1
|
Zhang DD, Liu Y, Wang W, Wu W, Chen J, Wan L, Wu L, Huang XR, Lan HY, Yu X. SARS-CoV-2 N protein induces hypokalemia in acute kidney injury mice via ENaC-dependent mechanism. Mol Ther 2025:S1525-0016(25)00363-6. [PMID: 40336195 DOI: 10.1016/j.ymthe.2025.04.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 04/03/2025] [Accepted: 04/30/2025] [Indexed: 05/09/2025] Open
Abstract
Hypokalemia is a prevalent complication of COVID-19 patients with acute kidney injury (AKI); however, mechanisms have yet to be fully understood. By single-nucleus RNA sequencing, we found that COVID-19 patients with AKI were associated with a marked upregulation of the epithelial sodium channel (ENaC) in the renal tubular epithelial cells (TECs). By using a mouse model of AKI induced by kidney-specific overexpressing SARS-CoV-2 N protein, we detected that overexpression of renal SARS-CoV-2 N protein could induce hypokalemia and AKI, which was associated with the upregulation of ENaC, ROMK, and BK proteins. Functionally, a patch-clamp study revealed that the overexpression of SARS-CoV-2 N protein largely increased the ENaC current in the TECs. Mechanically, we uncovered that kidney-specific overexpressing SARS-CoV-2 N protein could activate ENaC to cause hypokalemia and AKI directly by binding to the ENaCα and ENaCγ subunits and indirectly by activating the p38 MAPK pathway. Importantly, treatment with an ENaC specific inhibitor could protect against SARS-CoV-2 N-induced hypokalemia and AKI, revealing a regulatory role and therapeutic target of ENaC in SARS-CoV-2 N-induced hypokalemia and AKI. In conclusion, hypokalemia in COVID-19 AKI is induced by SARS-CoV-2 N protein via the ENaC-dependent mechanism. Targeting ENaC may offer a novel therapy for COVID-19 patients with AKI.
Collapse
Affiliation(s)
- Dan-Dan Zhang
- Departments of Nephrology and Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Science, Guangzhou, China; Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Yang Liu
- Cancer Institute, The First Hospital of Jilin University, Changchun, Jilin 130000, China
| | - Wenbiao Wang
- Departments of Nephrology and Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Science, Guangzhou, China
| | - Wenjing Wu
- Departments of Nephrology and Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Science, Guangzhou, China; Department of Nephrology, Hubei Provincial Hospital of Traditional Chinese Medicine, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
| | - Junzhe Chen
- Department of Nephrology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Lin Wan
- Departments of Nephrology and Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Science, Guangzhou, China
| | - Liumei Wu
- Departments of Nephrology and Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Science, Guangzhou, China
| | - Xiao-Ru Huang
- Departments of Nephrology and Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Science, Guangzhou, China; Departments of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Hui-Yao Lan
- Departments of Nephrology and Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Science, Guangzhou, China; Departments of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China.
| | - Xueqing Yu
- Departments of Nephrology and Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Science, Guangzhou, China.
| |
Collapse
|
2
|
Sun Y, Xiao Z, Zhao H, An Y. Urinary dickkopf-3 as a predictor for postoperative acute kidney injury in the intensive care unit. Am J Med Sci 2025; 369:434-442. [PMID: 39561890 DOI: 10.1016/j.amjms.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/21/2024]
Abstract
BACKGROUND As a life-threatening complication in patients undergoing surgery, acute kidney injury (AKI) is strongly associated with a worse prognosis. Urinary dickkopf-related protein 3 (DKK3) has been identified as a biomarker for predicting postoperative AKI in patients undergoing cardiac surgery. OBJECTIVE To investigate the predictive value of urinary DKK3 on postoperative AKI and develop a clinical model based on the predictor for predicting the development of AKI within seven days for patients undergoing noncardiac surgery. METHODS All patients who were admitted to the Intensive Care Unit (ICU) after noncardiac surgery from March 2023 to June 2023 were included in this study. The patients' baseline data on demographic characteristics, lifestyle risk factors, medical history, clinical features, and laboratory tests before surgery were collected at the time of admission. Besides, the blood samples for cystatin C and routine laboratory tests and the urine samples for DKK3 tests were simultaneously collected at the time of admission to the ICU. In addition, the independent predictors of postoperative AKI were identified by univariate, multivariate, and LASSO analyses. Moreover, a nomogram for predicting postoperative AKI was developed based on these independent predictors. Finally, the nomogram was evaluated through calibration and decision curve analyses. RESULTS A total of 166 patients with a median age of 67 years old were included in this study, including 94 (56.63 %) males. Among these patients, 47 patients (28.3 %) developed postoperative AKI. Additionally, 7 independent risk factors, including preoperative serum creatinine, preoperative eGFR, preoperative serum albumin, preoperative serum potassium ion, cystatin C, uDKK3/uCr, and SOFA score, were selected by univariate and multivariate regression analyses. Eventually, 4 independent risk factors (including preoperative eGFR, cystatin C, uDKK3/uCr, and SOFA score) identified in this study by LASSO analyses were used to establish the nomogram. The area under the receiver operating characteristic (ROC) curve (AUC) for the prediction model was 0.868. The calibration curve and decision curve analysis results demonstrated that the nomogram had good prediction performance. CONCLUSIONS Urinary DKK3/creatinine was independently associated with postoperative AKI for patients in the ICU after noncardiac surgery. The nomogram constructed based on uDKK3/uCr, preoperative eGFR, cystatin C, and SOFA score showed a higher accuracy in predicting postoperative AKI.
Collapse
Affiliation(s)
- Yao Sun
- Department of Critical Care Medicine, Peking University People's Hospital, No.11 Xizhimen South Street, Xicheng District, Beijing 100044, PR China
| | - Zengli Xiao
- Department of Critical Care Medicine, Peking University People's Hospital, No.11 Xizhimen South Street, Xicheng District, Beijing 100044, PR China
| | - Huiying Zhao
- Department of Critical Care Medicine, Peking University People's Hospital, No.11 Xizhimen South Street, Xicheng District, Beijing 100044, PR China.
| | - Youzhong An
- Department of Critical Care Medicine, Peking University People's Hospital, No.11 Xizhimen South Street, Xicheng District, Beijing 100044, PR China.
| |
Collapse
|
3
|
Yan Q, Yan Q, Shen H, Wang T. Changes in kidney functions following acute infusion of low molecular weight polyvinylpyrrolidone in male rats. Physiol Rep 2025; 13:e70295. [PMID: 40156095 PMCID: PMC11953058 DOI: 10.14814/phy2.70295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/18/2025] [Accepted: 03/18/2025] [Indexed: 04/01/2025] Open
Abstract
Polyvinylpyrrolidone (PVP), a water-soluble homopolymer, has been widely used in food, beverage, medical, and experimental tissue preparations. However, the effect of PVP on renal functions remains unknown. We investigated the acute administration of low MW of PVP on renal functions and whether it produces a toxic effect on the kidney. Renal clearance experiments were performed in rats and showed PVP infusion elicited significant diuretic and natriuretic effects. Urine volume, absolute (ENa), and fractional (FENa) Na+ excretion were significantly increased. A relatively small kaliuretic effect was also observed. After 2 h of PVP infusion, blood urea nitrogen (BUN) and urinary concentrations of beta-N-glucosaminidase (NAG) did not change significantly. Alpha-1-microglobulin, an indicator of proximal tubule absorption ability, excretion increased 12-fold, indicating that a large portion of the fluid and Na+ loss is due to reduced absorption in the proximal tubule. The 24-fold increase in ENa and the 12-fold increase in α1-microglobulin excretion suggest that fluid and electrolyte absorption were also reduced in other nephron segments. We conclude that acute low molecular weight PVP infusion produces diuretic and natriuretic effects due to the osmotically induced reduction of proximal tubular absorption, and acute PVP infusion does not cause renal damage.
Collapse
Affiliation(s)
- Qi Yan
- Department of Cellular and Molecular Physiology, School of MedicineYale UniversityNew HavenConnecticutUSA
- Present address:
Department of Biostatistics, College of Public HealthUniversity of KentuckyLexingtonKentuckyUSA
| | - Qingshang Yan
- Department of Cellular and Molecular Physiology, School of MedicineYale UniversityNew HavenConnecticutUSA
| | - Henry Shen
- Department of Cellular and Molecular Physiology, School of MedicineYale UniversityNew HavenConnecticutUSA
| | - Tong Wang
- Department of Cellular and Molecular Physiology, School of MedicineYale UniversityNew HavenConnecticutUSA
| |
Collapse
|
4
|
Masi S, Dalpiaz H, Piludu S, Piani F, Fiorini G, Borghi C. New strategies for the treatment of hyperkalemia. Eur J Intern Med 2025; 132:18-26. [PMID: 39489630 DOI: 10.1016/j.ejim.2024.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/06/2024] [Accepted: 10/13/2024] [Indexed: 11/05/2024]
Abstract
Renin-angiotensin-aldosterone system inhibitors (RAASi) and mineralocorticoid receptor antagonists (MRAs) are key drugs in the management of patients with cardiovascular diseases (CVD), particularly those with hypertension, diabetes, chronic kidney disease and heart failure (HF), given their demonstrated effectiveness in reducing the risk of both surrogate and hard endpoints. Despite their positive impact on the outcome, patients with RAASi and MRAs are particularly vulnerable to hyperkalaemia, with approximately 50 % of these individuals experiencing two or more recurrences annually. The common practice of reducing the dose or discontinuing the treatment with RAASi and MRAs in conditions of hyperkalaemia results in suboptimal management of these patients, with a potential impact on their mortality and morbidity risk. Recent guidelines from cardiovascular and renal international societies increasingly recognize the need for alternative strategies to manage the risk of hyperkalaemia, allowing the continuation of RAASi and MRA therapies. In this review, we summarise the new potential options available to manage hyperkalaemia in patients with CVD and the recommendations of the most recent guidelines on the topic.
Collapse
Affiliation(s)
- Stefano Masi
- Department of Clinical and Experimental Medicine, University of Pisa, Italy.
| | - Herman Dalpiaz
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Italy
| | - Sara Piludu
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Italy
| | - Federica Piani
- Hypertension and Cardiovascular Disease Research Center, Medical and Surgical Sciences Department, Alma Mater Studiorum University of Bologna, Italy
| | - Giulia Fiorini
- Hypertension and Cardiovascular Disease Research Center, Medical and Surgical Sciences Department, Alma Mater Studiorum University of Bologna, Italy
| | - Claudio Borghi
- Hypertension and Cardiovascular Disease Research Center, Medical and Surgical Sciences Department, Alma Mater Studiorum University of Bologna, Italy; Cardiovascular Medicine Unit, Heart-Chest-Vascular Department, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Italy
| |
Collapse
|
5
|
Abate V, Vergatti A, Altavilla N, Garofano F, Salcuni AS, Rendina D, De Filippo G, Vescini F, D'Elia L. Potassium Intake and Bone Health: A Narrative Review. Nutrients 2024; 16:3016. [PMID: 39275337 PMCID: PMC11397259 DOI: 10.3390/nu16173016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/16/2024] Open
Abstract
Potassium is a cation involved in the resting phase of membrane potential. Diets rich in fresh fruit and vegetables, whole grains, dairy products, and coffee have high potassium content. The shift from a pre-agriculture diet to today's consumption has led to reduced potassium intake. Indeed, the Western diet pattern is characterized by a high daily intake of saturated fats, sugars, sodium, proteins from red meat, and refined carbohydrates with a low potassium intake. These reductions are also mirrored by high sodium intakes and a high consumption of acid-generating food, which promote a chronic state of low-grade metabolic acidosis. The low-grade metabolic acidosis is a cause of the bone-wasting effect. Therefore, a long-standing acidotic state brings into play the bone that contributes to the buffering process through an increase in osteoclastic resorption. In consideration of this background, we carried out a review that focused on the pathophysiological mechanisms of the relationship between dietary potassium intake and bone health, underlining the detrimental effects of the Western dietary patterns characterized by low potassium consumption.
