande do Sul, Departamento de Zoologia, Laboratório de Herpetologia, Bento Gonçalves Avenue, 9500 Pd. 43435, Block IV, class 102, Campus do Vale, 91510-000, Porto Alegre, RS, Brazil; Pontifícia Universidade Católica do Rio Grande do Sul, Escola de Ciências da Saúde e da Vida, Laboratório de Fisiologia da Conservação, Ipiranga Avenue, 6681 Pd. 12, Block C, class 250, 90619-900, Porto Alegre, RS, Brazil
| | - Jéssica Fonseca Araujo
- Universidade Federal do Rio Grande do Sul, Departamento de Zoologia, Laboratório de Herpetologia, Bento Gonçalves Avenue, 9500 Pd. 43435, Block IV, class 102, Campus do Vale, 91510-000, Porto Alegre, RS, Brazil; Pontifícia Universidade Católica do Rio Grande do Sul, Escola de Ciências da Saúde e da Vida, Laboratório de Fisiologia da Conservação, Ipiranga Avenue, 6681 Pd. 12, Block C, class 250, 90619-900, Porto Alegre, RS, Brazil
| | - Stefani Altenhofen
- Pontifícia Universidade Católica do Rio Grande do Sul, Escola de Ciências da Saúde e da Vida, Laboratório de Neuroquímica e Psicofarmacologia, Ipiranga Avenue, 6681 Pd. 12, Block D, 90619-900, Porto Alegre, RS, Brazil
| | - Carla Denise Bonan
- Pontifícia Universidade Católica do Rio Grande do Sul, Escola de Ciências da Saúde e da Vida, Laboratório de Neuroquímica e Psicofarmacologia, Ipiranga Avenue, 6681 Pd. 12, Block D, 90619-900, Porto Alegre, RS, Brazil
| | - Guendalina Turcato Oliveira
- Pontifícia Universidade Católica do Rio Grande do Sul, Escola de Ciências da Saúde e da Vida, Laboratório de Fisiologia da Conservação, Ipiranga Avenue, 6681 Pd. 12, Block C, class 250, 90619-900, Porto Alegre, RS, Brazil
| | - Laura Verrastro
- Universidade Federal do Rio Grande do Sul, Departamento de Zoologia, Laboratório de Herpetologia, Bento Gonçalves Avenue, 9500 Pd. 43435, Block IV, class 102, Campus do Vale, 91510-000, Porto Alegre, RS, Brazil
| |
Collapse
|
3
|
McCubbin AJ, da Costa RJS. Effect of Personalized Sodium Replacement on Fluid and Sodium Balance and Thermophysiological Strain During and After Ultraendurance Running in the Heat. Int J Sports Physiol Perform 2024; 19:105-115. [PMID: 37944507 DOI: 10.1123/ijspp.2023-0295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/28/2023] [Accepted: 10/09/2023] [Indexed: 11/12/2023]
Abstract
PURPOSE To investigate the effect of personalized sweat sodium replacement on drinking behavior, sodium and water balance, and thermophysiological responses during and after ultraendurance running in hot conditions. METHODS Nine participants (7 male, 2 female) completed two 5-hour treadmill runs (60% maximum oxygen uptake, 30°C ambient temperature), in a double-blind randomized crossover design, consuming sodium chloride (SODIUM) capsules to replace 100% of previously assessed losses or placebo (PLACEBO). Fluid was consumed ad libitum. RESULTS No effect of SODIUM was observed for ad libitum fluid intake or net fluid balance (P > .05). Plasma sodium concentration increased in both trials, but to a greater extent in SODIUM at 2.5 hours (mean [SD]: 4 [4] mmol·L-1 vs 1 [5] mmol·L-1; P < .05) and postexercise (4 [3] mmol·L-1 vs 1 [5] mmol·L-1; P < .05). Plasma volume change was not different between trials (P > .05) but was strongly correlated with sodium balance in SODIUM (r = .880, P < .01). No effect of sodium replacement was observed for heart rate, rectal temperature, thermal comfort, perceived exertion, or physiological strain index. During the 24 hours postexercise, ad libitum fluid intake was greater following SODIUM (2541 [711] mL vs 1998 [727] mL; P = .04), as was urinary sodium excretion (NaCl: 66 [35] mmol, Pl: 21 [12] mmol; P < .01). CONCLUSIONS Personalized sweat sodium replacement during ultraendurance running in hot conditions, with ad libitum fluid intake, exacerbated the rise in plasma sodium concentration compared to no sodium replacement but did not substantially influence overall body-water balance or thermophysiological strain. A large sodium deficit incurred during exercise leads to substantial renal sodium conservation postexercise.
