1
|
Mladen SPS, Forbes SPA, Zedic AK, England VS, Drouin PJ, Tschakovsky ME. Leg blood flow during exercise with blood flow restriction: evidence for and implications of compensatory cardiovascular mechanisms. J Appl Physiol (1985) 2025; 138:492-507. [PMID: 39818968 DOI: 10.1152/japplphysiol.00772.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/01/2024] [Accepted: 01/08/2025] [Indexed: 01/19/2025] Open
Abstract
Proximal limb cuff inflation to 40% arterial occlusion pressure (AOP) is assumed to reduce exercising leg perfusion, creating "blood flow restriction" (BFR). However, no study has validated this assumption. Eighteen healthy young participants (9 F) performed two-legged knee flexion/extension exercise at 25% WRpeak with bilateral cuffs applied to the proximal thigh at 0% AOP (CTL), 20% AOP, and 40% AOP. Leg blood flow (LBF; Doppler and echo ultrasound) and cardiac output (CO; finger photoplethysmography) were measured during rest and exercise. LBF values were doubled to account for both exercising legs. AOP (20% and 40%) reduced exercising LBF in a dose-response manner (P < 0.01). However, the magnitude of the leg blood flow restriction by 40% AOP was progressively attenuated across the exercise bout (5-15 s: 37%, 50-70 s: 20%, 240-300 s: 16%; P < 0.01) due to compensatory increases in leg vascular conductance (LVC) (P < 0.01). Between 5 and 15 s of exercise, 40% AOP significantly reduced CO compared with CTL and 20% AOP (8.0 ± 1.3 vs. 8.4 ± 1.5 L/min, P < 0.001 and 8.5 ± 1.5, P < 0.001). By 240-300 s, there were no significant differences in CO between cuff pressures (all P > 0.13). Pneumatic cuff inflation at 20% and 40% AOP reduces LBF in a dose-response manner, but this impairment was progressively attenuated across the exercise bout by an increase in LVC. Importantly, this compensatory response differed across participants, which may have implications for the degree of adaptations following BFR training. Furthermore, restoration of normal CO during BFR despite compromised limb perfusion suggests that other tissue perfusion is increased as part of the response.NEW & NOTEWORTHY It remained to be determined whether BFR set below 60% AOP impairs leg blood flow during continuous exercise. We showed that BFR at 20% and 40% AOP impairs exercising leg blood flow in a dose-response manner. However, the leg blood flow impairment was progressively attenuated across the exercise bout. Both initial compromise and partial restoration varied across participants, which may have implications for the degree of muscle adaptations following BFR training.
Collapse
Affiliation(s)
- Stuart P S Mladen
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| | - Stacey P A Forbes
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| | - Abby K Zedic
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| | - Vaughn S England
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| | - Patrick J Drouin
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| | - Michael E Tschakovsky
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
2
|
de Castro FMP, Oliveira LDP, Aquino R, Tourinho Filho H, Puggina EF. Impact of Complete Intermittent Blood Flow Restriction in Upper Limbs Strength and Neural Function. RESEARCH QUARTERLY FOR EXERCISE AND SPORT 2024; 95:635-645. [PMID: 38306672 DOI: 10.1080/02701367.2023.2294092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 11/27/2023] [Indexed: 02/04/2024]
Abstract
Purpose: We aimed to investigate the chronic effects of low-load strength training (LT) with complete intermittent blood flow restriction (IBFR) on neural adaptations and strength in biceps brachii. Methods: Nineteen volunteers were randomly assigned into two different 9-week training protocols consisting of three assessment weeks and six training weeks: (a) LT with complete IBFR (LT-IBFR; n = 10) and (b) LT without complete IBFR (LT; n = 9). Strength was evaluated by predicted 1 repetition maximum (1RM) at weeks 1, 5, and 9 and neural function by root mean square (RMS) and median frequency (MDF) at sessions 1, 7, and 12 during the first three and last three repetitions. Both groups performed three sets of Scott curl with 20% of predicted 1RM interspersed with 90s rest twice a week. Results: No changes were found in predicted 1RM throughout the training protocols nor between groups. LT-IBFR group showed lower RMS in the first set than LT for the first three repetitions and higher RMS in all sets for the last three repetitions with decreases in this value across the sets with no longitudinal changes for both groups. MDF in the first three repetitions did not differentiate between groups, however, in the last three repetitions, MDF were lower for LTIBFR group in all sets and it increased across the sets for this condition with no chronical changes for both groups in both repetitions zones. These results suggest that LT-IBFR may be ineffective for increasing Q5 strength and it did not promote chronic neural adaptations.
Collapse
|
3
|
Lavigne C, Mons V, Grange M, Blain GM. Acute neuromuscular, cardiovascular, and muscle oxygenation responses to low-intensity aerobic interval exercises with blood flow restriction. Exp Physiol 2024; 109:1353-1369. [PMID: 38875101 PMCID: PMC11291873 DOI: 10.1113/ep091742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 05/21/2024] [Indexed: 06/16/2024]
Abstract
We investigated the influence of short- and long-interval cycling exercise with blood flow restriction (BFR) on neuromuscular fatigue, shear stress and muscle oxygenation, potent stimuli to BFR-training adaptations. During separate sessions, eight individuals performed short- (24 × 60 s/30 s; SI) or long-interval (12 × 120 s/60 s; LI) trials on a cycle ergometer, matched for total work. One leg exercised with (BFR-leg) and the other without (CTRL-leg) BFR. Quadriceps fatigue was quantified using pre- to post-interval changes in maximal voluntary contraction (MVC), potentiated twitch force (QT) and voluntary activation (VA). Shear rate was measured by Doppler ultrasound at cuff release post-intervals. Vastus lateralis tissue oxygenation was measured by near-infrared spectroscopy during exercise. Following the initial interval, significant (P < 0.05) declines in MVC and QT were found in both SI and LI, which were more pronounced in the BFR-leg, and accounted for approximately two-thirds of the total reduction at exercise termination. In the BFR-leg, reductions in MVC (-28 ± 15%), QT (-42 ± 17%), and VA (-15 ± 17%) were maximal at exercise termination and persisted up to 8 min post-exercise. Exercise-induced muscle deoxygenation was greater (P < 0.001) in the BFR-leg than CTRL-leg and perceived pain was more in LI than SI (P < 0.014). Cuff release triggered a significant (P < 0.001) shear rate increase which was consistent across trials. Exercise-induced neuromuscular fatigue in the BFR-leg exceeded that in the CTRL-leg and was predominantly of peripheral origin. BFR also resulted in diminished muscle oxygenation and elevated shear stress. Finally, short-interval trials resulted in comparable neuromuscular and haemodynamic responses with reduced perceived pain compared to long-intervals.
