1
|
Huang M, Tan X, Yang S, Zhou Z, Wang D, Dong J. Long Non-Coding RNA LOC113219358 Regulates Immune Responses in Apis mellifera Through Protein Interactions. Int J Mol Sci 2025; 26:676. [PMID: 39859389 PMCID: PMC11766226 DOI: 10.3390/ijms26020676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Long non-coding RNAs (lncRNAs) are emerging as critical regulators in honeybee physiology, influencing development, behavior, and stress responses. This study investigates the role of lncRNA LOC113219358 in the immune response and neurophysiological regulation of Apis mellifera brains. Using RNA interference (RNAi) and RNA sequencing (RNA-seq), we demonstrate that silencing lncLOC113219358 significantly alters the expression of 162 mRNA transcripts, including genes associated with detoxification, energy metabolism, and neuronal signaling. Functional enrichment analysis revealed involvement in neuropeptide signaling, ATP synthesis, and oxidative phosphorylation pathways. Acetylcholinesterase (AChE), Glutathione-S-transferase (GST) and cytochrome P450 (CYP450) activities were significantly downregulated with 48 h of RNAi treatment. Additionally, RNA pull-down assays identified 113 proteins interacting with lncLOC113219358, including ATP synthase subunits, heat shock proteins, and major royal jelly proteins, suggesting its role in cellular stress responses and neural activity modulation. These findings provide mechanistic insights into how lncLOC113219358 mediates honeybee responses to environmental stressors, contributing to our understanding of lncRNA-regulated neural and immune functions in pollinators.
Collapse
Affiliation(s)
| | | | | | | | - Deqian Wang
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jie Dong
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
2
|
Khare P, Chand J, Ptakova A, Liguori R, Ferrazzi F, Bishnoi M, Vlachova V, Zimmermann K. The TRPC5 receptor as pharmacological target for pain and metabolic disease. Pharmacol Ther 2024; 263:108727. [PMID: 39384022 DOI: 10.1016/j.pharmthera.2024.108727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/11/2024] [Accepted: 10/03/2024] [Indexed: 10/11/2024]
Abstract
The transient receptor potential canonical (TRPC) channels are a group of highly homologous nonselective cation channels from the larger TRP channel family. They have the ability to form homo- and heteromers with varying degrees of calcium (Ca2+) permeability and signalling properties. TRPC5 is the one cold-sensitive among them and likewise facilitates the influx of extracellular Ca2+ into cells to modulate neuronal depolarization and integrate various intracellular signalling pathways. Recent research with cryo-electron microscopy revealed its structure, along with clear insight into downstream signalling and protein-protein interaction sites. Investigations using global and conditional deficient mice revealed the involvement of TRPC5 in metabolic diseases, energy balance, thermosensation and conditions such as osteoarthritis, rheumatoid arthritis, and inflammatory pain including opioid-induced hyperalgesia and hyperalgesia following tooth decay and pulpitis. This review provides an update on recent advances in our understanding of the role of TRPC5 with focus on metabolic diseases and pain.
Collapse
Affiliation(s)
- Pragyanshu Khare
- Department of Anesthesiology, Friedrich Alexander Universität Erlangen-Nürnberg, Erlangen, Germany; Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Jagdish Chand
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Alexandra Ptakova
- Department of Cellular Neurophysiology, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Renato Liguori
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Fulvia Ferrazzi
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Mahendra Bishnoi
- TR(i)P for Health Laboratory Centre for Excellence in Functional Foods, Food & Nutrition Biotechnology Division, National Agri-Food Biotechnology Institute, S.A.S Nagar, Sector (Knowledge City), Punjab, India
| | - Viktorie Vlachova
- Department of Cellular Neurophysiology, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Katharina Zimmermann
- Department of Anesthesiology, Friedrich Alexander Universität Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
3
|
Polat OK, Isaeva E, Sudhini YR, Knott B, Zhu K, Noben M, Suresh Kumar V, Endlich N, Mangos S, Reddy TV, Samelko B, Wei C, Altintas MM, Dryer SE, Sever S, Staruschenko A, Reiser J. The small GTPase regulatory protein Rac1 drives podocyte injury independent of cationic channel protein TRPC5. Kidney Int 2023; 103:1056-1062. [PMID: 36750145 PMCID: PMC10200725 DOI: 10.1016/j.kint.2023.01.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 12/28/2022] [Accepted: 01/19/2023] [Indexed: 02/07/2023]
Abstract
Transient receptor potential canonical channels (TRPCs) are non-selective cationic channels that play a role in signal transduction, especially in G -protein-mediated signaling cascades. TRPC5 is expressed predominantly in the brain but also in the kidney. However, its role in kidney physiology and pathophysiology is controversial. Some studies have suggested that TRPC5 drives podocyte injury and proteinuria, particularly after small GTPase Rac1 activation to induce the trafficking of TRPC5 to the plasma membrane. Other studies using TRPC5 gain-of-function transgenic mice have questioned the pathogenic role of TRPC5 in podocytes. Here, we show that TRPC5 over-expression or inhibition does not ameliorate proteinuria induced by the expression of constitutively active Rac1 in podocytes. Additionally, single-cell patch-clamp studies did not detect functional TRPC5 channels in primary cultures of podocytes. Thus, we conclude that TRPC5 plays a role redundant to that of TRPC6 in podocytes and is unlikely to be a useful therapeutic target for podocytopathies.
Collapse
Affiliation(s)
- Onur K Polat
- Department of Medicine, Rush University Medical Center, Chicago, Illinois, USA; Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, USA
| | - Elena Isaeva
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Yashwanth R Sudhini
- Department of Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Brenna Knott
- Department of Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Ke Zhu
- Department of Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Manuel Noben
- Department of Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Varsha Suresh Kumar
- Department of Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Nicole Endlich
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany; Center of High-End Imaging, NIPOKA GmbH, Greifswald, Germany
| | - Steve Mangos
- Department of Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | | | - Beata Samelko
- Department of Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Changli Wei
- Department of Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Mehmet M Altintas
- Department of Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Stuart E Dryer
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA; Department of Biomedical Sciences, Tilman J. Fertitta Family College of Medicine, University of Houston, Houston, Texas, USA
| | - Sanja Sever
- Division of Nephrology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Alexander Staruschenko
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, USA; Hypertension and Kidney Research Center, University of South Florida, Tampa, Florida, USA; James A. Haley Veterans' Hospital, Tampa, Florida, USA
| | - Jochen Reiser
- Department of Medicine, Rush University Medical Center, Chicago, Illinois, USA.
| |
Collapse
|
4
|
Gusev K, Shalygin A, Kolesnikov D, Shuyskiy L, Makeenok S, Glushankova L, Sivak K, Yakovlev K, Orshanskaya Y, Wang G, Bakhtyukov A, Derkach K, Shpakov A, Kaznacheyeva E. Reorganization and Suppression of Store-Operated Calcium Entry in Podocytes of Type 2 Diabetic Rats. Int J Mol Sci 2023; 24:ijms24087259. [PMID: 37108424 PMCID: PMC10139047 DOI: 10.3390/ijms24087259] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Type 2 diabetes mellitus (DM2) is a widespread metabolic disorder that results in podocyte damage and diabetic nephropathy. Previous studies demonstrated that TRPC6 channels play a pivotal role in podocyte function and their dysregulation is associated with development of different kidney diseases including nephropathy. Here, using single channel patch clamp technique, we demonstrated that non-selective cationic TRPC6 channels are sensitive to the Ca2+ store depletion in human podocyte cell line Ab8/13 and in freshly isolated rat glomerular podocytes. Ca2+ imaging indicated the involvement of ORAI and sodium-calcium exchanger in Ca2+ entry induced upon store depletion. In male rats fed a high-fat diet combined with a low-dose streptozotocin injection, which leads to DM2 development, we observed the reduction of a store-operated Ca2+ entry (SOCE) in rat glomerular podocytes. This was accompanied by a reorganization of store-operated Ca2+ influx such that TRPC6 channels lost their sensitivity to Ca2+ store depletion and ORAI-mediated Ca2+ entry was suppressed in TRPC6-independent manner. Altogether our data provide new insights into the mechanism of SOCE organization in podocytes in the norm and in pathology, which should be taken into account when developing pharmacological treatment of the early stages of diabetic nephropathy.
Collapse
Affiliation(s)
- Konstantin Gusev
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Alexey Shalygin
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Dmitrii Kolesnikov
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Leonid Shuyskiy
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Sofia Makeenok
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Lyubov Glushankova
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Konstantin Sivak
- Smorodintsev Research Institute of Influenza WHO National Influenza Centre of Russia, St. Petersburg 197376, Russia
| | - Kirill Yakovlev
- Smorodintsev Research Institute of Influenza WHO National Influenza Centre of Russia, St. Petersburg 197376, Russia
| | - Yana Orshanskaya
- Smorodintsev Research Institute of Influenza WHO National Influenza Centre of Russia, St. Petersburg 197376, Russia
| | - Guanghui Wang
- Department of Pharmacology, College of Pharmaceutic Sciences, Soochow University, Suzhou 215031, China
| | - Andrey Bakhtyukov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg 194223, Russia
| | - Kira Derkach
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg 194223, Russia
| | - Alexander Shpakov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg 194223, Russia
| | - Elena Kaznacheyeva
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia
| |
Collapse
|
5
|
Saldías MP, Maureira D, Orellana-Serradell O, Silva I, Lavanderos B, Cruz P, Torres C, Cáceres M, Cerda O. TRP Channels Interactome as a Novel Therapeutic Target in Breast Cancer. Front Oncol 2021; 11:621614. [PMID: 34178620 PMCID: PMC8222984 DOI: 10.3389/fonc.2021.621614] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 03/31/2021] [Indexed: 12/14/2022] Open
Abstract
Breast cancer is one of the most frequent cancer types worldwide and the first cause of cancer-related deaths in women. Although significant therapeutic advances have been achieved with drugs such as tamoxifen and trastuzumab, breast cancer still caused 627,000 deaths in 2018. Since cancer is a multifactorial disease, it has become necessary to develop new molecular therapies that can target several relevant cellular processes at once. Ion channels are versatile regulators of several physiological- and pathophysiological-related mechanisms, including cancer-relevant processes such as tumor progression, apoptosis inhibition, proliferation, migration, invasion, and chemoresistance. Ion channels are the main regulators of cellular functions, conducting ions selectively through a pore-forming structure located in the plasma membrane, protein–protein interactions one of their main regulatory mechanisms. Among the different ion channel families, the Transient Receptor Potential (TRP) family stands out in the context of breast cancer since several members have been proposed as prognostic markers in this pathology. However, only a few approaches exist to block their specific activity during tumoral progress. In this article, we describe several TRP channels that have been involved in breast cancer progress with a particular focus on their binding partners that have also been described as drivers of breast cancer progression. Here, we propose disrupting these interactions as attractive and potential new therapeutic targets for treating this neoplastic disease.