Collapse
Affiliation(s)
- Alan J McCubbin
- Department of Nutrition, Dietetics and Food, Monash University, Notting Hill, VIC, Australia
| | - Ricardo J S da Costa
- Department of Nutrition, Dietetics and Food, Monash University, Notting Hill, VIC, Australia
| |
Collapse
|
4
|
Pérez-Castillo ÍM, Williams JA, López-Chicharro J, Mihic N, Rueda R, Bouzamondo H, Horswill CA. Compositional Aspects of Beverages Designed to Promote Hydration Before, During, and After Exercise: Concepts Revisited. Nutrients 2023; 16:17. [PMID: 38201848 PMCID: PMC10781183 DOI: 10.3390/nu16010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Hypohydration can impair aerobic performance and deteriorate cognitive function during exercise. To minimize hypohydration, athletes are recommended to commence exercise at least euhydrated, ingest fluids containing sodium during long-duration and/or high-intensity exercise to prevent body mass loss over 2% and maintain elevated plasma osmolality, and rapidly restore and retain fluid and electrolyte homeostasis before a second exercise session. To achieve these goals, the compositions of the fluids consumed are key; however, it remains unclear what can be considered an optimal formulation for a hydration beverage in different settings. While carbohydrate-electrolyte solutions such as sports drinks have been extensively explored as a source of carbohydrates to meet fuel demands during intense and long-duration exercise, these formulas might not be ideal in situations where fluid and electrolyte balance is impaired, such as practicing exercise in the heat. Alternately, hypotonic compositions consisting of moderate to high levels of electrolytes (i.e., ≥45 mmol/L), mainly sodium, combined with low amounts of carbohydrates (i.e., <6%) might be useful to accelerate intestinal water absorption, maintain plasma volume and osmolality during exercise, and improve fluid retention during recovery. Future studies should compare hypotonic formulas and sports drinks in different exercise settings, evaluating different levels of sodium and/or other electrolytes, blends of carbohydrates, and novel ingredients for addressing hydration and rehydration before, during, and after exercise.
Collapse
Affiliation(s)
| | | | | | - Niko Mihic
- Real Madrid, Medical Services, 28055 Madrid, Spain; (J.L.-C.); (N.M.)
| | | | | | - Craig A. Horswill
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL 60608, USA;
| |
Collapse
|
5
|
Penman RJ, Bugg W, Rost-Komiya B, Earhart ML, Brauner CJ. Slow heating rates increase thermal tolerance and alter mRNA HSP expression in juvenile white sturgeon (Acipenser transmontanus). J Therm Biol 2023; 115:103599. [PMID: 37413754 DOI: 10.1016/j.jtherbio.2023.103599] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/13/2023] [Accepted: 05/14/2023] [Indexed: 07/08/2023]
Abstract
Freshwater fish such as white sturgeon (Acipenser transmontanus) are particularly vulnerable to the effects of anthropogenically induced global warming. Critical thermal maximum tests (CTmax) are often conducted to provide insight into the impacts of changing temperatures; however, little is known about how the rate of temperature increase in these assays affects thermal tolerance. To assess the effect of heating rate (0.3 °C/min, 0.03 °C/min, 0.003 °C/min) we measured thermal tolerance, somatic indices, and gill Hsp mRNA expression. Contrary to what has been observed in most other fish species, white sturgeon thermal tolerance was highest at the slowest heating rate of 0.003 °C/min (34.2 °C, and CTmax of 31.3 and 29.2 °C, for rates 0.03 and 0.3 °C/min, respectively) suggesting an ability to rapidly acclimate to slowly increasing temperatures. Hepatosomatic index decreased in all heating rates relative to control fish, indicative of the metabolic costs of thermal stress. At the transcriptional level, slower heating rates resulted in higher gill mRNA expression of Hsp90a, Hsp90b, and Hsp70. Hsp70 mRNA expression was increased in all heating rates relative to controls, whereas expression of Hsp90a and Hsp90b mRNA only increased in the two slower trials. Together these data indicate that white sturgeon have a very plastic thermal response, which is likely energetically costly to induce. Acute temperature changes may be more detrimental to sturgeon as they struggle to acclimate to rapid changes in their environment, however under slower warming rates they demonstrate strong thermal plasticity to warming.