Collapse
|
4
|
Lisbôa FD, de Aguiar RA, Soares Pereira G, Caputo F. Acute Effects of a Practical Blood Flow Restriction Device During Swimming Exercise. RESEARCH QUARTERLY FOR EXERCISE AND SPORT 2024; 95:466-475. [PMID: 37851855 DOI: 10.1080/02701367.2023.2263050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 09/11/2023] [Indexed: 10/20/2023]
Abstract
Purpose: The present study aimed to analyze: 1) the reliability of the tissue saturation index (TSI) and ratings of perceived discomfort (RPD) responses wearing a neoprene practical cuff (PrC), comparing with the responses from traditional (TrC) pneumatic cuffs (study I); 2) the effects of PrC on metabolic (blood lactate concentration, BLC), perceptual (rate of perceived effort, RPE) and kinematic responses at sub-maximal swimming velocities (study II). Methods: Study I; 1) PrC test-retest at rest and during swimming ergometer exercise; 2) BFR at rest with TrC inflated to different percentages of the minimum arterial occlusion pressure (MAOP; 60, 80, 100, 120 and 140%). Test-retest reliability of TSI and RPD was assessed by the intraclass correlation coefficient (ICC) and comparisons among conditions were analyzed by one-way repeated-measures ANOVA. Study II; 1) 50, 200 and 400 m swimming performances; 2) sub-maximal incremental swimming protocol with and without PrC. Two-way repeated measures ANOVA was used to compare all variables during sub-maximal velocities. Results: TSI (ICC = 0.81; 95%CI 0.62-0.91) and RPD (ICC = 0.97; 95%CI 0.94-0.99) were reliable under restricted exercise using PrC. TSI during restricted exercise was lower (p <.001) compared to unrestricted exercise (6.8 ± 6.1% vs. 21.6 ± 8.2% of physiological normalization). PrC showed higher BLC only at or above 91% of critical velocity (p < .03), while stroke rate and RPE were higher (p < .005), and stroke length was lower (p < .03) during all swimming velocities. Conclusion: This easy-to-handle and affordable practical BFR device increased physiological stress at sub-maximal efforts which could be an additional training tool for swimmers.
Collapse
|
5
|
Cockfield BA, Wedig IJ, Vinckier AL, McDaniel J, Elmer SJ. Physiological and perceptual responses to acute arm cranking with blood flow restriction. Eur J Appl Physiol 2024; 124:1509-1521. [PMID: 38142449 DOI: 10.1007/s00421-023-05384-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/27/2023] [Indexed: 12/26/2023]
Abstract
INTRODUCTION Lower-body aerobic exercise with blood flow restriction (BFR) offers a unique approach for stimulating improvements in muscular function and aerobic capacity. While there are more than 40 reports documenting acute and chronic responses to lower-body aerobic exercise with BFR, responses to upper-body aerobic exercise with BFR are not clearly established. PURPOSE We evaluated acute physiological and perceptual responses to arm cranking with and without BFR. METHODS Participants (N = 10) completed 4 arm cranking (6 × 2 min exercise, 1 min recovery) conditions: low-intensity at 40%VO2peak (LI), low-intensity at 40%VO2peak with BFR at 50% of arterial occlusion pressure (BFR50), low-intensity at 40%VO2peak with BFR at 70% of arterial occlusion pressure (BFR70), and high-intensity at 80%VO2peak (HI) while tissue oxygenation, cardiorespiratory, and perceptual responses were assessed. RESULTS During exercise, tissue saturation for BFR50 (54 ± 6%), BFR70 (55 ± 6%), and HI (54 ± 8%) decreased compared to LI (61 ± 5%, all P < 0.01) and changes in deoxyhemoglobin for BFR50 (11 ± 4), BFR70 (15 ± 6), and HI (16 ± 10) increased compared to LI (4 ± 2, all P < 0.01). During recovery intervals, tissue saturation for BFR50 and BFR70 decreased further and deoxyhemoglobin for BFR50 and BFR70 increased further (all P < 0.04). Heart rate for BFR70 and HI increased by 9 ± 9 and 50 ± 15b/min, respectively, compared to LI (both P < 0.02). BFR50 (8 ± 2, 1.0 ± 1.0) and BFR70 (10 ± 2, 2.1 ± 1.4) elicited greater arm-specific perceived exertion (6-20 scale) and pain (0-10 scale) compared to LI (7 ± 1, 0.2 ± 0.5, all P < 0.05) and pain for BFR70 did not differ from HI (1.7 ± 1.9). CONCLUSION Arm cranking with BFR decreased tissue saturation and increased deoxyhemoglobin without causing excessive cardiorespiratory strain and pain.
