1
|
Lugtmeijer C, Bowtell JL, O’Leary M. Tissue-Level Effect of Andrographis and Ashwagandha Metabolites on Metabolic and Inflammatory Gene Expression in Skeletal Muscle and Adipose Tissue: An Ex Vivo/In Vitro Investigation. Nutrients 2024; 16:2291. [PMID: 39064738 PMCID: PMC11279956 DOI: 10.3390/nu16142291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Adipose tissue and skeletal muscle dysfunction play a central role in cardiometabolic morbidity. Ashwagandha and Andrographis are purported to have anti-inflammatory and antioxidant activity, but this is based on exposure of cells to the parent compounds ignoring phytochemical absorption and metabolism. We explored the anti-inflammatory/antioxidant effects of ashwagandha and Andrographis in ex vivo human models of skeletal muscle and adipose tissue. Healthy participants supplemented with 2000 mg/day Andrographis (n = 10) or 1100 mg/day ashwagandha (n = 10) for 28 days. Sera collected pre (D0) and post (D28) supplementation were pooled by timepoint and added to adipose explant (AT) and primary human myotube (SKMC) culture media (15% v/v) for treatment. A Taqman panel of 56 genes was used to quantify these. In AT, treatment with ashwagandha sera decreased the expression of genes involved in antioxidant defence and inflammatory response (CCL5, CD36, IL6, IL10, ADIPOQ, NFEL2, UCP2, GPX3, GPX4; geometric 95% CI for fold change > 1) and altered the expression of genes involved in fatty acid metabolism. In SKMC, ashwagandha sera altered FOXO1 and SREBF1 expression. Andrographis sera decreased IL18 and SERPINEA3 expression in AT. This physiologically relevant in vitro screening characterises the effects of ashwagandha in AT to guide future clinical trials.
Collapse
Affiliation(s)
| | | | - Mary O’Leary
- Faculty of Health and Life Sciences, Department of Public Health and Sport Sciences, University of Exeter, Exeter EX1 2LU, UK; (C.L.); (J.L.B.)
| |
Collapse
|
2
|
Zhang L, Cai X, Ma F, Qiao X, Ji J, Ma JA, Vergnes L, Zhao Y, Yao Y, Wu X, Boström KI. Two-step regulation by matrix Gla protein in brown adipose cell differentiation. Mol Metab 2024; 80:101870. [PMID: 38184275 PMCID: PMC10832489 DOI: 10.1016/j.molmet.2024.101870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/14/2023] [Accepted: 01/02/2024] [Indexed: 01/08/2024] Open
Abstract
OBJECTIVE Bone morphogenetic protein (BMP) signaling is intricately involved in adipose tissue development. BMP7 together with BMP4 have been implicated in brown adipocyte differentiation but their roles during development remains poorly specified. Matrix Gla protein (MGP) inhibits BMP4 and BMP7 and is expressed in endothelial and progenitor cells. The objective was to determine the role of MGP in brown adipose tissue (BAT) development. METHODS The approach included global and cell-specific Mgp gene deletion in combination with RNA analysis, immunostaining, thermogenic activity, and in vitro studies. RESULTS The results revealed that MGP directs brown adipogenesis at two essential steps. Endothelial-derived MGP limits triggering of white adipogenic differentiation in the perivascular region, whereas MGP derived from adipose cells supports the transition of CD142-expressing progenitor cells to brown adipogenic maturity. Both steps were important to optimize the thermogenic function of BAT. Furthermore, MGP derived from both sources impacted vascular growth. Reduction of MGP in either endothelial or adipose cells expanded the endothelial cell population, suggesting that MGP is a factor in overall plasticity of adipose tissue. CONCLUSION MGP displays a dual and cell-specific function in BAT, essentially creating a "cellular shuttle" that coordinates brown adipogenic differentiation with vascular growth during development.
Collapse
Affiliation(s)
- Li Zhang
- Division of Cardiology, David Geffen School of Medicine at UCLA, USA.
| | - Xinjiang Cai
- Division of Cardiology, David Geffen School of Medicine at UCLA, USA
| | - Feiyang Ma
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA; Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Xiaojing Qiao
- Division of Cardiology, David Geffen School of Medicine at UCLA, USA
| | - Jaden Ji
- Division of Cardiology, David Geffen School of Medicine at UCLA, USA
| | - Jocelyn A Ma
- Division of Cardiology, David Geffen School of Medicine at UCLA, USA
| | - Laurent Vergnes
- Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Yan Zhao
- Division of Cardiology, David Geffen School of Medicine at UCLA, USA
| | - Yucheng Yao
- Division of Cardiology, David Geffen School of Medicine at UCLA, USA
| | - Xiuju Wu
- Division of Cardiology, David Geffen School of Medicine at UCLA, USA
| | - Kristina I Boström
- Division of Cardiology, David Geffen School of Medicine at UCLA, USA; Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
3
|
Zubáňová V, Červinková Z, Kučera O, Palička V. The Connection between MicroRNAs from Visceral Adipose Tissue and Non-Alcoholic Fatty Liver Disease. ACTA MEDICA (HRADEC KRALOVE) 2021; 64:1-7. [PMID: 33855952 DOI: 10.14712/18059694.2021.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Non-Alcoholic Fatty Liver Disease (NAFLD) is one of the most important causes of liver disease worldwide leading the foreground cause of liver transplantation. Recently miRNAs, small non-coding molecules were identified as an important player in the negative translational regulation of many protein-coding genes involved in hepatic metabolism. Visceral adipose tissue was found to take part in lipid and glucose metabolism and to release many inflammatory mediators that may contribute to progression of NAFLD from simple steatosis to Non-Alcoholic SteatoHepatitis. Since visceral adipose tissue enlargement and dysregulated levels of miRNAs were observed in patients with NAFLD, the aim of this paper is to reflect the current knowledge of the role of miRNAs released from visceral adipose tissue and NAFLD.
Collapse
Affiliation(s)
- Veronika Zubáňová
- Department of Clinical Biochemistry and Diagnostics, Charles University, Faculty of Medicine in Hradec Králové and University Hospital Hradec Králové, Czech Republic.
| | - Zuzana Červinková
- Department of Physiology, Charles University, Faculty of Medicine in Hradec Králové, Czech Republic
| | - Otto Kučera
- Department of Physiology, Charles University, Faculty of Medicine in Hradec Králové, Czech Republic
| | - Vladimír Palička
- Department of Clinical Biochemistry and Diagnostics, Charles University, Faculty of Medicine in Hradec Králové and University Hospital Hradec Králové, Czech Republic
| |
Collapse
|
4
|
Blázquez-Medela AM, Jumabay M, Rajbhandari P, Sallam T, Guo Y, Yao J, Vergnes L, Reue K, Zhang L, Yao Y, Fogelman AM, Tontonoz P, Lusis AJ, Wu X, Boström KI. Noggin depletion in adipocytes promotes obesity in mice. Mol Metab 2019; 25:50-63. [PMID: 31027994 PMCID: PMC6600080 DOI: 10.1016/j.molmet.2019.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/30/2019] [Accepted: 04/02/2019] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Obesity has increased to pandemic levels and enhanced understanding of adipose regulation is required for new treatment strategies. Although bone morphogenetic proteins (BMPs) influence adipogenesis, the effect of BMP antagonists such as Noggin is largely unknown. The aim of the study was to define the role of Noggin, an extracellular BMP inhibitor, in adipogenesis. METHODS We generated adipose-derived progenitor cells and a mouse model with adipocyte-specific Noggin deletion using the AdiponectinCre transgenic mouse, and determined the adipose phenotype of Noggin-deficiency. RESULTS Our studies showed that Noggin is expressed in progenitor cells but declines in adipocytes, possibly allowing for lipid accumulation. Correspondingly, adipocyte-specific Noggin deletion in vivo promoted age-related obesity in both genders with no change in food intake. Although the loss of Noggin caused white adipose tissue hypertrophy, and whitening and impaired function in brown adipose tissue in both genders, there were clear gender differences with the females being most affected. The females had suppressed expression of brown adipose markers and thermogenic genes including peroxisome proliferator activated receptor gamma coactivator 1 alpha (PGC1alpha) and uncoupling protein 1 (UCP1) as well as genes associated with adipogenesis and lipid metabolism. The males, on the other hand, had early changes in a few BAT markers and thermogenic genes, but the main changes were in the genes associated with adipogenesis and lipid metabolism. Further characterization revealed that both genders had reductions in VO2, VCO2, and RER, whereas females also had reduced heat production. Noggin was also reduced in diet-induced obesity in inbred mice consistent with the obesity phenotype of the Noggin-deficient mice. CONCLUSIONS BMP signaling regulates female and male adipogenesis through different metabolic pathways. Modulation of adipose tissue metabolism by select BMP antagonists may be a strategy for long-term regulation of age-related weight gain and obesity.
