1
|
Ninham BW, Bunkin N, Battye M. The endothelial surface layer-glycocalyx - Universal nano-infrastructure is fundamental to physiology, cell traffic and a complementary neural network. Adv Colloid Interface Sci 2025; 338:103401. [PMID: 39862802 DOI: 10.1016/j.cis.2025.103401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 01/13/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025]
Abstract
The glycocalyx and its associated endothelial surface layer which lines all cell membranes and most tissues, dwarfs the phospholipid membrane of cells in extent. Its major components are sulphated polymers like heparan and chondroitin sulphates and hyaluronic acid. These form a fuzzy layer of unknown structure and function. It has become increasingly clear that the ESL-GC complex must play many roles. We postulate it has a self-organised infrastructure that directs cell traffic, acts in defence against pathogens and other cells, and in diseases like diabetes, and heart disease, besides being a playground for a host of biochemical activity. Based on an analogous sulphated polymeric system Nafion, the fuel cell polymer, we suggest a model for the structure of the ESL-GC complex and how it functions. Taken together with parallel developments in physical chemistry, in nanobubbles, their stability in physiological media, and reactivity, we believe the model may throw light on a variety of phenomena, diabetes and some other diseases.
Collapse
Affiliation(s)
- Barry W Ninham
- Materials Physics (formerly Department of Applied Mathematics), Research School of Physics, Australian National University, Canberra, ACT 2600, Australia.
| | - Nikolai Bunkin
- Department of Fundamental Sciences, Bauman Moscow State Technical University, 2nd Baumanskaya Str. 5, 105005 Moscow, Russia
| | | |
Collapse
|
2
|
Cao W, He Y, Fu R, Chen Y, Yu J, He Z. A Review of Carbohydrate Supplementation Approaches and Strategies for Optimizing Performance in Elite Long-Distance Endurance. Nutrients 2025; 17:918. [PMID: 40077786 PMCID: PMC11901785 DOI: 10.3390/nu17050918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 02/22/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
Carbohydrate supplementation is a common practice among endurance athletes participating in long-distance competitions. However, glycogen storage regulation, in-competition blood glucose levels, and their relationship with athletic performance are influenced by multiple factors. This review summarizes the recent research progress on carbohydrate supplementation, addressing its applications in the pre-, during-, and post-competition phases. It explores variables that influence the effectiveness of carbohydrate supplementation and provides a summary of strategies, based on six key aspects: carbohydrate properties, multi-nutrient interactions, gastrointestinal function, individual differences (such as age and gender), environmental conditions, and psychological factors. The combination of different types, ratios, and concentrations of carbohydrates has been demonstrated to enhance the efficiency of carbohydrate digestion and absorption. The synergistic combination of protein, sodium, and caffeine intake demonstrates enhanced efficacy in carbohydrate supplementation strategies. Gastrointestinal tolerance training for carbohydrate supplementation has been identified as an effective measure to alleviate gastrointestinal discomfort during high-dose carbohydrate intake. The adjustment of the carbohydrate-to-fat ratio and the type of carbohydrate intake has been found to mitigate the impact of gender and menstrual cycles on glycogen storage and substrate utilization. Modifying the timing of glycogen storage and regulating the concentration and temperature of carbohydrate solutions during competition have been demonstrated to facilitate coping with the elevated energy expenditure and metabolic substrate shift from fat to carbohydrates, triggered by a combination of environmental and psychological factors, including special environmental and climatic conditions (e.g., high altitude, high temperature, high humidity, and cold) and emotional states (e.g., pre-competition stress and anxiety during the competition). To achieve precise carbohydrate supplementation for athletes in major events under various competitive environments, it is necessary to quantitatively assess the effects of carbohydrate supplementation, supported by mechanistic studies. This can be achieved by utilizing wearable devices to monitor the entire competition, coupled with data collection technologies, such as high-throughput profiling. Furthermore, emerging data analytics techniques, such as machine learning and causal inference, should be leveraged to refine supplementation strategies.
Collapse
Affiliation(s)
- Wei Cao
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China; (W.C.)
- Exercise Biology Center, China Institute of Sport Science, Beijing 100061, China
| | - Yong He
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China; (W.C.)
