1
|
Su Y, Liang Y, Xu M, Gao B, Zhang S, Yang E, Yin S, Li D, Huang Z, Xie W. Modeling sarcoplasmic reticulum Ca 2+ in rat cardiomyocytes. BIOPHYSICS REPORTS 2024; 10:328-335. [PMID: 39539287 PMCID: PMC11554579 DOI: 10.52601/bpr.2024.240012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/10/2024] [Indexed: 11/16/2024] Open
Abstract
The sarcoplasmic reticulum (SR) primarily serves as the intracellular Ca2+ store in cardiac myocytes, mediating cellular function under cardiac physiology and diseases. However, the properties of cardiac SR Ca2+ have not yet been fully determined, particularly in rats and mice, which are the most commonly used experimental species in studies on cardiac physiology and diseases. Here, we developed a spatially detailed numerical model to deduce Ca2+ movements inside the junctional SR (jSR) cisternae of rat cardiomyocytes. Our model accurately reproduced the jSR Ca2+ kinetics of local and global SR Ca2+ releases reported in a recent experimental study. With this model, we revealed that jSR Ca2+ kinetics was mostly determined by the total release flux via type 2 ryanodine receptor (RyR2) channels but not by RyR2 positioning. Although Ca2+ diffusion in global SR was previously reported to be slow, our simulation demonstrated that Ca2+ diffused very quickly inside local jSR cisternae and the decrease in the diffusion coefficient resulted in a significant reduction of jSR Ca2+ depletion amplitude. Intracellular Ca2+ was typically experimentally detected with fluorescence dye. Our simulation revealed that when the dynamical characteristics of fluorescence dye exerted a minimal effect on actual Ca2+ mobility inside jSR, the reaction rate of the dye with Ca2+ could significantly affect apparent jSR Ca2+ kinetics. Therefore, loading a chemical fluorescence dye with fast kinetics, such as Fluo-5N, into SR is important for Ca2+ measurement inside SR. Overall, our model provides new insights into deciphering Ca2+ handling inside nanoscopic jSR cisternae in rat cardiomyocytes.
Collapse
Affiliation(s)
- Yutong Su
- Beijing Engineering Research Center for IoT Software and Systems, Beijing University of Technology, Beijing 100124, China
| | - Yongshen Liang
- Beijing Engineering Research Center for IoT Software and Systems, Beijing University of Technology, Beijing 100124, China
| | - Menghao Xu
- Beijing Engineering Research Center for IoT Software and Systems, Beijing University of Technology, Beijing 100124, China
| | - Beibei Gao
- Beijing Engineering Research Center for IoT Software and Systems, Beijing University of Technology, Beijing 100124, China
| | - Siyuan Zhang
- Beijing Engineering Research Center for IoT Software and Systems, Beijing University of Technology, Beijing 100124, China
| | - Eric Yang
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, Xi’an 710061, China
| | - Shuai Yin
- Beijing Engineering Research Center for IoT Software and Systems, Beijing University of Technology, Beijing 100124, China
| | - Da Li
- Beijing Engineering Research Center for IoT Software and Systems, Beijing University of Technology, Beijing 100124, China
| | - Zhangqin Huang
- Beijing Engineering Research Center for IoT Software and Systems, Beijing University of Technology, Beijing 100124, China
| | - Wenjun Xie
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, Xi’an 710061, China
| |
Collapse
|
2
|
Rojo-Ruiz J, Sánchez-Rabadán C, Calvo B, García-Sancho J, Alonso MT. Using Fluorescent GAP Indicators to Monitor ER Ca 2. Curr Protoc 2024; 4:e1060. [PMID: 38923371 DOI: 10.1002/cpz1.1060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
The endoplasmic reticulum (ER) is the main reservoir of Ca2+ of the cell. Accurate and quantitative measuring of Ca2+ dynamics within the lumen of the ER has been challenging. In the last decade a few genetically encoded Ca2+ indicators have been developed, including a family of fluorescent Ca2+ indicators, dubbed GFP-Aequorin Proteins (GAPs). They are based on the fusion of two jellyfish proteins, the green fluorescent protein (GFP) and the Ca2+-binding protein aequorin. GAP Ca2+ indicators exhibit a combination of several features: they are excitation ratiometric indicators, with reciprocal changes in the fluorescence excited at 405 and 470 nm, which is advantageous for imaging experiments; they exhibit a Hill coefficient of 1, which facilitates the calibration of the fluorescent signal into Ca2+ concentrations; they are insensible to variations in the Mg2+ concentrations or pH variations (in the 6.5-8.5 range); and, due to the lack of mammalian homologues, these proteins have a favorable expression in transgenic animals. A low Ca2+ affinity version of GAP, GAP3 (KD ≅ 489 µM), has been engineered to conform with the estimated [Ca2+] in the ER. GAP3 targeted to the lumen of the ER (erGAP3) can be utilized for imaging intraluminal Ca2+. The ratiometric measurements provide a quantitative method to assess accurate [Ca2+]ER, both dynamically and at rest. In addition, erGAP3 can be combined with synthetic cytosolic Ca2+ indicators to simultaneously monitor ER and cytosolic Ca2+. Here, we provide detailed methods to assess erGAP3 expression and to perform Ca2+ imaging, either restricted to the ER lumen, or simultaneously in the ER and the cytosol. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Detection of erGAP3 in the ER by immunofluorescence Basic Protocol 2: Monitoring ER Ca2+ Basic Protocol 3: Monitoring ER- and cytosolic-Ca2+ Support Protocol: Generation of a stable cell line expressing erGAP3.