Collapse
Affiliation(s)
- Ana M Blázquez-Medela
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Medet Jumabay
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | | | - Tamer Sallam
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Yina Guo
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Jiayi Yao
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Laurent Vergnes
- Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Karen Reue
- Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Li Zhang
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Yucheng Yao
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Alan M Fogelman
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Peter Tontonoz
- Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Aldons J Lusis
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Xiuju Wu
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| | - Kristina I Boström
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Molecular Biology Institute, UCLA, USA.
| |
Collapse
|
5
|
Xin S, Hao Y, Zhi-Peng M, Nanhe L, Bin C. Chronic epididymitis and leptin and their associations with semen characteristics in men with infertility. Am J Reprod Immunol 2019; 82:e13126. [PMID: 31006165 DOI: 10.1111/aji.13126] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/22/2019] [Accepted: 04/02/2019] [Indexed: 11/26/2022] Open
Abstract
PROBLEM The aim of this study was to ascertain the associations between serum leptin levels and chronic epididymitis and semen parameters in patients with infertility. METHOD OF STUDY A total of 846 patients who were diagnosed as primary infertility were enrolled and divided into four groups. The general information, blood lipids, reproductive hormones, and semen parameters were collected. Receiver operating characteristic (ROC) curves of leptin were plotted for diagnosis of the poor sperm quality. We used Student's t test and the chi-squared test to analyze their relationships and used logistic regression analysis to evaluate potential confounding factors. RESULTS Receiver operating characteristic curve revealed that leptin had better sensitivity and specificity at the concentration of 6.02 (0.565 and 0.917). Isolated epididymitis or elevated leptin had no effect on sperm concentration and sperm membrane function, but the combination of these conditions would reduce the concentration and normal morphology rate both (P = 0.002, P = 0.005). Epididymitis or elevated leptin can affect the motility of sperms, the former presented more significance (P = 0.000), and the co-existence would further reduce the sperm motility (P = 0.001). CONCLUSION Low sperm motility and sperm normal morphology were found to be associated with chronic epididymitis and high leptin. Simultaneously suffering from chronic epididymitis and high leptin could produce a more serious effect on sperm quality.
Collapse
Affiliation(s)
- Song Xin
- Department of Urology, Shanghai Institute of Andrology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ye Hao
- Department of Urology, Shanghai Institute of Andrology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ma Zhi-Peng
- Department of Urology, Weifang Yi Du Center Hospital, Weifang, China
| | - Lin Nanhe
- Department of Urology, Shanghai Institute of Andrology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chen Bin
- Department of Urology, Shanghai Institute of Andrology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Blázquez-Medela AM, Jumabay M, Boström KI. Beyond the bone: Bone morphogenetic protein signaling in adipose tissue. Obes Rev 2019; 20:648-658. [PMID: 30609449 PMCID: PMC6447448 DOI: 10.1111/obr.12822] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 11/02/2018] [Accepted: 11/25/2018] [Indexed: 02/06/2023]
Abstract
The bone morphogenetic proteins (BMPs) belong to the same superfamily as related to transforming growth factor β (TGFβ), growth and differentiation factors (GDFs), and activins. They were initially described as inducers of bone formation but are now known to be involved in morphogenetic activities and cell differentiation throughout the body, including the development of adipose tissue and adipogenic differentiation. BMP4 and BMP7 are the most studied BMPs in adipose tissue, with major roles in white adipogenesis and brown adipogenesis, respectively, but other BMPs such as BMP2, BMP6, and BMP8b as well as some inhibitors and modulators have been shown to also affect adipogenesis. It has become ever more important to understand adipose regulation, including the BMP pathways, in light of the strong links between obesity and metabolic and cardiovascular disease. In this review, we summarize the available information on BMP signaling in adipose tissue using preferentially articles that have appeared in the last decade, which together demonstrate the importance of BMP signaling in adipose biology.
Collapse
Affiliation(s)
- Ana M Blázquez-Medela
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States
| | - Medet Jumabay
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States
| | - Kristina I Boström
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States.,Molecular Biology Institute, UCLA, Los Angeles, California, United States
| |
Collapse
|
7
|
Li W, Zhang Y, Chen C, Tian W, Wang H. Increased Angiogenic and Adipogenic Differentiation Potentials in Adipose-Derived Stromal Cells from Thigh Subcutaneous Adipose Depots Compared with Cells from the Abdomen. Aesthet Surg J 2019; 39:NP140-NP149. [PMID: 30358810 DOI: 10.1093/asj/sjy252] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Adipose-derived stromal cells (ADSCs) may play a pivotal role by differentiating into multilineage cells or by secreting growth factors or cytokines in cell-assisted lipotransfer, which participates in adipose tissue regeneration. The angiogenic potential of various ADSCs from different anatomical regions remains uncertain. OBJECTIVES The authors sought to offer appropriate choices of sources of adipose-derived stromal cells for cell-assisted lipotransfer and tissue engineering. METHODS ADSCs were harvested from subcutaneous adipose depots in the abdomen and thighs. The expression of adipocyte-specific markers was evaluated, and Oil Red O staining was performed to assess the capacity for adipogenic differentiation. Angiogenic differentiation potential was evaluated by detecting the expression of vascular endothelial growth factor, vascular endothelial growth factor 2, and CD31. A tube formation assay was also performed to analyze the angiogenic differentiation capacity. RESULTS ADSCs from the thigh showed more significant angiogenic and adipogenic potential. More lipogenesis was identified in ADSCs from the thigh, and this was accompanied by the enhancement of adipocyte markers. Angiogenesis was more vigorous in the thigh-derived stromal cells, and ADSCs from the thigh depot showed more junctions and longer tubule formation on Matrigel in vitro. CONCLUSIONS Thigh-derived ADSCs exhibited greater capacity for adipogenic and angiogenic differentiation and would be a better option for cell-assisted lipotransfer and tissue engineering.
Collapse
Affiliation(s)
- Wei Li
- Department of Oral and Maxillofacial Surgery, Changzhou Stomatologic Hospital, Changzhou, China
| | - Yan Zhang
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chang Chen
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Weidong Tian
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology
| | - Hang Wang
- Department of Oral and Maxillofacial Surgery, Sichuan University, Chengdu, China
- Department of Cosmetic Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Schoettl T, Fischer IP, Ussar S. Heterogeneity of adipose tissue in development and metabolic function. ACTA ACUST UNITED AC 2018. [PMID: 29514879 DOI: 10.1242/jeb.162958] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Adipose tissue is a central metabolic organ. Unlike other organs, adipose tissue is compartmentalized into individual depots and distributed throughout the body. These different adipose depots show major functional differences and risk associations for developing metabolic syndrome. Recent advances in lineage tracing demonstrate that individual adipose depots are composed of adipocytes that are derived from distinct precursor populations, giving rise to different populations of energy-storing white adipocytes. Moreover, distinct lineages of energy-dissipating brown and beige adipocytes exist in discrete depots or within white adipose tissue depots. In this Review, we discuss developmental and functional heterogeneity, as well as sexual dimorphism, between and within individual adipose tissue depots. We highlight current data relating to the differences between subcutaneous and visceral white adipose tissue in the development of metabolic dysfunction, with special emphasis on adipose tissue expansion and remodeling of the extracellular matrix. Moreover, we provide a detailed overview of adipose tissue development as well as the consensus and controversies relating to adult adipocyte precursor populations.