Collapse
Affiliation(s)
- Benjamin A Cockfield
- Department of Kinesiology and Integrative Physiology, College of Science and Arts, Michigan Technological University, 1400 Townsend Dr., Houghton, MI, 49931, USA
- Department of Physical Therapy, Central Michigan University, Mount Pleasant, MI, USA
| | - Isaac J Wedig
- Department of Kinesiology and Integrative Physiology, College of Science and Arts, Michigan Technological University, 1400 Townsend Dr., Houghton, MI, 49931, USA
- Health Research Institute, Michigan Technological University, Houghton, MI, USA
- School of Health and Human Performance, Marquette, MI, USA
| | - Alyssa L Vinckier
- Department of Kinesiology and Integrative Physiology, College of Science and Arts, Michigan Technological University, 1400 Townsend Dr., Houghton, MI, 49931, USA
- Department of Physical Therapy, Central Michigan University, Mount Pleasant, MI, USA
| | - John McDaniel
- Exercise Physiology Program, Kent State University, Kent, OH, USA
- Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Steven J Elmer
- Department of Kinesiology and Integrative Physiology, College of Science and Arts, Michigan Technological University, 1400 Townsend Dr., Houghton, MI, 49931, USA.
- Health Research Institute, Michigan Technological University, Houghton, MI, USA.
| |
Collapse
|
6
|
TANAKA TSUKASA, KUBOTA ATSUSHI, OZAKI HAYAO, NISHIO HIROFUMI, NOZU SHOJIRO, TAKAZAWA YUJI. Effect of Isokinetic Training with Blood Flow Restriction During Rest Interval Versus Exercise on Muscle Strength, Hypertrophy, and Perception: A Pilot Study. JUNTENDO IJI ZASSHI = JUNTENDO MEDICAL JOURNAL 2023; 69:477-484. [PMID: 38855068 PMCID: PMC11153072 DOI: 10.14789/jmj.jmj23-0014-oa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 09/07/2023] [Indexed: 06/11/2024]
Abstract
Objectives This study aimed to determine the effects of high-intensity isokinetic training with blood flow restriction during rest interval between set (rBFR) versus during exercise (eBFR) on muscle hypertrophy and increasing muscle strength and determine whether BFR-induced exercise pain is suppressed by rBFR. Materials and Methods Fourteen arms (7 participants) were recruited for the study. We conducted the following interventions for each arm: eBFR (n=4), rBFR (n=5), and exercise only (CON, n=5). The participants performed elbow flexion training with a BIODEX device twice weekly for 8 weeks. This study training consisted of total four sets; each was performed until <50% peak torque was achieved twice consecutively. BFR pressure was set at 120 mmHg. Elbow flexor peak torque during concentric contraction (CC), isometric contraction (IM), and muscle cross-sectional area (CSA) were measured before and after the intervention. Numerical rating scale scores used to assess pain during exercise were determined during training. Results Peak torque at the CC increased in the rBFR (p<0.05) and IM increased in the rBFR and CON (p<0.05), while CSA increased in the rBFR and CON (p<0.001). The pain during exercise was severe in the eBFR and moderate in the rBFR and CON. Conclusions This study's showed that high-intensity isokinetic training with rBFR did not have a synergistic effect on increasing muscle strength and muscle size. Additionally, high-intensity isokinetic training with BFR when it may be best not to perform it during exercise, because it was induces severe pain and may inhibit increases in muscle strength.
Collapse
Affiliation(s)
| | | | | | | | | | - YUJI TAKAZAWA
- Corresponding author: Yuji Takazawa, Department of Sports Medicine, Faculty of Medicine, Juntendo University, 2-3-15 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan, TEL: +81-3-3813-3111 E-mail:
| |
Collapse
|
7
|
Javorský T, Saeterbakken AH, Andersen V, Baláš J. Comparing low volume of blood flow restricted to high-intensity resistance training of the finger flexors to maintain climbing-specific strength and endurance: a crossover study. Front Sports Act Living 2023; 5:1256136. [PMID: 37841889 PMCID: PMC10570524 DOI: 10.3389/fspor.2023.1256136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/18/2023] [Indexed: 10/17/2023] Open
Abstract
Introduction It is acknowledged that training during recovery periods after injury involves reducing both volume and intensity, often resulting in losses of sport-specific fitness. Therefore, this study aimed to compare the effects of high-intensity training (HIT) and low-intensity training with blood flow restriction (LIT + BFR) of the finger flexors in order to preserve climbing-specific strength and endurance. Methods In a crossover design, thirteen intermediate climbers completed two 5-week periods of isometric finger flexors training on a hangboard. The trainings consisted of ten LIT + BFR (30% of max) or HIT sessions (60% of max without BFR) and were undertaken in a randomized order. The training session consisted of 6 unilateral sets of 1 min intermittent hanging at a 7:3 work relief ratio for both hands. Maximal voluntary contraction (MVC), force impulse from the 4 min all out test (W), critical force (CF) and force impulse above the critical force (W') of the finger flexors were assessed before, after the first, and after the second training period, using a climbing-specific dynamometer. Forearm muscle oxidative capacity was estimated from an occlusion test using near-infrared spectroscopy at the same time points. Results Both training methods led to maintaining strength and endurance indicators, however, no interaction (P > 0.05) was found between the training methods for any strength or endurance variable. A significant increase (P = 0.002) was found for W, primarily driven by the HIT group (pretest-25078 ± 7584 N.s, post-test-27327 ± 8051 N.s, P = 0.012, Cohen's d = 0.29). There were no significant (P > 0.05) pre- post-test changes for MVC (HIT: Cohen's d = 0.13; LIT + BFR: Cohen's d = -0.10), CF (HIT: Cohen's d = 0.36; LIT + BFR = 0.05), W` (HIT: Cohen's d = -0.03, LIT + BFR = 0.12), and forearm muscle oxidative capacity (HIT: Cohen's d = -0.23; LIT + BFR: Cohen's d = -0.07). Conclusions Low volume of BFR and HIT led to similar results, maintaining climbing-specific strength and endurance in lower grade and intermediate climbers. It appears that using BFR training may be an alternative approach after finger injury as low mechanical impact occurs during training.