Collapse
Affiliation(s)
- Veronica Abate
- Department of Clinical Medicine and Surgery, University Federico II, 80131 Naples, Italy
| | - Anita Vergatti
- Department of Clinical Medicine and Surgery, University Federico II, 80131 Naples, Italy
| | - Nadia Altavilla
- Department of Clinical Medicine and Surgery, University Federico II, 80131 Naples, Italy
| | - Francesca Garofano
- Department of Clinical Medicine and Surgery, University Federico II, 80131 Naples, Italy
| | - Antonio Stefano Salcuni
- Unit of Endocrinology and Metabolism, University-Hospital S. M. Misericordia, 33100 Udine, Italy
| | - Domenico Rendina
- Department of Clinical Medicine and Surgery, University Federico II, 80131 Naples, Italy
| | - Gianpaolo De Filippo
- Assistance Publique-Hôpitaux de Paris, Hôpital Robert Debré, Service d'Endocrinologie et Diabétologie, 75019 Paris, France
| | - Fabio Vescini
- Unit of Endocrinology and Metabolism, University-Hospital S. M. Misericordia, 33100 Udine, Italy
| | - Lanfranco D'Elia
- Department of Clinical Medicine and Surgery, University Federico II, 80131 Naples, Italy
| |
Collapse
|
6
|
Schary N, Edemir B, Todorov VT. A Possible Link between Cell Plasticity and Renin Expression in the Collecting Duct: A Narrative Review. Int J Mol Sci 2024; 25:9549. [PMID: 39273497 PMCID: PMC11395489 DOI: 10.3390/ijms25179549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
The hormone renin is produced in the kidney by the juxtaglomerular cells. It is the rate-limiting factor in the circulating renin-angiotensin-aldosterone system (RAAS), which contributes to electrolyte, water, and blood pressure homeostasis. In the kidneys, the distal tubule and the collecting duct are the key target segments for RAAS. The collecting duct is important for urine production and also for salt, water, and acid-base homeostasis. The critical functional role of the collecting duct is mediated by the principal and the intercalated cells and is regulated by different hormones like aldosterone and vasopressin. The collecting duct is not only a target for hormones but also a place of hormone production. It is accepted that renin is produced in the collecting duct at a low level. Several studies have described that the cells in the collecting duct exhibit plasticity properties because the ratio of principal to intercalated cells can change under specific circumstances. This narrative review focuses on two aspects of the collecting duct that remain somehow aside from mainstream research, namely the cell plasticity and the renin expression. We discuss the link between these collecting duct features, which we see as a promising area for future research given recent findings.
Collapse
Affiliation(s)
- Nicole Schary
- Department of Physiology and Pathophysiology, Center of Biomedical Education and Research (ZBAF), Faculty of Health—School of Medicine, Witten/Herdecke University, 58453 Witten, Germany;
| | - Bayram Edemir
- Department of Physiology and Pathophysiology, Center of Biomedical Education and Research (ZBAF), Faculty of Health—School of Medicine, Witten/Herdecke University, 58453 Witten, Germany;
- Department of Internal Medicine IV, Hematology and Oncology, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany
| | - Vladimir T. Todorov
- Department of Physiology and Pathophysiology, Center of Biomedical Education and Research (ZBAF), Faculty of Health—School of Medicine, Witten/Herdecke University, 58453 Witten, Germany;
- Experimental Nephrology and Division of Nephrology, Department of Internal Medicine III, University Hospital and Medical Faculty Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| |
Collapse
|
7
|
Wouda RD, Gritter M, Karsten M, Michels EH, Nieuweboer TM, Danser AJ, de Borst MH, Hoorn EJ, Rotmans JI, Vogt L. Kaliuresis and Intracellular Uptake of Potassium with Potassium Citrate and Potassium Chloride Supplements: A Randomized Controlled Trial. Clin J Am Soc Nephrol 2023; 18:1260-1271. [PMID: 37382933 PMCID: PMC10578626 DOI: 10.2215/cjn.0000000000000228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023]
Abstract
BACKGROUND A potassium replete diet is associated with lower cardiovascular risk but may increase the risk of hyperkalemia, particularly in people using renin-angiotensin-aldosterone system inhibitors. We investigated whether intracellular uptake and potassium excretion after an acute oral potassium load depend on the accompanying anion and/or aldosterone and whether this results in altered plasma potassium change. METHODS In this placebo-controlled interventional cross-over trial including 18 healthy individuals, we studied the acute effects of one oral load of potassium citrate (40 mmol), potassium chloride (40 mmol), and placebo in random order after overnight fasting. Supplements were administered after a 6-week period with and without lisinopril pretreatment. Linear mixed effect models were used to compare blood and urine values before and after supplementation and between the interventions. Univariable linear regression was used to determine the association between baseline variables and change in blood and urine values after supplementation. RESULTS During the 4-hour follow-up, the rise in plasma potassium was similar for all interventions. After potassium citrate, both red blood cell potassium-as measure of the intracellular potassium-and transtubular potassium gradient (TTKG)-reflecting potassium secretory capacity-were higher than after potassium chloride or potassium citrate with lisinopril pretreatment. Baseline aldosterone was significantly associated with TTKG after potassium citrate, but not after potassium chloride or potassium citrate with lisinopril pretreatment. The observed TTKG change after potassium citrate was significantly associated with urine pH change during this intervention ( R =0.60, P < 0.001). CONCLUSIONS With similar plasma potassium increase, red blood cell potassium uptake and kaliuresis were higher after an acute load of potassium citrate as compared with potassium chloride alone or pretreatment with lisinopril. CLINICAL TRIAL REGISTRY NAME AND REGISTRATION NUMBER Potassium supplementation in patients with chronic kidney disease and healthy subjects: effects on potassium and sodium balance, NL7618.
Collapse
Affiliation(s)
- Rosa D. Wouda
- Department of Internal Medicine, Section of Nephrology, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Martin Gritter
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Micky Karsten
- Department of Internal Medicine, Section of Nephrology, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Erik H.A. Michels
- Department of Internal Medicine, Section of Nephrology, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Tamar M. Nieuweboer
- Department of Internal Medicine, Section of Nephrology, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - A.H. Jan Danser
- Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Martin H. de Borst
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, Groningen, The Netherlands
| | - Ewout J. Hoorn
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Joris I. Rotmans
- Department of Internal Medicine, Division of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | - Liffert Vogt
- Department of Internal Medicine, Section of Nephrology, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Zardoost P, Khan Z, Kim R, Scott K, Wehrum HL. Stress-Dose Steroids: A Potential Therapeutic Option for Refractory Hyperkalemia. Cureus 2023; 15:e44770. [PMID: 37809248 PMCID: PMC10557372 DOI: 10.7759/cureus.44770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2023] [Indexed: 10/10/2023] Open
Abstract
Hyperkalemia refractory to standard temporization measures can be life-threatening, and urgent hemodialysis is often utilized as a final resort. Our patient presented with hyperkalemia that was multifactorial in etiology, with acute kidney injury complicated by adrenal insufficiency. Her hyperkalemia was refractory to temporization and excretion agents, and hemodialysis was being considered. Given a recent infection, surgery, and borderline hypotension with low adrenocorticotropic hormone, there was a concern for adrenal insufficiency. However, a full investigation for secondary adrenal insufficiency via magnetic resonance imaging could not be conducted as the patient suffered from claustrophobia. Continued concern for adrenal insufficiency prompted the initiation of intravenous hydrocortisone, and the patient's hyperkalemia resolved within 24 hours. While suspected adrenal insufficiency is already a basis for stress-dose steroids in the setting of pathologies such as severe sepsis, clinicians should have a low threshold for considering refractory hyperkalemia alone as an indication for stress-dose steroids. When dialysis is being considered as an option, this treatment modality should be given even more consideration. Adopting this practice may not only lead to improved mortality from hyperkalemia but also lead to fewer patients being exposed to the risks of dialysis.
Collapse
Affiliation(s)
- Pooya Zardoost
- Internal Medicine, OhioHealth Doctors Hospital, Columbus, USA
| | - Zeryab Khan
- Graduate Medical Education, OhioHealth Doctors Hospital, Columbus, USA
| | - Rachel Kim
- Graduate Medical Education, OhioHealth Doctors Hospital, Columbus, USA
| | - Kelsey Scott
- Graduate Medical Education, OhioHealth Doctors Hospital, Columbus, USA
| | - Henry L Wehrum
- Graduate Medical Education, OhioHealth Doctors Hospital, Columbus, USA
| |
Collapse
|
9
|
Lasaad S, Crambert G. Renal K + retention in physiological circumstances: focus on adaptation of the distal nephron and cross-talk with Na + transport systems. Front Physiol 2023; 14:1264296. [PMID: 37719462 PMCID: PMC10500064 DOI: 10.3389/fphys.2023.1264296] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/18/2023] [Indexed: 09/19/2023] Open
Abstract
Consumption of salt (NaCl) and potassium (K+) has been completely modified, switching from a rich-K+/low-NaCl diet in the hunter-gatherer population to the opposite in the modern, westernized population. The ability to conserve K+ is crucial to maintain the plasma K+ concentration in a physiological range when dietary K+ intake is decreased. Moreover, a chronic reduction in the K+ intake is correlated with an increased blood pressure, an effect worsened by a high-Na+ diet. The renal adaptation to a low-K+ diet in order to maintain the plasma K+ level in the normal range is complex and interconnected with the mechanisms of the Na+ balance. In this short review, we will recapitulate the general mechanisms allowing the plasma K+ value to remain in the normal range, when there is a necessity to retain K+ (response to low-K+ diet and adaptation to gestation), by focusing on the processes occurring in the most distal part of the nephron. We will particularly outline the mechanisms of K+ reabsorption and discuss the consequences of its absence on the Na+ transport systems and the regulation of the extracellular compartment volume and blood pressure.
Collapse
Affiliation(s)
- Samia Lasaad
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Université Paris Cité, Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France
- CNRS EMR 8228—Unité Métabolisme et Physiologie Rénale, Paris, France
| | - Gilles Crambert
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Université Paris Cité, Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France
- CNRS EMR 8228—Unité Métabolisme et Physiologie Rénale, Paris, France
| |
Collapse
|
10
|
Johnston JG, Welch AK, Cain BD, Sayeski PP, Gumz ML, Wingo CS. Aldosterone: Renal Action and Physiological Effects. Compr Physiol 2023; 13:4409-4491. [PMID: 36994769 PMCID: PMC11472823 DOI: 10.1002/cphy.c190043] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Aldosterone exerts profound effects on renal and cardiovascular physiology. In the kidney, aldosterone acts to preserve electrolyte and acid-base balance in response to changes in dietary sodium (Na+ ) or potassium (K+ ) intake. These physiological actions, principally through activation of mineralocorticoid receptors (MRs), have important effects particularly in patients with renal and cardiovascular disease as demonstrated by multiple clinical trials. Multiple factors, be they genetic, humoral, dietary, or otherwise, can play a role in influencing the rate of aldosterone synthesis and secretion from the adrenal cortex. Normally, aldosterone secretion and action respond to dietary Na+ intake. In the kidney, the distal nephron and collecting duct are the main targets of aldosterone and MR action, which stimulates Na+ absorption in part via the epithelial Na+ channel (ENaC), the principal channel responsible for the fine-tuning of Na+ balance. Our understanding of the regulatory factors that allow aldosterone, via multiple signaling pathways, to function properly clearly implicates this hormone as central to many pathophysiological effects that become dysfunctional in disease states. Numerous pathologies that affect blood pressure (BP), electrolyte balance, and overall cardiovascular health are due to abnormal secretion of aldosterone, mutations in MR, ENaC, or effectors and modulators of their action. Study of the mechanisms of these pathologies has allowed researchers and clinicians to create novel dietary and pharmacological targets to improve human health. This article covers the regulation of aldosterone synthesis and secretion, receptors, effector molecules, and signaling pathways that modulate its action in the kidney. We also consider the role of aldosterone in disease and the benefit of mineralocorticoid antagonists. © 2023 American Physiological Society. Compr Physiol 13:4409-4491, 2023.
Collapse
Affiliation(s)
- Jermaine G Johnston
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Amanda K Welch
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Brian D Cain
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - Peter P Sayeski
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
| | - Michelle L Gumz
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Charles S Wingo
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| |
Collapse
|
11
|
Pearce D, Manis AD, Nesterov V, Korbmacher C. Regulation of distal tubule sodium transport: mechanisms and roles in homeostasis and pathophysiology. Pflugers Arch 2022; 474:869-884. [PMID: 35895103 PMCID: PMC9338908 DOI: 10.1007/s00424-022-02732-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 02/03/2023]
Abstract
Regulated Na+ transport in the distal nephron is of fundamental importance to fluid and electrolyte homeostasis. Further upstream, Na+ is the principal driver of secondary active transport of numerous organic and inorganic solutes. In the distal nephron, Na+ continues to play a central role in controlling the body levels and concentrations of a more select group of ions, including K+, Ca++, Mg++, Cl-, and HCO3-, as well as water. Also, of paramount importance are transport mechanisms aimed at controlling the total level of Na+ itself in the body, as well as its concentrations in intracellular and extracellular compartments. Over the last several decades, the transporters involved in moving Na+ in the distal nephron, and directly or indirectly coupling its movement to that of other ions have been identified, and their interrelationships brought into focus. Just as importantly, the signaling systems and their components-kinases, ubiquitin ligases, phosphatases, transcription factors, and others-have also been identified and many of their actions elucidated. This review will touch on selected aspects of ion transport regulation, and its impact on fluid and electrolyte homeostasis. A particular focus will be on emerging evidence for site-specific regulation of the epithelial sodium channel (ENaC) and its role in both Na+ and K+ homeostasis. In this context, the critical regulatory roles of aldosterone, the mineralocorticoid receptor (MR), and the kinases SGK1 and mTORC2 will be highlighted. This includes a discussion of the newly established concept that local K+ concentrations are involved in the reciprocal regulation of Na+-Cl- cotransporter (NCC) and ENaC activity to adjust renal K+ secretion to dietary intake.