Collapse
Affiliation(s)
- Theresa Schoettl
- JRG Adipocytes and Metabolism, Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Center Munich, 85748 Garching, Germany.,German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Ingrid P Fischer
- JRG Adipocytes and Metabolism, Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Center Munich, 85748 Garching, Germany.,German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany.,Division of Metabolic Diseases, Department of Medicine, Technische Universität München, 80333 Munich, Germany
| | - Siegfried Ussar
- JRG Adipocytes and Metabolism, Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Center Munich, 85748 Garching, Germany .,German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| |
Collapse
|
9
|
Bohn T, Desmarchelier C, Dragsted LO, Nielsen CS, Stahl W, Rühl R, Keijer J, Borel P. Host-related factors explaining interindividual variability of carotenoid bioavailability and tissue concentrations in humans. Mol Nutr Food Res 2017; 61:1600685. [PMID: 28101967 PMCID: PMC5516247 DOI: 10.1002/mnfr.201600685] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 12/19/2016] [Accepted: 01/04/2017] [Indexed: 12/14/2022]
Abstract
Carotenoid dietary intake and their endogenous levels have been associated with a decreased risk of several chronic diseases. There are indications that carotenoid bioavailability depends, in addition to the food matrix, on host factors. These include diseases (e.g. colitis), life-style habits (e.g. smoking), gender and age, as well as genetic variations including single nucleotide polymorphisms that govern carotenoid metabolism. These are expected to explain interindividual differences that contribute to carotenoid uptake, distribution, metabolism and excretion, and therefore possibly also their association with disease risk. For instance, digestion enzymes fostering micellization (PNLIP, CES), expression of uptake/efflux transporters (SR-BI, CD36, NPC1L1), cleavage enzymes (BCO1/2), intracellular transporters (FABP2), secretion into chylomicrons (APOB, MTTP), carotenoid metabolism in the blood and liver (LPL, APO C/E, LDLR), and distribution to target tissues such as adipose tissue or macula (GSTP1, StARD3) depend on the activity of these proteins. In addition, human microbiota, e.g. via altering bile-acid concentrations, may play a role in carotenoid bioavailability. In order to comprehend individual, variable responses to these compounds, an improved knowledge on intra-/interindividual factors determining carotenoid bioavailability, including tissue distribution, is required. Here, we highlight the current knowledge on factors that may explain such intra-/interindividual differences.
Collapse
Affiliation(s)
- Torsten Bohn
- Luxembourg Institute of HealthStrassenLuxembourg
| | | | - Lars O. Dragsted
- Department of Nutrition, Exercise and SportsUniversity of CopenhagenFrederiksberg CDenmark
| | - Charlotte S. Nielsen
- Department of Nutrition, Exercise and SportsUniversity of CopenhagenFrederiksberg CDenmark
| | - Wilhelm Stahl
- Institute of Biochemistry and Molecular Biology IHeinrich‐Heine‐University DüsseldorfDüsseldorfGermany
| | - Ralph Rühl
- Paprika Bioanalytics BTDebrecenHungary
- MTA‐DE Public Health Research Group of the Hungarian Academy of SciencesFaculty of Public HealthUniversity of DebrecenDebrecenHungary
| | - Jaap Keijer
- Human and Animal PhysiologyWageningen UniversityWageningenThe Netherlands
| | - Patrick Borel
- NORT, Aix‐Marseille Université, INRAINSERMMarseilleFrance
| |
Collapse
|
10
|
Huttala O, Mysore R, Sarkanen JR, Heinonen T, Olkkonen VM, Ylikomi T. Differentiation of human adipose stromal cells in vitro into insulin-sensitive adipocytes. Cell Tissue Res 2016; 366:63-74. [DOI: 10.1007/s00441-016-2409-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 04/05/2016] [Indexed: 12/28/2022]
|
11
|
Obeidat AA, Ahmad MN, Haddad FH, Azzeh FS. Leptin and uric acid as predictors of metabolic syndrome in jordanian adults. Nutr Res Pract 2016; 10:411-7. [PMID: 27478548 PMCID: PMC4958644 DOI: 10.4162/nrp.2016.10.4.411] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 11/30/2015] [Accepted: 01/19/2016] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND/OBJECTIVES Metabolic syndrome (MetS) is a set of interrelated metabolic risk factors that increase the risk of cardiovascular morbidity and mortality. Studies regarding the specificity and sensitivity of serum levels of leptin and uric acid as predictors of MetS are limited. The aim of this study was to evaluate the serum levels of leptin and uric acid in terms of their specificity and sensitivity as predictors of MetS in the studied Jordanian group. SUBJECTS/METHODS In this cross sectional study, 630 adult subjects (308 men and 322 women) were recruited from the King Hussein Medical Center (Amman, Jordan). The diagnosis of MetS was made according to the 2005 International Diabetes Federation criteria. Receiver operating characteristic curves were used to determine the efficacy of serum levels of leptin and uric acid as predictors of MetS in the studied Jordanian group. RESULTS Study results showed that for identification of subjects with MetS risk, area under the curve (AUC) for leptin was 0.721 and 0.683 in men and women, respectively. Serum uric acid levels in men showed no significant association with any MetS risk factors and no significant AUC, while uric acid AUC was 0.706 in women. CONCLUSION Serum leptin levels can be useful biomarkers for evaluation of the risk of MetS independent of baseline obesity in both men and women. On the other hand, serum uric acid levels predicted the risk of MetS only in women.
Collapse
Affiliation(s)
- Ahmad A Obeidat
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Taibah University, Yanbu Street, Yanbu 21911, Saudi Arabia
| | - Mousa N Ahmad
- Department of Nutrition, Faculty of Agriculture, University of Jordan, Amman, Jordan
| | - Fares H Haddad
- Department of Endocrinology, King Hussein Medical Center, Amman, Jordan
| | - Firas S Azzeh
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
12
|
|
13
|
Fassbinder-Orth CA. Methods for quantifying gene expression in ecoimmunology: from qPCR to RNA-Seq. Integr Comp Biol 2014; 54:396-406. [PMID: 24812328 DOI: 10.1093/icb/icu023] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Historically, the use of cutting-edge molecular techniques to study immunological gene expression and related cellular pathways has been largely limited to model organisms. Few studies have been performed that quantify the molecular immunological responses of non-model species, especially in response to environmental factors, life-history events, or exposure to parasites. This dearth of information has largely occurred due to the lack of available non-model species-specific gene sequences and immunological reagents and also due to prohibitively expensive technology. However, with the rapid development of various sequencing and transcriptomic technologies, profiling the gene expression of non-model organisms has become possible. Technologies and concepts explored here include an overview of current technologies for quantifying gene expression, including: qPCR, multiplex branched DNA assays, microarrays, and profiling gene expression (RNA sequencing [RNA-Seq]) based on next-generation sequencing. Examples of the advancement of these technologies in non-model systems are discussed. Additionally, applications, limitations, and feasibility of the use of these methodologies in non-model systems to address questions in ecological immunology and disease-ecology are specifically addressed.
Collapse
|
14
|
Garin-Shkolnik T, Rudich A, Hotamisligil GS, Rubinstein M. FABP4 attenuates PPARγ and adipogenesis and is inversely correlated with PPARγ in adipose tissues. Diabetes 2014; 63:900-11. [PMID: 24319114 DOI: 10.2337/db13-0436] [Citation(s) in RCA: 237] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Fatty acid binding protein 4 (FABP4, also known as aP2) is a cytoplasmic fatty acid chaperone expressed primarily in adipocytes and myeloid cells and implicated in the development of insulin resistance and atherosclerosis. Here we demonstrate that FABP4 triggers the ubiquitination and subsequent proteasomal degradation of peroxisome proliferator-activated receptor γ (PPARγ), a master regulator of adipogenesis and insulin responsiveness. Importantly, FABP4-null mouse preadipocytes as well as macrophages exhibited increased expression of PPARγ, and complementation of FABP4 in the macrophages reversed the increase in FABP4 expression. The FABP4-null preadipocytes exhibited a remarkably enhanced adipogenesis compared with wild-type cells, indicating that FABP4 regulates adipogenesis by downregulating PPARγ. We found that the FABP4 level was higher and PPARγ level was lower in human visceral fat and mouse epididymal fat compared with their subcutaneous fat. Furthermore, FABP4 was higher in the adipose tissues of obese diabetic individuals compared with healthy ones. Suppression of PPARγ by FABP4 in visceral fat may explain the reported role of FABP4 in the development of obesity-related morbidities, including insulin resistance, diabetes, and atherosclerosis.