Collapse
Affiliation(s)
- Jonathan Rojo-Ruiz
- Unidad de Excelencia, Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| | - Cinthia Sánchez-Rabadán
- Unidad de Excelencia, Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| | - Belen Calvo
- Unidad de Excelencia, Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| | - Javier García-Sancho
- Unidad de Excelencia, Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| | - Maria Teresa Alonso
- Unidad de Excelencia, Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| |
Collapse
|
3
|
Reddish FN, Miller CL, Deng X, Dong B, Patel AA, Ghane MA, Mosca B, McBean C, Wu S, Solntsev KM, Zhuo Y, Gadda G, Fang N, Cox DN, Mabb AM, Treves S, Zorzato F, Yang JJ. Rapid subcellular calcium responses and dynamics by calcium sensor G-CatchER . iScience 2021; 24:102129. [PMID: 33665552 PMCID: PMC7900224 DOI: 10.1016/j.isci.2021.102129] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 12/14/2020] [Accepted: 01/26/2021] [Indexed: 12/15/2022] Open
Abstract
The precise spatiotemporal characteristics of subcellular calcium (Ca2+) transients are critical for the physiological processes. Here we report a green Ca2+ sensor called "G-CatchER+" using a protein design to report rapid local ER Ca2+ dynamics with significantly improved folding properties. G-CatchER+ exhibits a superior Ca2+ on rate to G-CEPIA1er and has a Ca2+-induced fluorescence lifetimes increase. G-CatchER+ also reports agonist/antagonist triggered Ca2+ dynamics in several cell types including primary neurons that are orchestrated by IP3Rs, RyRs, and SERCAs with an ability to differentiate expression. Upon localization to the lumen of the RyR channel (G-CatchER+-JP45), we report a rapid local Ca2+ release that is likely due to calsequestrin. Transgenic expression of G-CatchER+ in Drosophila muscle demonstrates its utility as an in vivo reporter of stimulus-evoked SR local Ca2+ dynamics. G-CatchER+ will be an invaluable tool to examine local ER/SR Ca2+ dynamics and facilitate drug development associated with ER dysfunction.
Collapse
Affiliation(s)
- Florence N. Reddish
- Department of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational Imaging Facility, Georgia State University, Atlanta, GA 30303, USA
| | - Cassandra L. Miller
- Department of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational Imaging Facility, Georgia State University, Atlanta, GA 30303, USA
| | - Xiaonan Deng
- Department of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational Imaging Facility, Georgia State University, Atlanta, GA 30303, USA
| | - Bin Dong
- Department of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational Imaging Facility, Georgia State University, Atlanta, GA 30303, USA
| | - Atit A. Patel
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
- Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30303, USA
| | - Mohammad A. Ghane
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
- Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30303, USA
| | - Barbara Mosca
- Department of Life Sciences, General Pathology, University of Ferrara, Ferrara, Italy
| | - Cheyenne McBean
- Department of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational Imaging Facility, Georgia State University, Atlanta, GA 30303, USA
| | - Shengnan Wu
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA 30303, USA
| | - Kyril M. Solntsev
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - You Zhuo
- Department of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational Imaging Facility, Georgia State University, Atlanta, GA 30303, USA
| | - Giovanni Gadda
- Department of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational Imaging Facility, Georgia State University, Atlanta, GA 30303, USA
| | - Ning Fang
- Department of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational Imaging Facility, Georgia State University, Atlanta, GA 30303, USA
| | - Daniel N. Cox
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
- Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30303, USA
| | - Angela M. Mabb
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
- Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30303, USA
| | - Susan Treves
- Department of Life Sciences, General Pathology, University of Ferrara, Ferrara, Italy
- Department of Biomedicine, Basel University, Hebelstrasse 20, 4031 Basel, Switzerland
| | - Francesco Zorzato
- Department of Life Sciences, General Pathology, University of Ferrara, Ferrara, Italy
- Department of Biomedicine, Basel University, Hebelstrasse 20, 4031 Basel, Switzerland
| | - Jenny J. Yang
- Department of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational Imaging Facility, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
4
|
Delrio-Lorenzo A, Rojo-Ruiz J, Alonso MT, García-Sancho J. Sarcoplasmic reticulum Ca 2+ decreases with age and correlates with the decline in muscle function in Drosophila. J Cell Sci 2020; 133:jcs240879. [PMID: 32005702 DOI: 10.1242/jcs.240879] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 01/24/2020] [Indexed: 08/31/2023] Open
Abstract
Sarcopenia, the loss of muscle mass and strength associated with age, has been linked to impairment of the cytosolic Ca2+ peak that triggers muscle contraction, but mechanistic details remain unknown. Here we explore the hypothesis that a reduction in sarcoplasmic reticulum (SR) Ca2+ concentration ([Ca2+]SR) is at the origin of this loss of Ca2+ homeostasis. We engineered Drosophila melanogaster to express the Ca2+ indicator GAP3 targeted to muscle SR, and we developed a new method to calibrate the signal into [Ca2+]SRin vivo [Ca2+]SR fell with age from ∼600 µM to 50 µM in close correlation with muscle function, which declined monotonically when [Ca2+]SR was <400 µM. [Ca2+]SR results from the pump-leak steady state at the SR membrane. However, changes in expression of the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) pump and of the ryanodine receptor leak were too modest to explain the large changes seen in [Ca2+]SR Instead, these changes are compatible with increased leakiness through the ryanodine receptor as the main determinant of the [Ca2+]SR decline in aging muscle. In contrast, there were no changes in endoplasmic reticulum [Ca2+] with age in brain neurons.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Alba Delrio-Lorenzo
- Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), c/Sanz y Forés 3, 47003 Valladolid, Spain
| | - Jonathan Rojo-Ruiz
- Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), c/Sanz y Forés 3, 47003 Valladolid, Spain
| | - María Teresa Alonso
- Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), c/Sanz y Forés 3, 47003 Valladolid, Spain
| | - Javier García-Sancho
- Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), c/Sanz y Forés 3, 47003 Valladolid, Spain
| |
Collapse
|
5
|
Vicario M, Calì T. Measuring Ca 2+ Levels in Subcellular Compartments with Genetically Encoded GFP-Based Indicators. Methods Mol Biol 2019; 1925:31-42. [PMID: 30674014 DOI: 10.1007/978-1-4939-9018-4_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Ca2+ homeostasis is crucial for the entire life of eukaryotic cells from the beginning to the end. Mishandling in Ca2+ homeostasis is indeed linked with a large number of pathological conditions. Thus, the possibility to specifically monitor cellular calcium fluxes in different subcellular compartments represents a key tool to deeply understand the mechanisms involved in cellular dysfunctions. To cope with this need, several Ca2+ indicators have been developed allowing to accurately measure both basal Ca2+ concentration and agonist-induced Ca2+ signals in a wide spectrum of organelles. Among these, the genetically encoded GFP-based indicators are routinely used to measure Ca2+ transients thanks to their ability to change their spectral properties in response to Ca2+ binding. In this chapter, we will describe a protocol that utilizes the GCaMP6f probe targeted to mitochondria (4mtGCaMP) to measure mitochondrial calcium levels in resting conditions in HeLa cells. This method allows to easily and quickly register alterations of mitochondrial Ca2+ homeostasis in different cell populations and experimental settings, representing a precious tool to unravel the pathological pathways leading to pathogenic conditions.