Collapse
Affiliation(s)
- David Pearce
- Department of Medicine, Division of Nephrology, and Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA USA
| | - Anna D. Manis
- Department of Medicine, Division of Nephrology, and Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA USA
| | - Viatcheslav Nesterov
- Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany, Erlangen, Germany
| | - Christoph Korbmacher
- Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany, Erlangen, Germany
| |
Collapse
|
12
|
Evolving concepts of TRPV4 in controlling flow-sensitivity of the renal nephron. CURRENT TOPICS IN MEMBRANES 2022; 89:75-94. [DOI: 10.1016/bs.ctm.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Wang Q. The role of dietary potassium and sodium in hypertension and cardiovascular damage and protection: A narrative review. HEART AND MIND 2022. [DOI: 10.4103/hm.hm_23_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
14
|
Nesterov V, Bertog M, Korbmacher C. High baseline ROMK activity in the mouse late distal convoluted and early connecting tubule probably contributes to aldosterone-independent K + secretion. Am J Physiol Renal Physiol 2022; 322:F42-F54. [PMID: 34843658 DOI: 10.1152/ajprenal.00252.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/18/2021] [Indexed: 11/22/2022] Open
Abstract
The renal outer medullary K+ channel (ROMK) is colocalized with the epithelial Na+ channel (ENaC) in the late distal convoluted tubule (DCT2), connecting tubule (CNT), and cortical collecting duct (CCD). ENaC-mediated Na+ absorption generates the electrical driving force for ROMK-mediated tubular K+ secretion, which is critically important for maintaining renal K+ homeostasis. ENaC activity is aldosterone dependent in the late CNT and early CCD (CNT/CCD) but aldosterone independent in the DCT2 and early CNT (DCT2/CNT). This suggests that under baseline conditions with low plasma aldosterone, ROMK-mediated K+ secretion mainly occurs in the DCT2/CNT. Therefore, we hypothesized that baseline ROMK activity is higher in the DCT2/CNT than in the CNT/CCD. To test this hypothesis, patch-clamp experiments were performed in the DCT2/CNT and CNT/CCD microdissected from mice maintained on a standard diet. In single-channel recordings from outside-out patches, we detected typical ROMK channel activity in both the DCT2/CNT and CNT/CCD and confirmed that ROMK is the predominant K+ channel in the apical membrane. Amiloride-sensitive and tertiapin-sensitive whole-cell currents were determined to assess ENaC and ROMK activity, respectively. As expected, baseline amiloride-sensitive current was high in the DCT2/CNT (∼370 pA) but low in the CNT/CCD (∼60 pA). Importantly, tertiapin-sensitive current was significantly higher in the DCT2/CNT than in the CNT/CCD (∼810 vs. ∼350 pA). We conclude that high ROMK activity in the DCT2/CNT is critical for aldosterone-independent renal K+ secretion under baseline conditions. A low-K+ diet significantly reduced ENaC but not ROMK activity in the DCT2/CNT. This suggests that modifying ENaC activity in the DCT2/CNT plays a key regulatory role in adjusting renal K+ excretion to dietary K+ intake.NEW & NOTEWORTHY ROMK-mediated renal K+ secretion is essential for maintaining K+ balance and requires a lumen negative transepithelial potential critically dependent on ENaC activity. Using microdissected distal mouse tubules, we demonstrated that baseline apical ROMK activity is high in the DCT2/CNT. Aldosterone-independent baseline ENaC activity is also high in the DCT2/CNT and downregulated by a low-K+ diet, which highlights the important role of the DCT2/CNT in regulating K+ secretion in an aldosterone-independent manner.
Collapse
Affiliation(s)
- Viatcheslav Nesterov
- Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Marko Bertog
- Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christoph Korbmacher
- Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
15
|
Hyndman KA, Isaeva E, Palygin O, Mendoza LD, Rodan AR, Staruschenko A, Pollock JS. Role of collecting duct principal cell NOS1β in sodium and potassium homeostasis. Physiol Rep 2021; 9:e15080. [PMID: 34665521 PMCID: PMC8525323 DOI: 10.14814/phy2.15080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/15/2021] [Accepted: 09/27/2021] [Indexed: 12/15/2022] Open
Abstract
The nitric oxide (NO)-generating enzyme, NO synthase-1β (NOS1β), is essential for sodium (Na+ ) homeostasis and blood pressure control. We previously showed that collecting duct principal cell NOS1β is critical for inhibition of the epithelial sodium channel (ENaC) during high Na+ intake. Previous studies on freshly isolated cortical collecting ducts (CCD) demonstrated that exogenous NO promotes basolateral potassium (K+ ) conductance through basolateral channels, presumably Kir 4.1 (Kcnj10) and Kir 5.1 (Kcnj16). We, therefore, investigated the effects of NOS1β knockout on Kir 4.1/Kir 5.1 channel activity. Indeed, in CHO cells overexpressing NOS1β and Kir 4.1/Kir 5.1, the inhibition of NO signaling decreased channel activity. Male littermate control and principal cell NOS1β knockout mice (CDNOS1KO) on a 7-day, 4% NaCl diet (HSD) were used to detect changes in basolateral K+ conductance. We previously demonstrated that CDNOS1KO mice have high circulating aldosterone despite a high-salt diet and appropriately suppressed renin. We observed greater Kir 4.1 cortical abundance and significantly greater Kir 4.1/Kir 5.1 single-channel activity in the principal cells from CDNOS1KO mice. Moreover, blocking aldosterone action with in vivo spironolactone treatment resulted in lower Kir 4.1 abundance and greater plasma K+ in the CDNOS1KO mice compared to controls. Lowering K+ content in the HSD prevented the high aldosterone and greater plasma Na+ of CDNOS1KO mice and normalized Kir 4.1 abundance. We conclude that during chronic HSD, lack of NOS1β leads to increased plasma K+ , enhanced circulating aldosterone, and activation of ENaC and Kir 4.1/Kir 5.1 channels. Thus, principal cell NOS1β is required for the regulation of both Na+ and K+ by the kidney.
Collapse
Affiliation(s)
- Kelly A. Hyndman
- Department of MedicineDivision of NephrologySection of Cardio‐Renal Physiology and MedicineUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Elena Isaeva
- Department of Cellular Biology, Neurobiology and AnatomyMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Oleg Palygin
- Division of NephrologyDepartment of MedicineMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Luciano D. Mendoza
- Department of MedicineDivision of NephrologySection of Cardio‐Renal Physiology and MedicineUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Aylin R. Rodan
- Molecular Medicine ProgramUniversity of UtahSalt Lake CityUtahUSA
- The Department of Internal MedicineDivision of Nephrology and HypertensionUniversity of UtahSalt Lake CityUtahUSA
- The Department of Human GeneticsUniversity of UtahSalt Lake CityUtahUSA
- The Medical ServiceVeterans Affairs Salt Lake City Health Care SystemSalt Lake CityUtahUSA
| | - Alexander Staruschenko
- Department of Molecular Pharmacology and PhysiologyUniversity of South FloridaTampaFloridaUSA
- The James A. Haley Veterans HospitalTampaFloridaUSA
| | - Jennifer S. Pollock
- Department of MedicineDivision of NephrologySection of Cardio‐Renal Physiology and MedicineUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| |
Collapse
|
16
|
Polidoro JZ, Rebouças NA, Girardi ACC. The Angiotensin II Type 1 Receptor-Associated Protein Attenuates Angiotensin II-Mediated Inhibition of the Renal Outer Medullary Potassium Channel in Collecting Duct Cells. Front Physiol 2021; 12:642409. [PMID: 34054566 PMCID: PMC8160308 DOI: 10.3389/fphys.2021.642409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/16/2021] [Indexed: 11/13/2022] Open
Abstract
Adjustments in renal K+ excretion constitute a central mechanism for K+ homeostasis. The renal outer medullary potassium (ROMK) channel accounts for the major K+ secretory route in collecting ducts during basal conditions. Activation of the angiotensin II (Ang II) type 1 receptor (AT1R) by Ang II is known to inhibit ROMK activity under the setting of K+ dietary restriction, underscoring the role of the AT1R in K+ conservation. The present study aimed to investigate whether an AT1R binding partner, the AT1R-associated protein (ATRAP), impacts Ang II-mediated ROMK regulation in collecting duct cells and, if so, to gain insight into the potential underlying mechanisms. To this end, we overexpressed either ATRAP or β-galactosidase (LacZ; used as a control), in M-1 cells, a model line of cortical collecting duct cells. We then assessed ROMK channel activity by employing a novel fluorescence-based microplate assay. Experiments were performed in the presence of 10−10 M Ang II or vehicle for 40 min. We observed that Ang II-induced a significant inhibition of ROMK in LacZ, but not in ATRAP-overexpressed M-1 cells. Inhibition of ROMK-mediated K+ secretion by Ang II was accompanied by lower ROMK cell surface expression. Conversely, Ang II did not affect the ROMK-cell surface abundance in M-1 cells transfected with ATRAP. Additionally, diminished response to Ang II in M-1 cells overexpressing ATRAP was accompanied by decreased c-Src phosphorylation at the tyrosine 416. Unexpectedly, reduced phospho-c-Src levels were also found in M-1 cells, overexpressing ATRAP treated with vehicle, suggesting that ATRAP can also downregulate this kinase independently of Ang II-AT1R activation. Collectively, our data support that ATRAP attenuates inhibition of ROMK by Ang II in collecting duct cells, presumably by reducing c-Src activation and blocking ROMK internalization. The potential role of ATRAP in K+ homeostasis and/or disorders awaits further investigation.
Collapse
Affiliation(s)
| | - Nancy Amaral Rebouças
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
17
|
|
18
|
Blanchard A, Brailly Tabard S, Lamaziere A, Bergerot D, Zhygalina V, Lorthioir A, Jacques A, Hourton D, Azizi M, Crambert G. Adrenal adaptation in potassium-depleted men: role of progesterone? Nephrol Dial Transplant 2020; 35:1901-1908. [PMID: 31369102 DOI: 10.1093/ndt/gfz135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 05/30/2019] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND In rodents, the stimulation of adrenal progesterone is necessary for renal adaptation under potassium depletion. Here, we sought to determine the role of progesterone in adrenal adaptation in potassium-depleted healthy human volunteers and compared our findings with data collected in patients with Gitelman syndrome (GS), a salt-losing tubulopathy. METHODS Twelve healthy young men were given a potassium-depleted diet for 7 days at a tertiary referral medical centre (NCT02297048). We measured by liquid chromatography coupled to tandem mass spectroscopy plasma steroid concentrations at Days 0 and 7 before and 30 min after treatment with tetracosactide. We compared these data with data collected in 10 GS patients submitted to tetracosactide test. RESULTS The potassium-depleted diet decreased plasma potassium in healthy subjects by 0.3 ± 0.1 mmol/L, decreased plasma aldosterone concentration by 50% (P = 0.0332) and increased plasma 17-hydroxypregnenolone concentration by 45% (P = 0.0232) without affecting other steroids. CYP17 activity, as assessed by 17-hydroxypregnenolone/pregnenolone ratio, increased by 60% (P = 0.0389). As compared with healthy subjects, GS patients had 3-fold higher plasma concentrations of aldosterone, 11-deoxycortisol (+30%) and delta 4-androstenedione (+14%). Their post-tetracosactide progesterone concentration was 2-fold higher than that of healthy subjects and better correlated to plasma potassium than to plasma renin. CONCLUSION The increase in 17-hydroxypregnenolone concentration after mild potassium depletion in otherwise healthy human subjects suggests that 17 hydroxylation of pregnenolone prevents the increase in progesterone observed in potassium-depleted mice. The unexpected over-response of non-mineralocorticoid steroids to tetracosactide in GS subjects suggests that the adrenal system not only adapts to sodium depletion but may also respond to hypokalaemia.