Collapse
Affiliation(s)
- Tali Garin-Shkolnik
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | |
Collapse
|
15
|
Peral B, Camafeita E, Fernández-Real JM, López JA. Tackling the human adipose tissue proteome to gain insight into obesity and related pathologies. Expert Rev Proteomics 2014; 6:353-61. [DOI: 10.1586/epr.09.53] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
16
|
Wells JCK, Cortina-Borja M. Different associations of subscapular and triceps skinfold thicknesses with pathogen load: an ecogeographical analysis. Am J Hum Biol 2013; 25:594-605. [PMID: 23913438 DOI: 10.1002/ajhb.22418] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Revised: 04/29/2013] [Accepted: 05/24/2013] [Indexed: 11/11/2022] Open
Abstract
OBJECTIVES The dominant evolutionary perspective on adipose tissue has considered it a relatively inert energy store. However, variability in adipose tissue distribution has recently been associated with age, parity, thermal environment and immune function. Genes regulating the innate immune system are more strongly expressed in deep-lying than peripheral adipose tissue. We hypothesized that central adiposity would correlate more strongly than peripheral adiposity with pathogen load across populations. METHODS Primary outcomes were subscapular and triceps skinfolds from 133 male and 106 female populations. National values for disability-adjusted life years lost, attributable to infectious diseases, were used to index pathogen load. Linear mixed-effects models were fitted, including a random effect term by country to investigate the association of each skinfold with pathogen load, adjusting for the other skinfold, mean annual temperature and clustering of the populations across countries. RESULTS Adjusting for subscapular skinfold, triceps skinfold was not associated with pathogen load in either sex. Adjusting for triceps skinfold, subscapular skinfold was negatively associated with pathogen load in both sexes (P < 0.02). These associations were independent of variability in annual temperature. Adjusting for pathogen load and temperature, Oceanic populations had a different fat distribution compared to other populations. CONCLUSIONS Across populations, higher pathogen load was associated with reduced central but not peripheral skinfolds, supporting the hypothesis that central adiposity is more closely associated with immune function. This scenario might explain why some populations increase disproportionately in central adiposity when the environment shifts from low-energy high-pathogen status to high-energy low-pathogen status.
Collapse
Affiliation(s)
- Jonathan C K Wells
- Childhood Nutrition Research Centre, UCL Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, United Kingdom
| | | |
Collapse
|
17
|
Ardévol A, Motilva MJ, Serra A, Blay M, Pinent M. Procyanidins target mesenteric adipose tissue in Wistar lean rats and subcutaneous adipose tissue in Zucker obese rat. Food Chem 2013; 141:160-6. [PMID: 23768342 DOI: 10.1016/j.foodchem.2013.02.104] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 12/18/2012] [Accepted: 02/25/2013] [Indexed: 12/13/2022]
Abstract
Visceral and subcutaneous adipose depots have different metabolic roles that may be involved in the development of obesity-related pathologies. Procyanidins have beneficial effects on insulin resistance, and they target adipose tissue. We analyse whether procyanidins exert different effects, depending on the adipose tissue depot, and whether these effects show a relation to the amount of phenolic compound in the tissue. We studied the effects of a grape seed procyanidin extract (GSPE) treatment at the transcriptional level on genes expressed differentially between mesenteric and subcutaneous adipose tissue depots and genes previously shown to be targets of procyanidins. Procyanidins target mesenteric adipose tissue in Wistar lean rats but subcutaneous adipose tissue in Zucker obese rats. Non-modified structures also accumulated, preferentially in the same respective tissues that were responsive to GSPE. Thus, procyanidins target and accumulate differently in mesenteric and subcutaneous adipose tissue depots, depending on the metabolic condition of the animal model.
Collapse
Affiliation(s)
- A Ardévol
- Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, C. Marcel·lí Domingo, s/n, 43007 Tarragona, Spain
| | | | | | | | | |
Collapse
|
18
|
Insenser M, Montes-Nieto R, Vilarrasa N, Lecube A, Simó R, Vendrell J, Escobar-Morreale HF. A nontargeted proteomic approach to the study of visceral and subcutaneous adipose tissue in human obesity. Mol Cell Endocrinol 2012; 363:10-9. [PMID: 22796336 DOI: 10.1016/j.mce.2012.07.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 06/08/2012] [Accepted: 07/06/2012] [Indexed: 11/28/2022]
Abstract
Subcutaneous (SAT) and visceral adipose tissue (VAT) differ in biochemical and metabolic properties, especially when obesity is present. We submitted paired SAT and VAT samples from six morbidly obese patients and six non-obese persons to two-dimensional differential gel electrophoresis and matrix-assisted laser desorption/ionization-time-of-flight/time-of-flight mass spectrometry. Compared with non-obese subjects, obese patients presented with increased carboxylesterase-1, zinc finger protein 324A, annexin A5, ubiquitin carboxyl-terminal hydrolase, α-crystallin B chain, osteoglycin, retinal dehydrogenase-1 and 14-3-3 protein γ, and decreased transferrin, complement C3, fibrinogen γ chain, albumin, α1-antitrypsin and peroxiredoxin-6, irrespective of the adipose tissue depot studied. SAT and VAT differed in protein species of fibrinogen and osteoglycin, whereas adipose tissue depot and obesity interacted on the protein abundance of actin, α-actinin 1, one protein species of carboxylesterase-1, retinal dehydrogenase-1 and 14-3-3 protein γ. Our nontargeted proteomic approach identified novel protein species that may be involved in the development of obesity in humans.
Collapse
Affiliation(s)
- María Insenser
- Diabetes, Obesity and Human Reproduction Group, Universidad de Alcalá & Hospital Universitario Ramón y Cajal & Instituto Ramón y Cajal de Investigación Sanitaria IRYCIS, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
19
|
Petrighi Polidori G, Lomax MA, Docherty K. Palmitate enhances the differentiation of mouse embryonic stem cells towards white adipocyte lineages. Mol Cell Endocrinol 2012; 361:40-50. [PMID: 22484460 DOI: 10.1016/j.mce.2012.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 03/02/2012] [Accepted: 03/16/2012] [Indexed: 11/23/2022]
Abstract
The number of adipocyte progenitors is determined early in foetal and neonatal development in a process which may be altered by gender and excess nutrient intake, and which in turn determines fat mass in adulthood and the risk of developing obesity. Here we investigate the hypothesis that excess nutrients, in this case the long chain fatty acid palmitate, can program differentiating stem cells towards white fat lineages. The experiments were performed on mouse embryonic stem cells in chemically defined media (CDM) supplemented with bone morphogenetic protein 4 (BMP4) and all trans-retinoic acid (RA). Subsequent treatment for 21 days with palmitate not only promoted the expression of adipocyte markers and monolocular lipid deposition as observed by RT/QPCR and immunocytochemistry, but also stimulated a considerable enrichment in adipocytes as measured by flow cytometry and a lipolytic response to catecholamines. Palmitate increased protein levels of adiponectin that is preferentially expressed in subcutaneous fat, while inhibiting IGFBP2 and IGFBP3 that are associated with visceral fat. In keeping with this finding, palmitate also increased expression of the subcutaneous markers Shox2 and Twist1 and oestrogenising enzymes. Collectively, these results suggest that palmitate induces differentiation towards subcutaneous fat and that this could occur through its oestrogenising effects on the preadipocyte, suggesting a role for palmitate in programming fat development towards a metabolically favourable profile.
Collapse
Affiliation(s)
- Gioia Petrighi Polidori
- School of Medical Sciences, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, UK
| | | | | |
Collapse
|
20
|
Intra- and inter-individual variance of gene expression in clinical studies. PLoS One 2012; 7:e38650. [PMID: 22723873 PMCID: PMC3377725 DOI: 10.1371/journal.pone.0038650] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 05/11/2012] [Indexed: 01/29/2023] Open
Abstract
Background Variance in microarray studies has been widely discussed as a critical topic on the identification of differentially expressed genes; however, few studies have addressed the influence of estimating variance. Methodology/Principal Findings To break intra- and inter-individual variance in clinical studies down to three levels–technical, anatomic, and individual–we designed experiments and algorithms to investigate three forms of variances. As a case study, a group of “inter-individual variable genes” were identified to exemplify the influence of underestimated variance on the statistical and biological aspects in identification of differentially expressed genes. Our results showed that inadequate estimation of variance inevitably led to the inclusion of non-statistically significant genes into those listed as significant, thereby interfering with the correct prediction of biological functions. Applying a higher cutoff value of fold changes in the selection of significant genes reduces/eliminates the effects of underestimated variance. Conclusions/Significance Our data demonstrated that correct variance evaluation is critical in selecting significant genes. If the degree of variance is underestimated, “noisy” genes are falsely identified as differentially expressed genes. These genes are the noise associated with biological interpretation, reducing the biological significance of the gene set. Our results also indicate that applying a higher number of fold change as the selection criteria reduces/eliminates the differences between distinct estimations of variance.