- Exercise Biology Center, China Institute of Sport Science, Beijing 100061, China
| | - Ronghua Fu
- Exercise Biology Center, China Institute of Sport Science, Beijing 100061, China
| | - Yiru Chen
- Exercise Biology Center, China Institute of Sport Science, Beijing 100061, China
| | - Jiabei Yu
- Beijing Research Institute of Sports Science, Beijing 100075, China
| | - Zihong He
- Exercise Biology Center, China Institute of Sport Science, Beijing 100061, China
| |
Collapse
|
3
|
Margolis LM, Allen JT, Murphy NE, Carrigan CT, Howard EE, Barney DE, Drummer DJ, Michalak J, Ferrando AA, Pasiakos SM, Gwin JA. Carbohydrate supplementation maintains physical performance during short-term energy deficit despite reductions in exogenous glucose oxidation. Am J Physiol Endocrinol Metab 2025; 328:E242-E253. [PMID: 39814548 DOI: 10.1152/ajpendo.00418.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/20/2024] [Accepted: 12/13/2024] [Indexed: 01/18/2025]
Abstract
Exogenous glucose oxidation is reduced 55% during aerobic exercise after 3 days of complete starvation. Whether energy deficits more commonly experienced by athletes and military personnel similarly affect exogenous glucose oxidation and what impact this has on physical performance remains undetermined. This randomized, longitudinal parallel study aimed to assess the effects of varying magnitudes of energy deficit (DEF) on exogenous glucose oxidation and physical performance compared with energy balance (BAL). Participants consumed a 4-day BAL diet, followed by a 6-day 20% (n = 10), 40% (n = 10), or 60% (n = 10) DEF diet. At the end of each energy phase, participants performed 90-min of steady-state cycle ergometry (56 ± 3% V̇o2peak) while consuming a glucose drink (80 g), followed by a time to exhaustion (TTE) performance test. Substrate oxidation (g/min) was determined by indirect calorimetry and 13C-glucose. Muscle glycogen (mmol/kg dry wt) and transcript accumulation were assessed in rested fasted muscle collected before exercise in each phase. Muscle glycogen was lower (P = 0.002) during DEF (365 ± 179) than BAL (456 ± 125), regardless of group. Transcriptional regulation of glucose uptake (GLUT4 and IRS2) and glycogenolysis (HKII and PKM) were lower (P < 0.05) during DEF than BAL, independent of group. Regardless of group, exogenous glucose oxidation was 10% lower (P < 0.001) during DEF (0.38 ± 0.08) than BAL (0.42 ± 0.08). There was no evidence of a difference in TTE between BAL and DEF or between groups. In conclusion, despite modest reduction in exogenous glucose oxidative capacity during energy deficit, physical performance was similar compared with balance.NEW & NOTEWORTHY Short-term (6-day) energy deficit reduced exogenous glucose oxidation during exercise. Though less exogenous glucose was used for fuel, young healthy individuals appear to have a metabolic resilience to short-term periods of low energy availability, with no observed differences in the ability to take up and oxidize exogenous glucose between minimal (20%), moderate (40%), and severe (60%) energy deficits. Similar metabolic responses to carbohydrate supplementation independent of deficit severity likely contributed to sustainment of physical performance.
Collapse
Affiliation(s)
- Lee M Margolis
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts, United States
| | - Jillian T Allen
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts, United States
| | - Nancy E Murphy
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts, United States
| | - Christopher T Carrigan
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts, United States
| | - Emily E Howard
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts, United States
| | - David E Barney
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts, United States
- Oak Ridge Institute for Science and Education, Belcamp, Maryland, United States
| | - Devin J Drummer
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts, United States
- Oak Ridge Institute for Science and Education, Belcamp, Maryland, United States
| | - Julia Michalak
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts, United States
- Oak Ridge Institute for Science and Education, Belcamp, Maryland, United States
| | - Arny A Ferrando
- Healthspan, Resilience & Performance, Institute for Human & Machine Cognition, Pensacola, Florida, United States
- Department of Geriatrics, Donald W. Reynolds Institute on Aging, Center for Translational Research in Aging & Longevity, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States
| | - Stefan M Pasiakos
- Office of Dietary Supplements, National Institutes of Health, Bethesda, Maryland, United States
| | - Jess A Gwin
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts, United States
| |
Collapse
|
4
|
Bie C, Ma Y, van Zijl PCM, Yadav NN, Xu X, Zheng H, Liang D, Zou C, Areta JL, Chen L, Zhou Y. In vivo imaging of glycogen in human muscle. Nat Commun 2024; 15:10826. [PMID: 39737980 PMCID: PMC11685792 DOI: 10.1038/s41467-024-55132-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 12/03/2024] [Indexed: 01/01/2025] Open
Abstract
Probing regional glycogen metabolism in humans non-invasively has been challenging due to a lack of sensitive approaches. Here we studied human muscle glycogen dynamics post-exercise with a spatial resolution of millimeters and temporal resolution of minutes, using relayed nuclear Overhauser effect (glycoNOE) MRI. Data at 5T showed a homogeneous distribution of glycogen in resting muscle, with an average concentration of 99 ± 13 mM. After plantar flexion exercise following fasting with recovery under fasting conditions, the calf muscle showed spatially heterogeneous glycogen depletion and repletion kinetics that correlated with the severity of this depletion. Three types of regional glycogen kinetics were observed: (i) single exponential repletion (type a); (ii) biphasic recovery of rapid repletion followed by additional depletion (type b); (iii) biphasic recovery where continued depletion is followed by an exponential recovery (type c). The study of the complex patterns of glycogen kinetics suggests that glycogen breakdown may be quantitatively important during the initial recovery.
Collapse
Affiliation(s)
- Chongxue Bie
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Yuxuan Ma
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Peter C M van Zijl
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
- The Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nirbhay N Yadav
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
- The Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xi Xu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Hairong Zheng
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Dong Liang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Chao Zou
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - José L Areta
- Research Institute for Sport and Exercise Sciences, School of Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Lin Chen
- School of Electronic Science and Engineering, Xiamen University, Xiamen, Fujian, China
| | - Yang Zhou
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China.