Collapse
Affiliation(s)
- Mattia Vicario
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Tito Calì
- Department of Biomedical Sciences, University of Padua, Padua, Italy.
| |
Collapse
|
6
|
Characterization of the ER-Targeted Low Affinity Ca(2+) Probe D4ER. SENSORS 2016; 16:s16091419. [PMID: 27598166 PMCID: PMC5038697 DOI: 10.3390/s16091419] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/26/2016] [Accepted: 08/30/2016] [Indexed: 12/17/2022]
Abstract
Calcium ion (Ca2+) is a ubiquitous intracellular messenger and changes in its concentration impact on nearly every aspect of cell life. Endoplasmic reticulum (ER) represents the major intracellular Ca2+ store and the free Ca2+ concentration ([Ca2+]) within its lumen ([Ca2+]ER) can reach levels higher than 1 mM. Several genetically-encoded ER-targeted Ca2+ sensors have been developed over the last years. However, most of them are non-ratiometric and, thus, their signal is difficult to calibrate in live cells and is affected by shifts in the focal plane and artifactual movements of the sample. On the other hand, existing ratiometric Ca2+ probes are plagued by different drawbacks, such as a double dissociation constant (Kd) for Ca2+, low dynamic range, and an affinity for the cation that is too high for the levels of [Ca2+] in the ER lumen. Here, we report the characterization of a recently generated ER-targeted, Förster resonance energy transfer (FRET)-based, Cameleon probe, named D4ER, characterized by suitable Ca2+ affinity and dynamic range for monitoring [Ca2+] variations within the ER. As an example, resting [Ca2+]ER have been evaluated in a known paradigm of altered ER Ca2+ homeostasis, i.e., in cells expressing a mutated form of the familial Alzheimer’s Disease-linked protein Presenilin 2 (PS2). The lower Ca2+ affinity of the D4ER probe, compared to that of the previously generated D1ER, allowed the detection of a conspicuous, more clear-cut, reduction in ER Ca2+ content in cells expressing mutated PS2, compared to controls.
Collapse
|
7
|
Suzuki J, Kanemaru K, Iino M. Genetically Encoded Fluorescent Indicators for Organellar Calcium Imaging. Biophys J 2016; 111:1119-1131. [PMID: 27477268 DOI: 10.1016/j.bpj.2016.04.054] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 03/30/2016] [Accepted: 04/01/2016] [Indexed: 12/14/2022] Open
Abstract
Optical Ca(2+) indicators are powerful tools for investigating intracellular Ca(2+) signals in living cells. Although a variety of Ca(2+) indicators have been developed, deciphering the physiological functions and spatiotemporal dynamics of Ca(2+) in intracellular organelles remains challenging. Genetically encoded Ca(2+) indicators (GECIs) using fluorescent proteins are promising tools for organellar Ca(2+) imaging, and much effort has been devoted to their development. In this review, we first discuss the key points of organellar Ca(2+) imaging and summarize the requirements for optimal organellar Ca(2+) indicators. Then, we highlight some of the recent advances in the engineering of fluorescent GECIs targeted to specific organelles. Finally, we discuss the limitations of currently available GECIs and the requirements for advancing the research on intraorganellar Ca(2+) signaling.
Collapse
Affiliation(s)
- Junji Suzuki
- Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Physiology, University of California San Francisco, San Francisco, California
| | - Kazunori Kanemaru
- Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masamitsu Iino
- Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Cellular and Molecular Pharmacology, Nihon University School of Medicine, Tokyo, Japan.
| |
Collapse
|
8
|
Tang S, Reddish F, Zhuo Y, Yang JJ. Fast kinetics of calcium signaling and sensor design. Curr Opin Chem Biol 2015; 27:90-7. [PMID: 26151819 DOI: 10.1016/j.cbpa.2015.06.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 06/11/2015] [Accepted: 06/11/2015] [Indexed: 12/25/2022]
Abstract
Fast calcium signaling is regulated by numerous calcium channels exhibiting high spatiotemporal profiles which are currently measured by fluorescent calcium sensors. There is still a strong need to improve the kinetics of genetically encoded calcium indicators (sensors) to capture calcium dynamics in the millisecond time frame. In this review, we summarize several major fast calcium signaling pathways and discuss the recent developments and application of genetically encoded calcium indicators to detect these pathways. A new class of genetically encoded calcium indicators designed with site-directed mutagenesis on the surface of beta-barrel fluorescent proteins to form a pentagonal bipyramidal-like calcium binding domain dramatically accelerates calcium binding kinetics. Furthermore, novel genetically encoded calcium indicators with significantly increased fluorescent lifetime change are advantageous in deep-field imaging with high light-scattering and notable morphology change.
Collapse
Affiliation(s)
- Shen Tang
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, United States
| | - Florence Reddish
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, United States
| | - You Zhuo
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, United States
| | - Jenny J Yang
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, United States.
| |
Collapse
|
9
|
Mehta S, Zhang J. Dynamic visualization of calcium-dependent signaling in cellular microdomains. Cell Calcium 2015; 58:333-41. [PMID: 25703691 DOI: 10.1016/j.ceca.2015.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 01/20/2015] [Accepted: 01/21/2015] [Indexed: 11/17/2022]
Abstract
Cells rely on the coordinated action of diverse signaling molecules to sense, interpret, and respond to their highly dynamic external environment. To ensure the specific and robust flow of information, signaling molecules are often spatially organized to form distinct signaling compartments, and our understanding of the molecular mechanisms that guide intracellular signaling hinges on the ability to directly probe signaling events within these cellular microdomains. Ca(2+) signaling in particular owes much of its functional versatility to this type of exquisite spatial regulation. As discussed below, a number of methods have been developed to investigate the mechanistic and functional implications of microdomains of Ca(2+) signaling, ranging from the application of Ca(2+) buffers to the direct and targeted visualization of Ca(2+) signaling microdomains using genetically encoded fluorescent reporters.