Collapse
|
21
|
Capobianco V, Nardelli C, Ferrigno M, Iaffaldano L, Pilone V, Forestieri P, Zambrano N, Sacchetti L. miRNA and protein expression profiles of visceral adipose tissue reveal miR-141/YWHAG and miR-520e/RAB11A as two potential miRNA/protein target pairs associated with severe obesity. J Proteome Res 2012; 11:3358-69. [PMID: 22537031 DOI: 10.1021/pr300152z] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Adipose tissues show selective gene expression patterns, to whom microRNAs (miRNAs) may contribute. We evaluated in visceral adipose tissue (VAT) from obese and nonobese females, both miRNA and protein expression profiles, to identify miRNA/protein target pairs associated with obesity (metabolic pathways miRNA-deregulated during obesity). Obese and nonobese females [BMI 42.2 ± 1.6 and 23.7 ± 1.2 kg/m(2) (mean ± SEM), respectively] were enrolled in this study. Notably, most miRNAs were down-expressed in obese tissues, whereas most of the proteins from the investigated spots were up-expressed. Bioinformatics integration of miRNA expression and proteomic data highlighted two potential miRNA/protein target pairs: miR-141/YWHAG (tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, gamma polypeptide) and miR-520e/RAB11A (Ras-related protein RAB-11A); the functional interaction between these miRNAs and their target sequences on the corresponding mRNAs was confirmed by luciferase assays. Both RAB11A and YWHAG proteins are involved in glucose homeostasis; YWHAG is also involved in lipid metabolism. Hence, the identified miRNA/protein target pairs are potential players in the obese phenotype.
Collapse
Affiliation(s)
- Valentina Capobianco
- Fondazione IRCCS SDN, Istituto di Ricerca Diagnostica e Nucleare , Via Gianturco 113, 80143 Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Pérez-Pérez R, López JA, García-Santos E, Camafeita E, Gómez-Serrano M, Ortega-Delgado FJ, Ricart W, Fernández-Real JM, Peral B. Uncovering suitable reference proteins for expression studies in human adipose tissue with relevance to obesity. PLoS One 2012; 7:e30326. [PMID: 22272336 PMCID: PMC3260266 DOI: 10.1371/journal.pone.0030326] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 12/19/2011] [Indexed: 12/29/2022] Open
Abstract
Background Protein expression studies based on the two major intra-abdominal human fat depots, the subcutaneous and the omental fat, can shed light into the mechanisms involved in obesity and its co-morbidities. Here we address, for the first time, the identification and validation of reference proteins for data standardization, which are essential for accurate comparison of protein levels in expression studies based on fat from obese and non-obese individuals. Methodology and Findings To uncover adipose tissue proteins equally expressed either in omental and subcutaneous fat depots (study 1) or in omental fat from non-obese and obese individuals (study 2), we have reanalyzed our previously published data based on two-dimensional fluorescence difference gel electrophoresis. Twenty-four proteins (12 in study 1 and 12 in study 2) with similar expression levels in all conditions tested were selected and identified by mass spectrometry. Immunoblotting analysis was used to confirm in adipose tissue the expression pattern of the potential reference proteins and three proteins were validated: PARK7, ENOA and FAA. Western Blot analysis was also used to test customary loading control proteins. ENOA, PARK7 and the customary loading control protein Beta-actin showed steady expression profiles in fat from non-obese and obese individuals, whilst FAA maintained steady expression levels across paired omental and subcutaneous fat samples. Conclusions ENOA, PARK7 and Beta-actin are proper reference standards in obesity studies based on omental fat, whilst FAA is the best loading control for the comparative analysis of omental and subcutaneous adipose tissues either in obese and non-obese subjects. Neither customary loading control proteins GAPDH and TBB5 nor CALX are adequate standards in differential expression studies on adipose tissue. The use of the proposed reference proteins will facilitate the adequate analysis of proteins differentially expressed in the context of obesity, an aim difficult to achieve before this study.
Collapse
Affiliation(s)
- Rafael Pérez-Pérez
- Instituto de Investigaciones Biomédicas, Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC) & Universidad Autónoma de Madrid (UAM), Madrid, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), ISCIII, Madrid, Spain
| | - Juan A. López
- Unidad de Proteómica, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Eva García-Santos
- Instituto de Investigaciones Biomédicas, Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC) & Universidad Autónoma de Madrid (UAM), Madrid, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), ISCIII, Madrid, Spain
| | - Emilio Camafeita
- Unidad de Proteómica, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - María Gómez-Serrano
- Instituto de Investigaciones Biomédicas, Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC) & Universidad Autónoma de Madrid (UAM), Madrid, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), ISCIII, Madrid, Spain
| | - Francisco J. Ortega-Delgado
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), ISCIII, Madrid, Spain
- Department of Diabetes, Endocrinology and Nutrition, Hospital Dr. Josep Trueta, Girona, Spain
| | - Wifredo Ricart
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), ISCIII, Madrid, Spain
- Department of Diabetes, Endocrinology and Nutrition, Hospital Dr. Josep Trueta, Girona, Spain
| | - José M. Fernández-Real
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), ISCIII, Madrid, Spain
- Department of Diabetes, Endocrinology and Nutrition, Hospital Dr. Josep Trueta, Girona, Spain
| | - Belén Peral
- Instituto de Investigaciones Biomédicas, Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC) & Universidad Autónoma de Madrid (UAM), Madrid, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), ISCIII, Madrid, Spain
- * E-mail:
| |
Collapse
|
23
|
Walley A, Jacobson P, Falchi M, Bottolo L, Andersson J, Petretto E, Bonnefond A, Vaillant E, Lecoeur C, Vatin V, Jernas M, Balding D, Petteni M, Park Y, Aitman T, Richardson S, Sjostrom L, Carlsson LMS, Froguel P. Differential coexpression analysis of obesity-associated networks in human subcutaneous adipose tissue. Int J Obes (Lond) 2012; 36:137-47. [PMID: 21427694 PMCID: PMC3160485 DOI: 10.1038/ijo.2011.22] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To use a unique obesity-discordant sib-pair study design to combine differential expression analysis, expression quantitative trait loci (eQTLs) mapping and a coexpression regulatory network approach in subcutaneous human adipose tissue to identify genes relevant to the obese state. STUDY DESIGN Genome-wide transcript expression in subcutaneous human adipose tissue was measured using Affymetrix U133 Plus 2.0 microarrays (Affymetrix, Santa Clara, CA, USA), and genome-wide genotyping data was obtained using an Applied Biosystems (Applied Biosystems; Life Technologies, Carlsbad, CA, USA) SNPlex linkage panel. SUBJECTS A total of 154 Swedish families ascertained through an obese proband (body mass index (BMI) >30 kg m(-2)) with a discordant sibling (BMI>10 kg m(-2) less than proband). RESULTS Approximately one-third of the transcripts were differentially expressed between lean and obese siblings. The cellular adhesion molecules (CAMs) KEGG grouping contained the largest number of differentially expressed genes under cis-acting genetic control. By using a novel approach to contrast CAMs coexpression networks between lean and obese siblings, a subset of differentially regulated genes was identified, with the previously GWAS obesity-associated neuronal growth regulator 1 (NEGR1) as a central hub. Independent analysis using mouse data demonstrated that this finding of NEGR1 is conserved across species. CONCLUSION Our data suggest that in addition to its reported role in the brain, NEGR1 is also expressed in subcutaneous adipose tissue and acts as a central 'hub' in an obesity-related transcript network.