| |
Collapse
|
5
|
Brito-da-Silva G, Manzanares G, Beltrame Barone B, Silva Dos Santos V, Sturion Fillipini S, G Gandra P. Carbohydrate storage in cells: a laboratory activity for the assessment of glycogen stores in biological tissues. ADVANCES IN PHYSIOLOGY EDUCATION 2024; 48:742-751. [PMID: 38991036 DOI: 10.1152/advan.00023.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
Carbohydrates and fats constitute our primary energy sources. The importance of each of these energy substrates varies across cell types and physiological conditions. For example, the brain normally relies almost exclusively on glucose oxidation, whereas skeletal muscle shifts from lipids toward higher carbohydrate oxidation rates as exercise intensity increases. Understanding how carbohydrates are stored in our cells and which tissues contain significant carbohydrate stores is crucial for health professionals, especially given the role of carbohydrate metabolism in various pathophysiological conditions. This laboratory activity uses a simple and low-cost iodine binding method to quantify glycogen in mouse skeletal muscle and liver samples. By integrating the results of this activity with literature data, students can determine overall glycogen storage in the human body. The primary goal of the activity is to enhance students' understanding of the importance and limitations of glycogen stores in energy metabolism.NEW & NOTEWORTHY Carbohydrates are one of the primary energy sources utilized by our cells. Liver and skeletal muscle glycogen, which are the main carbohydrate reserves in the body, play a central role in energy metabolism, especially during periods of fasting and exercise. In this laboratory activity, students measure glycogen levels in tissues to gain insights into how carbohydrates are stored in our cells and understand the role and limitations of liver and muscle carbohydrate stores.
Collapse
Affiliation(s)
- Guilherme Brito-da-Silva
- Departamento de Bioquímica e Biologia Tecidual, Universidade Estadual de Campinas-UNICAMP, Campinas, São Paulo, Brazil
| | - Gustavo Manzanares
- Departamento de Bioquímica e Biologia Tecidual, Universidade Estadual de Campinas-UNICAMP, Campinas, São Paulo, Brazil
| | - Beatriz Beltrame Barone
- Departamento de Bioquímica e Biologia Tecidual, Universidade Estadual de Campinas-UNICAMP, Campinas, São Paulo, Brazil
| | - Vanessa Silva Dos Santos
- Faculdade de Educação Física, Universidade Estadual de Campinas-UNICAMP, Campinas, São Paulo, Brazil
| | - Sabrina Sturion Fillipini
- Faculdade de Educação Física, Universidade Estadual de Campinas-UNICAMP, Campinas, São Paulo, Brazil
| | - Paulo G Gandra
- Departamento de Bioquímica e Biologia Tecidual, Universidade Estadual de Campinas-UNICAMP, Campinas, São Paulo, Brazil
| |
Collapse
|
6
|
Miura T, Kouzu H, Tanno M, Tatekoshi Y, Kuno A. Role of AMP deaminase in diabetic cardiomyopathy. Mol Cell Biochem 2024; 479:3195-3211. [PMID: 38386218 DOI: 10.1007/s11010-024-04951-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/24/2024] [Indexed: 02/23/2024]
Abstract
Diabetes mellitus is one of the major causes of ischemic and nonischemic heart failure. While hypertension and coronary artery disease are frequent comorbidities in patients with diabetes, cardiac contractile dysfunction and remodeling occur in diabetic patients even without comorbidities, which is referred to as diabetic cardiomyopathy. Investigations in recent decades have demonstrated that the production of reactive oxygen species (ROS), impaired handling of intracellular Ca2+, and alterations in energy metabolism are involved in the development of diabetic cardiomyopathy. AMP deaminase (AMPD) directly regulates adenine nucleotide metabolism and energy transfer by adenylate kinase and indirectly modulates xanthine oxidoreductase-mediated pathways and AMP-activated protein kinase-mediated signaling. Upregulation of AMPD in diabetic hearts was first reported more than 30 years ago, and subsequent studies showed similar upregulation in the liver and skeletal muscle. Evidence for the roles of AMPD in diabetes-induced fatty liver, sarcopenia, and heart failure has been accumulating. A series of our recent studies showed that AMPD localizes in the mitochondria-associated endoplasmic reticulum membrane as well as the sarcoplasmic reticulum and cytosol and participates in the regulation of mitochondrial Ca2+ and suggested that upregulated AMPD contributes to contractile dysfunction in diabetic cardiomyopathy via increased generation of ROS, adenine nucleotide depletion, and impaired mitochondrial respiration. The detrimental effects of AMPD were manifested at times of increased cardiac workload by pressure loading. In this review, we briefly summarize the expression and functions of AMPD in the heart and discuss the roles of AMPD in diabetic cardiomyopathy, mainly focusing on contractile dysfunction caused by this disorder.
Collapse
Affiliation(s)
- Tetsuji Miura
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan.
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, 15-4-1, Maeda-7, Teine-Ku, Sapporo, 006-8585, Japan.
| | - Hidemichi Kouzu
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masaya Tanno
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Nursing, Sapporo Medical University School of Health Sciences, Sapporo, Japan
| | - Yuki Tatekoshi
- Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Atsushi Kuno
- Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
7
|
Kato N, Yang Y, Bumrungkit C, Kumrungsee T. Does Vitamin B6 Act as an Exercise Mimetic in Skeletal Muscle? Int J Mol Sci 2024; 25:9962. [PMID: 39337450 PMCID: PMC11432312 DOI: 10.3390/ijms25189962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/04/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Marginal vitamin B6 (B6) deficiency is common in various segments worldwide. In a super-aged society, sarcopenia is a major concern and has gained significant research attention focused on healthy aging. To date, the primary interventions for sarcopenia have been physical exercise therapy. Recent evidence suggests that inadequate B6 status is associated with an increased risk of sarcopenia and mortality among older adults. Our previous study showed that B6 supplementation to a marginal B6-deficient diet up-regulated the expression of various exercise-induced genes in the skeletal muscle of rodents. Notably, a supplemental B6-to-B6-deficient diet stimulates satellite cell-mediated myogenesis in rodents, mirroring the effects of physical exercise. These findings suggest the potential role of B6 as an exercise-mimetic nutrient in skeletal muscle. To test this hypothesis, we reviewed relevant literature and compared the roles of B6 and exercise in muscles. Here, we provide several pieces of evidence supporting this hypothesis and discuss the potential mechanisms behind the similarities between the effects of B6 and exercise on muscle. This research, for the first time, provides insight into the exercise-mimetic roles of B6 in skeletal muscle.