Collapse
Affiliation(s)
- Tomáš Javorský
- Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Atle Hole Saeterbakken
- Faculty of Education, Arts and Sports, Western Norway University of Applied Sciences, Sogndal, Norway
| | - Vidar Andersen
- Faculty of Education, Arts and Sports, Western Norway University of Applied Sciences, Sogndal, Norway
| | - Jiří Baláš
- Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
| |
Collapse
|
8
|
Zhang H, Meng L, Yang Z. Biomechanical mechanism driving typical postural shifts of lower limbs during sleeping in an aircraft seat. Eur J Appl Physiol 2023; 123:2023-2039. [PMID: 37147512 DOI: 10.1007/s00421-023-05220-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/14/2023] [Indexed: 05/07/2023]
Abstract
The purpose of this study was to determine the biomechanical mechanisms driving passengers' lower-limb postural shifts during seated sleep on a flight to prevent negative effects on passengers' physical health. Twenty subjects participated in an observational study and a subsequent experiment on fatigue development and tissue oxygenation changes during seated sleep in an economy-class aircraft seat. Three of the most frequently used postures, which involved four targeted muscles of the legs and the thigh-buttock region, were selected and examined in the experiment with the following measures: muscle electromyogram, tissue oxygenation, and body contact pressure distribution. The results showed that the fatigue of the tibialis anterior and gastrocnemius and the compression of the region under the medial tuberosities were relieved by alternations among the three positions-position 1 (placing the shanks forwards), position 2 (placing the shanks neutrally), and position 3 (placing the shanks backwards). This research reveals the mechanical properties of the biomechanical factors functioning in lower-limb postural shifts during seated sleep and provides design optimization strategies for economy-class aircraft seats to reduce the negative effects on passenger health.
Collapse
Affiliation(s)
- Huizhong Zhang
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Lei Meng
- College of Art, Xi'an University of Architecture and Technology, Xi'an, China.
| | - Zhi Yang
- Department of Science and Technology, Beijing Institute of Fashion Technology, Beijing, China
| |
Collapse
|
9
|
Gray SM, Cuomo AM, Proppe CE, Traylor MK, Hill EC, Keller JL. Effects of Sex and Cuff Pressure on Physiological Responses during Blood Flow Restriction Resistance Exercise in Young Adults. Med Sci Sports Exerc 2023; 55:920-931. [PMID: 36729632 DOI: 10.1249/mss.0000000000003103] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE The purpose of this study was to examine the physiological responses resulting from an acute blood flow restriction resistance exercise bout with two different cuff pressures in young, healthy men and women. METHODS Thirty adults (18-30 yr) completed a bilateral leg extension blood flow restriction bout consisting of four sets (30-15-15-15 repetitions), with cuffs applied at pressures corresponding to 40% and 60% of the minimum arterial occlusion pressure (AOP) needed to completely collapse the femoral arteries. During each of these conditions (40% and 60% AOP), physiological measures of near-infrared spectroscopy (NIRS) and EMG amplitude (EMG AMP) were collected from the dominant or nondominant vastus lateralis. After each set, ratings of perceived exertion (RPE) were collected, whereas only at baseline and at the end of the bout, mean arterial pressure (MAP) was assessed. Separate mixed-factorial ANOVA models were used to examine mean differences in the change in EMG AMP and NIRS parameters during each set. The absolute RPE and MAP values were also examined with separate ANOVAs. A P value ≤0.05 was considered statistically significant. RESULTS Regardless of sex or cuff pressure, the change in EMG AMP was lower in set 1 (14.8%) compared with the remaining sets (22.6%-27.0%). The 40% AOP condition elicited the greatest changes in oxy[heme] and deoxy[heme], while also providing lower RPEs. For MAP, there was an effect for time such that MAP increased from preexercise (87.5 ± 4.3 mm Hg) to postexercise (104.5 ± 4.1 mm Hg). CONCLUSIONS The major findings suggested that the 40% AOP condition permitted the greatest amount of recovery during the interset rest. In addition, there did not seem to be any meaningful sex-related difference in this sample of young healthy adults.