Collapse
Affiliation(s)
- A.J. Walley
- Department of Genomics of Common Disease, School of Public Health, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - P. Jacobson
- Department of Molecular and Clinical Medicine, The Sahlgrenska Academy, Gothenburg University, SE-413 07 Gothenburg, Sweden
| | - M. Falchi
- Department of Genomics of Common Disease, School of Public Health, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - L. Bottolo
- Department of Genomics of Common Disease, School of Public Health, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Marys Hospital, 161 Norfolk Place, London, UK
| | - J.C. Andersson
- Department of Genomics of Common Disease, School of Public Health, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
- Department of Molecular and Clinical Medicine, The Sahlgrenska Academy, Gothenburg University, SE-413 07 Gothenburg, Sweden
| | - E. Petretto
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Marys Hospital, 161 Norfolk Place, London, UK
- MRC Clinical Sciences Centre, Division of Clinical Sciences, Imperial College London, Commonwealth Building, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - A. Bonnefond
- CNRS 8090-Institute of Biology, Pasteur Institute, Lille, France
| | - E. Vaillant
- CNRS 8090-Institute of Biology, Pasteur Institute, Lille, France
| | - C. Lecoeur
- CNRS 8090-Institute of Biology, Pasteur Institute, Lille, France
| | - V. Vatin
- CNRS 8090-Institute of Biology, Pasteur Institute, Lille, France
| | - M. Jernas
- Department of Molecular and Clinical Medicine, The Sahlgrenska Academy, Gothenburg University, SE-413 07 Gothenburg, Sweden
| | - D. Balding
- Department of Genomics of Common Disease, School of Public Health, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
- Institute of Genetics, University College London, Kathleen Lonsdale Building, 5 Gower Place, London, WC1 E6B, UK
| | - M. Petteni
- Department of Genomics of Common Disease, School of Public Health, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Y.S. Park
- Department of Genomics of Common Disease, School of Public Health, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - T. Aitman
- MRC Clinical Sciences Centre, Division of Clinical Sciences, Imperial College London, Commonwealth Building, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - S. Richardson
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Marys Hospital, 161 Norfolk Place, London, UK
| | - L. Sjostrom
- Department of Molecular and Clinical Medicine, The Sahlgrenska Academy, Gothenburg University, SE-413 07 Gothenburg, Sweden
| | - L. M. S. Carlsson
- Department of Molecular and Clinical Medicine, The Sahlgrenska Academy, Gothenburg University, SE-413 07 Gothenburg, Sweden
| | - P. Froguel
- Department of Genomics of Common Disease, School of Public Health, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
- CNRS 8090-Institute of Biology, Pasteur Institute, Lille, France
| |
Collapse
|
24
|
Differences in osteogenic differentiation of adipose-derived stromal cells from murine, canine, and human sources in vitro and in vivo. Plast Reconstr Surg 2011; 128:373-386. [PMID: 21788829 DOI: 10.1097/prs.0b013e31821e6e49] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Given the diversity of species from which adipose-derived stromal cells are derived and studied, the authors set out to delineate the differences in the basic cell biology that may exist across species. Briefly, the authors found that significant differences exist with regard to proliferation and osteogenic potentials of adipose-derived stromal cells across species. METHODS Adipose-derived stromal cells were derived from human, mouse, and canine sources as previously described. Retinoic acid, insulin-like growth factor-1, and bone morphogenetic protein-2 were added to culture medium; proliferation and osteogenic differentiation were assessed by standardized assays. In vivo methods included seeding 150,000 adipose-derived stromal cells on a biomimetic scaffold and analyzing healing by micro-computed tomography and histology. RESULTS Adipose-derived stromal cells from all species had the capability to undergo osteogenic differentiation. Canine adipose-derived stromal cells were the most proliferative, whereas human adipose-derived stromal cells were the most osteogenic (p < 0.05). Human cells, however, had the most significant osteogenic response to osteogenic media. Retinoic acid stimulated osteogenesis in mouse and canine cells but not in human adipose-derived stromal cells. Insulin-like growth factor-1 enhanced osteogenesis across all species, most notably in human- and canine-derived cells. CONCLUSIONS Adipose-derived stromal cells derived from human, mouse, and canine all have the capacity to undergo osteogenic differentiation. Canine adipose-derived stromal cells appear to be the most proliferative, whereas human adipose-derived stromal cells appear to be the most osteogenic. Different cytokines and chemicals can be used to modulate this osteogenic response. These results are promising as attempts are made to optimize tissue-engineered bone using adipose-derived stromal cells.
Collapse
|
25
|
Brattbakk HR, Arbo I, Aagaard S, Lindseth I, de Soysa AKH, Langaas M, Kulseng B, Lindberg F, Johansen B. Balanced caloric macronutrient composition downregulates immunological gene expression in human blood cells-adipose tissue diverges. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2011; 17:41-52. [PMID: 21679058 DOI: 10.1089/omi.2010.0124] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cardiovascular disease, obesity, and type 2 diabetes are conditions characterized by low-grade systemic inflammation, strongly influenced by lifestyle, but the mechanisms that link these characteristics are poorly understood. Our first objective was to investigate if a normocaloric diet with a calorically balanced macronutrient composition influenced immunological gene expression. Findings regarding the suitability of blood as biological material in nutrigenomics and gene expression profiling have been inconclusive. Our second objective was to compare blood and adipose tissue sample quality in terms of adequacy for DNA-microarray analyses, and to determine tissue-specific gene expression patterns. Blood and adipose tissue samples were collected for gene expression profiling from three obese men before, during, and after a 28-day normocaloric diet intervention where each meal contained an approximately equal caloric load of macronutrients. Time series analyses of blood gene expression revealed a cluster of downregulated genes involved in immunological processes. Blood RNA quality and yield were satisfactory, and DNA-microarray analysis reproducibility was similar in blood and adipose tissue. Gene expression correlation between blood and adipose tissue varied according to gene function, and was especially low for genes involved in immunological and metabolic processes. This suggests that diet composition is of importance in inflammatory processes in blood cells. The findings also suggest that a systems biology approach, in which tissues are studied in parallel, should be employed to fully understand the impact of dietary challenges on the human body.
Collapse
Affiliation(s)
- Hans-Richard Brattbakk
- Department of Biology, Norwegian University of Science and Technology NTNU, Trondheim 7491, Norway.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Hosseini A, Behrendt C, Regenhard P, Sauerwein H, Mielenz M. Differential effects of propionate or β-hydroxybutyrate on genes related to energy balance and insulin sensitivity in bovine white adipose tissue explants from a subcutaneous and a visceral depot. J Anim Physiol Anim Nutr (Berl) 2011; 96:570-80. [PMID: 21635577 DOI: 10.1111/j.1439-0396.2011.01180.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ruminants rely on short-chain fatty acids (SCFA) as principal energy source. Herein, we compared the effects of propionate, β-hydroxybutyrate (BHB) and insulin on mRNA abundance of energy balance-related genes by short-term incubation (4 h) in bovine subcutaneous (SC) and retroperitoneal (RP) adipose tissue (AT) explants in vitro. Propionate either significantly (p < 0.05), or as a trend (p ≤ 0.1) affected mRNA abundance of genes such as adiponectin system in both depots in treated samples versus controls. Propionate increased adiponectin receptor 1 (AdipoR1) and AdipoR2 mRNA only in SC AT. β-hydroxybutyrate decreased mRNA abundance of adiponectin and AdipoR1 in SC AT as a trend. The mRNA abundance of free fatty acid receptor 2/3 (FFAR2/3) and other genes of interest (GOI) was increased during differentiation in bovine preadipocyte culture. The mRNA abundance of all the GOI remained unchanged after short-term insulin stimulation. In total, propionate, BHB or insulin during short-term treatment exert divergent effects on the mRNA abundance of GOI in both depots in vitro. Our results indicate that the bovine adiponectin system might be more sensitive to propionate than to BHB. We demonstrated the presence of FFAR2/3 mRNA not only in both AT depots but also in differentiating preadipocytes isolated from bovine SC AT. Therefore, we established that SCFA are able to exert insulin-independent effects on bovine adipose tissue, which might be independent from propionate uptake-related events.
Collapse
Affiliation(s)
- A Hosseini
- Physiology and Hygiene Unit, Institute for Animal Science, University of Bonn, Bonn, Germany
| | | | | | | | | |
Collapse
|
27
|
James AW, Levi B, Nelson ER, Peng M, Commons GW, Lee M, Wu B, Longaker MT. Deleterious effects of freezing on osteogenic differentiation of human adipose-derived stromal cells in vitro and in vivo. Stem Cells Dev 2010; 20:427-39. [PMID: 20536327 DOI: 10.1089/scd.2010.0082] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Human adipose-derived stromal cells (hASCs) represent a multipotent stromal cell type with a proven capacity to undergo osteogenic differentiation. Many hurdles exist, however, between current knowledge of hASC osteogenesis and their potential future use in skeletal tissue regeneration. The impact of frozen storage on hASC osteogenic differentiation, for example, has not been studied in detail. To examine the effects of frozen storage, hASCs were harvested from lipoaspirate and either maintained in standard culture conditions or frozen for 2 weeks under standard conditions (90% fetal bovine serum, 10% dimethyl sulfoxide). Next, in vitro parameters of cell morphology (surface electron microscopy [EM]), cell viability and growth (trypan blue; bromodeoxyuridine incorporation), osteogenic differentiation (alkaline phosphatase, alizarin red, and quantitative real-time (RT)-polymerase chain reaction), and adipogenic differentiation (Oil red O staining and quantitative RT-polymerase chain reaction) were performed. Finally, in vivo bone formation was assessed using a critical-sized cranial defect in athymic mice, utilizing a hydroxyapatite (HA)-poly(lactic-co-glycolic acid) scaffold for ASC delivery. Healing was assessed by serial microcomputed tomography scans and histology. Freshly derived ASCs differed significantly from freeze-thaw ASCs in all markers examined. Surface EM showed distinct differences in cellular morphology. Proliferation, and osteogenic and adipogenic differentiation were all significantly hampered by the freeze-thaw process in vitro (*P < 0.01). In vivo, near complete healing was observed among calvarial defects engrafted with fresh hASCs. This was in comparison to groups engrafted with freeze-thaw hASCs that showed little healing (*P < 0.01). Finally, recombinant insulin-like growth factor 1 or recombinant bone morphogenetic protein 4 was observed to increase or rescue in vitro osteogenic differentiation among frozen hASCs (*P < 0.01). The freezing of ASCs for storage significantly impacts their biology, both in vitro and in vivo. The ability of ASCs to successfully undergo osteogenic differentiation after freeze-thaw is substantively muted, both in vitro and in vivo. The use of recombinant proteins, however, may be used to mitigate the deleterious effects of the freeze-thaw process.