Collapse
Affiliation(s)
- Norihisa Kato
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - Yongshou Yang
- School of Life Sciences, Anhui University, Hefei 230601, China
| | - Chanikan Bumrungkit
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - Thanutchaporn Kumrungsee
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
- Smart Agriculture, Graduate School of Innovation and Practice for Smart Society, Hiroshima University, Higashi-Hiroshima 739-8527, Japan
| |
Collapse
|
8
|
Quaresma MVLDS, Mancin L, Paoli A, Mota JF. The interplay between gut microbiome and physical exercise in athletes. Curr Opin Clin Nutr Metab Care 2024; 27:428-433. [PMID: 39083429 DOI: 10.1097/mco.0000000000001056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
PURPOSE OF REVIEW The gut microbiome regulates several health and disease-related processes. However, the potential bidirectional relationship between the gut microbiome and physical exercise remains uncertain. Here, we review the evidence related to the gut microbiome in athletes. RECENT FINDINGS The effect of physical exercise on the intestinal microbiome and intestinal epithelial cells depends on the type, volume, and intensity of the activity. Strenuous exercise negatively impacts the intestinal microbiome, but adequate training and dietary planning could mitigate these effects. An increase in short-chain fatty acids (SCFAs) concentrations can modulate signaling pathways in skeletal muscle, contributing to greater metabolic efficiency, preserving muscle glycogen, and consequently optimizing physical performance and recovery. Furthermore, higher SCFAs concentrations appear to lower inflammatory response, consequently preventing an exacerbated immune response and reducing the risk of infections among athletes. Regarding dietary interventions, the optimal diet composition for targeting the athlete's microbiome is not yet known. Likewise, the benefits or harms of using probiotics, synbiotics, and postbiotics are not well established, whereas prebiotics appear to optimize SCFAs production. SUMMARY The intestinal microbiome plays an important role in modulating health, performance, and recovery in athletes. SCFAs appear to be the main intestinal metabolite related to these effects. Nutritional strategies focusing on the intestinal microbiome need to be developed and tested in well controlled clinical trials.
Collapse
Affiliation(s)
| | - Laura Mancin
- Department of Biomedical Sciences
- Human Inspired Technology Research Center HIT, University of Padua, Padua, Italy
| | - Antonio Paoli
- Department of Biomedical Sciences
- Human Inspired Technology Research Center HIT, University of Padua, Padua, Italy
| | - João Felipe Mota
- School of Nutrition, Federal University of Goias, Goiânia, GO, Brazil
| |
Collapse
|
9
|
Kondo S, Karasawa T, Koike A, Tsutsui M, Kunisawa J, Terada S. Decreased pancreatic amylase activity after acute high-intensity exercise and its effects on post-exercise muscle glycogen recovery. Appl Physiol Nutr Metab 2024; 49:1035-1046. [PMID: 38621297 DOI: 10.1139/apnm-2023-0265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Our prior results showed that an acute bout of endurance exercise for 6 h, but not 1 h, decreased pancreatic amylase activity, indicating that acute endurance exercise may affect carbohydrate digestive capacity in an exercise duration-dependent manner. Here, we investigated the effects of acute endurance exercise of different intensities on mouse pancreatic amylase activity. Male C57BL/6J mice performed low- or high-intensity running exercise for 60 min at either 10 (Ex-Low group) or 20 m/min (Ex-High group). The control group comprised sedentary mice. Immediately after acute exercise, pancreatic amylase activity was significantly decreased in the Ex-High group and not the Ex-Low group in comparison with the control group. To determine whether the decreased amylase activity induced by high-intensity exercise influenced muscle glycogen recovery after exercise, we investigated the rates of muscle glycogen resynthesis in Ex-High group mice administered either oral glucose or starch solution (2.0 mg/g body weight) immediately after exercise. The starch-fed mice exhibited significantly lower post-exercise glycogen accumulation rates in the 2-h recovery period compared with the glucose-fed mice. This difference in the glycogen accumulation rate was absent for starch- and glucose-fed mice in the sedentary (no exercise) control group. Furthermore, the plasma glucose AUC during early post-exercise recovery (0-60 min) was significantly lower in the starch-fed mice than in the glucose-fed mice. Thus, our findings suggest that acute endurance exercise diminishes the carbohydrate digestive capacity of the pancreas in a manner dependent on exercise intensity, with polysaccharides leading to delayed muscle glycogen recovery after exercise.