Collapse
Affiliation(s)
- Sohum Mehta
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jin Zhang
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
10
|
Hill JM, De Stefani D, Jones AWE, Ruiz A, Rizzuto R, Szabadkai G. Measuring baseline Ca(2+) levels in subcellular compartments using genetically engineered fluorescent indicators. Methods Enzymol 2014; 543:47-72. [PMID: 24924127 DOI: 10.1016/b978-0-12-801329-8.00003-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Intracellular Ca(2+) signaling is involved in a series of physiological and pathological processes. In particular, an intimate crosstalk between bioenergetic metabolism and Ca(2+) homeostasis has been shown to determine cell fate in resting conditions as well as in response to stress. The endoplasmic reticulum and mitochondria represent key hubs of cellular metabolism and Ca(2+) signaling. However, it has been challenging to specifically detect highly localized Ca(2+) fluxes such as those bridging these two organelles. To circumvent this issue, various recombinant Ca(2+) indicators that can be targeted to specific subcellular compartments have been developed over the past two decades. While the use of these probes for measuring agonist-induced Ca(2+) signals in various organelles has been extensively described, the assessment of basal Ca(2+) concentrations within specific organelles is often disregarded, in spite of the fact that this parameter is vital for several metabolic functions, including the enzymatic activity of mitochondrial dehydrogenases of the Krebs cycle and protein folding in the endoplasmic reticulum. Here, we provide an overview on genetically engineered, organelle-targeted fluorescent Ca(2+) probes and outline their evolution. Moreover, we describe recently developed protocols to quantify baseline Ca(2+) concentrations in specific subcellular compartments. Among several applications, this method is suitable for assessing how changes in basal Ca(2+) levels affect the metabolic profile of cancer cells.
Collapse
Affiliation(s)
- Julia M Hill
- Department of Cell and Developmental Biology, Consortium for Mitochondrial Research, University College London, London, United Kingdom
| | - Diego De Stefani
- Department of Biomedical Sciences, CNR Neuroscience Institute, University of Padua, Padua, Italy
| | - Aleck W E Jones
- Department of Cell and Developmental Biology, Consortium for Mitochondrial Research, University College London, London, United Kingdom
| | - Asier Ruiz
- Department of Neurosciences, University of the Basque Country (UPV/EHU), Achúcarro Basque Center for Neuroscience-UPV/EHU, Leioa, Spain; Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, (CIBERNED), Madrid, Spain
| | - Rosario Rizzuto
- Department of Biomedical Sciences, CNR Neuroscience Institute, University of Padua, Padua, Italy
| | - Gyorgy Szabadkai
- Department of Cell and Developmental Biology, Consortium for Mitochondrial Research, University College London, London, United Kingdom; Department of Biomedical Sciences, CNR Neuroscience Institute, University of Padua, Padua, Italy.
| |
Collapse
|
11
|
Zhang Y, Reddish F, Tang S, Zhuo Y, Wang YF, Yang JJ, Weber IT. Structural basis for a hand-like site in the calcium sensor CatchER with fast kinetics. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:2309-19. [PMID: 24311573 PMCID: PMC3852649 DOI: 10.1107/s0907444913021306] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 07/30/2013] [Indexed: 11/10/2022]
Abstract
Calcium ions, which are important signaling molecules, can be detected in the endoplasmic reticulum by an engineered mutant of green fluorescent protein (GFP) designated CatchER with a fast off-rate. High resolution (1.78-1.20 Å) crystal structures were analyzed for CatchER in the apo form and in complexes with calcium or gadolinium to probe the binding site for metal ions. While CatchER exhibits a 1:1 binding stoichiometry in solution, two positions were observed for each of the metal ions bound within the hand-like site formed by the carboxylate side chains of the mutated residues S147E, S202D, Q204E, F223E and T225E that may be responsible for its fast kinetic properties. Comparison of the structures of CatchER, wild-type GFP and enhanced GFP confirmed that different conformations of Thr203 and Glu222 are associated with the two forms of Tyr66 of the chromophore which are responsible for the absorbance wavelengths of the different proteins. Calcium binding to CatchER may shift the equilibrium for conformational population of the Glu222 side chain and lead to further changes in its optical properties.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Florence Reddish
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Shen Tang
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - You Zhuo
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Yuan-Fang Wang
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Jenny J. Yang
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
- Centre for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Irene T. Weber
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
- Centre for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
12
|
Bonza MC, Loro G, Behera S, Wong A, Kudla J, Costa A. Analyses of Ca2+ accumulation and dynamics in the endoplasmic reticulum of Arabidopsis root cells using a genetically encoded Cameleon sensor. PLANT PHYSIOLOGY 2013; 163:1230-41. [PMID: 24082028 PMCID: PMC3813646 DOI: 10.1104/pp.113.226050] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 09/30/2013] [Indexed: 05/03/2023]
Abstract
In planta, very limited information is available about how the endoplasmic reticulum (ER) contributes to cellular Ca(2+) dynamics and homeostasis. Here, we report the generation of an ER-targeted Cameleon reporter protein suitable for analysis of Ca(2+) accumulation and dynamics in the lumen of the ER in plant cells. Using stably transformed Arabidopsis (Arabidopsis thaliana) plants expressing this reporter protein, we observed a transiently enhanced accumulation of Ca(2+) in the ER in response to stimuli inducing cytosolic Ca(2+) rises in root tip cells. In all experimental conditions, ER Ca(2+) dynamics were substantially different from those monitored in the cytosol. A pharmacological approach enabled us to evaluate the contribution of the different ER-resident Ca(2+)-ATPase classes in the regulation of the ER Ca(2+) homeostasis. Taken together, our results do not provide evidence for a role of the ER as a major source that releases Ca(2+) for stimulus-induced increases in cytosolic Ca(2+) concentration. Instead, our results show that the luminal ER Ca(2+) elevations typically follow cytosolic ones, but with distinct dynamics. These findings suggest fundamental differences for the function of the ER in cellular Ca(2+) homeostasis in plants and animals.