Collapse
Affiliation(s)
- Aaron W James
- Hagey Pediatric Regenerative Research Laboratory, Plastic and Reconstructive Surgery Division, Department of Surgery, Stanford University School of Medicine, Stanford, California 94305-5148, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Levi B, James AW, Nelson ER, Li S, Peng M, Commons GW, Lee M, Wu B, Longaker MT. Human adipose-derived stromal cells stimulate autogenous skeletal repair via paracrine Hedgehog signaling with calvarial osteoblasts. Stem Cells Dev 2010; 20:243-57. [PMID: 20698749 DOI: 10.1089/scd.2010.0250] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Human adipose-derived stromal cells (hASCs) have the proven capacity to ossify skeletal defects. The mechanisms whereby hASCs stimulate bone repair are not fully understood. In this study, we examined the potential for hASCs to stimulate autogenous repair of a mouse calvarial defect. Immunofluoresence, osteogenic stains, and surface electron microscopy were used to demonstrate osteogenic differentiation of hASCs. hASCs were engrafted into 4 mm calvarial defects in athymic mice using an osteoconductive scaffold. Analysis included microcomputed tomography, histology, in situ hybridization, and quantitative real-time-polymerase chain reaction. Next, the in vitro interaction between hASCs and mouse calvarial osteoblasts (mOBs) was assessed by the conditioned medium and coculture assays. The medium was supplemented with Hedgehog signaling modifiers, including recombinant N-terminal Sonic hedgehog, smoothened agonist, and cyclopamine. Finally, cyclopamine was delivered in vivo to hASC-engrafted defects. Significant calvarial healing was observed among hASC-engrafted defects compared with control groups (no treatment or scaffold alone) (*P<0.05). hASCs showed evidence of stimulation of host mouse osteogenesis, including (1) increased expression of bone markers at the defect edge by in situ hybridization, and (2) increased host osteogenic gene expression by species-specific quantitative real-time polymerase chain reaction. Using the conditioned medium or coculture assays, hASCs stimulated mOB osteogenic differentiation, accompanied by Hedgehog signaling activation. N-terminal Sonic hedgehog or smoothened agonist replicated, while cyclopamine reversed, the pro-osteogenic effect of the conditioned medium on mOBs. Finally, cyclopamine injection arrested bone formation in vivo. hASCs heal critical-sized mouse calvarial defects, this is, at least in part, via stimulation of autogenous healing of the host defect. Our studies suggest that hASC-derived Hedgehog signaling may play a paracrine role in skeletal repair.
Collapse
Affiliation(s)
- Benjamin Levi
- Hagey Laboratory for Pediatric Regenerative Medicine, Plastic and Reconstructive Surgery Division, Department of Surgery, Stanford University School of Medicine, Stanford, California 94305-5148, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Paracrine interaction between adipose-derived stromal cells and cranial suture-derived mesenchymal cells. Plast Reconstr Surg 2010; 126:806-821. [PMID: 20811214 DOI: 10.1097/prs.0b013e3181e5f81a] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Adipose-derived stromal cells are a potential cell source for the successful healing of skeletal defects. In this study, the authors sought to investigate the potential for cranial suture-derived mesenchymal cells to promote the osteogenic differentiation of adipose-derived stromal cells. Various reports have previously examined the unique in vitro attributes of suture-derived mesenchymal cells; this study sought to extend those findings. METHODS Suture-derived mesenchymal cells were isolated from wild-type mice (n = 30) from both fusing posterofrontal and patent sagittal sutures. Cells were placed in Transwell inserts with human adipose-derived stromal cells (n = 5 patients) with osteogenic differentiation medium with or without recombinant Noggin (10 to 400 ng/ml). Specific gene expression of osteogenic markers and Hedgehog pathway were assayed; standard osteogenic assays (alkaline phosphatase and alizarin red staining) were performed. All assays were performed in triplicate. RESULTS Both posterofrontal and sagittal suture-derived mesenchymal cells induced osteogenic differentiation of adipose-derived stromal cells (p < 0.05). Posterofrontal suture-derived mesenchymal cells induced adipose-derived stromal cell osteogenesis to a greater degree than sagittal suture-derived mesenchymal cells (p < 0.05). This was accompanied by an increase in bone morphogenetic protein expression (p < 0.05). Finally, recombinant Noggin mitigated the pro-osteogenic effects of co-culture accompanied by a reduction in Hedgehog signaling (p < 0.05). CONCLUSIONS Suture-derived mesenchymal cells secrete paracrine factors that induce osteogenic differentiation of multipotent stromal cells (human adipose-derived stromal cells). Cells derived from the fusing posterofrontal suture do this to a significantly greater degree than cells from the patent sagittal suture. Enhanced bone morphogenetic protein and Hedgehog signaling may underlie this paracrine effect.
Collapse
|
30
|
Levi B, James AW, Glotzbach JP, Wan DC, Commons GW, Longaker MT. Depot-Specific Variation in the Osteogenic and Adipogenic Potential of Human Adipose-Derived Stromal Cells. Plast Reconstr Surg 2010; 126:822-834. [DOI: 10.1097/prs.0b013e3181e5f892] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
31
|
Lemor A, Mielenz M, Altmann M, Von Borell E, Sauerwein H. ORIGINAL ARTICLE: mRNA abundance of adiponectin and its receptors, leptin and visfatin and of G-protein coupled receptor 41 in five different fat depots from sheep. J Anim Physiol Anim Nutr (Berl) 2010; 94:e96-101. [DOI: 10.1111/j.1439-0396.2010.00987.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
O'Rourke RW, Metcalf MD, White AE, Madala A, Winters BR, Maizlin II, Jobe BA, Roberts CT, Slifka MK, Marks DL. Depot-specific differences in inflammatory mediators and a role for NK cells and IFN-gamma in inflammation in human adipose tissue. Int J Obes (Lond) 2009; 33:978-90. [PMID: 19564875 DOI: 10.1038/ijo.2009.133] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Adipose tissue is a primary in vivo site of inflammation in obesity. Excess visceral adipose tissue (VAT), when compared to subcutaneous adipose tissue (SAT), imparts an increased risk of obesity-related comorbidities and mortality, and exhibits differences in inflammation. Defining depot-specific differences in inflammatory function may reveal underlying mechanisms of adipose-tissue-based inflammation. METHODS Stromovascular cell fractions (SVFs) from VAT and SAT from obese humans undergoing bariatric surgery were studied in an in vitro culture system with transcriptional profiling, flow cytometric phenotyping, enzyme-linked immunosorbent assay and intracellular cytokine staining. RESULTS Transcriptional profiling of SVF revealed differences in inflammatory transcript levels in VAT relative to SAT, including elevated interferon-gamma (IFN-gamma) transcript levels. VAT demonstrated a broad leukocytosis relative to SAT that included macrophages, T cells and natural killer (NK) cells. IFN-gamma induced a proinflammatory cytokine expression pattern in SVF and adipose tissue macrophages (ATM). NK cells, which constitutively expressed IFN-gamma, were present at higher frequency in VAT relative to SAT. Both T and NK cells from SVF expressed IFN-gamma on activation, which was associated with tumor necrosis factor-alpha expression in macrophages. CONCLUSION These data suggest involvement of NK cells and IFN-gamma in regulating ATM phenotype and function in human obesity and a potential mechanism for the adverse physiologic effects of VAT.