Collapse
Affiliation(s)
- Saki Kondo
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental Health, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
- Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Takuya Karasawa
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
- Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Atsuko Koike
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Momoko Tsutsui
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Jun Kunisawa
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental Health, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Shin Terada
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
10
|
Stefanik E, Dubińska-Magiera M, Lewandowski D, Daczewska M, Migocka-Patrzałek M. Metabolic aspects of glycogenolysis with special attention to McArdle disease. Mol Genet Metab 2024; 142:108532. [PMID: 39018613 DOI: 10.1016/j.ymgme.2024.108532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/19/2024]
Abstract
The physiological function of muscle glycogen is to meet the energy demands of muscle contraction. The breakdown of glycogen occurs through two distinct pathways, primarily cytosolic and partially lysosomal. To obtain the necessary energy for their function, skeletal muscles utilise also fatty acids in the β-oxidation. Ketogenesis is an alternative metabolic pathway for fatty acids, which provides an energy source during fasting and starvation. Diseases arising from impaired glycogenolysis lead to muscle weakness and dysfunction. Here, we focused on the lack of muscle glycogen phosphorylase (PYGM), a rate-limiting enzyme for glycogenolysis in skeletal muscles, which leads to McArdle disease. Metabolic myopathies represent a group of genetic disorders characterised by the limited ability of skeletal muscles to generate energy. Here, we discuss the metabolic aspects of glycogenosis with a focus on McArdle disease, offering insights into its pathophysiology. Glycogen accumulation may influence the muscle metabolic dynamics in different ways. We emphasize that a proper treatment approach for such diseases requires addressing three important and interrelated aspects, which include: symptom relief therapy, elimination of the cause of the disease (lack of a functional enzyme) and effective and early diagnosis.
Collapse
Affiliation(s)
- Ewa Stefanik
- Department of Animal Developmental Biology, Faculty of Biological Sciences, University of Wroclaw, Sienkiewicza 21, 50-335 Wrocław, Poland..
| | - Magda Dubińska-Magiera
- Department of Animal Developmental Biology, Faculty of Biological Sciences, University of Wroclaw, Sienkiewicza 21, 50-335 Wrocław, Poland..
| | - Damian Lewandowski
- Department of Animal Developmental Biology, Faculty of Biological Sciences, University of Wroclaw, Sienkiewicza 21, 50-335 Wrocław, Poland..
| | - Małgorzata Daczewska
- Department of Animal Developmental Biology, Faculty of Biological Sciences, University of Wroclaw, Sienkiewicza 21, 50-335 Wrocław, Poland..
| | - Marta Migocka-Patrzałek
- Department of Animal Developmental Biology, Faculty of Biological Sciences, University of Wroclaw, Sienkiewicza 21, 50-335 Wrocław, Poland..
| |
Collapse
|
11
|
Kamada N, Ikeda A, Makino Y, Matsubara H. Intersubunit communication in glycogen phosphorylase influences substrate recognition at the catalytic sites. Amino Acids 2024; 56:14. [PMID: 38340233 PMCID: PMC10858836 DOI: 10.1007/s00726-023-03362-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 12/18/2023] [Indexed: 02/12/2024]
Abstract
Glycogen phosphorylase (GP) is biologically active as a dimer of identical subunits, each activated by phosphorylation of the serine-14 residue. GP exists in three interconvertible forms, namely GPa (di-phosphorylated form), GPab (mono-phosphorylated form), and GPb (non-phosphorylated form); however, information on GPab remains scarce. Given the prevailing view that the two GP subunits collaboratively determine their catalytic characteristics, it is essential to conduct GPab characterization to gain a comprehensive understanding of glycogenolysis regulation. Thus, in the present study, we prepared rabbit muscle GPab from GPb, using phosphorylase kinase as the catalyst, and identified it using a nonradioactive phosphate-affinity gel electrophoresis method. Compared with the half-half GPa/GPb mixture, the as-prepared GPab showed a unique AMP-binding affinity. To further investigate the intersubunit communication in GP, its catalytic site was probed using pyridylaminated-maltohexaose (a maltooligosaccharide-based substrate comprising the essential dextrin structure for GP; abbreviated as PA-0) and a series of specifically modified PA-0 derivatives (substrate analogs lacking part of the essential dextrin structure). By comparing the initial reaction rates toward the PA-0 derivative (Vderivative) and PA-0 (VPA-0), we demonstrated that the Vderivative/VPA-0 ratio for GPab was significantly different from that for the half-half GPa/GPb mixture. This result indicates that the interaction between the two GP subunits significantly influences substrate recognition at the catalytic sites, thereby providing GPab its unique substrate recognition profile.
Collapse
Affiliation(s)
- Nahori Kamada
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Sakai, Japan
| | - Ayato Ikeda
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Sakai, Japan
| | - Yasushi Makino
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Sakai, Japan.
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, Gakuen-cho 1-1, Naka-ku, Sakai, Osaka, 599-8531, Japan.
| | - Hiroshi Matsubara
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Sakai, Japan
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, Gakuen-cho 1-1, Naka-ku, Sakai, Osaka, 599-8531, Japan
| |
Collapse
|
12
|
Notley SR, Mitchell D, Taylor NAS. A century of exercise physiology: concepts that ignited the study of human thermoregulation. Part 3: Heat and cold tolerance during exercise. Eur J Appl Physiol 2024; 124:1-145. [PMID: 37796292 DOI: 10.1007/s00421-023-05276-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 07/04/2023] [Indexed: 10/06/2023]
Abstract
In this third installment of our four-part historical series, we evaluate contributions that shaped our understanding of heat and cold stress during occupational and athletic pursuits. Our first topic concerns how we tolerate, and sometimes fail to tolerate, exercise-heat stress. By 1900, physical activity with clothing- and climate-induced evaporative impediments led to an extraordinarily high incidence of heat stroke within the military. Fortunately, deep-body temperatures > 40 °C were not always fatal. Thirty years later, water immersion and patient treatments mimicking sweat evaporation were found to be effective, with the adage of cool first, transport later being adopted. We gradually acquired an understanding of thermoeffector function during heat storage, and learned about challenges to other regulatory mechanisms. In our second topic, we explore cold tolerance and intolerance. By the 1930s, hypothermia was known to reduce cutaneous circulation, particularly at the extremities, conserving body heat. Cold-induced vasodilatation hindered heat conservation, but it was protective. Increased metabolic heat production followed, driven by shivering and non-shivering thermogenesis, even during exercise and work. Physical endurance and shivering could both be compromised by hypoglycaemia. Later, treatments for hypothermia and cold injuries were refined, and the thermal after-drop was explained. In our final topic, we critique the numerous indices developed in attempts to numerically rate hot and cold stresses. The criteria for an effective thermal stress index were established by the 1930s. However, few indices satisfied those requirements, either then or now, and the surviving indices, including the unvalidated Wet-Bulb Globe-Thermometer index, do not fully predict thermal strain.