Collapse
Affiliation(s)
- Anne Blanchard
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Assistance Publique Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Centre d'Investigation Clinique, Paris, France.,INSERM, CIC-1418, Paris, France
| | - Sylvie Brailly Tabard
- Faculté de Médecine Paris-Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,Assistance Publique Hôpitaux de Paris, Hôpital de Bicêtre, Service de Génétique Moléculaire, Pharmacogénétique et Hormonologie, Le Kremlin-Bicêtre, France.,Inserm 1185 Faculté de Médecine Paris-Sud, Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Antonin Lamaziere
- Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine, Plateforme de Métabolomique, Peptidomique et de Dosage de Médicaments, Paris, France.,INSERM ERL1157, Le Kremlin-Bicêtre, France
| | | | - Valentina Zhygalina
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Assistance Publique Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Centre d'Investigation Clinique, Paris, France.,INSERM, CIC-1418, Paris, France
| | - Aurélien Lorthioir
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Assistance Publique Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Centre d'Investigation Clinique, Paris, France.,INSERM, CIC-1418, Paris, France
| | - Antoine Jacques
- Assistance Publique Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Unité de recherche clinique, Paris, France
| | - Delphine Hourton
- Assistance Publique Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Unité de recherche clinique, Paris, France
| | - Michel Azizi
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Assistance Publique Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Centre d'Investigation Clinique, Paris, France.,INSERM, CIC-1418, Paris, France
| | - Gilles Crambert
- Sorbonne Université, INSERM, Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, F-75006, Paris, France.,CNRS ERL 8228-Centre de Recherche des Cordeliers-Laboratoire de Physiologie Rénale et tubulopathies, Paris, France
| |
Collapse
|
19
|
Wall SM, Verlander JW, Romero CA. The Renal Physiology of Pendrin-Positive Intercalated Cells. Physiol Rev 2020; 100:1119-1147. [PMID: 32347156 PMCID: PMC7474261 DOI: 10.1152/physrev.00011.2019] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 11/06/2019] [Accepted: 11/12/2019] [Indexed: 12/13/2022] Open
Abstract
Intercalated cells (ICs) are found in the connecting tubule and the collecting duct. Of the three IC subtypes identified, type B intercalated cells are one of the best characterized and known to mediate Cl- absorption and HCO3- secretion, largely through the anion exchanger pendrin. This exchanger is thought to act in tandem with the Na+-dependent Cl-/HCO3- exchanger, NDCBE, to mediate net NaCl absorption. Pendrin is stimulated by angiotensin II and aldosterone administration via the angiotensin type 1a and the mineralocorticoid receptors, respectively. It is also stimulated in models of metabolic alkalosis, such as with NaHCO3 administration. In some rodent models, pendrin-mediated HCO3- secretion modulates acid-base balance. However, of probably more physiological or clinical significance is the role of these pendrin-positive ICs in blood pressure regulation, which occurs, at least in part, through pendrin-mediated renal Cl- absorption, as well as their effect on the epithelial Na+ channel, ENaC. Aldosterone stimulates ENaC directly through principal cell mineralocorticoid hormone receptor (ligand) binding and also indirectly through its effect on pendrin expression and function. In so doing, pendrin contributes to the aldosterone pressor response. Pendrin may also modulate blood pressure in part through its action in the adrenal medulla, where it modulates the release of catecholamines, or through an indirect effect on vascular contractile force. In addition to its role in Na+ and Cl- balance, pendrin affects the balance of other ions, such as K+ and I-. This review describes how aldosterone and angiotensin II-induced signaling regulate pendrin and the contribution of pendrin-positive ICs in the kidney to distal nephron function and blood pressure.
Collapse
Affiliation(s)
- Susan M Wall
- Departments of Medicine and Physiology, Emory University School of Medicine, Atlanta, Georgia; and Department of Medicine, University of Florida, Gainesville, Florida
| | - Jill W Verlander
- Departments of Medicine and Physiology, Emory University School of Medicine, Atlanta, Georgia; and Department of Medicine, University of Florida, Gainesville, Florida
| | - Cesar A Romero
- Departments of Medicine and Physiology, Emory University School of Medicine, Atlanta, Georgia; and Department of Medicine, University of Florida, Gainesville, Florida
| |
Collapse
|
20
|
Chen S, Feng X, Chen X, Zhuang Z, Xiao J, Fu H, Klein JD, Wang XH, Hoover RS, Eaton DC, Cai H. 14-3-3γ, a novel regulator of the large-conductance Ca 2+-activated K + channel. Am J Physiol Renal Physiol 2020; 319:F52-F62. [PMID: 32463725 DOI: 10.1152/ajprenal.00584.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
14-3-3γ is a small protein regulating its target proteins through binding to phosphorylated serine/threonine residues. Sequence analysis of large-conductance Ca2+-activated K+ (BK) channels revealed a putative 14-3-3 binding site in the COOH-terminal region. Our previous data showed that 14-3-3γ is widely expressed in the mouse kidney. Therefore, we hypothesized that 14-3-3γ has a novel role in the regulation of BK channel activity and protein expression. We used electrophysiology, Western blot analysis, and coimmunoprecipitation to examine the effects of 14-3-3γ on BK channels both in vitro and in vivo. We demonstrated the interaction of 14-3-3γ with BK α-subunits (BKα) by coimmunoprecipitation. In human embryonic kidney-293 cells stably expressing BKα, overexpression of 14-3-3γ significantly decreased BK channel activity and channel open probability. 14-3-3γ inhibited both total and cell surface BKα protein expression while enhancing ERK1/2 phosphorylation in Cos-7 cells cotransfected with flag-14-3-3γ and myc-BK. Knockdown of 14-3-3γ by siRNA transfection markedly increased BKα expression. Blockade of the ERK1/2 pathway by incubation with the MEK-specific inhibitor U0126 partially abolished 14-3-3γ-mediated inhibition of BK protein expression. Similarly, pretreatment of the lysosomal inhibitor bafilomycin A1 reversed the inhibitory effects of 14-3-3γ on BK protein expression. Furthermore, overexpression of 14-3-3γ significantly increased BK protein ubiquitination in embryonic kidney-293 cells stably expressing BKα. Additionally, 3 days of dietary K+ challenge reduced 14-3-3γ expression and ERK1/2 phosphorylation while enhancing renal BK protein expression and K+ excretion. These data suggest that 14-3-3γ modulates BK channel activity and protein expression through an ERK1/2-mediated ubiquitin-lysosomal pathway.
Collapse
Affiliation(s)
- Shan Chen
- Renal Divison, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia.,Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiuyan Feng
- Renal Divison, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia.,Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - Xinxin Chen
- Renal Divison, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Zhizhi Zhuang
- Renal Divison, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Jia Xiao
- Renal Divison, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Haian Fu
- Department of Pharmacology, Emory University, School of Medicine, Atlanta, Georgia
| | - Janet D Klein
- Renal Divison, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Xiaonan H Wang
- Renal Divison, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Robert S Hoover
- Renal Divison, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia.,Section of Nephrology, Atlanta Veterans Administration Medical Center, Decatur, Georgia.,Physiology, Emory University, School of Medicine, Atlanta, Georgia
| | - Douglas C Eaton
- Physiology, Emory University, School of Medicine, Atlanta, Georgia
| | - Hui Cai
- Renal Divison, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia.,Section of Nephrology, Atlanta Veterans Administration Medical Center, Decatur, Georgia.,Physiology, Emory University, School of Medicine, Atlanta, Georgia
| |
Collapse
|
21
|
Claudins in the Renal Collecting Duct. Int J Mol Sci 2019; 21:ijms21010221. [PMID: 31905642 PMCID: PMC6981911 DOI: 10.3390/ijms21010221] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 12/12/2022] Open
Abstract
The renal collecting duct fine-tunes urinary composition, and thereby, coordinates key physiological processes, such as volume/blood pressure regulation, electrolyte-free water reabsorption, and acid-base homeostasis. The collecting duct epithelium is comprised of a tight epithelial barrier resulting in a strict separation of intraluminal urine and the interstitium. Tight junctions are key players in enforcing this barrier and in regulating paracellular transport of solutes across the epithelium. The features of tight junctions across different epithelia are strongly determined by their molecular composition. Claudins are particularly important structural components of tight junctions because they confer barrier and transport properties. In the collecting duct, a specific set of claudins (Cldn-3, Cldn-4, Cldn-7, Cldn-8) is expressed, and each of these claudins has been implicated in mediating aspects of the specific properties of its tight junction. The functional disruption of individual claudins or of the overall barrier function results in defects of blood pressure and water homeostasis. In this concise review, we provide an overview of the current knowledge on the role of the collecting duct epithelial barrier and of claudins in collecting duct function and pathophysiology.
Collapse
|
22
|
Mutig K, Bachmann S. Hyperkalemia and blood pressure regulation. Nephrol Dial Transplant 2019; 34:iii26-iii35. [PMID: 31800077 DOI: 10.1093/ndt/gfz218] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Indexed: 11/12/2022] Open
Abstract
Hypertension is common in the general population. Management of hypertensive patients at risk of hyperkalemia is challenging due to potential life-threatening complications such as cardiac arrest. Chronic hyperkalemia is often associated with impaired renal ability to excrete excessive potassium ions (K+). This may refer to chronic kidney disease or certain pharmacological interventions, including broadly used renin-angiotensin-aldosterone system and calcineurin inhibitors. Understanding the intrinsic mechanisms permitting kidney adaptations to hyperkalemia is critical for choosing therapeutic strategies. Valuable insights were obtained from the analysis of familial hyperkalemic hypertension (FHHt) syndrome, which became a classic model for coincidence of high blood pressure and hyperkalemia. FHHt can be caused by mutations in several genes, all of them resulting in excessive activity of with-no-lysine kinases (WNKs) in the distal nephron of the kidney. WNKs have been increasingly recognized as key signalling enzymes in the regulation of renal sodium ions (Na+) and K+ handling, enabling adaptive responses to systemic shifts of potassium homoeostasis consequent to variations in dietary potassium intake or disease. The WNK signalling pathway recruits a complex protein network mediating catalytic and non-catalytic effects of distinct WNK isoforms on relevant Na+- or K+-transporting proteins. In this review article, we summarize recent progress in understanding WNK signalling. An update of available models for renal adaptation to hyperkalemic conditions is presented. Consequences for blood pressure regulation are discussed. Pharmacological targeting of WNKs or their substrates offers promising options to manage hypertension while preventing hyperkalemia.
Collapse
Affiliation(s)
- Kerim Mutig
- Institute of Vegetative Anatomy, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Department of Pharmacology, I.M. Sechenov First Moscow State Medical University of the Ministry of Healthcare of the Russian Federation (Sechenovskiy University), Moscow, Russia
| | - Sebastian Bachmann
- Institute of Vegetative Anatomy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
23
|
Ueda Y, Ookawara S, Miyazawa H, Ito K, Hirai K, Hoshino T, Morishita Y. Changes in Serum and Urinary Potassium Handling Associated with Renin-Angiotensin-Aldosterone System Inhibitors in Advanced Chronic Kidney Disease Patients. Cureus 2019; 11:e5561. [PMID: 31695981 PMCID: PMC6820673 DOI: 10.7759/cureus.5561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 09/04/2019] [Indexed: 12/31/2022] Open
Abstract
Objective This study aimed to (i) compare the extent of urinary potassium (K+) excretion in addition to the changes in serum K+ concentration: and (ii) clarify the association between changes in serum K+ concentration, urinary K+ excretion, and acid-base status with or without renin-angiotensin-aldosterone system (RAAS) inhibitors in patients with advanced chronic kidney disease (CKD) stages. Methods Six hundred and ninety-one patients with advanced CKD (CKD G3b, 161; G4, 271; G5, 259) were retrospectively evaluated. Differences in serum K+ concentration, urinary K+ excretion, and serum sodium and chloride differences (Na+-Cl-) were compared among patients with RAAS inhibitors, RAAS inhibitors and diuretic agents, and without either medication in each CKD stage. Results Serum K+ concentrations in patients with RAAS inhibitors were significantly higher than in those with RAAS inhibitors and diuretics in CKD stage G3b and the other two treatment groups in CKD stage G4. Urinary K+ excretion among the three groups did not differ significantly in each CKD stage. Serum Na+-Cl- differences in patients with RAAS inhibitors were significantly smaller than in those with RAAS inhibitors and diuretics in CKD stages G3b (p = 0.006) and the other two groups in CKD stage G4 (vs. RAAS inhibitors and diuretics, p <0.001; vs. without either medication, p = 0.008). Conclusion Our study demonstrated that RAAS inhibitor use might be associated with hyperkalemia via not decreased urinary K+ excretion but rather K+ redistribution from intracellular to extracellular fluid induced by the progression of metabolic acidosis in patients with advanced CKD, particularly stages G3b and G4.