Collapse
Affiliation(s)
- María Paz Saldías
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Santiago, Chile
| | - Diego Maureira
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Santiago, Chile
| | - Octavio Orellana-Serradell
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Santiago, Chile
| | - Ian Silva
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Santiago, Chile
| | - Boris Lavanderos
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Santiago, Chile
| | - Pablo Cruz
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Santiago, Chile
| | - Camila Torres
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Santiago, Chile
| | - Mónica Cáceres
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Santiago, Chile.,The Wound Repair, Treatment, and Health (WoRTH) Initiative, Santiago, Chile
| | - Oscar Cerda
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Santiago, Chile.,The Wound Repair, Treatment, and Health (WoRTH) Initiative, Santiago, Chile
| |
Collapse
|
6
|
Kinoshita PF, Orellana AMM, Nakao VW, de Souza Port's NM, Quintas LEM, Kawamoto EM, Scavone C. The Janus face of ouabain in Na + /K + -ATPase and calcium signalling in neurons. Br J Pharmacol 2021; 179:1512-1524. [PMID: 33644859 DOI: 10.1111/bph.15419] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/03/2021] [Accepted: 02/14/2021] [Indexed: 12/20/2022] Open
Abstract
Na+ /K+ -ATPase, a transmembrane protein essential for maintaining the electrochemical gradient across the plasma membrane, acts as a receptor for cardiotonic steroids such as ouabain. Cardiotonic steroids binding to Na+ /K+ -ATPase triggers signalling pathways or inhibits Na+ /K+ -ATPas activity in a concentration-dependent manner, resulting in a modulation of Ca2+ levels, which are essential for homeostasis in neurons. However, most of the pharmacological strategies for avoiding neuronal death do not target Na+ /K+ -ATPase activity due to its complexity and the poor understanding of the mechanisms involved in Na+ /K+ -ATPase modulation. The present review aims to discuss two points regarding the interplay between Na+ /K+ -ATPase and Ca2+ signalling in the brain. One, Na+ /K+ -ATPase impairment causing illness and neuronal death due to Ca2+ signalling and two, benefits to the brain by modulating Na+ /K+ -ATPase activity. These interactions play an essential role in neuronal cell fate determination and are relevant to find new targets for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Paula Fernanda Kinoshita
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ana Maria Marques Orellana
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Laboratory of Molecular and Functional Neurobiology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Vinicius Watanabe Nakao
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Natacha Medeiros de Souza Port's
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Luis Eduardo Menezes Quintas
- Laboratory of Biochemical and Molecular Pharmacology, Institute of Biomedical Sciences, Health Sciences Centre Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Elisa Mitiko Kawamoto
- Laboratory of Molecular and Functional Neurobiology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Cristoforo Scavone
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Lajoie JM, Cho YK, Frost D, Bremner S, Li L, Shusta EV. A yeast display immunoprecipitation screen for targeted discovery of antibodies against membrane protein complexes. Protein Eng Des Sel 2019; 32:219-230. [PMID: 31769480 PMCID: PMC7017056 DOI: 10.1093/protein/gzz035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/26/2019] [Accepted: 08/01/2019] [Indexed: 11/12/2022] Open
Abstract
Yeast display immunoprecipitation is a combinatorial library screening platform for the discovery and engineering of antibodies against membrane proteins using detergent-solubilized membrane fractions or cell lysates as antigen sources. Here, we present the extension of this method for the screening of antibodies that bind to membrane protein complexes, enabling discovery of antibodies that target antigens involved in a functional protein-protein interaction of interest. For this proof-of-concept study, we focused on the receptor-mediated endocytosis machinery at the blood-brain barrier, and adaptin 2 (AP-2) was chosen as the functional interaction hub. The goal of this study was to identify antibodies that bound to blood-brain barrier (BBB) membrane protein complexes containing AP-2. Screening of a nonimmune yeast display antibody library was carried out using detergent-solubilized BBB plasma membranes as an antigen pool, and antibodies that could interact with protein complexes containing AP-2 were identified. Downstream characterization of isolated antibodies confirmed targeting of proteins known to play important roles in membrane trafficking. This functional yeast display immunoprecipitation screen may be applied to other systems where antibodies against other functional classes of protein complexes are sought.
Collapse
Affiliation(s)
- Jason M Lajoie
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Dr., Madison, WI 53706, USA
| | - Yong Ku Cho
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Dr., Madison, WI 53706, USA
- Department of Chemical and Biomolecular Engineering, University of Connecticut, 191 Auditorium Road, Storrs, CT 06269, USA
| | - Dustin Frost
- School of Pharmacy, Department of Pharmaceutical Sciences, University of Wisconsin-Madison, 777 Highland Ave., Madison, WI 53705, USA
| | - Samantha Bremner
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Dr., Madison, WI 53706, USA
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, WI 53706, USA
- Department of Chemical and Biomolecular Engineering, University of Connecticut, 191 Auditorium Road, Storrs, CT 06269, USA
| | - Eric V Shusta
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Dr., Madison, WI 53706, USA
- Department of Neurological Surgery, University of Wisconsin-Madison, 600 Highland Ave., Madison, WI 53792, USA
| |
Collapse
|
8
|
Canales J, Morales D, Blanco C, Rivas J, Díaz N, Angelopoulos I, Cerda O. A TR(i)P to Cell Migration: New Roles of TRP Channels in Mechanotransduction and Cancer. Front Physiol 2019; 10:757. [PMID: 31275168 PMCID: PMC6591513 DOI: 10.3389/fphys.2019.00757] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/31/2019] [Indexed: 12/20/2022] Open
Abstract
Cell migration is a key process in cancer metastasis, allowing malignant cells to spread from the primary tumor to distant organs. At the molecular level, migration is the result of several coordinated events involving mechanical forces and cellular signaling, where the second messenger Ca2+ plays a pivotal role. Therefore, elucidating the regulation of intracellular Ca2+ levels is key for a complete understanding of the mechanisms controlling cellular migration. In this regard, understanding the function of Transient Receptor Potential (TRP) channels, which are fundamental determinants of Ca2+ signaling, is critical to uncovering mechanisms of mechanotransduction during cell migration and, consequently, in pathologies closely linked to it, such as cancer. Here, we review recent studies on the association between TRP channels and migration-related mechanotransduction events, as well as in the involvement of TRP channels in the migration-dependent pathophysiological process of metastasis.
Collapse
Affiliation(s)
- Jimena Canales
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases, Santiago, Chile
| | - Diego Morales
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases, Santiago, Chile
| | - Constanza Blanco
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases, Santiago, Chile
| | - José Rivas
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases, Santiago, Chile
| | - Nicolás Díaz
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases, Santiago, Chile
| | - Ioannis Angelopoulos
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases, Santiago, Chile
| | - Oscar Cerda
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases, Santiago, Chile.,The Wound Repair, Treatment and Health (WoRTH) Initiative, Santiago, Chile
| |
Collapse
|
9
|
Gasperini RJ, Pavez M, Thompson AC, Mitchell CB, Hardy H, Young KM, Chilton JK, Foa L. How does calcium interact with the cytoskeleton to regulate growth cone motility during axon pathfinding? Mol Cell Neurosci 2017; 84:29-35. [PMID: 28765051 DOI: 10.1016/j.mcn.2017.07.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 07/27/2017] [Accepted: 07/28/2017] [Indexed: 02/04/2023] Open
Abstract
The precision with which neurons form connections is crucial for the normal development and function of the nervous system. The development of neuronal circuitry in the nervous system is accomplished by axon pathfinding: a process where growth cones guide axons through the embryonic environment to connect with their appropriate synaptic partners to form functional circuits. Despite intense efforts over many years to understand how this process is regulated, the complete repertoire of molecular mechanisms that govern the growth cone cytoskeleton and hence motility, remain unresolved. A central tenet in the axon guidance field is that calcium signals regulate growth cone behaviours such as extension, turning and pausing by regulating rearrangements of the growth cone cytoskeleton. Here, we provide evidence that not only the amplitude of a calcium signal is critical for growth cone motility but also the source of calcium mobilisation. We provide an example of this idea by demonstrating that manipulation of calcium signalling via L-type voltage gated calcium channels can perturb sensory neuron motility towards a source of netrin-1. Understanding how calcium signals can be transduced to initiate cytoskeletal changes represents a significant gap in our current knowledge of the mechanisms that govern axon guidance, and consequently the formation of functional neural circuits in the developing nervous system.
Collapse
Affiliation(s)
- Robert J Gasperini
- School of Medicine, University of Tasmania, Hobart, Tasmania 7001, Australia.
| | - Macarena Pavez
- School of Medicine, University of Tasmania, Hobart, Tasmania 7001, Australia.
| | - Adrian C Thompson
- School of Medicine, University of Tasmania, Hobart, Tasmania 7001, Australia.
| | - Camilla B Mitchell
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania 7001, Australia.
| | - Holly Hardy
- University of Exeter Medical School, Wellcome Wolfson Centre for Medical Research, Exeter EX2 5DW, United Kingdom.
| | - Kaylene M Young
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania 7001, Australia.
| | - John K Chilton
- University of Exeter Medical School, Wellcome Wolfson Centre for Medical Research, Exeter EX2 5DW, United Kingdom.
| | - Lisa Foa
- School of Medicine, University of Tasmania, Hobart, Tasmania 7001, Australia.
| |
Collapse
|
10
|
Proteoglycans, ion channels and cell-matrix adhesion. Biochem J 2017; 474:1965-1979. [PMID: 28546458 DOI: 10.1042/bcj20160747] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/10/2017] [Accepted: 04/12/2017] [Indexed: 01/09/2023]
Abstract
Cell surface proteoglycans comprise a transmembrane or membrane-associated core protein to which one or more glycosaminoglycan chains are covalently attached. They are ubiquitous receptors on nearly all animal cell surfaces. In mammals, the cell surface proteoglycans include the six glypicans, CD44, NG2 (CSPG4), neuropilin-1 and four syndecans. A single syndecan is present in invertebrates such as nematodes and insects. Uniquely, syndecans are receptors for many classes of proteins that can bind to the heparan sulphate chains present on syndecan core proteins. These range from cytokines, chemokines, growth factors and morphogens to enzymes and extracellular matrix (ECM) glycoproteins and collagens. Extracellular interactions with other receptors, such as some integrins, are mediated by the core protein. This places syndecans at the nexus of many cellular responses to extracellular cues in development, maintenance, repair and disease. The cytoplasmic domains of syndecans, while having no intrinsic kinase activity, can nevertheless signal through binding proteins. All syndecans appear to be connected to the actin cytoskeleton and can therefore contribute to cell adhesion, notably to the ECM and migration. Recent data now suggest that syndecans can regulate stretch-activated ion channels. The structure and function of the syndecans and the ion channels are reviewed here, along with an analysis of ion channel functions in cell-matrix adhesion. This area sheds new light on the syndecans, not least since evidence suggests that this is an evolutionarily conserved relationship that is also potentially important in the progression of some common diseases where syndecans are implicated.