Collapse
Affiliation(s)
- Sean R Notley
- Defence Science and Technology Group, Department of Defence, Melbourne, Australia
- School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Duncan Mitchell
- Brain Function Research Group, School of Physiology, University of the Witwatersrand, Johannesburg, South Africa
- School of Human Sciences, University of Western Australia, Crawley, Australia
| | - Nigel A S Taylor
- Research Institute of Human Ecology, College of Human Ecology, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
13
|
Notley SR, Mitchell D, Taylor NAS. A century of exercise physiology: concepts that ignited the study of human thermoregulation. Part 1: Foundational principles and theories of regulation. Eur J Appl Physiol 2023; 123:2379-2459. [PMID: 37702789 DOI: 10.1007/s00421-023-05272-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 06/30/2023] [Indexed: 09/14/2023]
Abstract
This contribution is the first of a four-part, historical series encompassing foundational principles, mechanistic hypotheses and supported facts concerning human thermoregulation during athletic and occupational pursuits, as understood 100 years ago and now. Herein, the emphasis is upon the physical and physiological principles underlying thermoregulation, the goal of which is thermal homeostasis (homeothermy). As one of many homeostatic processes affected by exercise, thermoregulation shares, and competes for, physiological resources. The impact of that sharing is revealed through the physiological measurements that we take (Part 2), in the physiological responses to the thermal stresses to which we are exposed (Part 3) and in the adaptations that increase our tolerance to those stresses (Part 4). Exercising muscles impose our most-powerful heat stress, and the physiological avenues for redistributing heat, and for balancing heat exchange with the environment, must adhere to the laws of physics. The first principles of internal and external heat exchange were established before 1900, yet their full significance is not always recognised. Those physiological processes are governed by a thermoregulatory centre, which employs feedback and feedforward control, and which functions as far more than a thermostat with a set-point, as once was thought. The hypothalamus, today established firmly as the neural seat of thermoregulation, does not regulate deep-body temperature alone, but an integrated temperature to which thermoreceptors from all over the body contribute, including the skin and probably the muscles. No work factor needs to be invoked to explain how body temperature is stabilised during exercise.
Collapse
Affiliation(s)
- Sean R Notley
- Defence Science and Technology Group, Department of Defence, Melbourne, Australia
- School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Duncan Mitchell
- Brain Function Research Group, School of Physiology, University of the Witwatersrand, Johannesburg, South Africa
- School of Human Sciences, University of Western Australia, Crawley, Australia
| | - Nigel A S Taylor
- Research Institute of Human Ecology, College of Human Ecology, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
14
|
Smith JAB, Murach KA, Dyar KA, Zierath JR. Exercise metabolism and adaptation in skeletal muscle. Nat Rev Mol Cell Biol 2023; 24:607-632. [PMID: 37225892 PMCID: PMC10527431 DOI: 10.1038/s41580-023-00606-x] [Citation(s) in RCA: 87] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2023] [Indexed: 05/26/2023]
Abstract
Viewing metabolism through the lens of exercise biology has proven an accessible and practical strategy to gain new insights into local and systemic metabolic regulation. Recent methodological developments have advanced understanding of the central role of skeletal muscle in many exercise-associated health benefits and have uncovered the molecular underpinnings driving adaptive responses to training regimens. In this Review, we provide a contemporary view of the metabolic flexibility and functional plasticity of skeletal muscle in response to exercise. First, we provide background on the macrostructure and ultrastructure of skeletal muscle fibres, highlighting the current understanding of sarcomeric networks and mitochondrial subpopulations. Next, we discuss acute exercise skeletal muscle metabolism and the signalling, transcriptional and epigenetic regulation of adaptations to exercise training. We address knowledge gaps throughout and propose future directions for the field. This Review contextualizes recent research of skeletal muscle exercise metabolism, framing further advances and translation into practice.
Collapse
Affiliation(s)
- Jonathon A B Smith
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Kevin A Murach
- Molecular Mass Regulation Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Kenneth A Dyar
- Metabolic Physiology, Institute for Diabetes and Cancer, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Juleen R Zierath
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
15
|
Guo H, Wu H, Li Z. The Pathogenesis of Diabetes. Int J Mol Sci 2023; 24:ijms24086978. [PMID: 37108143 PMCID: PMC10139109 DOI: 10.3390/ijms24086978] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/30/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Diabetes is the most common metabolic disorder, with an extremely serious effect on health systems worldwide. It has become a severe, chronic, non-communicable disease after cardio-cerebrovascular diseases. Currently, 90% of diabetic patients suffer from type 2 diabetes. Hyperglycemia is the main hallmark of diabetes. The function of pancreatic cells gradually declines before the onset of clinical hyperglycemia. Understanding the molecular processes involved in the development of diabetes can provide clinical care with much-needed updates. This review provides the current global state of diabetes, the mechanisms involved in glucose homeostasis and diabetic insulin resistance, and the long-chain non-coding RNA (lncRNA) associated with diabetes.