Collapse
Affiliation(s)
- Sylvie M Gray
- Integrated Laboratory of Exercise and Applied Physiology (iLEAP), Department of Health, Kinesiology and Sport, College of Education and Professional Studies, University of South Alabama, Mobile, AL
| | | | - Christopher E Proppe
- Division of Kinesiology, School of Kinesiology and Physical Therapy, University of Central Florida, Orlando, FL
| | - Miranda K Traylor
- Integrated Laboratory of Exercise and Applied Physiology (iLEAP), Department of Health, Kinesiology and Sport, College of Education and Professional Studies, University of South Alabama, Mobile, AL
| | | | - Joshua L Keller
- Integrated Laboratory of Exercise and Applied Physiology (iLEAP), Department of Health, Kinesiology and Sport, College of Education and Professional Studies, University of South Alabama, Mobile, AL
| |
Collapse
|
10
|
Luck JC, Sica CT, Blaha C, Cauffman A, Vesek J, Eckenrode J, Stavres J. Agreement between multiparametric MRI (PIVOT), Doppler ultrasound, and near-infrared spectroscopy-based assessments of skeletal muscle oxygenation and perfusion. Magn Reson Imaging 2023; 96:27-37. [PMID: 36396004 PMCID: PMC9789193 DOI: 10.1016/j.mri.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/24/2022] [Accepted: 11/03/2022] [Indexed: 11/16/2022]
Abstract
Skeletal muscle perfusion and oxygenation are commonly evaluated using Doppler ultrasound and near-infrared spectroscopy (NIRS) techniques. However, a recently developed magnetic resonance imaging (MRI) sequence, termed PIVOT, permits the simultaneous collection of skeletal muscle perfusion and T2* (an index of skeletal muscle oxygenation). PURPOSE To determine the level of agreement between PIVOT, Doppler ultrasound, and NIRS-based assessments of skeletal muscle perfusion and oxygenation. METHODS Twelve healthy volunteers (8 females, 25 ± 3 years, 170 ± 11 cm, 71.5 ± 8.0 kg) performed six total reactive hyperemia protocols. During three of these reactive hyperemia protocols, Tissue Saturation Index (TSI) and oxygenated hemoglobin (O2Hb) were recorded from the medial gastrocnemius (MG) and tibialis anterior (TA), and blood flow velocity was recorded from the popliteal artery (BFvpop) via Doppler Ultrasound. The other three trials were performed inside the bore of a 3 T MRI scanner, and the PIVOT sequence was used to assess perfusion (PIVOTperf) and oxygenation (T2*) of the medial gastrocnemius and tibialis anterior muscles. Positive incremental areas under the curve (iAUC) and times to peak (TTP) were calculated for each variable, and the level of agreement between collection methods was evaluated via Bland-Altman analyses and Spearman's Rho correlation analyses. RESULTS The only significant bivariate relationships observed were between the T2* vs. TSI iAUC and PIVOTperf vs. BFvpop values recorded from the MG. Significant mean differences were observed for all comparisons (all P ≤ 0.038), and significant proportional biases were observed for the PIVOTperf vs. tHb TTP (R2 = 0.848, P < 0.001) and T2* vs. TSI TTP comparisons in the TA (R2 = 0.488, P = 0.011), and the PIVOTperf vs. BFvpop iAUC (R2 = 0.477, P = 0.013) and time to peak (R2 = 0.851, P < 0.001) comparisons in the MG. CONCLUSIONS Our findings suggest that the PIVOT technique has, at best, a moderate level of agreement with Doppler ultrasound and NIRS assessment methods and is subject to significant proportional bias. These findings do not challenge the accuracy of either measurement technique but instead reflect differences in the vascular compartments, sampling volumes, and parameters being evaluated.
Collapse
Affiliation(s)
- J Carter Luck
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, PA, United States of America
| | - Christopher T Sica
- Department of Radiology, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, PA, United States of America
| | - Cheryl Blaha
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, PA, United States of America
| | - Aimee Cauffman
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, PA, United States of America
| | - Jeffrey Vesek
- Department of Molecular Biology, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, PA, United States of America
| | - John Eckenrode
- School of Medicine, University of South Carolina, Columbia, SC, United States of America
| | - Jon Stavres
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, PA, United States of America; School of Kinesiology and Nutrition, University of Southern Mississippi, Hattiesburg, MS, United States of America.
| |
Collapse
|
11
|
Parkington T, Maden-Wilkinson T, Klonizakis M, Broom D. Comparative Perceptual, Affective, and Cardiovascular Responses between Resistance Exercise with and without Blood Flow Restriction in Older Adults. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16000. [PMID: 36498075 PMCID: PMC9737453 DOI: 10.3390/ijerph192316000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/20/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Older adults and patients with chronic disease presenting with muscle weakness or musculoskeletal disorders may benefit from low-load resistance exercise (LLRE) with blood flow restriction (BFR). LLRE-BFR has been shown to increase muscle size, strength, and endurance comparable to traditional resistance exercise but without the use of heavy loads. However, potential negative effects from LLRE-BFR present as a barrier to participation and limit its wider use. This study examined the perceptual, affective, and cardiovascular responses to a bout of LLRE-BFR and compared the responses to LLRE and moderate-load resistance exercise (MLRE). Twenty older adults (64.3 ± 4.2 years) performed LLRE-BFR, LLRE and MLRE consisting of 4 sets of leg press and knee extension, in a randomised crossover design. LLRE-BFR was more demanding than LLRE and MLRE through increased pain (p ≤ 0.024, d = 0.8-1.4) and reduced affect (p ≤ 0.048, d = -0.5--0.9). Despite this, LLRE-BFR was enjoyed and promoted a positive affective response (p ≤ 0.035, d = 0.5-0.9) following exercise comparable to MLRE. This study supports the use of LLRE-BFR for older adults and encourages future research to examine the safety, acceptability, and efficacy of LLRE-BFR in patients with chronic disease.