Collapse
|
11
|
Markó L, Mannaa M, Haschler TN, Krämer S, Gollasch M. Renoprotection: focus on TRPV1, TRPV4, TRPC6 and TRPM2. Acta Physiol (Oxf) 2017; 219:589-612. [PMID: 28028935 DOI: 10.1111/apha.12828] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 04/22/2016] [Accepted: 10/31/2016] [Indexed: 01/09/2023]
Abstract
Members of the transient receptor potential (TRP) cation channel receptor family have unique sites of regulatory function in the kidney which enables them to promote regional vasodilatation and controlled Ca2+ influx into podocytes and tubular cells. Activated TRP vanilloid 1 receptor channels (TRPV1) have been found to elicit renoprotection in rodent models of acute kidney injury following ischaemia/reperfusion. Transient receptor potential cation channel, subfamily C, member 6 (TRPC6) in podocytes is involved in chronic proteinuric kidney disease, particularly in focal segmental glomerulosclerosis (FSGS). TRP vanilloid 4 receptor channels (TRPV4) are highly expressed in the kidney, where they induce Ca2+ influx into endothelial and tubular cells. TRP melastatin (TRPM2) non-selective cation channels are expressed in the cytoplasm and intracellular organelles, where their inhibition ameliorates ischaemic renal pathology. Although some of their basic properties have been recently identified, the renovascular role of TRPV1, TRPV4, TRPC6 and TRPM2 channels in disease states such as obesity, hypertension and diabetes is largely unknown. In this review, we discuss recent evidence for TRPV1, TRPV4, TRPC6 and TRPM2 serving as potential targets for acute and chronic renoprotection in chronic vascular and metabolic disease.
Collapse
Affiliation(s)
- L. Markó
- Experimental and Clinical Research Center; A Joint Cooperation Between the Charité Medical Faculty and the Max-Delbrück Center (MDC) for Molecular Medicine; Berlin Germany
| | - M. Mannaa
- Experimental and Clinical Research Center; A Joint Cooperation Between the Charité Medical Faculty and the Max-Delbrück Center (MDC) for Molecular Medicine; Berlin Germany
- Charité Campus Virchow; Nephrology/Intensive Care; Berlin Germany
- German Institute of Human Nutrition; Potsdam-Rehbrücke Germany
| | - T. N. Haschler
- Experimental and Clinical Research Center; A Joint Cooperation Between the Charité Medical Faculty and the Max-Delbrück Center (MDC) for Molecular Medicine; Berlin Germany
- German Institute of Human Nutrition; Potsdam-Rehbrücke Germany
| | - S. Krämer
- German Institute of Human Nutrition; Potsdam-Rehbrücke Germany
| | - M. Gollasch
- Experimental and Clinical Research Center; A Joint Cooperation Between the Charité Medical Faculty and the Max-Delbrück Center (MDC) for Molecular Medicine; Berlin Germany
- Charité Campus Virchow; Nephrology/Intensive Care; Berlin Germany
| |
Collapse
|
12
|
He Z. TRPC Channel Downstream Signaling Cascades. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 976:25-33. [PMID: 28508310 DOI: 10.1007/978-94-024-1088-4_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The family of TRP channel is comprised of a large group of cation-permeable channels, displaying as signaling integrators for sensing extracellular stimulus and initiating intracellular signaling cascades. This chapter offers a brief review of the signaling molecules related to TRPC channels, the first identified mammalian TRP family. Besides the signaling molecules involved in TRPC activation, I will focus on their upstream and downstream signaling cascades and the molecules involved in their intracellular trafficking.
Collapse
Affiliation(s)
- Zhuohao He
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104, USA.
| |
Collapse
|
13
|
The TRPM7 interactome defines a cytoskeletal complex linked to neuroblastoma progression. Eur J Cell Biol 2016; 95:465-474. [DOI: 10.1016/j.ejcb.2016.06.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 06/16/2016] [Accepted: 06/23/2016] [Indexed: 01/27/2023] Open
|
14
|
Vrenken KS, Jalink K, van Leeuwen FN, Middelbeek J. Beyond ion-conduction: Channel-dependent and -independent roles of TRP channels during development and tissue homeostasis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1436-46. [DOI: 10.1016/j.bbamcr.2015.11.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 10/26/2015] [Accepted: 11/11/2015] [Indexed: 01/09/2023]
|
15
|
Stiber JA, Wu JH, Zhang L, Nepliouev I, Zhang ZS, Bryson VG, Brian L, Bentley RC, Gordon-Weeks PR, Rosenberg PB, Freedman NJ. The Actin-Binding Protein Drebrin Inhibits Neointimal Hyperplasia. Arterioscler Thromb Vasc Biol 2016; 36:984-93. [PMID: 27013612 DOI: 10.1161/atvbaha.115.306140] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 03/15/2016] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Vascular smooth muscle cell (SMC) migration is regulated by cytoskeletal remodeling as well as by certain transient receptor potential (TRP) channels, nonselective cation channels that modulate calcium influx. Proper function of multiple subfamily C TRP (TRPC) channels requires the scaffolding protein Homer 1, which associates with the actin-binding protein Drebrin. We found that SMC Drebrin expression is upregulated in atherosclerosis and in response to injury and investigated whether Drebrin inhibits SMC activation, either through regulation of TRP channel function via Homer or through a direct effect on the actin cytoskeleton. APPROACH AND RESULTS Wild-type (WT) and congenic Dbn(-/+) mice were subjected to wire-mediated carotid endothelial denudation. Subsequent neointimal hyperplasia was 2.4±0.3-fold greater in Dbn(-/+) than in WT mice. Levels of globular actin were equivalent in Dbn(-/+) and WT SMCs, but there was a 2.4±0.5-fold decrease in filamentous actin in Dbn(-/+) SMCs compared with WT. Filamentous actin was restored to WT levels in Dbn(-/+) SMCs by adenoviral-mediated rescue expression of Drebrin. Compared with WT SMCs, Dbn(-/+) SMCs exhibited increased TRP channel activity in response to platelet-derived growth factor, increased migration assessed in Boyden chambers, and increased proliferation. Enhanced TRP channel activity and migration in Dbn(-/+) SMCs were normalized to WT levels by rescue expression of not only WT Drebrin but also a mutant Drebrin isoform that binds actin but fails to bind Homer. CONCLUSIONS Drebrin reduces SMC activation through its interaction with the actin cytoskeleton but independently of its interaction with Homer scaffolds.
Collapse
Affiliation(s)
- Jonathan A Stiber
- From the Department of Medicine, Duke University Medical Center, Durham, NC (J.A.S., J.-H.W., L.Z., I.N., Z.-S.Z., V.G.B., L.B., P.B.R., N.J.F.); Department of Pathology, Duke University Medical Center, Durham, NC (R.C.B.); and MRC Centre for Developmental Neurobiology, King's College, London, UK (P.R.G.-W.).
| | - Jiao-Hui Wu
- From the Department of Medicine, Duke University Medical Center, Durham, NC (J.A.S., J.-H.W., L.Z., I.N., Z.-S.Z., V.G.B., L.B., P.B.R., N.J.F.); Department of Pathology, Duke University Medical Center, Durham, NC (R.C.B.); and MRC Centre for Developmental Neurobiology, King's College, London, UK (P.R.G.-W.)
| | - Lisheng Zhang
- From the Department of Medicine, Duke University Medical Center, Durham, NC (J.A.S., J.-H.W., L.Z., I.N., Z.-S.Z., V.G.B., L.B., P.B.R., N.J.F.); Department of Pathology, Duke University Medical Center, Durham, NC (R.C.B.); and MRC Centre for Developmental Neurobiology, King's College, London, UK (P.R.G.-W.)
| | - Igor Nepliouev
- From the Department of Medicine, Duke University Medical Center, Durham, NC (J.A.S., J.-H.W., L.Z., I.N., Z.-S.Z., V.G.B., L.B., P.B.R., N.J.F.); Department of Pathology, Duke University Medical Center, Durham, NC (R.C.B.); and MRC Centre for Developmental Neurobiology, King's College, London, UK (P.R.G.-W.)
| | - Zhu-Shan Zhang
- From the Department of Medicine, Duke University Medical Center, Durham, NC (J.A.S., J.-H.W., L.Z., I.N., Z.-S.Z., V.G.B., L.B., P.B.R., N.J.F.); Department of Pathology, Duke University Medical Center, Durham, NC (R.C.B.); and MRC Centre for Developmental Neurobiology, King's College, London, UK (P.R.G.-W.)
| | - Victoria G Bryson
- From the Department of Medicine, Duke University Medical Center, Durham, NC (J.A.S., J.-H.W., L.Z., I.N., Z.-S.Z., V.G.B., L.B., P.B.R., N.J.F.); Department of Pathology, Duke University Medical Center, Durham, NC (R.C.B.); and MRC Centre for Developmental Neurobiology, King's College, London, UK (P.R.G.-W.)
| | - Leigh Brian
- From the Department of Medicine, Duke University Medical Center, Durham, NC (J.A.S., J.-H.W., L.Z., I.N., Z.-S.Z., V.G.B., L.B., P.B.R., N.J.F.); Department of Pathology, Duke University Medical Center, Durham, NC (R.C.B.); and MRC Centre for Developmental Neurobiology, King's College, London, UK (P.R.G.-W.)
| | - Rex C Bentley
- From the Department of Medicine, Duke University Medical Center, Durham, NC (J.A.S., J.-H.W., L.Z., I.N., Z.-S.Z., V.G.B., L.B., P.B.R., N.J.F.); Department of Pathology, Duke University Medical Center, Durham, NC (R.C.B.); and MRC Centre for Developmental Neurobiology, King's College, London, UK (P.R.G.-W.)
| | - Phillip R Gordon-Weeks
- From the Department of Medicine, Duke University Medical Center, Durham, NC (J.A.S., J.-H.W., L.Z., I.N., Z.-S.Z., V.G.B., L.B., P.B.R., N.J.F.); Department of Pathology, Duke University Medical Center, Durham, NC (R.C.B.); and MRC Centre for Developmental Neurobiology, King's College, London, UK (P.R.G.-W.)
| | - Paul B Rosenberg
- From the Department of Medicine, Duke University Medical Center, Durham, NC (J.A.S., J.-H.W., L.Z., I.N., Z.-S.Z., V.G.B., L.B., P.B.R., N.J.F.); Department of Pathology, Duke University Medical Center, Durham, NC (R.C.B.); and MRC Centre for Developmental Neurobiology, King's College, London, UK (P.R.G.-W.)
| | - Neil J Freedman
- From the Department of Medicine, Duke University Medical Center, Durham, NC (J.A.S., J.-H.W., L.Z., I.N., Z.-S.Z., V.G.B., L.B., P.B.R., N.J.F.); Department of Pathology, Duke University Medical Center, Durham, NC (R.C.B.); and MRC Centre for Developmental Neurobiology, King's College, London, UK (P.R.G.-W.)
| |
Collapse
|
16
|
Extracellular matrix component signaling in cancer. Adv Drug Deliv Rev 2016; 97:28-40. [PMID: 26519775 DOI: 10.1016/j.addr.2015.10.013] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Revised: 10/19/2015] [Accepted: 10/20/2015] [Indexed: 12/12/2022]
Abstract
Cell responses to the extracellular matrix depend on specific signaling events. These are important from early development, through differentiation and tissue homeostasis, immune surveillance, and disease pathogenesis. Signaling not only regulates cell adhesion cytoskeletal organization and motility but also provides survival and proliferation cues. The major classes of cell surface receptors for matrix macromolecules are the integrins, discoidin domain receptors, and transmembrane proteoglycans such as syndecans and CD44. Cells respond not only to specific ligands, such as collagen, fibronectin, or basement membrane glycoproteins, but also in terms of matrix rigidity. This can regulate the release and subsequent biological activity of matrix-bound growth factors, for example, transforming growth factor-β. In the environment of tumors, there may be changes in cell populations and their receptor profiles as well as matrix constitution and protein cross-linking. Here we summarize roles of the three major matrix receptor types, with emphasis on how they function in tumor progression.