Collapse
Affiliation(s)
- Rachael J Penman
- Department of Zoology, The University of British Columbia, Vancouver, British Columbia, Canada.
| | - William Bugg
- Department of Biology, The University of Manitoba, Winnipeg, Manitoba, Canada
| | - Beatrice Rost-Komiya
- Department of Zoology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Madison L Earhart
- Department of Zoology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Colin J Brauner
- Department of Zoology, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
6
|
Limited Effect of Dehydrating via Active vs. Passive Heat Stress on Plasma Volume or Osmolality, Relative to the Effect of These Stressors per Se. Nutrients 2023; 15:nu15040904. [PMID: 36839262 PMCID: PMC9959915 DOI: 10.3390/nu15040904] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 02/15/2023] Open
Abstract
The physiological, perceptual, and functional effects of dehydration may depend on how it is incurred (e.g., intense exercise releases endogenous water via glycogenolysis) but this basic notion has rarely been examined. We investigated the effects of active (exercise) heat- vs. passive heat-induced dehydration, and the kinetics of ad libitum rehydration following each method. Twelve fit participants (five females and seven males) completed four trials in randomised order: DEHydration to -3% change in body mass (∆BM) under passive or active heat stress, and EUHydration to prevent ∆BM under passive or active heat stress. In all trials, participants then sat in a temperate-controlled environment, ate a standard snack and had free access to water and sports drink during their two-hour recovery. During mild dehydration (≤2% ∆BM), active and passive heating caused comparable increases in plasma osmolality (Posm: ~4 mOsmol/kg, interaction: p = 0.138) and reductions in plasma volume (PV: ~10%, interaction: p = 0.718), but heat stress per se was the main driver of hypovolaemia. Thirst in DEHydration was comparably stimulated by active than passive heat stress (p < 0.161) and shared the same relation to Posm (r ≥ 0.744) and ∆BM (r ≥ 0.882). Following heat exposures, at 3% gross ∆BM, PV reduction was approximately twice as large from passive versus active heating (p = 0.003), whereas Posm perturbations were approximately twice as large from EUHydration versus DEHydration (p < 0.001). Rehydrating ad libitum resulted in a similar net fluid balance between passive versus active heat stress and restored PV despite the incomplete replacement of ∆BM. In conclusion, dehydrating by 2% ∆BM via passive heat stress generally did not cause larger changes to PV or Posm than via active heat stress. The heat stressors themselves caused a greater reduction in PV than dehydration did, whereas ingesting water to maintain euhydration produced large reductions in Posm in recovery and therefore appears to be of more physiological significance.
Collapse
|
7
|
Tidmas V, Brazier J, Bottoms L, Muniz D, Desai T, Hawkins J, Sridharan S, Farrington K. Ultra-Endurance Participation and Acute Kidney Injury: A Narrative Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16887. [PMID: 36554767 PMCID: PMC9779673 DOI: 10.3390/ijerph192416887] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Increasingly popular, ultra-endurance participation exposes athletes to extremely high levels of functional and structural damage. Ultra-endurance athletes commonly develop acute kidney injury (AKI) and other pathologies harmful to kidney health. There is strong evidence that non-steroidal anti-inflammatory drugs, common amongst ultra-athletes, is linked to increased risk and severity of AKI and potentially ischaemic renal injury, i.e., acute tubular necrosis. Ultra-endurance participation also increases the risk of exertional rhabdomyolysis, exercise-associated hyponatremia, and gastrointestinal symptoms, interlinked pathologies all with potential to increase the risk of AKI. Hydration and fuelling both also play a role with the development of multiple pathologies and ultimately AKI, highlighting the need for individualised nutritional and hydration plans to promote athlete health. Faster athletes, supplementing nitrates, and being female also increase the risk of developing AKI in this setting. Serum creatinine criteria do not provide the best indicator for AKI for ultra-athletes therefore further investigations are needed to assess the practicality and accuracy of new renal biomarkers such as neutrophil gelatinase-associated lipocalin (NGAL). The potential of recurring episodes of AKI provide need for further research to assess the longitudinal renal health impact of ultra-participation to provide appropriate advice to athletes, coaches, medical staff, and event organisers.