Collapse
Affiliation(s)
| | | | - Smrutisanjita Behera
- Department of Biosciences, University of Milan, 20133 Milan, Italy (M.C.B., G.L., A.C.)
- Department of Biology (G.L.) and Department of Biomedical Sciences (A.W.), University of Padua, 35131 Padova, Italy
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, 48149 Münster, Germany (S.B., J.K.); and
- Institute of Biophysics, Consiglio Nazionale delle Ricerche, 20133 Milan, Italy (A.C.)
| | - Andrea Wong
- Department of Biosciences, University of Milan, 20133 Milan, Italy (M.C.B., G.L., A.C.)
- Department of Biology (G.L.) and Department of Biomedical Sciences (A.W.), University of Padua, 35131 Padova, Italy
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, 48149 Münster, Germany (S.B., J.K.); and
- Institute of Biophysics, Consiglio Nazionale delle Ricerche, 20133 Milan, Italy (A.C.)
| | - Jörg Kudla
- Department of Biosciences, University of Milan, 20133 Milan, Italy (M.C.B., G.L., A.C.)
- Department of Biology (G.L.) and Department of Biomedical Sciences (A.W.), University of Padua, 35131 Padova, Italy
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, 48149 Münster, Germany (S.B., J.K.); and
- Institute of Biophysics, Consiglio Nazionale delle Ricerche, 20133 Milan, Italy (A.C.)
| | | |
Collapse
|
13
|
Zhang T, Birbrair A, Wang ZM, Taylor J, Messi ML, Delbono O. Troponin T nuclear localization and its role in aging skeletal muscle. AGE (DORDRECHT, NETHERLANDS) 2013; 35:353-370. [PMID: 22189912 PMCID: PMC3592954 DOI: 10.1007/s11357-011-9368-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 12/08/2011] [Indexed: 05/31/2023]
Abstract
Troponin T (TnT) is known to mediate the interaction between Tn complex and tropomyosin (Tm), which is essential for calcium-activated striated muscle contraction. This regulatory function takes place in the myoplasm, where TnT binds Tm. However, recent findings of troponin I and Tm nuclear translocation in Drosophila and mammalian cells imply other roles for the Tn-Tm complex. We hypothesized that TnT plays a nonclassical role through nuclear translocation. Immunoblotting with different antibodies targeting the NH2- or COOH-terminal region uncovered a pool of fast skeletal muscle TnT3 localized in the nuclear fraction of mouse skeletal muscle as either an intact or fragmented protein. Construction of TnT3-DsRed fusion proteins led to the further observation that TnT3 fragments are closely related to nucleolus and RNA polymerase activity, suggesting a role for TnT3 in regulating transcription. Functionally, overexpression of TnT3 fragments produced significant defects in nuclear shape and caused high levels of apoptosis. Interestingly, nuclear TnT3 and its fragments were highly regulated by aging, thus creating a possible link between the deleterious effects of TnT3 and sarcopenia. We propose that changes in nuclear TnT3 and its fragments cause the number of myonuclei to decrease with age, contributing to muscle damage and wasting.
Collapse
Affiliation(s)
- Tan Zhang
- />Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest School of Medicine, 1 Medical Center Blvd., Winston-Salem, NC 27157 USA
| | - Alexander Birbrair
- />Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest School of Medicine, 1 Medical Center Blvd., Winston-Salem, NC 27157 USA
- />Neuroscience Program, Wake Forest School of Medicine, 1 Medical Center Blvd., Winston-Salem, NC 27157 USA
| | - Zhong-Min Wang
- />Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest School of Medicine, 1 Medical Center Blvd., Winston-Salem, NC 27157 USA
| | - Jackson Taylor
- />Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest School of Medicine, 1 Medical Center Blvd., Winston-Salem, NC 27157 USA
- />Neuroscience Program, Wake Forest School of Medicine, 1 Medical Center Blvd., Winston-Salem, NC 27157 USA
| | - María Laura Messi
- />Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest School of Medicine, 1 Medical Center Blvd., Winston-Salem, NC 27157 USA
| | - Osvaldo Delbono
- />Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest School of Medicine, 1 Medical Center Blvd., Winston-Salem, NC 27157 USA
- />Neuroscience Program, Wake Forest School of Medicine, 1 Medical Center Blvd., Winston-Salem, NC 27157 USA
| |
Collapse
|
14
|
Zhang T, Birbrair A, Delbono O. Nonmyofilament-associated troponin T3 nuclear and nucleolar localization sequence and leucine zipper domain mediate muscle cell apoptosis. Cytoskeleton (Hoboken) 2013; 70:134-47. [PMID: 23378072 DOI: 10.1002/cm.21095] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 12/17/2012] [Accepted: 12/21/2012] [Indexed: 11/07/2022]
Abstract
Troponin T (TnT) plays a major role in striated muscle contraction. We recently demonstrated that the fast skeletal muscle TnT3 isoform is localized in the muscle nucleus, and either its full-length or COOH-terminus leads to muscle cell apoptosis. Here, we further explored the mechanism by which it enters the nucleus and promotes cytotoxicity. Amino acid truncation and substitution showed that its COOH-terminus contains a dominant nuclear/nucleolar localization sequence (KLKRQK) and the basic lysine and arginine residues might play an important role in the nuclear retention and nucleolar enrichment of KLKRQK-DsRed fusion proteins. Deleting this domain or substituting lysine and arginine residues (KLAAQK) resulted in a dramatic loss of TnT3 nuclear and nucleolar localization. In contrast, the GATAKGKVGGRWK domain-DsRed construct localized exclusively in the cytoplasm, indicating that a nuclear exporting sequence is possibly localized in this region. Additionally, we identified a classical DNA-binding leucine zipper domain (LZD) which is conserved among TnT isoforms and species. Deletion of LZD or KLKRQK sequence significantly reduced cell apoptosis compared to full-length TnT3. We conclude that TnT3 contains both a nuclear localization signal and a DNA-binding domain, which may mediate nuclear/nucleolar signaling and muscle cell apoptosis.