Collapse
Affiliation(s)
- Yuichiro Ueda
- Internal Medicine, First Department of Integrated Medicine, Saitama Medical Center, Saitama, JPN
| | - Susumu Ookawara
- Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, JPN
| | - Haruhisa Miyazawa
- Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Saitama, JPN
| | - Kiyonori Ito
- Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Saitama, JPN
| | - Keiji Hirai
- Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, JPN
| | - Taro Hoshino
- Nephrology, Department of Internal Medicine, Saitama Red-Cross Hospital, Saitama, JPN
| | - Yoshiyuki Morishita
- Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Saitama, JPN
| |
Collapse
|
24
|
Fan J, Tatum R, Hoggard J, Chen YH. Claudin-7 Modulates Cl - and Na + Homeostasis and WNK4 Expression in Renal Collecting Duct Cells. Int J Mol Sci 2019; 20:ijms20153798. [PMID: 31382627 PMCID: PMC6696617 DOI: 10.3390/ijms20153798] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 07/30/2019] [Indexed: 12/17/2022] Open
Abstract
Claudin-7 knockout (CLDN7-/-) mice display renal salt wasting and dehydration phenotypes. To address the role of CLDN7 in kidneys, we established collecting duct (CD) cell lines from CLDN7+/+ and CLDN7-/- mouse kidneys. We found that deletion of CLDN7 increased the transepithelial resistance (TER) and decreased the paracellular permeability for Cl- and Na+ in CLDN7-/- CD cells. Inhibition of transcellular Cl- and Na+ channels has no significant effect on TER or dilution potentials. Current-voltage curves were linear in both CLDN7+/+ and CLDN7-/- CD cells, indicating that the ion flux was through the paracellular pathway. The impairment of Cl- and Na+ permeability phenotype can be rescued by CLDN7 re-expression. We also found that WNK4 (its mutations lead to hypertension) expression, but not WNK1, was significantly increased in CLDN7-/- CD cell lines as well as in primary CLDN7-/- CD cells, suggesting that the expression of WNK4 was modulated by CLDN7. In addition, deletion of CLDN7 upregulated the expression level of the apical epithelial sodium channel (ENaC), indicating a potential cross-talk between paracellular and transcellular transport systems. This study demonstrates that CLDN7 plays an important role in salt balance in renal CD cells and modulating WNK4 and ENaC expression levels that are vital in controlling salt-sensitive hypertension.
Collapse
Affiliation(s)
- Junming Fan
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Rodney Tatum
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - John Hoggard
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Yan-Hua Chen
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA.
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27834, USA.
| |
Collapse
|
25
|
Tomilin V, Mamenko M, Zaika O, Wingo CS, Pochynyuk O. TRPV4 deletion protects against hypokalemia during systemic K + deficiency. Am J Physiol Renal Physiol 2019; 316:F948-F956. [PMID: 30838874 PMCID: PMC6580258 DOI: 10.1152/ajprenal.00043.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/05/2019] [Accepted: 03/05/2019] [Indexed: 12/18/2022] Open
Abstract
Tight regulation of K+ balance is fundamental for normal physiology. Reduced dietary K+ intake, which is common in Western diets, often leads to hypokalemia and associated cardiovascular- and kidney-related pathologies. The distal nephron, and, specifically, the collecting duct (CD), is the major site of controlled K+ reabsorption via H+-K+-ATPase in the state of dietary K+ deficiency. We (Mamenko MV, Boukelmoune N, Tomilin VN, Zaika OL, Jensen VB, O'Neil RG, Pochynyuk OM. Kidney Int 91: 1398-1409, 2017) have previously demonstrated that the transient receptor potential vanilloid type 4 (TRPV4) Ca2+ channel, abundantly expressed in the CD, contributes to renal K+ handling by promoting flow-induced K+ secretion. Here, we investigated a potential role of TRPV4 in controlling H+-K+-ATPase-dependent K+ reabsorption in the CD. Treatment with a K+-deficient diet (<0.01% K+) for 7 days reduced serum K+ levels in wild-type (WT) mice from 4.3 ± 0.2 to 3.3 ± 0.2 mM but not in TRPV4-/- mice (4.3 ± 0.1 and 4.2 ± 0.3 mM, respectively). Furthermore, we detected a significant reduction in 24-h urinary K+ levels in TRPV4-/- compared with WT mice upon switching to K+-deficient diet. TRPV4-/- animals also had significantly more acidic urine on a low-K+ diet, but not on a regular (0.9% K+) or high-K+ (5% K+) diet, which is consistent with increased H+-K+-ATPase activity. Moreover, we detected a greatly accelerated H+-K+-ATPase-dependent intracellular pH extrusion in freshly isolated CDs from TRPV4-/- compared with WT mice fed a K+-deficient diet. Overall, our results demonstrate a novel kaliuretic role of TRPV4 by inhibiting H+-K+-ATPase-dependent K+ reabsorption in the CD. We propose that TRPV4 inhibition could be a novel strategy to manage certain hypokalemic states in clinical settings.
Collapse
Affiliation(s)
- Viktor Tomilin
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston , Houston, Texas
| | - Mykola Mamenko
- Department of Physiology, Medical College of Georgia, Augusta University , Augusta, Georgia
| | - Oleg Zaika
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston , Houston, Texas
| | - Charles S Wingo
- Division of Nephrology, Hypertension and Transplantation, Department of Medicine, University of Florida , Gainesville, Florida
- North Florida/South Georgia Veterans Health System, Gainesville, Florida
| | - Oleh Pochynyuk
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston , Houston, Texas
| |
Collapse
|
26
|
Sørensen MV, Saha B, Jensen IS, Wu P, Ayasse N, Gleason CE, Svendsen SL, Wang WH, Pearce D. Potassium acts through mTOR to regulate its own secretion. JCI Insight 2019; 5:126910. [PMID: 31013253 DOI: 10.1172/jci.insight.126910] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Potassium (K+) secretion by kidney tubule cells is central to electrolyte homeostasis in mammals. In the K+ secretory "principal" cells of the distal nephron, electrogenic Na+ transport by the epithelial sodium channel (ENaC) generates the electrical driving force for K+ transport across the apical membrane. Regulation of this process is attributable in part to aldosterone, which stimulates the gene transcription of the ENaC-regulatory kinase, SGK1. However, a wide range of evidence supports the conclusion that an unidentified aldosterone-independent pathway exists. We show here that in principal cells, K+ itself acts through the type 2 mTOR complex (mTORC2) to activate SGK1, which stimulates ENaC to enhance K+ excretion. The effect depends on changes in K+ concentration on the blood side of the cells, and requires basolateral membrane K+-channel activity. However, it does not depend on changes in aldosterone, or on enhanced distal delivery of Na+ from upstream nephron segments. These data strongly support the idea that K+ is sensed directly by principal cells to stimulate its own secretion by activating the mTORC2-SGK1 signaling module, and stimulate ENaC. We propose that this local effect acts in concert with aldosterone and increased Na+ delivery from upstream nephron segments to sustain K+ homeostasis.
Collapse
Affiliation(s)
- Mads Vaarby Sørensen
- Departments of Biomedicine and Physiology, Aarhus University, Aarhus, Denmark.,Aarhus Institute for Advanced Studies, Aarhus University, Aarhus, Denmark
| | - Bidisha Saha
- Department of Medicine, Division of Nephrology, and Department of Cellular and Molecular Pharmacology, UCSF, San Francisco, California, USA
| | - Iben Skov Jensen
- Departments of Biomedicine and Physiology, Aarhus University, Aarhus, Denmark
| | - Peng Wu
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
| | - Niklas Ayasse
- Departments of Biomedicine and Physiology, Aarhus University, Aarhus, Denmark
| | - Catherine E Gleason
- Department of Medicine, Division of Nephrology, and Department of Cellular and Molecular Pharmacology, UCSF, San Francisco, California, USA
| | | | - Wen-Hui Wang
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
| | - David Pearce
- Department of Medicine, Division of Nephrology, and Department of Cellular and Molecular Pharmacology, UCSF, San Francisco, California, USA
| |
Collapse
|
27
|
Forrester SJ, Booz GW, Sigmund CD, Coffman TM, Kawai T, Rizzo V, Scalia R, Eguchi S. Angiotensin II Signal Transduction: An Update on Mechanisms of Physiology and Pathophysiology. Physiol Rev 2018; 98:1627-1738. [PMID: 29873596 DOI: 10.1152/physrev.00038.2017] [Citation(s) in RCA: 723] [Impact Index Per Article: 103.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The renin-angiotensin-aldosterone system plays crucial roles in cardiovascular physiology and pathophysiology. However, many of the signaling mechanisms have been unclear. The angiotensin II (ANG II) type 1 receptor (AT1R) is believed to mediate most functions of ANG II in the system. AT1R utilizes various signal transduction cascades causing hypertension, cardiovascular remodeling, and end organ damage. Moreover, functional cross-talk between AT1R signaling pathways and other signaling pathways have been recognized. Accumulating evidence reveals the complexity of ANG II signal transduction in pathophysiology of the vasculature, heart, kidney, and brain, as well as several pathophysiological features, including inflammation, metabolic dysfunction, and aging. In this review, we provide a comprehensive update of the ANG II receptor signaling events and their functional significances for potential translation into therapeutic strategies. AT1R remains central to the system in mediating physiological and pathophysiological functions of ANG II, and participation of specific signaling pathways becomes much clearer. There are still certain limitations and many controversies, and several noteworthy new concepts require further support. However, it is expected that rigorous translational research of the ANG II signaling pathways including those in large animals and humans will contribute to establishing effective new therapies against various diseases.
Collapse
Affiliation(s)
- Steven J Forrester
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - George W Booz
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Curt D Sigmund
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Thomas M Coffman
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Tatsuo Kawai
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Victor Rizzo
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Rosario Scalia
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Satoru Eguchi
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| |
Collapse
|
28
|
Kamel KS, Schreiber M, Halperin ML. Renal potassium physiology: integration of the renal response to dietary potassium depletion. Kidney Int 2018; 93:41-53. [PMID: 29102372 DOI: 10.1016/j.kint.2017.08.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 07/31/2017] [Accepted: 08/03/2017] [Indexed: 01/30/2023]
Abstract
We summarize the current understanding of the physiology of the renal handling of potassium (K+), and present an integrative view of the renal response to K+ depletion caused by dietary K+ restriction. This renal response involves contributions from different nephron segments, and aims to diminish the rate of excretion of K+ as a result of: decreasing the rate of electrogenic (and increasing the rate of electroneutral) reabsorption of sodium in the aldosterone-sensitive distal nephron (ASDN), decreasing the abundance of renal outer medullary K+ channels in the luminal membrane of principal cells in the ASDN, decreasing the flow rate in the ASDN, and increasing the reabsorption of K+ in the cortical and medullary collecting ducts. The implications of this physiology for the association between K+ depletion and hypertension, and K+ depletion and formation of calcium kidney stones are discussed.
Collapse
Affiliation(s)
- Kamel S Kamel
- Renal Division, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada; Keenan Research Center, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada.
| | - Martin Schreiber
- Renal Division, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Mitchell L Halperin
- Renal Division, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada; Keenan Research Center, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| |
Collapse
|
29
|
Cardiac hypertrophy in chronic kidney disease—role of Aldosterone and FGF23. RENAL REPLACEMENT THERAPY 2018. [DOI: 10.1186/s41100-018-0152-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
30
|
Palygin O, Pochynyuk O, Staruschenko A. Distal tubule basolateral potassium channels: cellular and molecular mechanisms of regulation. Curr Opin Nephrol Hypertens 2018; 27:373-378. [PMID: 29894319 PMCID: PMC6217967 DOI: 10.1097/mnh.0000000000000437] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW Multiple clinical and translational evidence support benefits of high potassium diet; however, there many uncertainties underlying the molecular and cellular mechanisms determining effects of dietary potassium. Kir4.1 and Kir5.1 proteins form a functional heteromer (Kir4.1/Kir5.1), which is the primary inwardly rectifying potassium channel on the basolateral membrane of both distal convoluted tubule (DCT) and the collecting duct principal cells. The purpose of this mini-review is to summarize latest advances in our understanding of the evolution, physiological relevance and mechanisms controlling these channels. RECENT FINDINGS Kir4.1 and Kir5.1 channels play a critical role in determining electrolyte homeostasis in the kidney and blood pressure, respectively. It was reported that Kir4.1/Kir5.1 serves as potassium sensors in the distal nephron responding to variations in dietary intake and hormonal stimuli. Global and kidney specific knockouts of either channel resulted in hypokalemia and severe cardiorenal phenotypes. Furthermore, knock out of Kir5.1 in Dahl salt-sensitive rat background revealed the crucial role of the Kir4.1/Kir5.1 channel in salt-induced hypertension. SUMMARY Here, we focus on reviewing novel experimental evidence of the physiological function, expression and hormonal regulation of renal basolateral inwardly rectifying potassium channels. Further investigation of molecular and cellular mechanisms controlling Kir4.1 and Kir4.1/Kir5.1-mediating pathways and development of specific compounds targeting these channels function is essential for proper control of electrolyte homeostasis and blood pressure.