Collapse
Affiliation(s)
- Thomas Parkington
- Physical Activity, Wellness and Public Health Research Group, Department of Sport and Physical Activity, Sheffield Hallam University, Sheffield S1 1WB, UK
- Lifestyle, Exercise and Nutrition Improvement Research Group, Department of Nursing and Midwifery, Sheffield Hallam University, Sheffield S1 1WB, UK
| | - Thomas Maden-Wilkinson
- Physical Activity, Wellness and Public Health Research Group, Department of Sport and Physical Activity, Sheffield Hallam University, Sheffield S1 1WB, UK
| | - Markos Klonizakis
- Lifestyle, Exercise and Nutrition Improvement Research Group, Department of Nursing and Midwifery, Sheffield Hallam University, Sheffield S1 1WB, UK
| | - David Broom
- Centre for Sport, Exercise and Life Sciences, Coventry University, Coventry CV1 5FB, UK
| |
Collapse
|
12
|
Watson R, Sullivan B, Stone A, Jacobs C, Malone T, Heebner N, Noehren B. Blood Flow Restriction Therapy: An Evidence-Based Approach to Postoperative Rehabilitation. JBJS Rev 2022; 10:01874474-202210000-00001. [PMID: 36191086 DOI: 10.2106/jbjs.rvw.22.00062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
➢ Blood flow restriction therapy (BFRT) involves the application of a pneumatic tourniquet cuff to the proximal portion of the arm or leg. This restricts arterial blood flow while occluding venous return, which creates a hypoxic environment that induces many physiologic adaptations. ➢ BFRT is especially useful in postoperative rehabilitation because it produces muscular hypertrophy and strength gains without the need for heavy-load exercises that are contraindicated after surgery. ➢ Low-load resistance training with BFRT may be preferable to low-load or high-load training alone because it leads to comparable increases in strength and hypertrophy, without inducing muscular edema or increasing pain.
Collapse
Affiliation(s)
- Richard Watson
- University of Kentucky, Department of Physical Therapy, Lexington, Kentucky
| | - Breanna Sullivan
- University of Kentucky, Department of Orthopaedic Surgery and Sports Medicine, Lexington, Kentucky
| | - Austin Stone
- University of Kentucky, Department of Orthopaedic Surgery and Sports Medicine, Lexington, Kentucky
| | - Cale Jacobs
- University of Kentucky, Department of Orthopaedic Surgery and Sports Medicine, Lexington, Kentucky
| | - Terry Malone
- University of Kentucky, Department of Physical Therapy, Lexington, Kentucky
| | - Nicholas Heebner
- University of Kentucky, Sports Medicine Research Institute, Lexington, Kentucky
| | - Brian Noehren
- University of Kentucky, Department of Physical Therapy, Lexington, Kentucky
| |
Collapse
|
13
|
Qin L, Cui J, Li J. Sympathetic Nerve Activity and Blood Pressure Response to Exercise in Peripheral Artery Disease: From Molecular Mechanisms, Human Studies, to Intervention Strategy Development. Int J Mol Sci 2022; 23:ijms231810622. [PMID: 36142521 PMCID: PMC9505475 DOI: 10.3390/ijms231810622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Sympathetic nerve activity (SNA) regulates the contraction of vascular smooth muscle and leads to a change in arterial blood pressure (BP). It was observed that SNA, vascular contractility, and BP are heightened in patients with peripheral artery disease (PAD) during exercise. The exercise pressor reflex (EPR), a neural mechanism responsible for BP response to activation of muscle afferent nerve, is a determinant of the exaggerated exercise-induced BP rise in PAD. Based on recent results obtained from a series of studies in PAD patients and a rat model of PAD, this review will shed light on SNA-driven BP response and the underlying mechanisms by which receptors and molecular mediators in muscle afferent nerves mediate the abnormalities in autonomic activities of PAD. Intervention strategies, particularly non-pharmacological strategies, improving the deleterious exercise-induced SNA and BP in PAD, and enhancing tolerance and performance during exercise will also be discussed.
Collapse
|
14
|
Kilgas MA, Yoon T, McDaniel J, Phillips KC, Elmer SJ. Physiological Responses to Acute Cycling With Blood Flow Restriction. Front Physiol 2022; 13:800155. [PMID: 35360241 PMCID: PMC8963487 DOI: 10.3389/fphys.2022.800155] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/15/2022] [Indexed: 11/13/2022] Open
Abstract
Aerobic exercise with blood flow restriction (BFR) can improve muscular function and aerobic capacity. However, the extent to which cuff pressure influences acute physiological responses to aerobic exercise with BFR is not well documented. We compared blood flow, tissue oxygenation, and neuromuscular responses to acute cycling with and without BFR. Ten participants completed four intermittent cycling (6 × 2 min) conditions: low-load cycling (LL), low-load cycling with BFR at 60% of limb occlusion pressure (BFR60), low-load cycling with BFR at 80% of limb occlusion pressure (BFR80), and high-load cycling (HL). Tissue oxygenation, cardiorespiratory, metabolic, and perceptual responses were assessed during cycling and blood flow was measured during recovery periods. Pre- to post-exercise changes in knee extensor function were also assessed. BFR60 and BFR80 reduced blood flow (~33 and ~ 50%, respectively) and tissue saturation index (~5 and ~15%, respectively) when compared to LL (all p < 0.05). BFR60 resulted in lower VO2, heart rate, ventilation, and perceived exertion compared to HL (all p < 0.05), whereas BFR80 resulted in similar heart rates and exertion to HL (both p > 0.05). BFR60 and BFR80 elicited greater pain compared to LL and HL (all p < 0.05). After exercise, knee extensor torque decreased by ~18 and 40% for BFR60 and BFR80, respectively (both p < 0.05), and was compromised mostly through peripheral mechanisms. Cycling with BFR increased metabolic stress, decreased blood flow, and impaired neuromuscular function. However, only BFR60 did so without causing very severe pain (>8 on pain intensity scale). Cycling with BFR at moderate pressure may serve as a potential alternative to traditional high-intensity aerobic exercise.