Collapse
Affiliation(s)
- Tan Zhang
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, 1 Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | | | | |
Collapse
|
15
|
Robin G, Berthier C, Allard B. Sarcoplasmic reticulum Ca2+ permeation explored from the lumen side in mdx muscle fibers under voltage control. ACTA ACUST UNITED AC 2012; 139:209-18. [PMID: 22371362 PMCID: PMC3289961 DOI: 10.1085/jgp.201110738] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Under resting conditions, external Ca2+ is known to enter skeletal muscle cells, whereas Ca2+ stored in the sarcoplasmic reticulum (SR) leaks into the cytosol. The nature of the pathways involved in the sarcolemmal Ca2+ entry and in the SR Ca2+ leak is still a matter of debate, but several lines of evidence suggest that these Ca2+ fluxes are up-regulated in Duchenne muscular dystrophy. We investigated here SR calcium permeation at resting potential and in response to depolarization in voltage-controlled skeletal muscle fibers from control and mdx mice, the mouse model of Duchenne muscular dystrophy. Using the cytosolic Ca2+ dye Fura2, we first demonstrated that the rate of Ca2+ increase in response to cyclopiazonic acid (CPA)–induced inhibition of SR Ca2+-ATPases at resting potential was significantly higher in mdx fibers, which suggests an elevated SR Ca2+ leak. However, removal of external Ca2+ reduced the rate of CPA-induced Ca2+ increase in mdx and increased it in control fibers, which indicates an up-regulation of sarcolemmal Ca2+ influx in mdx fibers. Fibers were then loaded with the low-affinity Ca2+ dye Fluo5N-AM to measure intraluminal SR Ca2+ changes. Trains of action potentials, chloro-m-cresol, and depolarization pulses evoked transient Fluo5N fluorescence decreases, and recovery of voltage-induced Fluo5N fluorescence changes were inhibited by CPA, demonstrating that Fluo5N actually reports intraluminal SR Ca2+ changes. Voltage dependence and magnitude of depolarization-induced SR Ca2+ depletion were found to be unchanged in mdx fibers, but the rate of the recovery phase that followed depletion was found to be faster, indicating a higher SR Ca2+ reuptake activity in mdx fibers. Overall, CPA-induced SR Ca2+ leak at −80 mV was found to be significantly higher in mdx fibers and was potentiated by removal of external Ca2+ in control fibers. The elevated passive SR Ca2+ leak may contribute to alteration of Ca2+ homeostasis in mdx muscle.
Collapse
Affiliation(s)
- Gaëlle Robin
- Université Lyon 1, Centre National de la Recherche Scientifique UMR 5534, Centre de Génétique et de Physiologie Moléculaire et Cellulaire, 69622 Villeurbanne Cedex, France
| | | | | |
Collapse
|
16
|
Figueroa L, Shkryl VM, Zhou J, Manno C, Momotake A, Brum G, Blatter LA, Ellis-Davies GCR, Ríos E. Synthetic localized calcium transients directly probe signalling mechanisms in skeletal muscle. J Physiol 2012; 590:1389-411. [PMID: 22310315 DOI: 10.1113/jphysiol.2011.225854] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The contribution of Ca2+-induced Ca2+ release (CICR) to trigger muscle contraction is controversial. It was studied on isolated muscle fibres using synthetic localized increases in Ca2+ concentration, SLICs, generated by two-photon photorelease from nitrodibenzofuran (NDBF)-EGTA just outside the permeabilized plasma membrane. SLICs provided a way to increase cytosolic [Ca2+] rapidly and reversibly, up to 8 μM, levels similar to those reached during physiological activity. They improve over previous paradigms in rate of rise, locality and reproducibility. Use of NDBF-EGTA allowed for the separate modification of resting [Ca2+], trigger [Ca2+] and resting [Mg2+]. In frog muscle, SLICs elicited propagated responses that had the characteristics of CICR. The threshold [Ca2+] for triggering a response was 0.5 μM or less. As this value is much lower than concentrations prevailing near channels during normal activity, the result supports participation of CICR in the physiological control of contraction in amphibian muscle. As SLICs were applied outside cells, the primary stimulus was Ca2+, rather than the radiation or subproducts of photorelease. Therefore the responses qualify as ‘classic' CICR. By contrast, mouse muscle fibres did not respond unless channel-opening drugs were present at substantial concentrations, an observation contrary to the physiological involvement of CICR in mammalian excitation–contraction coupling. In mouse muscle, the propagating wave had a substantially lower release flux, which together with a much higher threshold justified the absence of response when drugs were not present. The differences in flux and threshold may be ascribed to the absence of ryanodine receptor 3 (RyR3) isoforms in adult mammalian muscle.
Collapse
Affiliation(s)
- Lourdes Figueroa
- Section of Cellular Signaling, Department of Molecular Biophysics and Physiology, Rush University School of Medicine, 1750 W. Harrison St, Suite 1279JS, Chicago, IL 60612, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Wang ZM, Tang S, Messi ML, Yang JJ, Delbono O. Residual sarcoplasmic reticulum Ca2+ concentration after Ca2+ release in skeletal myofibers from young adult and old mice. Pflugers Arch 2012; 463:615-24. [PMID: 22249494 DOI: 10.1007/s00424-012-1073-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 12/31/2011] [Accepted: 01/02/2012] [Indexed: 10/14/2022]
Abstract
Contrasting information suggests either almost complete depletion of sarcoplasmic reticulum (SR) Ca(2+) or significant residual Ca(2+) concentration after prolonged depolarization of the skeletal muscle fiber. The primary obstacle to resolving this controversy is the lack of genetically encoded Ca(2+) indicators targeted to the SR that exhibit low-Ca(2+) affinity, a fast biosensor: Ca(2+) off-rate reaction, and can be expressed in myofibers from adult and older adult mammalian species. This work used the recently designed low-affinity Ca(2+) sensor (Kd = 1.66 mM in the myofiber) CatchER (calcium sensor for detecting high concentrations in the ER) targeted to the SR, to investigate whether prolonged skeletal muscle fiber depolarization significantly alters residual SR Ca(2+) with aging. We found CatchER a proper tool to investigate SR Ca(2+) depletion in young adult and older adult mice, consistently tracking SR luminal Ca(2+) release in response to brief and repetitive stimulation. We evoked SR Ca(2+) release in whole-cell voltage-clamped flexor digitorum brevis muscle fibers from young and old FVB mice and tested the maximal SR Ca(2+) release by directly activating the ryanodine receptor (RyR1) with 4-chloro-m-cresol in the same myofibers. Here, we report for the first time that the Ca(2+) remaining in the SR after prolonged depolarization (2 s) in myofibers from aging (~220 μM) was larger than young (~132 μM) mice. These experiments indicate that SR Ca(2+) is far from fully depleted under physiological conditions throughout life, and support the concept of excitation-contraction uncoupling in functional senescent myofibers.