Collapse
|
17
|
Bouron A, Chauvet S, Dryer S, Rosado JA. Second Messenger-Operated Calcium Entry Through TRPC6. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 898:201-49. [PMID: 27161231 DOI: 10.1007/978-3-319-26974-0_10] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Canonical transient receptor potential 6 (TRPC6) proteins assemble into heteromultimeric structures forming non-selective cation channels. In addition, many TRPC6-interacting proteins have been identified like some enzymes, channels, pumps, cytoskeleton-associated proteins, immunophilins, or cholesterol-binding proteins, indicating that TRPC6 are engaged into macromolecular complexes. Depending on the cell type and the experimental conditions used, TRPC6 activity has been reported to be controlled by diverse modalities. For instance, the second messenger diacylglycerol, store-depletion, the plant extract hyperforin or H2O2 have all been shown to trigger the opening of TRPC6 channels. A well-characterized consequence of TRPC6 activation is the elevation of the cytosolic concentration of Ca(2+). This latter response can reflect the entry of Ca(2+) through open TRPC6 channels but it can also be due to the Na(+)/Ca(2+) exchanger (operating in its reverse mode) or voltage-gated Ca(2+) channels (recruited in response to a TRPC6-mediated depolarization). Although TRPC6 controls a diverse array of biological functions in many tissues and cell types, its pathophysiological functions are far from being fully understood. This chapter covers some key features of TRPC6, with a special emphasis on their biological significance in kidney and blood cells.
Collapse
Affiliation(s)
- Alexandre Bouron
- Université Grenoble Alpes, 38000, Grenoble, France.
- CNRS, iRTSV-LCBM, 38000, Grenoble, France.
| | - Sylvain Chauvet
- Université Grenoble Alpes, 38000, Grenoble, France
- CNRS, iRTSV-LCBM, 38000, Grenoble, France
| | - Stuart Dryer
- University of Houston, Houston, TX, USA
- Baylor College of Medicine, Houston, TX, USA
| | - Juan A Rosado
- Departamento de Fisiología, University of Extremadura, Cáceres, Spain
| |
Collapse
|
18
|
Jeong YS, Hong JH. Governing effect of regulatory proteins for Cl(-)/HCO3(-) exchanger 2 activity. Channels (Austin) 2015; 10:214-24. [PMID: 26716707 DOI: 10.1080/19336950.2015.1134068] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Anion exchanger 2 (AE2) has a critical role in epithelial cells and is involved in the ionic homeostasis such as Cl(-) uptake and HCO3(-) secretion. However, little is known about the regulatory mechanism of AE2. The main goal of the present study was to investigate potential regulators, such as spinophilin (SPL), inositol-1,4,5-trisphosphate [IP3] receptors binding protein released with IP3 (IRBIT), STE20/SPS1-related proline/alanine-rich kinase (SPAK) kinase, and carbonic anhydrase XII (CA XII). We found that SPL binds to AE2 and markedly increased the Cl(-)/HCO3(-) exchange activity of AE2. Especially SPL 1-480 domain is required for enhancing AE2 activity. For other regulatory components that affect the fidelity of fluid and HCO3(-) secretion, IRBIT and SPAK had no effect on the activity of AE2 and no protein-protein interaction with AE2. It has been proposed that CA activity is closely associated with AE activity. In this study, we provide evidence that the basolateral membrane-associated CA isoform CA XII significantly increased the activity of AE2 and co-localized with AE2 to the plasma membrane. Collectively, SPL and CA XII enhanced the Cl(-)/HCO3(-) exchange activity of AE2. The modulating action of these regulatory proteins could serve as potential therapeutic targets for secretory diseases mediated by AE2.
Collapse
Affiliation(s)
- Yon Soo Jeong
- a Department of Physiology , Graduate School of Medicine, Gachon University , South Korea
| | - Jeong Hee Hong
- a Department of Physiology , Graduate School of Medicine, Gachon University , South Korea
| |
Collapse
|
19
|
Systems biology of ion channels and transporters in tumor angiogenesis: An omics view. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:2647-56. [DOI: 10.1016/j.bbamem.2014.10.031] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 10/09/2014] [Accepted: 10/20/2014] [Indexed: 01/19/2023]
|
20
|
de Souza LB, Ong HL, Liu X, Ambudkar IS. Fast endocytic recycling determines TRPC1–STIM1 clustering in ER–PM junctions and plasma membrane function of the channel. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:2709-21. [DOI: 10.1016/j.bbamcr.2015.07.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 07/24/2015] [Accepted: 07/28/2015] [Indexed: 12/27/2022]
|
21
|
Ong HL, Ambudkar IS. Molecular determinants of TRPC1 regulation within ER–PM junctions. Cell Calcium 2015; 58:376-86. [DOI: 10.1016/j.ceca.2015.03.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 03/18/2015] [Accepted: 03/19/2015] [Indexed: 11/30/2022]
|
22
|
Gopal S, Søgaard P, Multhaupt HAB, Pataki C, Okina E, Xian X, Pedersen ME, Stevens T, Griesbeck O, Park PW, Pocock R, Couchman JR. Transmembrane proteoglycans control stretch-activated channels to set cytosolic calcium levels. J Cell Biol 2015; 210:1199-211. [PMID: 26391658 PMCID: PMC4586746 DOI: 10.1083/jcb.201501060] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 08/25/2015] [Indexed: 02/07/2023] Open
Abstract
Syndecans regulate members of the transient receptor potential family to control cytosolic calcium levels with impact on cell adhesion, junction formation, and neuronal guidance. Transmembrane heparan sulfate proteoglycans regulate multiple aspects of cell behavior, but the molecular basis of their signaling is unresolved. The major family of transmembrane proteoglycans is the syndecans, present in virtually all nucleated cells, but with mostly unknown functions. Here, we show that syndecans regulate transient receptor potential canonical (TRPCs) channels to control cytosolic calcium equilibria and consequent cell behavior. In fibroblasts, ligand interactions with heparan sulfate of syndecan-4 recruit cytoplasmic protein kinase C to target serine714 of TRPC7 with subsequent control of the cytoskeleton and the myofibroblast phenotype. In epidermal keratinocytes a syndecan–TRPC4 complex controls adhesion, adherens junction composition, and early differentiation in vivo and in vitro. In Caenorhabditis elegans, the TRPC orthologues TRP-1 and -2 genetically complement the loss of syndecan by suppressing neuronal guidance and locomotory defects related to increases in neuronal calcium levels. The widespread and conserved syndecan–TRPC axis therefore fine tunes cytoskeletal organization and cell behavior.
Collapse
Affiliation(s)
- Sandeep Gopal
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark Biotech Research and Innovation Center, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Pernille Søgaard
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark Biotech Research and Innovation Center, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Hinke A B Multhaupt
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark Biotech Research and Innovation Center, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Csilla Pataki
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark Biotech Research and Innovation Center, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Elena Okina
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark Biotech Research and Innovation Center, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Xiaojie Xian
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark Biotech Research and Innovation Center, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Mikael E Pedersen
- Biotech Research and Innovation Center, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Troy Stevens
- Department of Pharmacology, Center for Lung Biology, University of South Alabama, Mobile, AL 36688 Department of Medicine, Center for Lung Biology, University of South Alabama, Mobile, AL 36688
| | - Oliver Griesbeck
- Max Planck Institute of Neurobiology, 82152 Martinsried, Germany
| | - Pyong Woo Park
- Division of Newborn Medicine, Children's Hospital, Harvard Medical School, Boston, MA 02115 Division of Respiratory Diseases, Children's Hospital, Harvard Medical School, Boston, MA 02115
| | - Roger Pocock
- Biotech Research and Innovation Center, University of Copenhagen, 2200 Copenhagen, Denmark
| | - John R Couchman
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark Biotech Research and Innovation Center, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
23
|
Chauvet S, Boonen M, Chevallet M, Jarvis L, Abebe A, Benharouga M, Faller P, Jadot M, Bouron A. The Na+/K+-ATPase and the amyloid-beta peptide aβ1-40 control the cellular distribution, abundance and activity of TRPC6 channels. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:2957-65. [PMID: 26348127 DOI: 10.1016/j.bbamcr.2015.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 08/31/2015] [Accepted: 09/03/2015] [Indexed: 11/19/2022]
Abstract
The Na(+)/K(+)-ATPase interacts with the non-selective cation channels TRPC6 but the functional consequences of this association are unknown. Experiments performed with HEK cells over-expressing TRPC6 channels showed that inhibiting the activity of the Na(+)/K(+)-ATPase with ouabain reduced the amount of TRPC6 proteins and depressed Ca(2+) entry through TRPC6. This effect, not mimicked by membrane depolarization with KCl, was abolished by sucrose and bafilomycin-A, and was partially sensitive to the intracellular Ca(2+) chelator BAPTA/AM. Biotinylation and subcellular fractionation experiments showed that ouabain caused a multifaceted redistribution of TRPC6 to the plasma membrane and to an endo/lysosomal compartment where they were degraded. The amyloid beta peptide Aβ(1-40), another inhibitor of the Na(+)/K(+)-ATPase, but not the shorter peptide Aβ1-16, reduced TRPC6 protein levels and depressed TRPC6-mediated responses. In cortical neurons from embryonic mice, ouabain, veratridine (an opener of voltage-gated Na(+) channel), and Aβ(1-40) reduced TRPC6-mediated Ca(2+) responses whereas Aβ(1-16) was ineffective. Furthermore, when Aβ(1-40) was co-added together with zinc acetate it could no longer control TRPC6 activity. Altogether, this work shows the existence of a functional coupling between the Na(+)/K(+)-ATPase and TRPC6. It also suggests that the abundance, distribution and activity of TRPC6 can be regulated by cardiotonic steroids like ouabain and the naturally occurring peptide Aβ(1-40) which underlines the pathophysiological significance of these processes.