Collapse
Affiliation(s)
- Victoria Tidmas
- Department of Psychology, Sport, and Geography, De Havilland Campus, University of Hertfordshire, Hatfield AL10 9EU, UK
| | - Jon Brazier
- Department of Psychology, Sport, and Geography, De Havilland Campus, University of Hertfordshire, Hatfield AL10 9EU, UK
| | - Lindsay Bottoms
- Department of Psychology, Sport, and Geography, De Havilland Campus, University of Hertfordshire, Hatfield AL10 9EU, UK
| | - Daniel Muniz
- Department of Psychology, Sport, and Geography, De Havilland Campus, University of Hertfordshire, Hatfield AL10 9EU, UK
| | - Terun Desai
- Department of Psychology, Sport, and Geography, De Havilland Campus, University of Hertfordshire, Hatfield AL10 9EU, UK
| | - Janine Hawkins
- Centre for Health Services and Clinical Research, De Havilland Campus, University of Hertfordshire, Hatfield AL10 9EU, UK
| | - Sivakumar Sridharan
- Centre for Health Services and Clinical Research, De Havilland Campus, University of Hertfordshire, Hatfield AL10 9EU, UK
- Renal Unit, Lister Hospital, East and North Herts Trust, Stevenage SG1 4AB, UK
| | - Ken Farrington
- Centre for Health Services and Clinical Research, De Havilland Campus, University of Hertfordshire, Hatfield AL10 9EU, UK
- Renal Unit, Lister Hospital, East and North Herts Trust, Stevenage SG1 4AB, UK
| |
Collapse
|
8
|
Altered electrical properties in skeletal muscle of mice with glycogen storage disease type II. Sci Rep 2022; 12:5327. [PMID: 35351934 PMCID: PMC8964715 DOI: 10.1038/s41598-022-09328-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 03/14/2022] [Indexed: 01/15/2023] Open
Abstract
Electrical impedance methods, including electrical impedance myography, are increasingly being used as biomarkers of muscle health since they measure passive electrical properties of muscle that alter in disease. One disorder, Pompe Disease (Glycogen storage disease type II (GSDII)), remains relatively unstudied. This disease is marked by dramatic accumulation of intracellular myofiber glycogen. Here we assessed the electrical properties of skeletal muscle in a model of GSDII, the Pompe6neo/6neo (Pompe) mouse. Ex vivo impedance measurements of gastrocnemius (GA) were obtained using a dielectric measuring cell in 30-week-old female Pompe (N = 10) and WT (N = 10) mice. Longitudinal and transverse conductivity, σ, and the relative permittivity, εr, and Cole–Cole complex resistivity parameters at 0 Hz and infinite frequency, ρo and ρ∞, respectively, and the intracellular resistivity, ρintracellular were determined from the impedance data. Glycogen content (GC) was visualized histologically and quantified biochemically. At frequencies > 1 MHz, Pompe mice demonstrated significantly decreased longitudinal and transverse conductivity, increased Cole–Cole parameters, ρo and ρo-ρ∞, and decreased ρintracellular. Changes in longitudinal conductivity and ρintracellular correlated with increased GC in Pompe animals. Ex vivo high frequency impedance measures are sensitive to alterations in intracellular myofiber features considered characteristic of GSDII, making them potentially useful measures of disease status.
Collapse
|
9
|
Seal AD, Kavouras SA. A review of risk factors and prevention strategies for exercise associated hyponatremia. Auton Neurosci 2022; 238:102930. [PMID: 35016044 DOI: 10.1016/j.autneu.2021.102930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 10/29/2021] [Accepted: 12/08/2021] [Indexed: 10/19/2022]
Abstract
Exercise-associated hyponatremia (EAH) is defined as a serum sodium concentration under 135 mmol·L-1 during or within 24 h of exercise. Increasing interest in endurance events has led to a higher number of athletes presenting with this potentially life-threatening condition. EAH is largely caused by the overconsumption of hypotonic fluids leading to weight gain during exercise. The primary risk factors include the inappropriate secretion of arginine vasopressin, longer exercise duration, smaller body mass, and to smaller extent ingestion of non-steroidal anti-inflammatory drugs. Accurate tracking of fluid intake and losses to prevent weight gain during exercise, sodium supplementation, and heat acclimatization may help attenuate declines in serum sodium concentration during exercise.
Collapse
Affiliation(s)
- Adam D Seal
- Center for Health Research, Kinesiology and Public Health, California Polytechnic State University, San Luis Obispo, CA, USA
| | - Stavros A Kavouras
- Hydration Science Lab, College of Health Solutions, Arizona State University, Phoenix, AZ, USA.
| |
Collapse
|
10
|
Changes in Intra-to-Extra-Cellular Water Ratio and Bioelectrical Parameters from Day-Before to Day-Of Competition in Bodybuilders: A Pilot Study. Sports (Basel) 2022; 10:sports10020023. [PMID: 35202062 PMCID: PMC8880471 DOI: 10.3390/sports10020023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 01/06/2023] Open
Abstract
The present study analyzed the effects from day-before to day-of bodybuilding competition on intracellular water (ICW), extracellular water (ECW), total body water (TBW), and bioimpedance analysis (BIA) parameters (resistance, R; reactance, Xc; and derived scores) in bodybuilding athletes. We assessed anthropometry and BIA (foot-to-hand; tetrapolar; 50 kHz) in 11 male bodybuilders (29 ± 4 year-old; 81 ± 8 kg; 172 ± 7 cm; 27 ± 2 kg/m2) both on the pre-competition day and on the contest day. Results revealed significant increases in ICW (31.6 ± 2.9 to 33.1 ± 2.8 L), with concomitant decreases in ECW (19.8 ± 1.8 to 17.2 ± 1.4 L) and TBW (51.4 ± 4.6 to 50.3 ± 4.2 L) from the day-before competition to contest day, which resulted in relatively large increases in the ICW/ECW ratio (1.60 ± 0.03 to 1.92 ± 0.01 L). Moreover, significant increases in R (391 ± 34 to 413 ± 33 ohm), Xc (64 ± 7 to 70 ± 6 ohm), and phase angle (9.3 ± 0.6 to 9.6 ± 0.7 degree) were observed between time periods. The phase angle scores reported on show-day of 9.6 and 11.2 appear to be the highest group mean and individual values observed in the literature to date. In conclusion, the strategies carried out on the final day of peak-week bodybuilding preparation lead to changes in BIA parameters and body water, with fluids shifting from the extra- to the intracellular compartment.