Collapse
Affiliation(s)
- Oleg Palygin
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Oleh Pochynyuk
- Department of Integrative Biology, University of Texas Health Science Center, Houston, TX 77030
| | | |
Collapse
|
31
|
Zhuang Z, Xiao J, Chen X, Hu X, Li R, Chen S, Feng X, Shen S, Ma HP, Zhuang J, Cai H. G protein pathway suppressor 2 enhanced the renal large-conductance Ca 2+-activated potassium channel expression via inhibiting ERK1/2 signaling pathway. Am J Physiol Renal Physiol 2018; 315:F503-F511. [PMID: 29767559 DOI: 10.1152/ajprenal.00041.2018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
G protein pathway suppressor 2 (GPS2) is a multifunctional protein and transcriptional regulation factor that is involved in the G protein MAPK signaling pathway. It has been shown that the MAPK signaling pathway plays an important role in the regulation of renal large-conductance Ca2+-activated potassium (BK) channels. In this study, we investigated the effects of GPS2 on BK channel activity and protein expression. In human embryonic kidney (HEK) BK stably expressing cells transfected with either GPS2 or its vector control, a single-cell recording showed that GPS2 significantly increased BK channel activity ( NPo), increasing BK open probability ( Po), and channel number ( N) compared with the control. In Cos-7 cells and HEK 293 T cells, GPS2 overexpression significantly enhanced the total protein expression of BK in a dose-dependent manner. Knockdown of GPS2 expression significantly decreased BK protein expression, while increasing ERK1/2 phosphorylation. Knockdown of ERK1/2 expression reversed the GPS2 siRNA-mediated inhibition of BK protein expression in Cos-7 cells. Pretreatments of Cos-7 cells with either the lysosomal inhibitor bafilomycin A1 or the proteasomal inhibitor MG132 partially reversed the inhibitory effects of GPS2 siRNA on BK protein expression. In addition, feeding a high-potassium diet significantly increased both GPS2 and BK protein abundance in mice. These data suggest that GPS2 enhances BK channel activity and its protein expression by reducing ERK1/2 signaling-mediated degradation of the channel.
Collapse
Affiliation(s)
- Zhizhi Zhuang
- Renal Division, the Second Affiliated Hospital, Wenzhou Medical University , Zhejiang , China.,Renal Division, Department of Medicine, Emory University School of Medicine , Atlanta, Georgia
| | - Jia Xiao
- Renal Division, Department of Medicine, Emory University School of Medicine , Atlanta, Georgia.,Xiangya Hospital, Central South University, Hunan, China
| | - Xinxin Chen
- Renal Division, the Second Affiliated Hospital, Wenzhou Medical University , Zhejiang , China.,Renal Division, Department of Medicine, Emory University School of Medicine , Atlanta, Georgia
| | - Xiaohan Hu
- Renal Division, the Second Affiliated Hospital, Wenzhou Medical University , Zhejiang , China
| | - Ruidian Li
- Renal Division, the Second Affiliated Hospital, Wenzhou Medical University , Zhejiang , China
| | - Shan Chen
- Renal Division, Department of Medicine, Emory University School of Medicine , Atlanta, Georgia
| | - Xiuyan Feng
- Renal Division, Department of Medicine, Emory University School of Medicine , Atlanta, Georgia.,Xiangya Hospital, Central South University, Hunan, China
| | - Saier Shen
- Renal Division, the Second Affiliated Hospital, Wenzhou Medical University , Zhejiang , China
| | - He-Ping Ma
- Department of Physiology, Emory University School of Medicine , Atlanta, Georgia
| | - Jieqiu Zhuang
- Renal Division, the Second Affiliated Hospital, Wenzhou Medical University , Zhejiang , China
| | - Hui Cai
- Renal Division, the Second Affiliated Hospital, Wenzhou Medical University , Zhejiang , China.,Renal Division, Department of Medicine, Emory University School of Medicine , Atlanta, Georgia.,Section of Nephrology, Atlanta Veterans Administration Medical Center, Decatur, Georgia
| |
Collapse
|
32
|
Long B, Warix JR, Koyfman A. Controversies in Management of Hyperkalemia. J Emerg Med 2018; 55:192-205. [DOI: 10.1016/j.jemermed.2018.04.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 02/07/2018] [Accepted: 04/10/2018] [Indexed: 12/24/2022]
|
33
|
Abstract
The kidneys regulate many vital functions that require precise control throughout the day. These functions, such as maintaining sodium balance or regulating arterial pressure, rely on an intrinsic clock mechanism that was commonly believed to be controlled by the central nervous system. Mounting evidence in recent years has unveiled previously underappreciated depth of influence by circadian rhythms and clock genes on renal function, at the molecular and physiological level, independent of other external factors. The impact of circadian rhythms in the kidney also affects individuals from a clinical standpoint, as the loss of rhythmic activity or clock gene expression have been documented in various cardiovascular diseases. Fortunately, the prognostic value of examining circadian rhythms may prove useful in determining the progression of a kidney-related disease, and chronotherapy is a clinical intervention that requires consideration of circadian and diurnal rhythms in the kidney. In this review, we discuss evidence of circadian regulation in the kidney from basic and clinical research in order to provide a foundation on which a great deal of future research is needed to expand our understanding of circadian relevant biology.
Collapse
Affiliation(s)
- Jermaine G Johnston
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - David M Pollock
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, United States.
| |
Collapse
|
34
|
Kardalas E, Paschou SA, Anagnostis P, Muscogiuri G, Siasos G, Vryonidou A. Hypokalemia: a clinical update. Endocr Connect 2018; 7:R135-R146. [PMID: 29540487 PMCID: PMC5881435 DOI: 10.1530/ec-18-0109] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 03/14/2018] [Indexed: 12/19/2022]
Abstract
Hypokalemia is a common electrolyte disturbance, especially in hospitalized patients. It can have various causes, including endocrine ones. Sometimes, hypokalemia requires urgent medical attention. The aim of this review is to present updated information regarding: (1) the definition and prevalence of hypokalemia, (2) the physiology of potassium homeostasis, (3) the various causes leading to hypokalemia, (4) the diagnostic steps for the assessment of hypokalemia and (5) the appropriate treatment of hypokalemia depending on the cause. Practical algorithms for the optimal diagnostic, treatment and follow-up strategy are presented, while an individualized approach is emphasized.
Collapse
Affiliation(s)
- Efstratios Kardalas
- Department of Endocrinology and DiabetesEvangelismos Hospital, Athens, Greece
| | - Stavroula A Paschou
- Division of Endocrinology and Diabetes'Aghia Sophia' Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Anagnostis
- Unit of Reproductive EndocrinologyFirst Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Giovanna Muscogiuri
- Division of EndocrinologyDepartment of Clinical Medicine and Surgery, 'Federico II' University of Naples, Naples, Italy
| | - Gerasimos Siasos
- First Department of CardiologyHippokration Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Andromachi Vryonidou
- Department of Endocrinology and DiabetesHellenic Red Cross Hospital, Athens, Greece
| |
Collapse
|
35
|
Tomilin VN, Zaika O, Subramanya AR, Pochynyuk O. Dietary K + and Cl - independently regulate basolateral conductance in principal and intercalated cells of the collecting duct. Pflugers Arch 2018; 470:339-353. [PMID: 29134279 PMCID: PMC9624487 DOI: 10.1007/s00424-017-2084-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 10/17/2017] [Accepted: 10/24/2017] [Indexed: 02/07/2023]
Abstract
The renal collecting duct contains two distinct cell types, principal and intercalated cells, expressing potassium Kir4.1/5.1 (KCNJ10/16) and chloride ClC-K2 (ClC-Kb in humans) channels on their basolateral membrane, respectively. Both channels are thought to play important roles in controlling systemic water-electrolyte balance and blood pressure. However, little is known about mechanisms regulating activity of Kir4.1/5.1 and ClC-K2/b. Here, we employed patch clamp analysis at the single channel and whole cell levels in freshly isolated mouse collecting ducts to investigate regulation of Kir4.1/5.1 and ClC-K2/b by dietary K+ and Cl- intake. Treatment of mice with high K+ and high Cl- diet (6% K+, 5% Cl-) for 1 week significantly increased basolateral K+-selective current, single channel Kir4.1/5.1 activity and induced hyperpolarization of basolateral membrane potential in principal cells when compared to values in mice on a regular diet (0.9% K+, 0.5% Cl-). In contrast, basolateral Cl--selective current and single channel ClC-K2/b activity was markedly decreased in intercalated cells under this condition. Substitution of dietary K+ to Na+ in the presence of high Cl- exerted a similar inhibiting action of ClC-K2/b suggesting that the channel is sensitive to variations in dietary Cl- per se. Cl--sensitive with-no-lysine kinase (WNK) cascade has been recently proposed to orchestrate electrolyte transport in the distal tubule during variations of dietary K+. However, co-expression of WNK1 or its major downstream effector Ste20-related proline-alanine-rich kinase (SPAK) had no effect on ClC-Kb over-expressed in Chinese hamster ovary (CHO) cells. Treatment of mice with high K+ diet without concomitant elevations in dietary Cl- (6% K+, 0.5% Cl-) elicited a comparable increase in basolateral K+-selective current, single channel Kir4.1/5.1 activity in principal cells, but had no significant effect on ClC-K2/b activity in intercalated cells. Furthermore, stimulation of aldosterone signaling by Deoxycorticosterone acetate (DOCA) recapitulated the stimulatory actions of high K+ intake on Kir4.1/5.1 channels in principal cells but was ineffective to alter ClC-K2/b activity and basolateral Cl- conductance in intercalated cells. In summary, we report that variations of dietary K+ and Cl- independently regulate basolateral potassium and chloride conductance in principal and intercalated cells. We propose that such discrete mechanism might contribute to fine-tuning of urinary excretion of electrolytes depending on dietary intake.
Collapse
Affiliation(s)
- Viktor N Tomilin
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, 6431 Fannin, Houston, TX, 77030, USA
| | - Oleg Zaika
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, 6431 Fannin, Houston, TX, 77030, USA
| | - Arohan R Subramanya
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Oleh Pochynyuk
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, 6431 Fannin, Houston, TX, 77030, USA.
| |
Collapse
|
36
|
Wall SM. Renal intercalated cells and blood pressure regulation. Kidney Res Clin Pract 2017; 36:305-317. [PMID: 29285423 PMCID: PMC5743040 DOI: 10.23876/j.krcp.2017.36.4.305] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 11/17/2017] [Accepted: 11/20/2017] [Indexed: 12/12/2022] Open
Abstract
Type B and non-A, non-B intercalated cells are found within the connecting tubule and the cortical collecting duct. Of these cell types, type B intercalated cells are known to mediate Cl- absorption and HCO3- secretion largely through pendrin-dependent Cl-/HCO3- exchange. This exchange is stimulated by angiotensin II administration and is also stimulated in models of metabolic alkalosis, for instance after aldosterone or NaHCO3 administration. In some rodent models, pendrin-mediated HCO3- secretion modulates acid-base balance. However, the role of pendrin in blood pressure regulation is likely of more physiological or clinical significance. Pendrin regulates blood pressure not only by mediating aldosterone-sensitive Cl- absorption, but also by modulating the aldosterone response for epithelial Na+ channel (ENaC)-mediated Na+ absorption. Pendrin regulates ENaC through changes in open channel of probability, channel surface density, and channels subunit total protein abundance. Thus, aldosterone stimulates ENaC activity through both direct and indirect effects, the latter occurring through its stimulation of pendrin expression and function. Therefore, pendrin contributes to the aldosterone pressor response. Pendrin may also modulate blood pressure in part through its action in the adrenal medulla, where it modulates the release of catecholamines, or through an indirect effect on vascular contractile force. This review describes how aldosterone and angiotensin II-induced signaling regulate pendrin and the contributory role of pendrin in distal nephron function and blood pressure.
Collapse
Affiliation(s)
- Susan M. Wall
- Departments of Medicine, Emory University School of Medicine, Atlanta, GA,
USA
- Physiology, Emory University School of Medicine, Atlanta, GA,
USA
| |
Collapse
|
37
|
Potassium regulation in the neonate. Pediatr Nephrol 2017; 32:2037-2049. [PMID: 28378030 DOI: 10.1007/s00467-017-3635-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 02/13/2017] [Accepted: 02/21/2017] [Indexed: 10/19/2022]
Abstract
Potassium, the major cation in intracelluar fluids, is essential for vital biological functions. Neonates maintain a net positive potassium balance, which is fundamental to ensure somatic growth but places these infants, especially those born prematurely, at risk for life-threatening disturbances in potassium concentration [K+] in the extracellular fluid compartment. Potassium conservation is achieved by maximizing gastrointestinal absorption and minimizing renal losses. A markedly low glomerular filtration rate, plus adaptations in tubular transport along the nephron, result in low potassium excretion in the urine of neonates. Careful evaluation of clinical data using reference values that are normal for the neonate's postmenstrual age is critical to avoid over-treating infants with laboratory results that represent physiologic values for their developmental stage. The treatment should be aimed at correcting the primary cause when possible. Alterations in the levels or sensitivity to aldosterone are common in neonates. In symptomatic patients, the disturbances in [K+] should be corrected promptly, with close electrocardiographic monitoring. Plasma [K+] should be monitored during the first 72 h of life in all premature infants born before 30 weeks of postmenstrual age as these infants are prone to develop non-oliguric hyperkalemia with potential serious complications.