Collapse
Affiliation(s)
- Sylvain Chauvet
- Université Grenoble Alpes, F-38000 Grenoble, France; CNRS, F-38000 Grenoble, France; CEA, iRTSV-LCBM, F-38000 Grenoble, France
| | - Marielle Boonen
- URPhyM-Laboratoire de Chimie Physiologique, University of Namur, Belgium
| | - Mireille Chevallet
- Université Grenoble Alpes, F-38000 Grenoble, France; CNRS, F-38000 Grenoble, France; CEA, iRTSV-LCBM, F-38000 Grenoble, France
| | - Louis Jarvis
- Université Grenoble Alpes, F-38000 Grenoble, France; CNRS, F-38000 Grenoble, France; CEA, iRTSV-LCBM, F-38000 Grenoble, France
| | - Addis Abebe
- Université Grenoble Alpes, F-38000 Grenoble, France; CNRS, F-38000 Grenoble, France; CEA, iRTSV-LCBM, F-38000 Grenoble, France
| | - Mohamed Benharouga
- Université Grenoble Alpes, F-38000 Grenoble, France; CNRS, F-38000 Grenoble, France; CEA, iRTSV-LCBM, F-38000 Grenoble, France
| | - Peter Faller
- CNRS, Laboratoire de Chimie de Coordination, Toulouse, France
| | - Michel Jadot
- URPhyM-Laboratoire de Chimie Physiologique, University of Namur, Belgium
| | - Alexandre Bouron
- Université Grenoble Alpes, F-38000 Grenoble, France; CNRS, F-38000 Grenoble, France; CEA, iRTSV-LCBM, F-38000 Grenoble, France.
| |
Collapse
|
24
|
Recombinant human erythropoietin pretreatment attenuates acute renal tubular injury against ischemia-reperfusion by restoring transient receptor potential channel-6 expression and function in collecting ducts. Crit Care Med 2014; 42:e663-72. [PMID: 25072760 DOI: 10.1097/ccm.0000000000000542] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
OBJECTIVE Acute renal tubular injury is a serious complication in the postoperative period, which is associated with high mortality and increased ICU stay. We aimed to demonstrate the protective effect of rhEPO against acute tubular injury induced by ischemia-reperfusion and to explore the mechanism of canonical transient receptor potential channel-6. DESIGN Randomized laboratory animal study. SETTINGS Animal research laboratory. INTERVENTIONS Male Sprague-Dawley rats were randomly divided into three groups: the sham group, the control group, and the rhEPO group. Experimental acute tubular injury was established in rats by bilateral renal arterial occlusion for 30 minutes followed by reperfusion. MEASUREMENTS AND MAIN RESULTS Blood samples were obtained for cystatin-C and neutrophil gelatinase-associated lipocalin measurements by enzyme-linked immunosorbance assays. Seventy-two hours after reperfusion, urine samples were collected for osmolality and fractional excretion of sodium (%) assays on a chemistry analyzer. Kidneys were harvested at 24, 48, and 72 hours after reperfusion. Transient receptor potential channel-6, aquaporin-2, and Na,K-ATPase expression in collecting ducts were studied by immunofluorescence and Western blot. Coimmunoprecipitations were also performed to identify the possible signalplex relation between transient receptor potential channel-6 and aquaporin-2 or Na,K-ATPase channels. RhEPO pretreatment significantly inhibited serum cystatin-C (2 hr: 453 ± 64 μg/L vs 337 ± 28 μg/L, p < 0.01), serum neutrophil gelatinase-associated lipocalin (72 hr: 1,175 ± 107 ng/L vs 1,737 ± 402 ng/L, p < 0.05), and urinary fractional excretion of sodium (%) increase (0.9 ± 0.1 vs 2.2 ± 0.8, p < 0.05) and alleviated the decrease of urinary osmolality (1,293 ± 101 mosmol/kg H2O vs 767 ± 91 mosmol/kg H2O, p < 0.05) induced by ischemia-reperfusion injury. Meanwhile, recombinant human erythropoietin greatly improved the ischemia-reperfusion-induced attenuation of transient receptor potential channel-6 expression (48 hr: 42% ± 2% vs 67% ± 2% and 72 hr: 55% ± 2% vs 66% ± 2%), as well as aquaporin-2 and Na,K-ATPase expression in collecting ducts. Transient receptor potential channel-6 functionally interacted with Na,K-ATPase but not aquaporin-2. CONCLUSIONS Recombinant human erythropoietin pretreatment at the dose of 5,000 IU/kg potently prevented ischemia-reperfusion-induced acute tubular injury, which might be partly attributed to the restoring the effect of transient receptor potential channel-6 expression and collecting duct function.
Collapse
|
25
|
Cooley N, Grubb DR, Luo J, Woodcock EA. The phosphatidylinositol(4,5)bisphosphate-binding sequence of transient receptor potential channel canonical 4α is critical for its contribution to cardiomyocyte hypertrophy. Mol Pharmacol 2014; 86:399-405. [PMID: 25049082 DOI: 10.1124/mol.114.093690] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Cardiomyocyte hypertrophy requires a source of Ca(2+) distinct from the Ca(2+) that regulates contraction. The canonical transient receptor potential channel (TrpC) family, a family of cation channels regulated by activation of phospholipase C (PLC), has been implicated in this response. Cardiomyocyte hypertrophy downstream of Gq-coupled receptors is mediated specifically by PLCβ1b that is scaffolded onto a SH3 and ankyrin repeat protein 3 (Shank3) complex at the sarcolemma. TrpC4 exists as two splice variants (TrpC4α and TrpC4β) that differ only in an 84-residue sequence that binds to phosphatidylinositol(4,5)bisphosphate (PIP2), the substrate of PLCβ1b. In neonatal rat cardiomyocytes, TrpC4α, but not TrpC4β, coimmunoprecipitated with both PLCβ1b and Shank3. Heightened PLCβ1b expression caused TrpC4α, but not TrpC4β, translocation to the sarcolemma, where it colocalized with PLCβ1b. When overexpressed in cardiomyocytes, TrpC4α, but not TrpC4β, increased cell area (893 ± 18 to 1497 ± 29 mm(2), P < 0.01) and marker gene expression (atrial natriuretic peptide increased by 409 ± 32%, and modulatory calcineurin inhibitory protein 1 by 315 ± 28%, P < 0.01). Dominant-negative TrpC4 reduced hypertrophy initiated by PLCβ1b, or PLCβ1b-coupled receptor activation, by 72 ± 8% and 39 ± 5 %, respectively. We conclude that TrpC4α is selectively involved in mechanisms downstream of PLCβ1b culminating in cardiomyocyte hypertrophy, and that the hypertrophic response is dependent on the TrpC4α splice variant-specific sequence that binds to PIP2.
Collapse
Affiliation(s)
- Nicola Cooley
- Molecular Cardiology Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - David R Grubb
- Molecular Cardiology Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Jieting Luo
- Molecular Cardiology Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Elizabeth A Woodcock
- Molecular Cardiology Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| |
Collapse
|
26
|
de Souza LB, Ambudkar IS. Trafficking mechanisms and regulation of TRPC channels. Cell Calcium 2014; 56:43-50. [PMID: 25012489 DOI: 10.1016/j.ceca.2014.05.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 05/15/2014] [Accepted: 05/16/2014] [Indexed: 02/06/2023]
Abstract
TRPC channels are Ca(2+)-permeable cation channels which are regulated downstream from receptor-coupled PIP2 hydrolysis. These channels contribute to a wide variety of cellular functions. Loss or gain of channel function has been associated with dysfunction and aberrant physiology. TRPC channel functions are influenced by their physical and functional interactions with numerous proteins that determine their regulation, scaffolding, trafficking, as well as their effects on the downstream cellular processes. Such interactions also compartmentalize the Ca(2+) signals arising from TRPC channels. A large number of studies demonstrate that trafficking is a critical mode by which plasma membrane localization and surface expression of TRPC channels are regulated. This review will provide an overview of intracellular trafficking pathways as well as discuss the current state of knowledge regarding the mechanisms and components involved in trafficking of the seven members of the TRPC family (TRPC1-TRPC7).
Collapse
Affiliation(s)
- Lorena Brito de Souza
- Secretory Physiology Section, Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, United States.
| | - Indu S Ambudkar
- Secretory Physiology Section, Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, United States.
| |
Collapse
|
27
|
Renal biopsy: use of biomarkers as a tool for the diagnosis of focal segmental glomerulosclerosis. DISEASE MARKERS 2014; 2014:192836. [PMID: 24719498 PMCID: PMC3955602 DOI: 10.1155/2014/192836] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 01/15/2014] [Accepted: 01/15/2014] [Indexed: 12/12/2022]
Abstract
Focal segmental glomerulosclerosis (FSGS) is a glomerulopathy associated with nephrotic syndrome and podocyte injury. FSGS occurs both in children and adults and it is considered the main idiopathic nephrotic syndrome nowadays. It is extremely difficult to establish a morphological diagnosis, since some biopsies lack a considerable quantifiable number of sclerotic glomeruli, given their focal aspect and the fact that FSGS occurs in less than half of the glomeruli. Therefore, many biological molecules have been evaluated as potential markers that would enhance the diagnosis of FSGS. Some of these molecules and receptors are associated with the pathogenesis of FSGS and have potential use in diagnosis.
Collapse
|
28
|
Ong HL, de Souza LB, Cheng KT, Ambudkar IS. Physiological functions and regulation of TRPC channels. Handb Exp Pharmacol 2014; 223:1005-34. [PMID: 24961978 DOI: 10.1007/978-3-319-05161-1_12] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The TRP-canonical (TRPC) subfamily, which consists of seven members (TRPC1-TRPC7), are Ca(2+)-permeable cation channels that are activated in response to receptor-mediated PIP2 hydrolysis via store-dependent and store-independent mechanisms. These channels are involved in a variety of physiological functions in different cell types and tissues. Of these, TRPC6 has been linked to a channelopathy resulting in human disease. Two key players of the store-dependent regulatory pathway, STIM1 and Orai1, interact with some TRPC channels to gate and regulate channel activity. The Ca(2+) influx mediated by TRPC channels generates distinct intracellular Ca(2+) signals that regulate downstream signaling events and consequent cell functions. This requires localization of TRPC channels in specific plasma membrane microdomains and precise regulation of channel function which is coordinated by various scaffolding, trafficking, and regulatory proteins.