Collapse
|
11
|
Steel C, Lees AM, Tarr G, Warner R, Dunshea F, Cowley F, McGilchrist P. The impact of weather on the incidence of dark cutting in Australian feedlot cattle. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2022; 66:263-274. [PMID: 34468837 DOI: 10.1007/s00484-021-02180-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/29/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
This study conducted a retrospective analysis of historical Meat Standard Australia (MSA) carcass data in combination with Bureau of Meteorology (BOM) weather data, to evaluate the relationship between climatic conditions prior to feedlot departure on the incidence of dark cutting grain-fed beef. Data records for 2,795,754 carcasses from 17 commercial feedlots over a 6-year period were evaluated within this study. Carcasses were consigned to 16 abattoirs. Weather data from BOM were recorded at 30-min intervals and were obtained from weather stations with the closest proximity to each feedlot. These data were used to calculate the Temperature Humidity Index (THI). Climatic data were amalgamated into daily observations and a series of predictors including ambient temperature (TA, °C), relative humidity (RH, %), wind speed (WS, m/s), rainfall (mm) and THI. In addition, lag interactions from 24 h out to 28 days prior to exiting the feedlot were generated. The incidence of dark cutting was determined as percentage per cohort with an ultimate pH > 5.7. Data were analysed using three models: model 1 included feedlot, abattoir, hormone growth promotant status and sex as fixed effects. Model 2 incorporated the fixed effects within model 1 and minimum, maximum and standard deviation (SD) of TA and RH, daily range in TA, average WS and rainfall as random effects. Model 3 incorporated minimum, maximum, range and SD of THI, average WS and rainfall as random effects in addition to the fixed effects of model 1. The incidence of dark cutting within feedlot had a 10.1% range in estimated means with the lowest incidence was observed at feedlot 17 (0%) and highest incidence at feedlot 10 (10.1%). The inclusion of the climatic variables in model 2 and model 3 accounted for an additional 0.1 to 0.2% of the incidence of dark cutting carcasses. Higher maximum TA, RH and THI in the 3 to 28 days prior to consignment were all associated with an increased incidence of dark cutting (P < 0.05), but not in the 48 h preceding consignment (P > 0.05). Low minimum TA and low THI were also associated with an increase the incidence of dark cutting across all lag periods (P < 0.05). Increased variation in THI and TA in the 48 h prior to consignment increased dark cutting (P < 0.05) while increased standard deviation (SD) of temperature and THI range also increased dark cutting in the 14 and 28 day prior to feedlot exit (P < 0.05). Smaller minimum ranges in TA in the 28 days prior to consignment also reduced dark cutting (P < 0.05). Climatic conditions accounted for a further 0.1 to 0.2% of the incidence of dark cutting, whereas animal management factors, feedlot and abattoir were able to account for 21% of dark cutting. These data suggest that climatic conditions appear to have an inherent role in the incidence of dark cutting, albeit a small impact. Regardless, understanding the influence of climatic conditions on dark cutting allows for the implementation of management strategies within the supply chain to further reduce the impact of climatic conditions on grain-fed cattle.
Collapse
Affiliation(s)
- Cameron Steel
- School of Environmental and Rural Science, University of New England, Armidale, NSW, 2351, Australia.
- University of New England, Armidale, NSW, 2350, Australia.