Collapse
Affiliation(s)
- R W O'Rourke
- Department of Surgery, Oregon Health and Science University, Portland, OR 97239-3098, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Pérez-Pérez R, Ortega-Delgado FJ, García-Santos E, López JA, Camafeita E, Ricart W, Fernández-Real JM, Peral B. Differential Proteomics of Omental and Subcutaneous Adipose Tissue Reflects Their Unalike Biochemical and Metabolic Properties. J Proteome Res 2009; 8:1682-93. [DOI: 10.1021/pr800942k] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Rafael Pérez-Pérez
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas & Universidad Autónoma de Madrid, E-28029 Madrid, Spain, Department of Diabetes, Endocrinology and Nutrition, and CIBEROBN Fisiopatología de la Obesidad y Nutrición, Hospital Dr. Josep Trueta, E-17007 Girona, Spain, Unidad de Proteomica, Centro Nacional de Investigaciones Cardiovasculares (CNIC), E-28029 Madrid, Spain
| | - Francisco J. Ortega-Delgado
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas & Universidad Autónoma de Madrid, E-28029 Madrid, Spain, Department of Diabetes, Endocrinology and Nutrition, and CIBEROBN Fisiopatología de la Obesidad y Nutrición, Hospital Dr. Josep Trueta, E-17007 Girona, Spain, Unidad de Proteomica, Centro Nacional de Investigaciones Cardiovasculares (CNIC), E-28029 Madrid, Spain
| | - Eva García-Santos
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas & Universidad Autónoma de Madrid, E-28029 Madrid, Spain, Department of Diabetes, Endocrinology and Nutrition, and CIBEROBN Fisiopatología de la Obesidad y Nutrición, Hospital Dr. Josep Trueta, E-17007 Girona, Spain, Unidad de Proteomica, Centro Nacional de Investigaciones Cardiovasculares (CNIC), E-28029 Madrid, Spain
| | - Juan A. López
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas & Universidad Autónoma de Madrid, E-28029 Madrid, Spain, Department of Diabetes, Endocrinology and Nutrition, and CIBEROBN Fisiopatología de la Obesidad y Nutrición, Hospital Dr. Josep Trueta, E-17007 Girona, Spain, Unidad de Proteomica, Centro Nacional de Investigaciones Cardiovasculares (CNIC), E-28029 Madrid, Spain
| | - Emilio Camafeita
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas & Universidad Autónoma de Madrid, E-28029 Madrid, Spain, Department of Diabetes, Endocrinology and Nutrition, and CIBEROBN Fisiopatología de la Obesidad y Nutrición, Hospital Dr. Josep Trueta, E-17007 Girona, Spain, Unidad de Proteomica, Centro Nacional de Investigaciones Cardiovasculares (CNIC), E-28029 Madrid, Spain
| | - Wifredo Ricart
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas & Universidad Autónoma de Madrid, E-28029 Madrid, Spain, Department of Diabetes, Endocrinology and Nutrition, and CIBEROBN Fisiopatología de la Obesidad y Nutrición, Hospital Dr. Josep Trueta, E-17007 Girona, Spain, Unidad de Proteomica, Centro Nacional de Investigaciones Cardiovasculares (CNIC), E-28029 Madrid, Spain
| | - José-Manuel Fernández-Real
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas & Universidad Autónoma de Madrid, E-28029 Madrid, Spain, Department of Diabetes, Endocrinology and Nutrition, and CIBEROBN Fisiopatología de la Obesidad y Nutrición, Hospital Dr. Josep Trueta, E-17007 Girona, Spain, Unidad de Proteomica, Centro Nacional de Investigaciones Cardiovasculares (CNIC), E-28029 Madrid, Spain
| | - Belén Peral
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas & Universidad Autónoma de Madrid, E-28029 Madrid, Spain, Department of Diabetes, Endocrinology and Nutrition, and CIBEROBN Fisiopatología de la Obesidad y Nutrición, Hospital Dr. Josep Trueta, E-17007 Girona, Spain, Unidad de Proteomica, Centro Nacional de Investigaciones Cardiovasculares (CNIC), E-28029 Madrid, Spain
| |
Collapse
|
34
|
Krusinová E, Pelikánová T. Fatty acid binding proteins in adipose tissue: a promising link between metabolic syndrome and atherosclerosis? Diabetes Res Clin Pract 2008; 82 Suppl 2:S127-34. [PMID: 18977052 DOI: 10.1016/j.diabres.2008.09.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Adipocyte/macrophage fatty acid binding protein (A-FABP) has been shown to be closely associated with metabolic syndrome, obesity and development of atherosclerosis. Moreover, A-FABP has been recently suggested as a potential therapeutic target of these abnormalities in animal models. The present review aims to summarize current knowledge on A-FABP functions and regulations both in animal models and humans, since the role of A-FABP in human physiology and disease has not been presently clarified.
Collapse
Affiliation(s)
- Eva Krusinová
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Vídenská 1958/9, 14021 Prague, Czech Republic
| | | |
Collapse
|
35
|
Baranova AV. Adipokine genetics: Unbalanced protein secretion by human adipose tissue as a cause of the metabolic syndrome. RUSS J GENET+ 2008. [DOI: 10.1134/s1022795408100050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
van Beek EA, Bakker AH, Kruyt PM, Vink C, Saris WH, Franssen-van Hal NLW, Keijer J. Comparative expression analysis of isolated human adipocytes and the human adipose cell lines LiSa-2 and PAZ6. Int J Obes (Lond) 2008; 32:912-21. [PMID: 18283285 DOI: 10.1038/ijo.2008.10] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To obtain insight in the extent to which the human cell lines LiSa-2 and PAZ6 resemble isolated primary human adipocytes. DESIGN A combination of cDNA subtraction (representative difference analysis; RDA) and cDNA microarray analysis was used to select adipose specific genes to compare isolated (pre-)adipocytes with (un)differentiated LiSa-2 and PAZ6 cells. MEASUREMENTS RDA was performed on adipose tissue against lung tissue. A total of 1400 isolated genes were sequenced and cDNA microarray technology was used for further adipose related gene selection. 30 genes that were found to be enriched in adipose tissue were used to compare isolated human adipocytes and LiSa-2 and PAZ6 cells in the differentiated and undifferentiated states. RESULTS RDA and microarray analysis resulted in the identification of adipose enriched genes, but not in adipose specific genes. Of the 30 most differentially expressed genes, as expected, most were related to lipid metabolism. The second category consisted of methyltransferases, DNMT1, DNMT3a, RNMT and SHMT2, of which the expression was differentiation dependent and higher in differentiated adipocytes. Using the 30 adipose expressed genes, it was found that isolated adipocytes on one hand, and PAZ6 and LiSa-2 adipocytes on the other, differ primarily in lipid metabolism. Furthermore, LiSa-2 cells seem to be more similar to isolated adipocytes than PAZ6 cells. CONCLUSION The LiSa-2 cell line is a good model for differentiated adipocytes, although one should keep in mind that the lipid metabolism in these cells deviates from the in vivo situation Furthermore, our results imply that methylation may have an important function in terminal adipocyte differentiation.
Collapse
Affiliation(s)
- E A van Beek
- RIKILT-Institute of Food Safety, Wageningen UR, Wageningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
37
|
Fernyhough ME, Okine E, Hausman G, Vierck JL, Dodson MV. PPARgamma and GLUT-4 expression as developmental regulators/markers for preadipocyte differentiation into an adipocyte. Domest Anim Endocrinol 2007; 33:367-78. [PMID: 17560753 DOI: 10.1016/j.domaniend.2007.05.001] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Revised: 05/07/2007] [Accepted: 05/08/2007] [Indexed: 12/25/2022]
Abstract
In this document, we have integrated knowledge about two major cellular markers found in cells of the adipocyte lineage (an adipogenic marker and a metabolic marker). This review provides information as to how differentiation of a cell (such as an adipofibroblast, fibroblast or preadipocyte) to become a viable (and new) adipocyte is under different regulation than that experienced by an immature adipocyte that is just beginning to accumulate lipid. The differentiation, prior to lipid-filling, involves PPARgamma. Subsequently, lipid-filling of the adipocyte relies on a late subset of genes and, depending on depot specificity, involves GLUT-4 or any number of other metabolic markers.
Collapse
Affiliation(s)
- M E Fernyhough
- Department of Animal Sciences, Washington State University, PO Box 646310, Pullman, WA 99164, United States
| | | | | | | | | |
Collapse
|