Collapse
|
38
|
Dang VD, Jella KK, Ragheb RRT, Denslow ND, Alli AA. Lipidomic and proteomic analysis of exosomes from mouse cortical collecting duct cells. FASEB J 2017; 31:5399-5408. [PMID: 28821634 DOI: 10.1096/fj.201700417r] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 07/25/2017] [Indexed: 12/13/2022]
Abstract
Exosomes are endosome-derived nanovesicles that are involved in cellular communication and signaling. Exosomes are produced by epithelial cells and are found in biologic fluids including blood and urine. The packaged material within exosomes includes proteins and lipids, but the molecular comparison within exosome subtypes is largely unknown. The purpose of this study was to investigate differences between exosomes derived from the apical plasma membrane and basolateral plasma membrane of polarized murine cortical collecting duct principal cells. Nanoparticle tracking analysis showed that the size and concentration of apical and basolateral exosomes remained relatively stable across 3 different temperatures (23, 37, and 42°C). Liquid chromatography-tandem mass spectrometry analysis revealed marked differences between the proteins packaged within the two types of exosomes from the same cells. Several proteins expressed at the inner leaflet of the plasma membrane, including α-actinin-1, moesin, 14-3-3 protein ζ/δ, annexin A1/A3/A4/A5/A6, clathrin heavy chain 1, glyceraldehyde-3-phosphate dehydrogenase, α-enolase, filamin-A, and heat shock protein 90, were identified in samples of apical plasma membrane-derived exosomes, but not in basolateral plasma membrane exosomes from mouse cortical collecting duct cells. In addition to differences at the protein level, mass spectrometry-based shotgun lipidomics analysis showed significant differences in the lipid classes and fatty acid composition of the two types of exosomes. We found higher levels of sphingomyelin and lower levels of cardiolipin, among other phospholipids in the apical plasma membrane compared to the basolateral plasma membrane exosomes. The molecular analyses of exosome subtypes presented herein will contribute to our understanding of exosome biogenesis, and the results may have potential implications for biomarker discovery.-Dang, V. D., Jella, K. K., Ragheb, R. R. T., Denslow, N. D., Alli, A. A. Lipidomic and proteomic analysis of exosomes from mouse cortical collecting duct cells.
Collapse
Affiliation(s)
- Viet D Dang
- Department of Physiological Sciences, University of Florida, Gainesville, Florida, USA.,Center for Environmental and Human Toxicology, University of Florida, Gainesville, Florida, USA.,Department of Veterinary Diagnostic and Production Animal Production, Iowa State University, Ames, Iowa, USA
| | - Kishore Kumar Jella
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - Nancy D Denslow
- Department of Physiological Sciences, University of Florida, Gainesville, Florida, USA.,Center for Environmental and Human Toxicology, University of Florida, Gainesville, Florida, USA
| | - Abdel A Alli
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida, USA; .,Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
| |
Collapse
|
39
|
Weiner ID. Roles of renal ammonia metabolism other than in acid-base homeostasis. Pediatr Nephrol 2017; 32:933-942. [PMID: 27169421 PMCID: PMC5107182 DOI: 10.1007/s00467-016-3401-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 04/22/2016] [Accepted: 04/25/2016] [Indexed: 02/06/2023]
Abstract
The importance of renal ammonia metabolism in acid-base homeostasis is well known. However, the effects of renal ammonia metabolism other than in acid-base homeostasis are not as widely recognized. First, ammonia differs from almost all other solutes in the urine in that it does not result from arterial delivery. Instead, ammonia is produced by the kidney, and only a portion of the ammonia produced is excreted in the urine, with the remainder returned to the systemic circulation through the renal veins. In normal individuals, systemic ammonia addition is metabolized efficiently by the liver, but in patients with either acute or chronic liver disease, conditions that increase the addition of ammonia of renal origin to the systemic circulation can result in precipitation and/or worsening of hyperammonemia. Second, ammonia appears to serve as an intrarenal paracrine signaling molecule. Hypokalemia increases proximal tubule ammonia production and secretion as well as reabsorption in the thick ascending limb of the loop of Henle, thereby increasing delivery to the renal interstitium and the collecting duct. In the collecting duct, ammonia decreases potassium secretion and stimulates potassium reabsorption, thereby decreasing urinary potassium excretion and enabling feedback correction of the initiating hypokalemia. Finally, the stimulation of renal ammonia metabolism by hypokalemia may contribute to the development of metabolic alkalosis, which in turn can stimulate NaCl reabsorption and contribute to the intravascular volume expansion, increased blood pressure and diuretic resistance that can develop with hypokalemia. The evidence supporting these novel non-acid-base roles of renal ammonia metabolism is discussed in this review.
Collapse
Affiliation(s)
- I David Weiner
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine, PO Box 100224, Gainesville, FL, 32610-0224, USA.
- Nephrology and Hypertension Section, North Florida/South Georgia Veterans Health System, Gainesville, FL, USA.
| |
Collapse
|
40
|
Mamenko MV, Boukelmoune N, Tomilin VN, Zaika OL, Jensen VB, O'Neil RG, Pochynyuk OM. The renal TRPV4 channel is essential for adaptation to increased dietary potassium. Kidney Int 2017; 91:1398-1409. [PMID: 28187982 PMCID: PMC5429991 DOI: 10.1016/j.kint.2016.12.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/22/2016] [Accepted: 12/08/2016] [Indexed: 12/11/2022]
Abstract
To maintain potassium homeostasis, kidneys exert flow-dependent potassium secretion to facilitate kaliuresis in response to elevated dietary potassium intake. This process involves stimulation of calcium-activated large conductance maxi-K (BK) channels in the distal nephron, namely the connecting tubule and the collecting duct. Recent evidence suggests that the TRPV4 channel is a critical determinant of flow-dependent intracellular calcium elevations in these segments of the renal tubule. Here, we demonstrate that elevated dietary potassium intake (five percent potassium) increases renal TRPV4 mRNA and protein levels in an aldosterone-dependent manner and causes redistribution of the channel to the apical plasma membrane in native collecting duct cells. This, in turn, leads to augmented TRPV4-mediated flow-dependent calcium ion responses in freshly isolated split-opened collecting ducts from mice fed the high potassium diet. Genetic TRPV4 ablation greatly diminished BK channel activity in collecting duct cells pointing to a reduced capacity to excrete potassium. Consistently, elevated potassium intake induced hyperkalemia in TRPV4 knockout mice due to deficient renal potassium excretion. Thus, regulation of TRPV4 activity in the distal nephron by dietary potassium is an indispensable component of whole body potassium balance.
Collapse
Affiliation(s)
- Mykola V Mamenko
- Department of Integrative Biology and Pharmacology, the University of Texas Health Science Center at Houston, Houston, Texas, USA; Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Nabila Boukelmoune
- Department of Integrative Biology and Pharmacology, the University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Viktor N Tomilin
- Department of Integrative Biology and Pharmacology, the University of Texas Health Science Center at Houston, Houston, Texas, USA; Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russian Federation
| | - Oleg L Zaika
- Department of Integrative Biology and Pharmacology, the University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - V Behrana Jensen
- Department of Veterinary Medicine and Surgery, the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Roger G O'Neil
- Department of Integrative Biology and Pharmacology, the University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Oleh M Pochynyuk
- Department of Integrative Biology and Pharmacology, the University of Texas Health Science Center at Houston, Houston, Texas, USA.
| |
Collapse
|
41
|
Severe hyponatremia in a patient with schizophrenia associated with prolonged consciousness disturbance. CEN Case Rep 2017; 6:5-11. [PMID: 28509122 PMCID: PMC5438799 DOI: 10.1007/s13730-016-0234-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 09/19/2016] [Indexed: 11/12/2022] Open
Abstract
Hyponatremia presents with various central nervous system symptoms during its course and treatment. We treated a patient who presented with a prolonged consciousness disorder and was suspected of having complications of neuroleptic malignant syndrome and osmotic demyelination syndrome (ODS) during the treatment for his hyponatremia, which was caused by syndrome of inappropriate secretion of antidiuretic hormone (SIADH). The patient was a 30-year-old Japanese man who had been under treatment for schizophrenia. He presented with profound hyponatremia (96 mEq/L) and a consciousness disorder. Because he was taking a number of antipsychotic drugs and since psychogenic polydipsia was present along with laboratory findings, the patient was diagnosed with SIADH. However, the consciousness disorder reappeared after his serum sodium concentrations were normalized, and it persisted over a long period. Although ODS was suspected from the clinical course and imaging findings, there were several inconsistencies, such as the lack of quadriplegia. The patient also showed muscular rigidity and fever, and we, therefore, diagnosed complications of malignant hyperthermia syndrome caused by the discontinuation of all antipsychotic drugs at the time of onset. There have been no reports of complications of these two conditions, and we report this case for its clinically valuable information.
Collapse
|
42
|
Li Y, Hu H, Tian JB, Zhu MX, O'Neil RG. Dynamic coupling between TRPV4 and Ca 2+-activated SK1/3 and IK1 K + channels plays a critical role in regulating the K +-secretory BK channel in kidney collecting duct cells. Am J Physiol Renal Physiol 2017; 312:F1081-F1089. [PMID: 28274924 DOI: 10.1152/ajprenal.00037.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 02/24/2017] [Accepted: 02/27/2017] [Indexed: 12/24/2022] Open
Abstract
The large-conductance Ca2+-activated K+ channel, BK (KCNMA1), is expressed along the connecting tubule (CNT) and cortical collecting duct (CCD) where it underlies flow- and Ca2+-dependent K+ secretion. Its activity is partially under the control of the mechanosensitive transient receptor potential vanilloid type 4 (TRPV4) Ca2+-permeable channel. Recently, we identified three small-/intermediate-conductance Ca2+-activated K+ channels, SK1 (KCNN1), SK3 (KCNN3), and IK1 (KCNN4), with notably high Ca2+-binding affinities, that are expressed in CNT/CCD and may be regulated by TRPV4-mediated Ca2+ influx. The K+-secreting CCD mCCDcl1 cells, which express these channels, were used to determine whether SK1/3 and IK1 are activated on TRPV4 stimulation and whether they contribute to Ca2+ influx and activation of BK. Activation of TRPV4 (GSK1016790A) modestly depolarized the membrane potential and robustly increased intracellular Ca2+, [Ca2+]i Inhibition of both SK1/3 and IK1 by application of apamin and 1-[(2-chlorophenyl)diphenylmethyl]-1H-pyrazole (TRAM-34), respectively, further depolarized the membrane potential and markedly suppressed the TRPV4-mediated rise in [Ca2+]i Application of BK inhibitor iberiotoxin after activation of TRPV4 without apamin/TRAM-34 also reduced [Ca2+]i and further intensified membrane depolarization, demonstrating BK involvement. However, the BK-dependent effects on [Ca2+]i and membrane potential were largely abolished by pretreatment with apamin and TRAM-34, identical to that observed by separately suppressing TRPV4-mediated Ca2+ influx, demonstrating that SK1/3-IK1 channels potently contribute to TRPV4-mediated BK activation. Our data indicate a direct correlation between TRPV4-mediated Ca2+ signal and BK activation but where early activation of SK1/3 and IK1 channels are critical to sufficiently enhanced Ca2+ entry and [Ca2+]i levels required for activation of BK.
Collapse
Affiliation(s)
- Yue Li
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Hongxiang Hu
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Jin-Bin Tian
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Michael X Zhu
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Roger G O'Neil
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas
| |
Collapse
|
43
|
Palygin O, Pochynyuk O, Staruschenko A. Role and mechanisms of regulation of the basolateral K ir 4.1/K ir 5.1K + channels in the distal tubules. Acta Physiol (Oxf) 2017; 219:260-273. [PMID: 27129733 PMCID: PMC5086442 DOI: 10.1111/apha.12703] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 01/28/2016] [Accepted: 04/28/2016] [Indexed: 12/11/2022]
Abstract
Epithelial K+ channels are essential for maintaining electrolyte and fluid homeostasis in the kidney. It is recognized that basolateral inward-rectifying K+ (Kir ) channels play an important role in the control of resting membrane potential and transepithelial voltage, thereby modulating water and electrolyte transport in the distal part of nephron and collecting duct. Monomeric Kir 4.1 (encoded by Kcnj10 gene) and heteromeric Kir 4.1/Kir 5.1 (Kir 4.1 together with Kir 5.1 (Kcnj16)) channels are abundantly expressed at the basolateral membranes of the distal convoluted tubule and the cortical collecting duct cells. Loss-of-function mutations in KCNJ10 cause EAST/SeSAME tubulopathy in humans associated with salt wasting, hypomagnesaemia, metabolic alkalosis and hypokalaemia. In contrast, mice lacking Kir 5.1 have severe renal phenotype that, apart from hypokalaemia, is the opposite of the phenotype seen in EAST/SeSAME syndrome. Experimental advances using genetic animal models provided critical insights into the physiological role of these channels in electrolyte homeostasis and the control of kidney function. Here, we discuss current knowledge about K+ channels at the basolateral membrane of the distal tubules with specific focus on the homomeric Kir 4.1 and heteromeric Kir 4.1/Kir 5.1 channels. Recently identified molecular mechanisms regulating expression and activity of these channels, such as cell acidification, dopamine, insulin and insulin-like growth factor-1, Src family protein tyrosine kinases, as well as the role of these channels in NCC-mediated transport in the distal convoluted tubules, are also described.