| | - A M Lees
- School of Environmental and Rural Science, University of New England, Armidale, NSW, 2351, Australia
| | - G Tarr
- School of Mathematics and Statistics, The University of Sydney, Sydney, NSW, 2006, Australia
| | - R Warner
- Faculty of Veterinary and Agricultural Sciences, School of Agriculture and Food, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - F Dunshea
- Faculty of Veterinary and Agricultural Sciences, School of Agriculture and Food, The University of Melbourne, Melbourne, VIC, 3010, Australia
- Faculty of Biological Sciences, The University of Leeds, Leeds, LS2 9JT, UK
| | - F Cowley
- School of Environmental and Rural Science, University of New England, Armidale, NSW, 2351, Australia
| | - P McGilchrist
- School of Environmental and Rural Science, University of New England, Armidale, NSW, 2351, Australia
| |
Collapse
|
12
|
Li X, Mei Y, Zhang J, Yang Y, Peng LE, Qing W, He D, Fane AG, Tang CY. Osmotically enhanced reverse osmosis using hollow fiber membranes. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119703] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Escalante G, Stevenson SW, Barakat C, Aragon AA, Schoenfeld BJ. Peak week recommendations for bodybuilders: an evidence based approach. BMC Sports Sci Med Rehabil 2021; 13:68. [PMID: 34120635 PMCID: PMC8201693 DOI: 10.1186/s13102-021-00296-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 06/02/2021] [Indexed: 01/10/2023]
Abstract
Bodybuilding is a competitive endeavor where a combination of muscle size, symmetry, "conditioning" (low body fat levels), and stage presentation are judged. Success in bodybuilding requires that competitors achieve their peak physique during the day of competition. To this end, competitors have been reported to employ various peaking interventions during the final days leading to competition. Commonly reported peaking strategies include altering exercise and nutritional regimens, including manipulation of macronutrient, water, and electrolyte intake, as well as consumption of various dietary supplements. The primary goals for these interventions are to maximize muscle glycogen content, minimize subcutaneous water, and reduce the risk abdominal bloating to bring about a more aesthetically pleasing physique. Unfortunately, there is a dearth of evidence to support the commonly reported practices employed by bodybuilders during peak week. Hence, the purpose of this article is to critically review the current literature as to the scientific support for pre-contest peaking protocols most commonly employed by bodybuilders and provide evidence-based recommendations as safe and effective strategies on the topic.
Collapse
Affiliation(s)
- Guillermo Escalante
- Department of Kinesiology, California State University- San Bernardino, CA San Bernardino, USA
| | | | - Christopher Barakat
- Competitive Breed LLC, FL Tampa, USA
- Human Performance Laboratory, The University of Tampa, FL Tampa, USA
| | - Alan A. Aragon
- Department of Family and Consumer Sciences, California State University- Northridge, Los Angeles, CA USA
| | | |
Collapse
|
14
|
Besford QA, Cavalieri F, Caruso F. Glycogen as a Building Block for Advanced Biological Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1904625. [PMID: 31617264 DOI: 10.1002/adma.201904625] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/15/2019] [Indexed: 06/10/2023]
Abstract
Biological nanoparticles found in living systems possess distinct molecular architectures and diverse functions. Glycogen is a unique biological polysaccharide nanoparticle fabricated by nature through a bottom-up approach. The biocatalytic synthesis of glycogen has evolved over time to form a nanometer-sized dendrimer-like structure (20-150 nm) with a highly branched surface and a dense core. This makes glycogen markedly different from other natural linear or branched polysaccharides and particularly attractive as a platform for biomedical applications. Glycogen is inherently biodegradable, nontoxic, and can be functionalized with diverse surface and internal motifs for enhanced biofunctional properties. Recently, there has been growing interest in glycogen as a natural alternative to synthetic polymers and nanoparticles in a range of applications. Herein, the recent literature on glycogen in the material-based sciences, including its use as a constituent in biodegradable hydrogels and fibers, drug delivery vectors, tumor targeting and penetrating nanoparticles, immunomodulators, vaccine adjuvants, and contrast agents, is reviewed. The various methods of chemical functionalization and physical assembly of glycogen nanoparticles into multicomponent nanodevices, which advance glycogen toward a functional therapeutic nanoparticle from nature and back again, are discussed in detail.
Collapse
Affiliation(s)
- Quinn A Besford
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Francesca Cavalieri
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
- Dipartimento di Scienze e Tecnologie Chimiche, Università degli Studi di Roma Tor Vergata, via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|
15
|
Buscemi S, Noto D, Buscemi C, Barile AM, Rosafio G, Settipani V, Giammanco A, Averna M. Resting Energy Expenditure and Substrate Oxidation in Malnourished Patients With Type 1 Glycogenosis. J Clin Endocrinol Metab 2019; 104:5566-5572. [PMID: 31322653 DOI: 10.1210/jc.2019-00585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 07/15/2019] [Indexed: 11/19/2022]
Abstract
CONTEXT Type 1a and 1b glycogenosis [glycogen storage disorder (GSD)1a, GSD1b] are rare diseases generally associated with malnutrition. Although abnormal substrate oxidation rates and elevated energy expenditures might contribute to malnutrition, this issue has not been investigated. OBJECTIVE To investigate whether abnormal resting energy expenditure (REE) and substrate oxidation rate characterize patients with GSD1. DESIGN Cross-sectional study. SETTING Outpatient referral center for rare diseases and laboratory of clinical nutrition at the University Hospital of Palermo. PATIENTS Five consecutive patients with GSD1 (4 type a, 1 type b; 3 men, 2 women; age range, 19 to 49 years). MAIN OUTCOME MEASURES The usual clinical procedures for patients with malnutrition, including REE and basal substrate oxidation rate (both indirect calorimetry), body composition (bioimpedance method), muscle strength (hand-grip test), and the usual laboratory tests, were performed. RESULTS Malnutrition was clearly diagnosed in 2 patients (1 GSD1a and 1 GSD1b), with REE elevated in all five patients, and especially, in the two malnourished patients (+124% and +32.1% vs predictive values using Harris-Benedict equations). The two malnourished patients also exhibited lower basal protein oxidation rates (7.7% and 6.6%) than the nourished patients (range, 12.1% to 24.7%), with higher carbohydrate or lipid oxidation rates. Additionally, the two malnourished patients exhibited higher blood concentrations of lactic acid than the nourished patients. CONCLUSIONS According to data obtained from our small sample of patients with GSD1, elevated REEs seem to be a common characteristic that might contribute to malnutrition. Low basal protein oxidation rates and elevated blood lactic acid concentrations appear to be associated with malnutrition.