Collapse
Affiliation(s)
- Zhong-Min Wang
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, 1 Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | | | | | | | | |
Collapse
|
18
|
Sztretye M, Yi J, Figueroa L, Zhou J, Royer L, Allen P, Brum G, Ríos E. Measurement of RyR permeability reveals a role of calsequestrin in termination of SR Ca(2+) release in skeletal muscle. ACTA ACUST UNITED AC 2012; 138:231-47. [PMID: 21788611 PMCID: PMC3149434 DOI: 10.1085/jgp.201010592] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The mechanisms that terminate Ca2+ release from the sarcoplasmic reticulum are not fully understood. D4cpv-Casq1 (Sztretye et al. 2011. J. Gen. Physiol. doi:10.1085/jgp.201010591) was used in mouse skeletal muscle cells under voltage clamp to measure free Ca2+ concentration inside the sarcoplasmic reticulum (SR), [Ca2+]SR, simultaneously with that in the cytosol, [Ca2+]c, during the response to long-lasting depolarization of the plasma membrane. The ratio of Ca2+ release flux (derived from [Ca2+]c(t)) over the gradient that drives it (essentially equal to [Ca2+]SR) provided directly, for the first time, a dynamic measure of the permeability to Ca2+ of the releasing SR membrane. During maximal depolarization, flux rapidly rises to a peak and then decays. Before 0.5 s, [Ca2+]SR stabilized at ∼35% of its resting level; depletion was therefore incomplete. By 0.4 s of depolarization, the measured permeability decayed to ∼10% of maximum, indicating ryanodine receptor channel closure. Inactivation of the t tubule voltage sensor was immeasurably small by this time and thus not a significant factor in channel closure. In cells of mice null for Casq1, permeability did not decrease in the same way, indicating that calsequestrin (Casq) is essential in the mechanism of channel closure and termination of Ca2+ release. The absence of this mechanism explains why the total amount of calcium releasable by depolarization is not greatly reduced in Casq-null muscle (Royer et al. 2010. J. Gen. Physiol. doi:10.1085/jgp.201010454). When the fast buffer BAPTA was introduced in the cytosol, release flux became more intense, and the SR emptied earlier. The consequent reduction in permeability accelerated as well, reaching comparable decay at earlier times but comparable levels of depletion. This observation indicates that [Ca2+]SR, sensed by Casq and transmitted to the channels presumably via connecting proteins, is determinant to cause the closure that terminates Ca2+ release.
Collapse
Affiliation(s)
- Monika Sztretye
- Section of Cellular Signaling, Department of Molecular Biophysics and Physiology, Rush University, Chicago, IL 60612, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Ravier MA, Daro D, Roma LP, Jonas JC, Cheng-Xue R, Schuit FC, Gilon P. Mechanisms of control of the free Ca2+ concentration in the endoplasmic reticulum of mouse pancreatic β-cells: interplay with cell metabolism and [Ca2+]c and role of SERCA2b and SERCA3. Diabetes 2011; 60:2533-45. [PMID: 21885870 PMCID: PMC3178295 DOI: 10.2337/db10-1543] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Sarco-endoplasmic reticulum Ca(2+)-ATPase 2b (SERCA2b) and SERCA3 pump Ca(2+) in the endoplasmic reticulum (ER) of pancreatic β-cells. We studied their role in the control of the free ER Ca(2+) concentration ([Ca(2+)](ER)) and the role of SERCA3 in the control of insulin secretion and ER stress. RESEARCH DESIGN AND METHODS β-Cell [Ca(2+)](ER) of SERCA3(+/+) and SERCA3(-/-) mice was monitored with an adenovirus encoding the low Ca(2+)-affinity sensor D4 addressed to the ER (D4ER) under the control of the insulin promoter. Free cytosolic Ca(2+) concentration ([Ca(2+)](c)) and [Ca(2+)](ER) were simultaneously recorded. Insulin secretion and mRNA levels of ER stress genes were studied. RESULTS Glucose elicited synchronized [Ca(2+)](ER) and [Ca(2+)](c) oscillations. [Ca(2+)](ER) oscillations were smaller in SERCA3(-/-) than in SERCA3(+/+) β-cells. Stimulating cell metabolism with various [glucose] in the presence of diazoxide induced a similar dose-dependent [Ca(2+)](ER) rise in SERCA3(+/+) and SERCA3(-/-) β-cells. In a Ca(2+)-free medium, glucose moderately raised [Ca(2+)](ER) from a highly buffered cytosolic Ca(2+) pool. Increasing [Ca(2+)](c) with high [K] elicited a [Ca(2+)](ER) rise that was larger but more transient in SERCA3(+/+) than SERCA3(-/-) β-cells because of the activation of a Ca(2+) release from the ER in SERCA3(+/+) β-cells. Glucose-induced insulin release was larger in SERCA3(-/-) than SERCA3(+/+) islets. SERCA3 ablation did not induce ER stress. CONCLUSIONS [Ca(2+)](c) and [Ca(2+)](ER) oscillate in phase in response to glucose. Upon [Ca(2+)](c) increase, Ca(2+) is taken up by SERCA2b and SERCA3. Strong Ca(2+) influx triggers a Ca(2+) release from the ER that depends on SERCA3. SERCA3 deficiency neither impairs Ca(2+) uptake by the ER upon cell metabolism acceleration and insulin release nor induces ER stress.