Collapse
Affiliation(s)
- Huiqin Guo
- Institute of Biotechnology, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Haili Wu
- College of Life Science, Shanxi University, Taiyuan 030006, China
| | - Zhuoyu Li
- Institute of Biotechnology, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
16
|
Guo Q, Yen CN, Scheffler TL, Richert BT, Schinckel AP, Grant AL, Gerrard DE. Ractopamine does not rescue Halothane and Rendement Napole metabolism postmortem. Meat Sci 2023; 198:109075. [PMID: 36641987 DOI: 10.1016/j.meatsci.2022.109075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/28/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022]
Abstract
The objective of this study was to determine if ractopamine (RAC) impacts postmortem muscle metabolism and subsequent pork quality in Halothane (HAL) and Rendement Napole (RN) mutant pigs. All RAC fed pigs had increased (P < 0.04) L* values. HAL and RN mutants muscle had lower (P < 0.01) pH values but RAC feeding had no effect. RN mutants had higher and lower (P < 0.05) muscle pH and temperatures, respectfully at 15 min and RN mutant pigs had greater (P < 0.0001) glycogen initially but lactate levels similar to wild type (WT) pigs at 24 h. RAC lowered (P < 0.05) glycogen in RN mutants but not in HAL mutated or WT pig muscle. These data show RAC feeding changes postmortem energy metabolism but does not change pH and pork quality hallmark of two major pig gene mutations and supports our contention that ultimate meat quality traits and their biochemical drivers may be more complex than originally reasoned.
Collapse
Affiliation(s)
- Q Guo
- Department of Animal Sciences, Purdue University, W. Lafayette, IN 47907, United States of America
| | - C-N Yen
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24601, United States of America
| | - T L Scheffler
- Department of Animal Sciences, Purdue University, W. Lafayette, IN 47907, United States of America
| | - B T Richert
- Department of Animal Sciences, Purdue University, W. Lafayette, IN 47907, United States of America
| | - A P Schinckel
- Department of Animal Sciences, Purdue University, W. Lafayette, IN 47907, United States of America
| | - A L Grant
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24601, United States of America
| | - D E Gerrard
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24601, United States of America.
| |
Collapse
|
17
|
Is the fundamental pathology in Duchenne's muscular dystrophy caused by a failure of glycogenolysis–glycolysis in costameres? J Genet 2023. [DOI: 10.1007/s12041-022-01410-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
18
|
Vigh‐Larsen JF, Ørtenblad N, Emil Andersen O, Thorsteinsson H, Kristiansen TH, Bilde S, Mikkelsen MS, Nielsen J, Mohr M, Overgaard K. Fibre type- and localisation-specific muscle glycogen utilisation during repeated high-intensity intermittent exercise. J Physiol 2022; 600:4713-4730. [PMID: 36030498 PMCID: PMC9825866 DOI: 10.1113/jp283225] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/24/2022] [Indexed: 01/11/2023] Open
Abstract
Glycogen particles are situated in key areas of the muscle cell in the vicinity of the main energy-consumption sites and may be utilised heterogeneously dependent on the nature of the metabolic demands. The present study aimed to investigate the time course of fibre type-specific utilisation of muscle glycogen in three distinct subcellular fractions (intermyofibrillar, IMF; intramyofibrillar, Intra; and subsarcolemmal, SS) during repeated high-intensity intermittent exercise. Eighteen moderately to well-trained male participants performed three periods of 10 × 45 s cycling at ∼105% watt max (EX1-EX3) coupled with 5 × 6 s maximal sprints at baseline and after each period. Muscle biopsies were sampled at baseline and after EX1 and EX3. A higher glycogen breakdown rate in type 2 compared to type 1 fibres was found during EX1 for the Intra (-72 vs. -45%) and IMF (-59 vs. -35%) glycogen fractions (P < 0.001) but with no differences for SS glycogen (-52 vs. -40%). In contrast, no fibre type differences were observed during EX2-EX3, where the utilisation of Intra and IMF glycogen in type 2 fibres was reduced, resulting in depletion of all three subcellular fractions to very low levels post-exercise within both fibre types. Importantly, large heterogeneity in single-fibre glycogen utilisation was present with an early depletion of especially Intra glycogen in individual type 2 fibres. In conclusion, there is a clear fibre type- and localisation-specific glycogen utilisation during high-intensity intermittent exercise, which varies with time course of exercise and is characterised by exacerbated pool-specific glycogen depletion at the single-fibre level. KEY POINTS: Muscle glycogen is the major fuel during high-intensity exercise and is stored in distinct subcellular areas of the muscle cell in close vicinity to the main energy consumption sites. In the present study quantitative electron microscopy imaging was used to investigate the utilisation pattern of three distinct subcellular muscle glycogen fractions during repeated high-intensity intermittent exercise. It is shown that the utilisation differs dependent on fibre type, subcellular localisation and time course of exercise and with large single-fibre heterogeneity. These findings expand on our understanding of subcellular muscle glycogen metabolism during exercise and may help us explain how reductions in muscle glycogen can attenuate muscle function even at only moderately lowered whole-muscle glycogen concentrations.