Collapse
Affiliation(s)
- Silvio Buscemi
- Unit of Malattie Endocrine, del Ricambio e della Nutrizione - Laboratorio di Metabolismo e Nutrizione Clinica, Dipartimento di Promozione della Salute, Materno-Infantile, Medicina Interna e Specialistica di Eccellenza, University of Palermo, Palermo, Italy
| | - Davide Noto
- Unit of Astanteria/MCAU - Centro di Riferimento Regionale per le Malattie Rare del Metabolismo, Dipartimento di Promozione della Salute, Materno-Infantile, Medicina Interna e Specialistica di Eccellenza, University of Palermo, Palermo, Italy
| | - Carola Buscemi
- Unit of Malattie Endocrine, del Ricambio e della Nutrizione - Laboratorio di Metabolismo e Nutrizione Clinica, Dipartimento di Promozione della Salute, Materno-Infantile, Medicina Interna e Specialistica di Eccellenza, University of Palermo, Palermo, Italy
| | - Anna Maria Barile
- Unit of Malattie Endocrine, del Ricambio e della Nutrizione - Laboratorio di Metabolismo e Nutrizione Clinica, Dipartimento di Promozione della Salute, Materno-Infantile, Medicina Interna e Specialistica di Eccellenza, University of Palermo, Palermo, Italy
| | - Giuseppe Rosafio
- Unit of Malattie Endocrine, del Ricambio e della Nutrizione - Laboratorio di Metabolismo e Nutrizione Clinica, Dipartimento di Promozione della Salute, Materno-Infantile, Medicina Interna e Specialistica di Eccellenza, University of Palermo, Palermo, Italy
| | - Valentina Settipani
- Unit of Malattie Endocrine, del Ricambio e della Nutrizione - Laboratorio di Metabolismo e Nutrizione Clinica, Dipartimento di Promozione della Salute, Materno-Infantile, Medicina Interna e Specialistica di Eccellenza, University of Palermo, Palermo, Italy
| | - Antonina Giammanco
- Unit of Astanteria/MCAU - Centro di Riferimento Regionale per le Malattie Rare del Metabolismo, Dipartimento di Promozione della Salute, Materno-Infantile, Medicina Interna e Specialistica di Eccellenza, University of Palermo, Palermo, Italy
| | - Maurizio Averna
- Unit of Astanteria/MCAU - Centro di Riferimento Regionale per le Malattie Rare del Metabolismo, Dipartimento di Promozione della Salute, Materno-Infantile, Medicina Interna e Specialistica di Eccellenza, University of Palermo, Palermo, Italy
| |
Collapse
|
16
|
Abstract
The health and performance of ultra-endurance athletes is dependent on avoidance of performance limiting hypohydration while also avoiding the potentially fatal consequences of exercise-associated hyponatremia due to overhydration. In this work, key factors related to maintaining proper hydration during ultra-endurance activities are discussed. In general, proper hydration need not be complicated and has been well demonstrated to be achieved by simply drinking to thirst and consuming a typical race diet during ultra-endurance events without need for supplemental sodium. As body mass is lost from oxidation of stored fuel, and water supporting the intravascular volume is generated from endogenous fuel oxidation and released with glycogen oxidation, the commonly promoted hydration guidelines of avoiding body mass losses of >2% can result in overhydration during ultra-endurance activities. Thus, some body mass loss should occur during prolonged exercise, and appropriate hydration can be maintained by drinking to the dictates of thirst.