Collapse
Affiliation(s)
- Hwei Ling Ong
- Secretory Physiology Section, Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | | | | | | |
Collapse
|
29
|
Abstract
TRPC6 is a non-selective cation channel 6 times more permeable to Ca(2+) than to Na(+). Channel homotetramers heterologously expressed have a characteristic doubly rectifying current-voltage relationship and are directly activated by the second messenger diacylglycerol (DAG). TRPC6 proteins are also regulated by specific tyrosine or serine phosphorylation and phosphoinositides. Given its specific expression pattern, TRPC6 is likely to play a number of physiological roles which are confirmed by the analysis of a Trpc6 (-/-) mouse model. In smooth muscle Na(+) influx through TRPC6 channels and activation of voltage-gated Ca(2+) channels by membrane depolarisation is the driving force for contraction. Permeability of pulmonary endothelial cells depends on TRPC6 and induces ischaemia-reperfusion oedema formation in the lungs. TRPC6 was also identified as an essential component of the slit diaphragm architecture of kidney podocytes and plays an important role in the protection of neurons after cerebral ischaemia. Other functions especially in immune and blood cells remain elusive. Recently identified TRPC6 blockers may be helpful for therapeutic approaches in diseases with highly activated TRPC6 channel activity.
Collapse
Affiliation(s)
- Alexander Dietrich
- Walther-Straub-Institute for Pharmacology and Toxicology, School of Medicine, LM-University of Munich, 80336, Munich, Germany,
| | | |
Collapse
|
30
|
A network perspective on unraveling the role of TRP channels in biology and disease. Pflugers Arch 2013; 466:173-82. [PMID: 23677537 DOI: 10.1007/s00424-013-1292-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 04/22/2013] [Accepted: 05/03/2013] [Indexed: 02/08/2023]
Abstract
Transient receptor potential (TRP) channels are a large family of non-selective cation channels that mediate numerous physiological and pathophysiological processes; however, still largely unknown are the underlying molecular mechanisms. With data generated on an unprecedented scale, network-based approaches have been revolutionizing the way in which we understand biology and disease, discover disease genes, and develop therapeutic strategies. These circumstances have created opportunities to encounter TRP channel research to data-intensive science. In this review, we provide an introduction of network-based approaches in biomedical science, describe the current state of TRP channel network biology, and discuss the future direction of TRP channel research. Network perspective will facilitate the discovery of latent roles and underlying mechanisms of TRP channels in biology and disease.
Collapse
|
31
|
Carrasquillo R, Tian D, Krishna S, Pollak MR, Greka A, Schlöndorff J. SNF8, a member of the ESCRT-II complex, interacts with TRPC6 and enhances its channel activity. BMC Cell Biol 2012; 13:33. [PMID: 23171048 PMCID: PMC3520717 DOI: 10.1186/1471-2121-13-33] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 10/23/2012] [Indexed: 11/10/2022] Open
Abstract
Background Transient receptor potential canonical (TRPC) channels are non-selective cation channels involved in receptor-mediated calcium signaling in diverse cells and tissues. The canonical transient receptor potential 6 (TRPC6) has been implicated in several pathological processes, including focal segmental glomerulosclerosis (FSGS), cardiac hypertrophy, and pulmonary hypertension. The two large cytoplasmic segments of the cation channel play a critical role in the proper regulation of channel activity, and are involved in several protein-protein interactions. Results Here we report that SNF8, a component of the endosomal sorting complex for transport-II (ESCRT-II) complex, interacts with TRPC6. The interaction was initially observed in a yeast two-hybrid screen using the amino-terminal cytoplasmic domain of TRPC6 as bait, and confirmed by co-immunoprecipitation from eukaryotic cell extracts. The amino-terminal 107 amino acids are necessary and sufficient for the interaction. Overexpression of SNF8 enhances both wild-type and gain-of-function mutant TRPC6-mediated whole-cell currents in HEK293T cells. Furthermore, activation of NFAT-mediated transcription by gain-of-function mutants is enhanced by overexpression of SNF8, and partially inhibited by RNAi mediated knockdown of SNF8. Although the ESCRT-II complex functions in the endocytosis and lysosomal degradation of transmembrane proteins, SNF8 overexpression does not alter the amount of TRPC6 present on the cell surface. Conclusion SNF8 is novel binding partner of TRPC6, binding to the amino-terminal cytoplasmic domain of the channel. Modulating SNF8 expression levels alters the TRPC6 channel current and can modulate activation of NFAT-mediated transcription downstream of gain-of-function mutant TRPC6. Taken together, these results identify SNF8 as a novel regulator of TRPC6.
Collapse
Affiliation(s)
- Robert Carrasquillo
- Division of Nephrology, Beth Israel Deaconess Medical Center, Research North 304B, 99 Brookline Ave, Boston, MA 02215, USA
| | | | | | | | | | | |
Collapse
|
32
|
Goswami C. TRPV1-tubulin complex: involvement of membrane tubulin in the regulation of chemotherapy-induced peripheral neuropathy. J Neurochem 2012; 123:1-13. [PMID: 22845740 DOI: 10.1111/j.1471-4159.2012.07892.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 07/16/2012] [Accepted: 07/19/2012] [Indexed: 12/18/2022]
Abstract
Existence of microtubule cytoskeleton at the membrane and submembranous regions, referred as 'membrane tubulin' has remained controversial for a long time. Since we reported physical and functional interaction of Transient Receptor Potential Vanilloid Sub Type 1 (TRPV1) with microtubules and linked the importance of TRPV1-tubulin complex in the context of chemotherapy-induced peripheral neuropathy, a few more reports have characterized this interaction in in vitro and in in vivo condition. However, the cross-talk between TRPs with microtubule cytoskeleton, and the complex feedback regulations are not well understood. Sequence analysis suggests that other than TRPV1, few TRPs can potentially interact with microtubules. The microtubule interaction with TRPs has evolutionary origin and has a functional significance. Biochemical evidence, Fluorescence Resonance Energy Transfer analysis along with correlation spectroscopy and fluorescence anisotropy measurements have confirmed that TRPV1 interacts with microtubules in live cell and this interaction has regulatory roles. Apart from the transport of TRPs and maintaining the cellular structure, microtubules regulate signaling and functionality of TRPs at the single channel level. Thus, TRPV1-tubulin interaction sets a stage where concept and parameters of 'membrane tubulin' can be tested in more details. In this review, I critically analyze the advancements made in biochemical, pharmacological, behavioral as well as cell-biological observations and summarize the limitations that need to be overcome in the future.
Collapse
Affiliation(s)
- Chandan Goswami
- National Institute of Science Education and Research, Bhubaneswar, Orissa, India.
| |
Collapse
|
33
|
Masuyama R, Mizuno A, Komori H, Kajiya H, Uekawa A, Kitaura H, Okabe K, Ohyama K, Komori T. Calcium/calmodulin-signaling supports TRPV4 activation in osteoclasts and regulates bone mass. J Bone Miner Res 2012; 27:1708-21. [PMID: 22492541 DOI: 10.1002/jbmr.1629] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Osteoclast differentiation is critically dependent on calcium (Ca(2+)) signaling. Transient receptor potential vanilloid 4 (TRPV4), mediates Ca(2+) influx in the late stage of osteoclast differentiation and thereby regulates Ca(2+) signaling. However, the system-modifying effect of TRPV4 activity remains to be determined. To elucidate the mechanisms underlying TRPV4 activation based on osteoclast differentiation, TRPV4 gain-of-function mutants were generated by the amino acid substitutions R616Q and V620I in TRPV4 and were introduced into osteoclast lineage in Trpv4 null mice to generate Trpv4(R616Q/V620I) transgenic mice. As expected, TRPV4 activation in osteoclasts increased the number of osteoclasts and their resorption activity, thereby resulting in bone loss. During in vitro analysis, Trpv4(R616Q/V620I) osteoclasts showed activated Ca(2+)/calmodulin signaling compared with osteoclasts lacking Trpv4. In addition, studies of Trpv4(R616Q/V620I) mice that lacked the calmodulin-binding domain indicated that bone loss due to TRPV4 activation was abrogated by loss of interactions between Ca(2+)/calmodulin signaling and TRPV4. Finally, modulators of TRPV4 interactions with the calmodulin-binding domain were investigated by proteomic analysis. Interestingly, nonmuscle myosin IIa was identified by liquid chromatography-tandem mass spectroscopy (LC-MS/MS) analysis, which was confirmed by immunoblotting following coimmunoprecipitation with TRPV4. Furthermore, myosin IIa gene silencing significantly reduced TRPV4 activation concomitant with impaired osteoclast maturation. These results indicate that TRPV4 activation reciprocally regulates Ca(2+)/calmodulin signaling, which involves an association of TRPV4 with myosin IIa, and promotes sufficient osteoclast function.
Collapse
Affiliation(s)
- Ritsuko Masuyama
- Department of Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Kuipers AJ, Middelbeek J, van Leeuwen FN. Mechanoregulation of cytoskeletal dynamics by TRP channels. Eur J Cell Biol 2012; 91:834-46. [PMID: 22727433 DOI: 10.1016/j.ejcb.2012.05.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 05/16/2012] [Accepted: 05/16/2012] [Indexed: 01/29/2023] Open
Abstract
The ability of cells to respond to mechanical stimulation is crucial to a variety of biological processes, including cell migration, axonal outgrowth, perception of pain, cardiovascular responses and kidney physiology. The translation of mechanical cues into cellular responses, a process known as mechanotransduction, typically takes place in specialized multiprotein structures such as cilia, cell-cell or cell-matrix adhesions. Within these structures, mechanical forces such as shear stress and membrane stretch activate mechanosensitive proteins, which set off a series of events that lead to altered cell behavior. Members of the transient receptor potential (TRP) family of cation channels are emerging as important players in mechanotransductory pathways. Localized within mechanosensory structures, they are activated by mechanical stimuli and trigger fast as well as sustained cytoskeletal responses. In this review, we will provide an overview of how TRP channels affect cytoskeletal dynamics in various mechano-regulated processes.
Collapse
Affiliation(s)
- Arthur J Kuipers
- Laboratory of Pediatric Oncology, Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Centre, The Netherlands
| | | | | |
Collapse
|
35
|
Takahashi N, Mori Y. TRP Channels as Sensors and Signal Integrators of Redox Status Changes. Front Pharmacol 2011; 2:58. [PMID: 22016736 PMCID: PMC3192318 DOI: 10.3389/fphar.2011.00058] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 09/20/2011] [Indexed: 12/21/2022] Open
Abstract
Proteins are capable of sensing the redox status of cells. Cysteine residues, which react with oxidants, reductants, and electrophiles, have been increasingly recognized as the mediators of this redox sensitivity. Cation channels encoded by the transient receptor potential (trp) gene superfamily are characterized by a wide variety of activation triggers that act from outside and inside the cell. Recent studies have revealed that a class of TRP channels is sensitive to changes in redox status and is notably susceptible to modifications of cysteine residues, such as oxidation, electrophilic reaction, and S-nitrosylation of sulfhydryls. In this review, we focus on TRP channels, which directly sense redox status, and discuss the biological significance of cysteine modifications and the consequences of this chemical reaction for physiological responses.