Collapse
Affiliation(s)
- Oleg Palygin
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Oleh Pochynyuk
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | | |
Collapse
|
44
|
Baltar M, Costa A, Carreira LM. A Pilot Study Exploring the Plasma Potassium Variation in Dogs Undergoing Steroid Therapy and Its Clinical Importance. Top Companion Anim Med 2016; 31:73-77. [PMID: 27968757 DOI: 10.1053/j.tcam.2016.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 03/07/2016] [Indexed: 11/11/2022]
Abstract
In most situations in veterinary medicine, glucocorticoids are the drugs of choice used, that is, to reduce the inflammatory response or limit an inappropriate immune response. Their use in long-term therapy may cause side effects that may weaken the patient. The aim of the study was to evaluate possible variations in the plasma potassium concentrations and their clinical relevance in dogs undergoing steroid therapy with methylprednisolone in anti-inflammatory doses. The study used a sample of 21 dogs (n = 21) presented for consultation, with a clinical condition requiring a corticosteroid therapeutic protocol with an anti-inflammatory dose of methylprednisolone. All the individuals were submitted to a corticosteroid therapeutic protocol administered orally during 18 days. During this period, 3 time points were considered: T0 (the day the prescription was first given), T1 (3 days later), and T2 (8 days later). Blood samples were collected from a peripheral vein to measure plasma potassium concentrations in T0, T1, and T2. Corticosteroid therapy on an outpatient basis statistically significantly decreased plasma potassium levels, especially between T1 and T2 (P = .03). The plasma potassium levels decreased in 12.5% of the males, compared with a decrease of 23.1% in the females. No statistically significant relationships were observe between the decreased plasma potassium levels and age, clinical condition, and patient׳s body weight. However, we found a statistically significant association between decreased plasma potassium levels and sex. The study results may justify the need for the systematic prescription of potassium supplements in patients undergoing steroid therapy, similar to what already occurs in human medicine.
Collapse
Affiliation(s)
- Marina Baltar
- Anjos of Assis Veterinary Medicine Centre (CMVAA), Barreiro, Portugal
| | - Alexandra Costa
- Anjos of Assis Veterinary Medicine Centre (CMVAA), Barreiro, Portugal
| | - L Miguel Carreira
- Anjos of Assis Veterinary Medicine Centre (CMVAA), Barreiro, Portugal; Department of Clinic, Surgery, Faculty of Veterinary Medicine, University of Lisbon (FMV/ULisboa), Lisbon, Portugal; Centre for Interdisciplinary Research in Animal Health (CIISA), FMV/ULisboa, Lisbon, Portugal.
| |
Collapse
|
45
|
Keskin M, Kaya A, Tatlısu MA, Hayıroğlu Mİ, Uzman O, Börklü EB, Çinier G, Çakıllı Y, Yaylak B, Eren M. The effect of serum potassium level on in-hospital and long-term mortality in ST elevation myocardial infarction. Int J Cardiol 2016; 221:505-10. [DOI: 10.1016/j.ijcard.2016.07.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 07/04/2016] [Indexed: 10/21/2022]
|
46
|
Expression of a Diverse Array of Ca2+-Activated K+ Channels (SK1/3, IK1, BK) that Functionally Couple to the Mechanosensitive TRPV4 Channel in the Collecting Duct System of Kidney. PLoS One 2016; 11:e0155006. [PMID: 27159616 PMCID: PMC4861333 DOI: 10.1371/journal.pone.0155006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 04/22/2016] [Indexed: 12/02/2022] Open
Abstract
The voltage- and Ca2+-activated, large conductance K+ channel (BK, maxi-K) is expressed in the collecting duct system of kidney where it underlies flow- and Ca2+-dependent K+ excretion. To determine if other Ca2+-activated K+ channels (KCa) may participate in this process, mouse kidney and the K+-secreting mouse cortical collecting duct (CCD) cell line, mCCDcl1, were assessed for TRPV4 and KCa channel expression and cross-talk. qPCR mRNA analysis and immunocytochemical staining demonstrated TRPV4 and KCa expression in mCCDcl1 cells and kidney connecting tubule (CNT) and CCD. Three subfamilies of KCa channels were revealed: the high Ca2+-binding affinity small-conductance SK channels, SK1and SK3, the intermediate conductance channel, IK1, and the low Ca2+-binding affinity, BK channel (BKα subunit). Apparent expression levels varied in CNT/CCD where analysis of CCD principal cells (PC) and intercalated cells (IC) demonstrated differential staining: SK1:PC<IC, and SK3:PC>IC, IK1:PC>IC, BKα:PC = IC, and TRPV4:PC>IC. Patch clamp analysis and fluorescence Ca2+ imaging of mCCDcl1 cells demonstrated potent TRPV4-mediated Ca2+ entry and strong functional cross-talk between TRPV4 and KCa channels. TRPV4-mediated Ca2+ influx activated each KCa channel, as evidenced by selective inhibition of KCa channels, with each active KCa channel enhancing Ca2+ entry (due to membrane hyperpolarization). Transepithelial electrical resistance (TEER) analysis of confluent mCCDcl1 cells grown on permeable supports further demonstrated this cross-talk where TRPV4 activation induce a decrease in TEER which was partially restored upon selective inhibition of each KCa channel. It is concluded that SK1/SK3 and IK1 are highly expressed along with BKα in CNT and CCD and are closely coupled to TRPV4 activation as observed in mCCDcl1 cells. The data support a model in CNT/CCD segments where strong cross talk between TRPV4-mediated Ca2+ influx and each KCa channel leads to enhance Ca2+ entry which will support activation of the low Ca2+-binding affinity BK channel to promote BK-mediated K+ secretion.
Collapse
|
47
|
Grahammer F, Nesterov V, Ahmed A, Steinhardt F, Sandner L, Arnold F, Cordts T, Negrea S, Bertog M, Ruegg MA, Hall MN, Walz G, Korbmacher C, Artunc F, Huber TB. mTORC2 critically regulates renal potassium handling. J Clin Invest 2016; 126:1773-82. [PMID: 27043284 DOI: 10.1172/jci80304] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 02/18/2016] [Indexed: 12/12/2022] Open
Abstract
The mTOR pathway orchestrates cellular homeostasis. The rapamycin-sensitive mTOR complex (mTORC1) in the kidney has been widely studied; however, mTORC2 function in renal tubules is poorly characterized. Here, we generated mice lacking mTORC2 in the distal tubule (Rictorfl/fl Ksp-Cre mice), which were viable and had no obvious phenotype, except for a 2.5-fold increase in plasma aldosterone. Challenged with a low-Na+ diet, these mice adequately reduced Na+ excretion; however, Rictorfl/fl Ksp-Cre mice rapidly developed hyperkalemia on a high-K+ diet, despite a 10-fold increase in serum aldosterone levels, implying that mTORC2 regulates kaliuresis. Phosphorylation of serum- and glucocorticoid-inducible kinase 1 (SGK1) and PKC-α was absent in Rictorfl/fl Ksp-Cre mice, indicating a functional block in K+ secretion activation via ROMK channels. Indeed, patch-clamp experiments on split-open tubular segments from the transition zone of the late connecting tubule and early cortical collecting duct demonstrated that Ba2+-sensitive apical K+ currents were barely detectable in the majority of Rictorfl/fl Ksp-Cre mice. Conversely, epithelial sodium channel (ENaC) activity was largely preserved, suggesting that the reduced ability to maintain K+ homeostasis is the result of impaired apical K+ conductance and not a reduced electrical driving force for K+ secretion. Thus, these data unravel a vital and nonredundant role of mTORC2 for distal tubular K+ handling.
Collapse
|
48
|
Landegren N, Pourmousa Lindberg M, Skov J, Hallgren Å, Eriksson D, Lisberg Toft-Bertelsen T, MacAulay N, Hagforsen E, Räisänen-Sokolowski A, Saha H, Nilsson T, Nordmark G, Ohlsson S, Gustafsson J, Husebye ES, Larsson E, Anderson MS, Perheentupa J, Rorsman F, Fenton RA, Kämpe O. Autoantibodies Targeting a Collecting Duct-Specific Water Channel in Tubulointerstitial Nephritis. J Am Soc Nephrol 2016; 27:3220-3228. [PMID: 26984885 DOI: 10.1681/asn.2015101126] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 02/13/2016] [Indexed: 12/24/2022] Open
Abstract
Tubulointerstitial nephritis is a common cause of kidney failure and may have diverse etiologies. This form of nephritis is sometimes associated with autoimmune disease, but the role of autoimmune mechanisms in disease development is not well understood. Here, we present the cases of three patients with autoimmune polyendocrine syndrome type 1 who developed tubulointerstitial nephritis and ESRD in association with autoantibodies against kidney collecting duct cells. One of the patients developed autoantibodies targeting the collecting duct-specific water channel aquaporin 2, whereas autoantibodies of the two other patients reacted against the HOXB7 or NFAT5 transcription factors, which regulate the aquaporin 2 promoter. Our findings suggest that tubulointerstitial nephritis developed in these patients as a result of an autoimmune insult on the kidney collecting duct cells.
Collapse
Affiliation(s)
- Nils Landegren
- Department of Medicine (Solna), Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden; Science for Life Laboratory, Department of Medical Sciences, Uppsala Unversity, Uppsala, Sweden;
| | | | - Jakob Skov
- Department of Medicine (Solna), Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden; Science for Life Laboratory, Department of Medical Sciences, Uppsala Unversity, Uppsala, Sweden
| | - Åsa Hallgren
- Department of Medicine (Solna), Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden; Science for Life Laboratory, Department of Medical Sciences, Uppsala Unversity, Uppsala, Sweden
| | - Daniel Eriksson
- Department of Medicine (Solna), Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden; Science for Life Laboratory, Department of Medical Sciences, Uppsala Unversity, Uppsala, Sweden
| | | | - Nanna MacAulay
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | - Anne Räisänen-Sokolowski
- Department of Pathology, Helsinki University Hospital and Helsinki University, Helsinki, Finland
| | - Heikki Saha
- Department of Medicine, Tampere University Hospital Medical School, Tampere, Finland
| | | | | | | | | | - Eystein S Husebye
- Department of Medicine (Solna), Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden; Department of Clinical Science, University of Bergen and Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Erik Larsson
- Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Mark S Anderson
- Diabetes Center, University of California, San Francisco, California
| | - Jaakko Perheentupa
- The Hospital for Children and Adolescents, University of Helsinki, Helsinki, Finland; and
| | | | - Robert A Fenton
- Interactions of Proteins in Epithelial Transport Center, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Olle Kämpe
- Department of Medicine (Solna), Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden; Science for Life Laboratory, Department of Medical Sciences, Uppsala Unversity, Uppsala, Sweden
| |
Collapse
|
49
|
Cornelius RJ, Wang B, Wang-France J, Sansom SC. Maintaining K + balance on the low-Na +, high-K + diet. Am J Physiol Renal Physiol 2016; 310:F581-F595. [PMID: 26739887 DOI: 10.1152/ajprenal.00330.2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 12/29/2015] [Indexed: 02/07/2023] Open
Abstract
A low-Na+, high-K+ diet (LNaHK) is considered a healthier alternative to the "Western" high-Na+ diet. Because the mechanism for K+ secretion involves Na+ reabsorptive exchange for secreted K+ in the distal nephron, it is not understood how K+ is eliminated with such low Na+ intake. Animals on a LNaHK diet produce an alkaline load, high urinary flows, and markedly elevated plasma ANG II and aldosterone levels to maintain their K+ balance. Recent studies have revealed a potential mechanism involving the actions of alkalosis, urinary flow, elevated ANG II, and aldosterone on two types of K+ channels, renal outer medullary K+ and large-conductance K+ channels, located in principal and intercalated cells. Here, we review these recent advances.
Collapse
Affiliation(s)
- Ryan J Cornelius
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon; and
| | - Bangchen Wang
- Department of Cellular/Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Jun Wang-France
- Department of Cellular/Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Steven C Sansom
- Department of Cellular/Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
50
|
Sakai H, Fujii T, Takeguchi N. Proton-Potassium (H+/K+) ATPases: Properties and Roles in Health and Diseases. Met Ions Life Sci 2016; 16:459-83. [DOI: 10.1007/978-3-319-21756-7_13] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|