Collapse
|
17
|
Ad libitum drinking adequately supports hydration during 2 h of running in different ambient temperatures. Eur J Appl Physiol 2018; 118:2687-2697. [PMID: 30267225 DOI: 10.1007/s00421-018-3996-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 09/18/2018] [Indexed: 01/06/2023]
Abstract
PURPOSE To examine if ad libitum drinking will adequately support hydration during exertional heat stress. METHODS Ten endurance-trained runners ran for 2 h at 60% of maximum oxygen uptake under different conditions. Participants drank water ad libitum during separate trials at mean ambient temperatures of 22 °C, 30 °C and 35 °C. Participants also completed three trials at a mean ambient temperature of 35 °C while drinking water ad libitum in all trials, and with consumption of programmed glucose or whey protein hydrolysate solutions to maintain euhydration in two of these trials. Heart rate, oxygen uptake, rectal temperature, perceived effort, and thermal sensation were monitored, and nude body mass, hemoglobin, hematocrit, and plasma osmolality were measured before and after exercise. Water and mass balance equations were used to calculate hydration-related variables. RESULTS Participants adjusted their ad libitum water intake so that the same decrease in body mass (1.1-1.2 kg) and same decrease in body water (0.8-0.9 kg) were observed across the range of ambient temperatures which yielded significant differences (p < .001) in sweat loss. Overall, water intake and total water gain replaced 57% and 66% of the water loss, respectively. The loss in body mass and body water associated with ad libitum drinking resulted in no alteration in physiological and psychophysiological variables compared with the condition when hydration was nearly fully maintained (0.3 L body water deficit) relative to pre-exercise status from programmed drinking. CONCLUSIONS Ad libitum drinking is an appropriate strategy for supporting hydration during running for 2 h duration under hot conditions.
Collapse
|
18
|
Hoffman MD, Stellingwerff T, Costa RJS. Considerations for ultra-endurance activities: part 2 - hydration. Res Sports Med 2018; 27:182-194. [PMID: 30056755 DOI: 10.1080/15438627.2018.1502189] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
It is not unusual for those participating in ultra-endurance (> 4 hr) events to develop varying degrees of either hypohydration or hyperhydration. Yet, it is important for ultra-endurance athletes to avoid the performance limiting and potentially fatal consequences of these conditions. During short periods of exercise (< 1 hr), trivial effects on the relationship between body mass change and hydration status result from body mass loss due to oxidation of endogenous fuel stores, and water supporting the intravascular volume being generated from endogenous fuel oxidation and released with glycogen oxidation. However, these effects have meaningful implications during prolonged exercise. In fact, body mass loses well over 2% may be required during some ultra-endurance activities to avoid hyperhydration. Therefore, the typical hydration guidelines to avoid more than 2% body mass loss do not apply in ultra-endurance activities and can potentially result in hyperhydration. Fortunately, achieving the balance of proper hydration during ultra-endurance activities need not be complicated and has been well demonstrated to generally be achieved by simply drinking to thirst and avoiding excessive sodium supplementation with intention of replacing all sodium losses during the exercise.
Collapse
Affiliation(s)
- Martin D Hoffman
- a Physical Medicine and Rehabilitation Service, Department of Veterans Affairs , Northern California Health Care System , Sacramento , CA , USA.,b Department of Physical Medicine and Rehabilitation , University of California Davis Medical Center , Sacramento , CA , USA.,c Ultra Sports Science Foundation , El Dorado Hills , CA , USA
| | | | - Ricardo J S Costa
- e Department of Nutrition Dietetics and Food , Monash University , Notting Hill , Victoria , Australia
| |
Collapse
|
19
|
Black KE, Black AD, Baker D, Fairbairn K. Body mass changes during training in elite rugby union: Is a single test of hydration indices reliable? Eur J Sport Sci 2018; 18:1049-1057. [PMID: 29806987 DOI: 10.1080/17461391.2018.1470677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
There is limited research studying fluid and electrolyte balance in rugby union players, and a paucity of information regarding the test-retest reliability. This study describes the fluid balance of elite rugby union players across multiple squads and the reliability of fluid balance measures between two equivalent training sessions. Sixty-one elite rugby players completed a single fluid balance testing session during a game simulation training session. A subsample of 21 players completed a second fluid balance testing session during an equivalent training session. Players were weighed in minimal clothing before and after each training session. Each player was provided with their own drinks which were weighed before and after each training session. More players gained body weight (9 (14.8%)) during training than lost greater than 2% of their initial body mass (1 (1.6%)). Pre-training body mass and rate of fluid loss were significantly associated (r = 0.318, p = .013). There was a significant correlation between rate of fluid loss in sessions 1 (1.74 ± 0.32 L h-1) and 2 (1.10 ± 0.31 L. h-1), (r = 0.470, p = .032). This could be useful for nutritionists working with rugby squads to identify players with high sweat losses.
Collapse
Affiliation(s)
| | | | - Dane Baker
- c Chiefs Super Franchise , Hamilton , New Zealand
| | - Kirsty Fairbairn
- d Advanced Sports Dietitian , Invigorate Nutrition , Dunedin , New Zealand
| |
Collapse
|