Collapse
Affiliation(s)
- Nobuaki Takahashi
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University Kyoto, Japan
| | | |
Collapse
|
36
|
Goswami C, Kuhn J, Dina OA, Fernández-Ballester G, Levine JD, Ferrer-Montiel A, Hucho T. Estrogen destabilizes microtubules through an ion-conductivity-independent TRPV1 pathway. J Neurochem 2011; 117:995-1008. [PMID: 21480900 DOI: 10.1111/j.1471-4159.2011.07270.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Recently, we described estrogen and agonists of the G-protein coupled estrogen receptor GPR30 to induce protein kinase C (PKC)ε-dependent pain sensitization. PKCε phosphorylates the ion channel transient receptor potential, vanilloid subclass I (TRPV1) close to a novel microtubule-TRPV1 binding site. We now modeled the binding of tubulin to the TRPV1 C-terminus. The model suggests PKCε phosphorylation of TRPV1-S800 to abolish the tubulin-TRPV1 interaction. Indeed, in vitro PKCε phosphorylation of TRPV1 hindered tubulin-binding to TRPV1. In vivo, treatment of sensory neurons and F-11 cells with estrogen and the GPR30 agonist, G-1, resulted in microtubule destabilization and retraction of microtubules from filopodial structures. We found estrogen and G-1 to regulate the stability of the microtubular network via PKC phosphorylation of the PKCε-phosphorylation site TRPV1-S800. Microtubule disassembly was not, however, dependent on TRPV1 ion conductivity. TRPV1 knock-down in rats inverted the effect of the microtubule-modulating drugs, Taxol and Nocodazole, on estrogen-induced and PKCε-dependent mechanical pain sensitization. Thus, we suggest the C-terminus of TRPV1 to be a signaling intermediate downstream of estrogen and PKCε, regulating microtubule-stability and microtubule-dependent pain sensitization.
Collapse
Affiliation(s)
- Chandan Goswami
- Department for Molecular Human Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
37
|
Kumar PG, Shoeb M. The Role of TRP Ion Channels in Testicular Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 704:881-908. [DOI: 10.1007/978-94-007-0265-3_46] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
38
|
Mori Y, Kajimoto T, Nakao A, Takahashi N, Kiyonaka S. Receptor Signaling Integration by TRP Channelsomes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 704:373-89. [DOI: 10.1007/978-94-007-0265-3_21] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
39
|
Goswami C, Goswami L. Filamentous microtubules in the neuronal spinous process and the role of microtubule regulatory drugs in neuropathic pain. Neurochem Int 2010; 57:497-503. [DOI: 10.1016/j.neuint.2010.06.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2010] [Revised: 05/28/2010] [Accepted: 06/30/2010] [Indexed: 11/26/2022]
|
40
|
Dryer SE, Reiser J. TRPC6 channels and their binding partners in podocytes: role in glomerular filtration and pathophysiology. Am J Physiol Renal Physiol 2010; 299:F689-701. [PMID: 20685822 DOI: 10.1152/ajprenal.00298.2010] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Loss or dysfunction of podocytes is a major cause of glomerular kidney disease. Several genetic forms of glomerular disease are caused by mutations in genes that encode structural elements of the slit diaphragm or the underlying cytoskeleton of podocyte foot processes. The recent discovery that gain-of-function mutations in Ca(2+)-permeable canonical transient receptor potential-6 channels (TRPC6) underlie a subset of familial forms of focal segmental glomerulosclerosis (FSGS) has focused attention on the basic cellular physiology of podocytes. Several recent studies have examined the role of Ca(2+) dynamics in normal podocyte function and their possible contributions to glomerular disease. This review summarizes the properties of TRPC6 and related channels, focusing on their permeation and gating properties, the nature of mutations associated with familial FSGS, and the role of TRPC channels in podocyte cell biology as well as in glomerular pathophysiology. TRPC6 interacts with several proteins in podocytes, including essential slit diaphragm proteins and mechanosensitive large-conductance Ca(2+)-activated K(+) channels. The signaling dynamics controlling ion channel function and localization in podocytes appear to be quite complex.
Collapse
Affiliation(s)
- Stuart E Dryer
- Dept. of Biology and Biochemistry, Univ. of Houston, 4800 Calhoun, Houston, TX 77204-5001, USA.
| | | |
Collapse
|
41
|
Wang ZY, Han YF, Huang X, Lu HL, Guo X, Kim YC, Xu WX. Actin microfilament involved in regulation of pacemaking activity in cultured interstitial cells of Cajal from murine intestine. J Membr Biol 2010; 234:217-25. [PMID: 20349180 DOI: 10.1007/s00232-010-9248-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Accepted: 03/04/2010] [Indexed: 12/27/2022]
Abstract
The present study investigated the effect of actin microfilament structure on pacemaker currents and calcium oscillation in cultured murine intestinal interstitial cells of Cajal (ICCs) by whole-cell patch-clamp technique and calcium imaging technique. Cytochalasin B, a disruptor of actin microfilaments, decreased the amplitude and frequency of pacemaker currents from 491.32 +/- 160.33 pA and 11.73 +/- 0.79 cycles/min to 233.12 +/- 92.00 pA and 10.29 +/- 0.76 cycles/min. Cytochalasin B also decreased the amplitude and frequency of calcium oscillation from 0.32 +/- 0.08 (DeltaF/F0) and 2.75 +/- 0.17 cycles/min to 0.02 +/- 0.01 (DeltaF/F0) and 1.20 +/- 0.08 cycles/min. Phalloidin, a stabilizer of actin microfilaments, increased the amplitude and frequency of pacemaker currents from 751.79 +/- 282.82 pA and 13.93 +/- 1.00 cycles/min to 1234.34 +/- 607.83 pA and 14.68 +/- 1.00 cycles/min. Phalloidin also increased the amplitude and frequency of calcium oscillation from 0.26 +/- 0.01 (DeltaF/F0) and 2.27 +/- 0.18 cycles/min to 0.43 +/- 0.03 (DeltaF/F0) and 2.87 +/- 0.07 cycles/min. 2-Aminoethoxydiphenyl borane (2-APB), an IP(3) receptor blocker, suppressed both pacemaker currents and calcium oscillations. 2-APB also blocked the phalloidin-induced increase in pacemaker currents and calcium oscillation. Ryanodine, an inhibitor of calcium-induced calcium release, did not affect pacemaker current but suppressed calcium oscillations. Ryanodine had no effect on altering phalloidin-induced increases in pacemaker current and calcium oscillation. These results suggest that actin microfilaments regulate pacemaker activity via the IP(3)-induced calcium release signaling pathway.
Collapse
Affiliation(s)
- Zuo Yu Wang
- Department of Physiology, Shanghai Jiaotong University School of Medicine, Shanghai, 200240, China.
| | | | | | | | | | | | | |
Collapse
|
42
|
Miehe S, Bieberstein A, Arnould I, Ihdene O, Rütten H, Strübing C. The phospholipid-binding protein SESTD1 is a novel regulator of the transient receptor potential channels TRPC4 and TRPC5. J Biol Chem 2010; 285:12426-34. [PMID: 20164195 DOI: 10.1074/jbc.m109.068304] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
TRPC4 and TRPC5 are two closely related members of the mammalian transient receptor potential cation channel family that have been implicated in important physiological functions, such as growth cone guidance and smooth muscle contraction. To further unravel the role of TRPC4 and TRPC5 in these processes in vivo, detailed information about the molecular composition of native channel complexes and their association with cellular signaling networks is needed. We therefore searched a human aortic cDNA library for novel TRPC4-interacting proteins using a modified yeast two-hybrid assay. This screen identified SESTD1, a previously uncharacterized protein containing a lipid-binding SEC14-like domain as well as spectrin-type cytoskeleton interaction domains. SESTD1 was found to associate with TRPC4 and TRPC5 via the channel's calmodulin- and inositol 1,4,5-trisphosphate receptor-binding domain. In functional studies, we demonstrate that SESTD1 binds several phospholipid species in vitro and is essential for efficient receptor-mediated activation of TRPC5. Notably, phospholipid binding to SESTD1 was Ca(2+)-dependent. Because TRPC4 and -5 conduct Ca(2+), SESTD1-channel signaling may be bidirectional and also couple TRPC activity to lipid signaling through SESTD1. The modulation of TRPC channel function by specific lipid-binding proteins, such as SESTD1, adds another facet to the complex regulation of these channels complementary to the previously described effects of direct channel-phospholipid interaction.
Collapse
Affiliation(s)
- Susanne Miehe
- Therapeutic Department of Cardiovascular Diseases, Sanofi-Aventis Deutschland GmbH, Industriepark Hoechst, Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|
43
|
Mercer JC, Qi Q, Mottram LF, Law M, Bruce D, Iyer A, Morales JL, Yamazaki H, Shirao T, Peterson BR, August A. Chemico-genetic identification of drebrin as a regulator of calcium responses. Int J Biochem Cell Biol 2009; 42:337-45. [PMID: 19948240 DOI: 10.1016/j.biocel.2009.11.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 11/09/2009] [Accepted: 11/23/2009] [Indexed: 01/11/2023]
Abstract
Store-operated calcium channels are plasma membrane Ca(2+) channels that are activated by depletion of intracellular Ca(2+) stores, resulting in an increase in intracellular Ca(2+) concentration, which is maintained for prolonged periods in some cell types. Increases in intracellular Ca(2+) concentration serve as signals that activate a number of cellular processes, however, little is known about the regulation of these channels. We have characterized the immuno-suppressant compound BTP, which blocks store-operated channel mediated calcium influx into cells. Using an affinity purification scheme to identify potential targets of BTP, we identified the actin reorganizing protein, drebrin, and demonstrated that loss of drebrin protein expression prevents store-operated channel mediated Ca(2+) entry, similar to BTP treatment. BTP also blocks actin rearrangements induced by drebrin. While actin cytoskeletal reorganization has been implicated in store-operated calcium channel regulation, little is known about actin-binding proteins that are involved in this process, or how actin regulates channel function. The identification of drebrin as a mediator of this process should provide new insight into the interaction between actin rearrangement and store-operated channel mediated calcium influx.