Collapse
Affiliation(s)
- Matthew A. Kilgas
- School of Health and Human Performance, Northern Michigan University, Marquette, MI, United States
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, MI, United States
| | - Tejin Yoon
- Department of Physical Education, Kangwon National University, Chuncheon, South Korea
| | - John McDaniel
- Department of Exercise Physiology, Kent State University, Kent, OH, United States
- Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, United States
| | - Kevin C. Phillips
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, MI, United States
| | - Steven J. Elmer
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, MI, United States
| |
Collapse
|
15
|
de Queiros VS, de França IM, Trybulski R, Vieira JG, Dos Santos IK, Neto GR, Wilk M, de Matos DG, Vieira WHDB, Novaes JDS, Makar P, Cabral BGDAT, Dantas PMS. Myoelectric Activity and Fatigue in Low-Load Resistance Exercise With Different Pressure of Blood Flow Restriction: A Systematic Review and Meta-Analysis. Front Physiol 2021; 12:786752. [PMID: 34880783 PMCID: PMC8646757 DOI: 10.3389/fphys.2021.786752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 10/26/2021] [Indexed: 12/17/2022] Open
Abstract
Background: Low-load resistance exercise (LL-RE) with blood flow restriction (BFR) promotes increased metabolic response and fatigue, as well as more pronounced myoelectric activity than traditional LL-RE. Some studies have shown that the relative pressure applied during exercise may have an effect on these variables, but existing evidence is contradictory. Purpose: The aim of this study was to systematically review and pool the available evidence on the differences in neuromuscular and metabolic responses at LL-RE with different pressure of BFR. Methods: The systematic review and meta-analysis was reported according to PRISMA items. Searches were performed in the following databases: CINAHL, PubMed, Scopus, SPORTDiscus and Web of Science, until June 15, 2021. Randomized or non-randomized experimental studies that analyzed LL-RE, associated with at least two relative BFR pressures [arterial occlusion pressure (AOP)%], on myoelectric activity, fatigue, or metabolic responses were included. Random-effects meta-analyses were performed for MVC torque (fatigue measure) and myoelectric activity. The quality of evidence was assessed using the PEDro scale. Results: Ten studies were included, all of moderate to high methodological quality. For MVC torque, there were no differences in the comparisons between exercise with 40–50% vs. 80–90% AOP. When analyzing the meta-analysis data, the results indicated differences in comparisons in exercise with 15–20% 1 repetition maximum (1RM), with higher restriction pressure evoking greater MVC torque decline (4 interventions, 73 participants; MD = −5.05 Nm [95%CI = −8.09; −2.01], p = 0.001, I2 = 0%). For myoelectric activity, meta-analyses indicated a difference between exercise with 40% vs. 60% AOP (3 interventions, 38 participants; SMD = 0.47 [95%CI = 0.02; 0.93], p = 0.04, I2 = 0%), with higher pressure of restriction causing greater myoelectric activity. This result was not identified in the comparisons between 40% vs. 80% AOP. In analysis of studies that adopted pre-defined repetition schemes, differences were found (4 interventions, 52 participants; SMD = 0.58 [95%CI = 0.11; 1.05], p = 0.02, I2 = 27%). Conclusion: The BFR pressure applied during the LL-RE may affect the magnitude of muscle fatigue and excitability when loads between 15 and 20% of 1RM and predefined repetition protocols (not failure) are prescribed, respectively. Systematic Review Registration: [http://www.crd.york.ac.uk/prospero], identifier [CRD42021229345].
Collapse
Affiliation(s)
- Victor Sabino de Queiros
- Graduate Program in Health Sciences, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil
| | - Ingrid Martins de França
- Graduate Program in Physiotherapy, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil
| | - Robert Trybulski
- Department of Medical Sciences, The Wojciech Korfanty School of Economics, Katowice, Poland.,Provita Zory Medical Center, Zory, Poland
| | - João Guilherme Vieira
- Graduate Program in Physical Education, Federal University of Juiz de Fora (UFJF), Juiz de Fora, Brazil
| | - Isis Kelly Dos Santos
- Graduate Program in Health Sciences, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil
| | - Gabriel Rodrigues Neto
- Graduate Program in Family Health, Faculties of Nursing and Medicine Nova Esperança (FACENE/FAMENE), João Pessoa, Brazil.,Coordination of Physical Education, University Center for Higher Education and Development (CESED/UNIFACISA/FCM/ESAC), Campina Grande, Brazil
| | - Michal Wilk
- Institute of Sport Sciences, Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland
| | - Dihogo Gama de Matos
- Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, MB, Canada
| | | | - Jefferson da Silva Novaes
- Graduate Program at the School of Physical Education and Sport at the Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Piotr Makar
- Faculty of Physical Education, Gdańsk University of Physical Education and Sport, Gdańsk, Poland
| | - Breno Guilherme de Araújo Tinoco Cabral
- Graduate Program in Health Sciences, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil.,Graduate Program in Physical Education, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil
| | - Paulo Moreira Silva Dantas
- Graduate Program in Health Sciences, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil.,Graduate Program in Physical Education, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil
| |
Collapse
|
16
|
Noyes FR, Barber-Westin SD, Sipes L. Blood Flow Restriction Training Can Improve Peak Torque Strength in Chronic Atrophic Postoperative Quadriceps and Hamstrings Muscles. Arthroscopy 2021; 37:2860-2869. [PMID: 33812031 DOI: 10.1016/j.arthro.2021.03.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 03/13/2021] [Accepted: 03/15/2021] [Indexed: 02/02/2023]
Abstract
PURPOSE To report a prospective study of patients who underwent blood flow restriction training (BFRT) for marked quadriceps or hamstring muscle deficits after failure to respond to traditional rehabilitation after knee surgery. METHODS The BFRT protocol consisted of 4 low resistance exercises (30% of 1 repetition maximum): leg press, knee extension, mini-squats, and hamstring curls with 60% to 80% limb arterial occlusion pressure. Knee peak isometric muscle torque (60° flexion) was measured on an isokinetic dynamometer. RESULTS Twenty-seven patients (18 females, 9 males; mean age, 40.1 years) with severe quadriceps and/or hamstrings deficits were enrolled from April 2017 to January 2020. They had undergone a mean of 5.3 ± 3.5 months of outpatient therapy and 22 ± 10 supervised therapy visits and did not respond to traditional rehabilitation. Prior surgery included anterior cruciate ligament reconstruction, partial or total knee replacements, meniscus repairs, and others. All patients completed 9 BFRT sessions, and 14 patients completed 18 sessions. The mean quadriceps and hamstrings torque deficits before BFRT were 43% ± 16% and 38% ± 14%, respectively. After 9 BFRT sessions, statistically significant improvements were found in muscle peak torque deficits for the quadriceps (P = .003) and hamstring (P = .02), with continued improvements after 18 sessions (P = .004 and P = .002, respectively). After 18 BFRT sessions, the peak quadriceps and hamstring peak torques increased > 20% in 86% and 76% of the patients, respectively. The failure rate of achieving this improvement in peak quadriceps and hamstring torque after 18 BFRT sessions was 14% and 24%, respectively. CONCLUSIONS BFRT produced statistically significant improvements in peak quadriceps and hamstring torque measurements after 9 and 18 sessions in a majority of patients with severe quadriceps and hamstring strength deficits that had failed to respond to many months of standard and monitored postoperative rehabilitation. LEVEL OF EVIDENCE Level IV therapeutic case series.