Collapse
Affiliation(s)
- Jeppe F. Vigh‐Larsen
- Department of Public HealthResearch Unit in Exercise BiologyAarhus UniversityAarhusDenmark
| | - Niels Ørtenblad
- Department of Sports Science and Clinical BiomechanicsUniversity of Southern DenmarkOdenseDenmark
| | - Ole Emil Andersen
- Department of Public HealthResearch Unit in Exercise BiologyAarhus UniversityAarhusDenmark,Steno Diabetes Center AarhusAarhus University HospitalAarhusDenmark
| | - Hallur Thorsteinsson
- Department of Sports Science and Clinical BiomechanicsUniversity of Southern DenmarkOdenseDenmark
| | - Thea H. Kristiansen
- Department of Public HealthResearch Unit in Exercise BiologyAarhus UniversityAarhusDenmark
| | - Stine Bilde
- Department of Public HealthResearch Unit in Exercise BiologyAarhus UniversityAarhusDenmark
| | - Mads S. Mikkelsen
- Department of Public HealthResearch Unit in Exercise BiologyAarhus UniversityAarhusDenmark
| | - Joachim Nielsen
- Department of Sports Science and Clinical BiomechanicsUniversity of Southern DenmarkOdenseDenmark
| | - Magni Mohr
- Department of Sports Science and Clinical BiomechanicsUniversity of Southern DenmarkOdenseDenmark,Centre of Health ScienceUniversity of the Faroe IslandsTórshavnFaroe Islands
| | - Kristian Overgaard
- Department of Public HealthResearch Unit in Exercise BiologyAarhus UniversityAarhusDenmark
| |
Collapse
|
19
|
Katz A. The role of glycogen phosphorylase in glycogen biogenesis in skeletal muscle after exercise. SPORTS MEDICINE AND HEALTH SCIENCE 2022; 5:29-33. [PMID: 36994178 PMCID: PMC10040329 DOI: 10.1016/j.smhs.2022.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 10/29/2022] [Accepted: 11/08/2022] [Indexed: 11/15/2022] Open
Abstract
Initially it was believed that phosphorylase was responsible for both glycogen breakdown and synthesis in the living cell. The discovery of glycogen synthase and McArdle's disease (lack of phosphorylase activity), together with the high Pi/glucose 1-P ratio in skeletal muscle, demonstrated that glycogen synthesis could not be attributed to reversal of the phosphorylase reaction. Rather, glycogen synthesis was attributable solely to the activity of glycogen synthase, subsequent to the transport of glucose into the cell. However, the well-established observation that phosphorylase was inactivated (i.e., dephosphorylated) during the initial recovery period after prior exercise, when the rate of glycogen accumulation is highest and independent of insulin, suggested that phosphorylase could play an active role in glycogen accumulation. But the quantitative contribution of phosphorylase inactivation was not established until recently, when studying isolated murine muscle preparations during recovery from repeated contractions at temperatures ranging from 25 to 35 °C. Thus, in both slow-twitch, oxidative and fast-twitch, glycolytic muscles, inactivation of phosphorylase accounted for 45%-75% of glycogen accumulation during the initial hours of recovery following repeated contractions. Such data indicate that phosphorylase inactivation may be the most important mechanism for glycogen accumulation under defined conditions. These results support the initial belief that phosphorylase plays a quantitative role in glycogen formation in the living cell. However, the mechanism is not via activation of phosphorylase, but rather via inactivation of the enzyme.
Collapse
|
20
|
Allen DG. The spatial distribution of glycogen and glycogen consumption in muscle cells. J Gen Physiol 2022; 154:213402. [PMID: 35976153 PMCID: PMC9388224 DOI: 10.1085/jgp.202213238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
David G. Allen looks at new research from the Nielsen lab.
Collapse
Affiliation(s)
- David G. Allen
- Sydney Medical School, University of Sydney, Sydney, Australia,Correspondence to David G. Allen:
| |
Collapse
|
21
|
New Horizons in Carbohydrate Research and Application for Endurance Athletes. Sports Med 2022; 52:5-23. [PMID: 36173597 PMCID: PMC9734239 DOI: 10.1007/s40279-022-01757-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2022] [Indexed: 12/15/2022]
Abstract
The importance of carbohydrate as a fuel source for exercise and athletic performance is well established. Equally well developed are dietary carbohydrate intake guidelines for endurance athletes seeking to optimize their performance. This narrative review provides a contemporary perspective on research into the role of, and application of, carbohydrate in the diet of endurance athletes. The review discusses how recommendations could become increasingly refined and what future research would further our understanding of how to optimize dietary carbohydrate intake to positively impact endurance performance. High carbohydrate availability for prolonged intense exercise and competition performance remains a priority. Recent advances have been made on the recommended type and quantity of carbohydrates to be ingested before, during and after intense exercise bouts. Whilst reducing carbohydrate availability around selected exercise bouts to augment metabolic adaptations to training is now widely recommended, a contemporary view of the so-called train-low approach based on the totality of the current evidence suggests limited utility for enhancing performance benefits from training. Nonetheless, such studies have focused importance on periodizing carbohydrate intake based on, among other factors, the goal and demand of training or competition. This calls for a much more personalized approach to carbohydrate recommendations that could be further supported through future research and technological innovation (e.g., continuous glucose monitoring). Despite more than a century of investigations into carbohydrate nutrition, exercise metabolism and endurance performance, there are numerous new important discoveries, both from an applied and mechanistic perspective, on the horizon.
Collapse
|