Collapse
Affiliation(s)
- Jason C Mercer
- Center for Molecular Immunology & Infectious Disease, Department of Veterinary & Biomedical Science, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Nabet B, Tsai A, Tobias JW, Carstens RP. Identification of a putative network of actin-associated cytoskeletal proteins in glomerular podocytes defined by co-purified mRNAs. PLoS One 2009; 4:e6491. [PMID: 19652713 PMCID: PMC2714980 DOI: 10.1371/journal.pone.0006491] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Accepted: 06/25/2009] [Indexed: 11/30/2022] Open
Abstract
The glomerular podocyte is a highly specialized and polarized kidney cell type that contains major processes and foot processes that extend from the cell body. Foot processes from adjacent podocytes form interdigitations with those of adjacent cells, thereby creating an essential intercellular junctional domain of the renal filtration barrier known as the slit diaphragm. Interesting parallels have been drawn between the slit diaphragm and other sites of cell-cell contact by polarized cells. Notably mutations in several genes encoding proteins localized to the foot processes can lead to proteinuria and kidney failure. Mutations in the Wilm's tumor gene (WT1) can also lead to kidney disease and one isoform of WT1, WT1(+KTS), has been proposed to regulate gene expression post-transcriptionally. We originally sought to identify mRNAs associated with WT1(+KTS) through an RNA immunoprecipitation and microarray approach, hypothesizing that the proteins encoded by these mRNAs might be important for podocyte morphology and function. We identified a subset of mRNAs that were remarkably enriched for transcripts encoding actin-binding proteins and other cytoskeletal proteins including several that are localized at or near the slit diaphragm. Interestingly, these mRNAs included those of α-actinin-4 and non-muscle myosin IIA that are mutated in genetic forms of kidney disease. However, isolation of the mRNAs occurred independently of the expression of WT1, suggesting that the identified mRNAs were serendipitously co-purified on the basis of co-association in a common subcellular fraction. Mass spectroscopy revealed that other components of the actin cytoskeleton co-purified with these mRNAs, namely actin, tubulin, and elongation factor 1α. We propose that these mRNAs encode a number of proteins that comprise a highly specialized protein interactome underlying the slit diaphragm. Collectively, these gene products and their interactions may prove to be important for the structural integrity of the actin cytoskeleton in podocytes as well as other polarized cell types.
Collapse
Affiliation(s)
- Behnam Nabet
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | | | | | |
Collapse
|
45
|
Wolff J. Plasma membrane tubulin. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:1415-33. [PMID: 19328773 DOI: 10.1016/j.bbamem.2009.03.013] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 03/13/2009] [Accepted: 03/19/2009] [Indexed: 01/17/2023]
Abstract
The association of tubulin with the plasma membrane comprises multiple levels of penetration into the bilayer: from integral membrane protein, to attachment via palmitoylation, to surface binding, and to microtubules attached by linker proteins to proteins in the membrane. Here we discuss the soundness and weaknesses of the chemical and biochemical evidence marshaled to support these associations, as well as the mechanisms by which tubulin or microtubules may regulate functions at the plasma membrane.
Collapse
Affiliation(s)
- J Wolff
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
46
|
Zhu B, Chen N, Wang ZH, Pan XX, Ren H, Zhang W, Wang WM. Identification and functional analysis of a novel TRPC6 mutation associated with late onset familial focal segmental glomerulosclerosis in Chinese patients. Mutat Res 2008; 664:84-90. [PMID: 19124028 DOI: 10.1016/j.mrfmmm.2008.11.021] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 11/14/2008] [Accepted: 11/21/2008] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Mutations in the TRPC6 gene are responsible for a late onset form of familial focal segmental glomerulosclerosis (FSGS). However, the role of TRPC6 variation in Chinese patients with late onset familial FSGS remains unclear. Here, we screened 31 Chinese pedigrees with late onset familial FSGS for changes in TRPC6 by DNA sequence analysis. METHODS Genomic DNA was extracted from peripheral leukocytes. We PCR-amplified each of 13 exons of TRPC6 for sequence analysis. When a novel nucleotide change seemed likely to cause FSGS, we carried out an in vitro research to determine the effects of the mutation on TRPC6 function. HEK 293 cells were transfected stably with vectors containing mutant or wild type TRPC6 cDNA. We then compared the expression of mutant TRPC6 to wild type TRPC6 using Western blot. For the observation of the function of mutant TRPC6 channel compared with wild type TRPC6 channel, Intracellular Ca(2+) concentration was detected using fluorescent indicator Fluo-3 among different groups of cells upon stimulation with 1-oleoyl-2-acetyl sn-glycerol (OAG). RESULTS All the 31 pedigrees with late onset familial FSGS were collected in our department from September 1997 to October 2007. A novel TRPC6 mutation (cytosine 2664 adenine resulting in Glutamine 889 Lysine substitution, Q889K) was identified in one of these pedigrees. Mutant TRPC6 (TRPC6(Q889K)) or wild type TRPC6 was stably expressed in HEK293 cells by Western blot. The mutant TRPC6 expression was a little increased without significant difference compared with wild type TRPC6 expression, whereas the intracellular Ca(2+) level in cells expressing mutant TRPC6 was significantly increased compared with that in the cells expressing wild TRPC6 upon stimulation. CONCLUSION We identified a novel TRPC6 mutation Q889K associated with late onset FFSGS in Chinese pedigrees and this mutation was demonstrated to be "gain of function" by an in vitro functional research.
Collapse
Affiliation(s)
- Bin Zhu
- Department of Nephrology, Ruijin Hospital, School of medicine, Shanghai Jiaotong University, Shanghai 200025, China
| | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
The Na-K-ATPase is an energy-transducing ion pump that converts the free energy of ATP into transmembrane ion gradients. It also serves as a functional receptor for cardiotonic steroids such as ouabain and digoxin. Binding of ouabain to the Na-K-ATPase can activate calcium signaling in a cell-specific manner. The exquisite calcium modulation via the Na-K-ATPase is achieved by the ability of the pump to integrate signals from numerous protein and non-protein molecules, including ion transporters, channels, protein kinases/phosphatases, as well as cellular Na+. This review focuses on the unique properties of the Na-K-ATPase and its role in the formation of different calcium-signaling microdomains.
Collapse
Affiliation(s)
- Jiang Tian
- Department of Physiology and Pharmacology, University of Toledo Health Science Campus, Toledo, Ohio, USA
| | | |
Collapse
|
48
|
Goswami C, Hucho T. Submembraneous microtubule cytoskeleton: biochemical and functional interplay of TRP channels with the cytoskeleton. FEBS J 2008; 275:4684-99. [PMID: 18754773 DOI: 10.1111/j.1742-4658.2008.06617.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Much work has focused on the electrophysiological properties of transient receptor potential channels. Recently, a novel aspect of importance emerged: the interplay of transient receptor potential channels with the cytoskeleton. Recent data suggest a direct interaction and functional repercussion for both binding partners. The bi-directionality of physical and functional interaction renders therefore, the cytoskeleton a potent integration point of complex biological signalling events, from both the cytoplasm and the extracellular space. In this minireview, we focus mostly on the interaction of the cytoskeleton with transient receptor potential vanilloid channels. Thereby, we point out the functional importance of cytoskeleton components both as modulator and as modulated downstream effector. The resulting implications for patho-biological situations are discussed.
Collapse
Affiliation(s)
- Chandan Goswami
- Department for Molecular Human Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany.
| | | |
Collapse
|
49
|
Jury DR, Kaveti S, Duan ZH, Willard B, Kinter M, Londraville R. Effects of calorie restriction on the zebrafish liver proteome. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2008; 3:275-82. [PMID: 20494847 DOI: 10.1016/j.cbd.2008.07.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Revised: 07/28/2008] [Accepted: 07/29/2008] [Indexed: 01/15/2023]
Abstract
A proteomic approach was taken to study how fish respond to changes in calorie availability, with the longer-term goal of understanding the evolution of lipid metabolism in vertebrates. Zebrafish (Danio rerio) were fed either high (3 rations/day) or low (1 ration/7 days) calorie diets for 5 weeks and liver proteins extracted for proteomic analyses. Proteins were separated on two-dimensional electrophoresis gels and homologous spots compared between treatments to determine which proteins were up-regulated with high-calorie diet. Fifty-five spots were excised from the gel and analyzed via LC-ESI MS/MS, which resulted in the identification of 69 unique proteins (via multiple peptides). Twenty-nine of these proteins were differentially expressed between treatments. Differentially expressed proteins were mapped to Gene Ontology (GO) terms, and these terms compared to the entire zebrafish GO annotation set by Fisher's exact test. The most significant GO terms associated with high-calorie diet are related to a decrease in oxygen-binding activity in the high-calorie treatment. This response is consistent with a well-characterized response in obese humans, indicating there may be a link between lipid storage and hypoxia sensitivity in vertebrates.
Collapse
Affiliation(s)
- David R Jury
- University of Akron, Department of Biology and Integrated Bioscience Program, Akron, Ohio 44325, USA
| | | | | | | | | | | |
Collapse
|
50
|
Dyachenko V, Husse B, Rueckschloss U, Isenberg G. Mechanical deformation of ventricular myocytes modulates both TRPC6 and Kir2.3 channels. Cell Calcium 2008; 45:38-54. [PMID: 18635261 DOI: 10.1016/j.ceca.2008.06.003] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Revised: 05/30/2008] [Accepted: 06/03/2008] [Indexed: 10/21/2022]
Abstract
Cardiomyocytes respond to mechanical stretch with an increase [Ca2+]i. Here, we analyzed which ion channels could mediate this effect. Murine ventricular myocytes were attached to a glass coverslip and a cell-attached glass stylus sheared the upper cell part versus the attached cell bottom. At negative clamp potentials, stretch induced inward currents that increased with the extent of stretch and reversed within 2 min after relaxation from stretch. Stretch activated a nearly voltage-independent GsMTx-4-sensitive non-selective cation conductance Gns, antibodies against TRPC6 prevented Gns activation. In addition, stretch deactivated a Cs+-sensitive inwardly rectifying potassium conductance GK1, antibodies against Kir2.3 inhibited this effect. Immunolabeling localized TRPC6 and Kir2.3 in T-tubular membranes, and stretch-induced changes in membrane currents were absent in cells whose T-tubules had been removed. In absence of stretch, we could activate Gns and deactivate GK1 by 1-oleoyl-2-acetyl-sn-glycerol (OAG) and other amphipaths. We interpret that the function of TRPC6 and Kir2.3 channels is controlled by both tension and curvature of the surrounding lipid bilayer that are changed by incorporation of amphipaths. Stretch-activation of TRPC6 channels may increase Ca2+ influx directly and indirectly, by membrane depolarization (activation of voltage-gated Ca2+ channels) and by elevated [Na+]i (augmented Na+,Ca2+-exchange).
Collapse
Affiliation(s)
- V Dyachenko
- Department of Physiology, Martin-Luther-University Halle, 06097 Halle, Germany
| | | | | | | |
Collapse
|