Collapse
Affiliation(s)
- Frank R Noyes
- Cincinnati SportsMedicine & Orthopaedic Center, Cincinnati, Ohio, U.S.A.; Mercy Health, Cincinnati, Ohio, U.S.A.; Department of Orthopaedic Surgery, College of Medicine, University of Cincinnati, Cincinnati, Ohio, U.S.A.; Noyes Knee Institute, Cincinnati, Ohio, U.S.A
| | | | | |
Collapse
|
17
|
Cerqueira MS, Costa EC, Santos Oliveira R, Pereira R, Brito Vieira WH. Blood Flow Restriction Training: To Adjust or Not Adjust the Cuff Pressure Over an Intervention Period? Front Physiol 2021; 12:678407. [PMID: 34262476 PMCID: PMC8273389 DOI: 10.3389/fphys.2021.678407] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/02/2021] [Indexed: 11/13/2022] Open
Abstract
Blood flow restriction (BFR) training combines exercise and partial reduction of muscular blood flow using a pressured cuff. BFR training has been used to increase strength and muscle mass in healthy and clinical populations. A major methodological concern of BFR training is blood flow restriction pressure (BFRP) delivered during an exercise bout. Although some studies increase BFRP throughout a training intervention, it is unclear whether BFRP adjustments are pivotal to maintain an adequate BFR during a training period. While neuromuscular adaptations induced by BFR are widely studied, cardiovascular changes throughout training intervention with BFR and their possible relationship with BFRP are less understood. This study aimed to discuss the need for BFRP adjustment based on cardiovascular outcomes and provide directions for future researches. We conducted a literature review and analyzed 29 studies investigating cardiovascular adaptations following BFR training. Participants in the studies were healthy, middle-aged adults, older adults and clinical patients. Cuff pressure, when adjusted, was increased during the training period. However, cardiovascular outcomes did not provide a plausible rationale for cuff pressure increase. In contrast, avoiding increments in cuff pressure may minimize discomfort, pain and risks associated with BFR interventions, particularly in clinical populations. Given that cardiovascular adaptations induced by BFR training are conflicting, it is challenging to indicate whether increases or decreases in BFRP are needed. Based on the available evidence, we suggest that future studies investigate if maintaining or decreasing cuff pressure makes BFR training safer and/or more comfortable with similar physiological adaptation.
Collapse
Affiliation(s)
- Mikhail Santos Cerqueira
- Neuromuscular Performance Analysis Laboratory, Department of Physical Therapy, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Eduardo Caldas Costa
- Department of Physical Education, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | - Rafael Pereira
- Integrative Physiology Research Center, Department of Biological Sciences, Universidade Estadual do Sudoeste da Bahia (UESB), Jequié, Brazil
| | - Wouber Hérickson Brito Vieira
- Neuromuscular Performance Analysis Laboratory, Department of Physical Therapy, Federal University of Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
18
|
Comparison of Blood Flow Restriction Training versus Non-Occlusive Training in Patients with Anterior Cruciate Ligament Reconstruction or Knee Osteoarthritis: A Systematic Review. J Clin Med 2020; 10:jcm10010068. [PMID: 33375515 PMCID: PMC7796201 DOI: 10.3390/jcm10010068] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 12/16/2022] Open
Abstract
Patients undergoing anterior cruciate ligament (ACL) reconstruction and patients suffering from knee osteoarthritis (KOA) have been shown to have quadriceps muscle weakness and/or atrophy in common. The physiological mechanisms of blood flow restriction (BFR) training could facilitate muscle hypertrophy. The purpose of this systematic review is to investigate the effects of BFR training on quadriceps cross-sectional area (CSA), pain perception, function and quality of life on these patients compared to a non-BFR training. A literature research was performed using Web of Science, PEDro, Scopus, MEDLINE, Dialnet, CINAHL and The Cochrane Library databases. The main inclusion criteria were that papers were English or Spanish language reports of randomized controlled trials involving patients with ACL reconstruction or suffering from KOA. The initial research identified 159 publications from all databases; 10 articles were finally included. The search was conducted from April to June 2020. Four of these studies found a significant improvement in strength. A significant increase in CSA was found in two studies. Pain significantly improved in four studies and only one study showed a significant improvement in functionality/quality of life. Low-load training with BFR may be an effective option treatment for increasing quadriceps strength and CSA, but more research is needed.
Collapse
|