Collapse
Affiliation(s)
- Magalie A. Ravier
- Pole d’Endocrinologie, Diabète, et Nutrition, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
- Institut de Génomique Fonctionnelle, CNRS UMR-5203, INSERM U661, Universités de Montpellier 1 et 2, Montpellier, France
| | - Dorothée Daro
- Pole d’Endocrinologie, Diabète, et Nutrition, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Leticia Prates Roma
- Pole d’Endocrinologie, Diabète, et Nutrition, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Jean-Christophe Jonas
- Pole d’Endocrinologie, Diabète, et Nutrition, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Rui Cheng-Xue
- Pole d’Endocrinologie, Diabète, et Nutrition, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Frans C. Schuit
- Gene Expression Unit, Department of Molecular Cell Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Patrick Gilon
- Pole d’Endocrinologie, Diabète, et Nutrition, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
- Corresponding author: Patrick Gilon,
| |
Collapse
|
20
|
Disrupted membrane structure and intracellular Ca²⁺ signaling in adult skeletal muscle with acute knockdown of Bin1. PLoS One 2011; 6:e25740. [PMID: 21984944 PMCID: PMC3184157 DOI: 10.1371/journal.pone.0025740] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 09/11/2011] [Indexed: 11/19/2022] Open
Abstract
Efficient intracellular Ca2+ ([Ca2+]i) homeostasis in skeletal muscle requires intact triad junctional complexes comprised of t-tubule invaginations of plasma membrane and terminal cisternae of sarcoplasmic reticulum. Bin1 consists of a specialized BAR domain that is associated with t-tubule development in skeletal muscle and involved in tethering the dihydropyridine receptors (DHPR) to the t-tubule. Here, we show that Bin1 is important for Ca2+ homeostasis in adult skeletal muscle. Since systemic ablation of Bin1 in mice results in postnatal lethality, in vivo electroporation mediated transfection method was used to deliver RFP-tagged plasmid that produced short –hairpin (sh)RNA targeting Bin1 (shRNA-Bin1) to study the effect of Bin1 knockdown in adult mouse FDB skeletal muscle. Upon confirming the reduction of endogenous Bin1 expression, we showed that shRNA-Bin1 muscle displayed swollen t-tubule structures, indicating that Bin1 is required for the maintenance of intact membrane structure in adult skeletal muscle. Reduced Bin1 expression led to disruption of t-tubule structure that was linked with alterations to intracellular Ca2+ release. Voltage-induced Ca2+ released in isolated single muscle fibers of shRNA-Bin1 showed that both the mean amplitude of Ca2+ current and SR Ca2+ transient were reduced when compared to the shRNA-control, indicating compromised coupling between DHPR and ryanodine receptor 1. The mean frequency of osmotic stress induced Ca2+ sparks was reduced in shRNA-Bin1, indicating compromised DHPR activation. ShRNA-Bin1 fibers also displayed reduced Ca2+ sparks' amplitude that was attributed to decreased total Ca2+ stores in the shRNA-Bin1 fibers. Human mutation of Bin1 is associated with centronuclear myopathy and SH3 domain of Bin1 is important for sarcomeric protein organization in skeletal muscle. Our study showing the importance of Bin1 in the maintenance of intact t-tubule structure and ([Ca2+]i) homeostasis in adult skeletal muscle could provide mechanistic insight on the potential role of Bin1 in skeletal muscle contractility and pathology of myopathy.
Collapse
|
21
|
Design and application of a class of sensors to monitor Ca2+ dynamics in high Ca2+ concentration cellular compartments. Proc Natl Acad Sci U S A 2011; 108:16265-70. [PMID: 21914846 DOI: 10.1073/pnas.1103015108] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Quantitative analysis of Ca(2+) fluctuations in the endoplasmic/sarcoplasmic reticulum (ER/SR) is essential to defining the mechanisms of Ca(2+)-dependent signaling under physiological and pathological conditions. Here, we developed a unique class of genetically encoded indicators by designing a Ca(2+) binding site in the EGFP. One of them, calcium sensor for detecting high concentration in the ER, exhibits unprecedented Ca(2+) release kinetics with an off-rate estimated at around 700 s(-1) and appropriate Ca(2+) binding affinity, likely attributable to local Ca(2+)-induced conformational changes around the designed Ca(2+) binding site and reduced chemical exchange between two chromophore states. Calcium sensor for detecting high concentration in the ER reported considerable differences in ER Ca(2+) dynamics and concentration among human epithelial carcinoma cells (HeLa), human embryonic kidney 293 cells (HEK-293), and mouse myoblast cells (C2C12), enabling us to monitor SR luminal Ca(2+) in flexor digitorum brevis muscle fibers to determine the mechanism of diminished SR Ca(2+) release in aging mice. This sensor will be invaluable in examining pathogenesis characterized by alterations in Ca(2+) homeostasis.
Collapse
|
22
|
Sztretye M, Yi J, Figueroa L, Zhou J, Royer L, Ríos E. D4cpv-calsequestrin: a sensitive ratiometric biosensor accurately targeted to the calcium store of skeletal muscle. J Gen Physiol 2011; 138:211-29. [PMID: 21788610 PMCID: PMC3149433 DOI: 10.1085/jgp.201010591] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 06/28/2011] [Indexed: 01/28/2023] Open
Abstract
Current fluorescent monitors of free [Ca(2+)] in the sarcoplasmic reticulum (SR) of skeletal muscle cells are of limited quantitative value. They provide either a nonratio signal that is difficult to calibrate and is not specific or, in the case of Forster resonant energy transfer (FRET) biosensors, a signal of small dynamic range, which may be degraded further by imperfect targeting and interference from endogenous ligands of calsequestrin. We describe a novel tool that uses the cameleon D4cpv, which has a greater dynamic range and lower susceptibility to endogenous ligands than earlier cameleons. D4cpv was targeted to the SR by fusion with the cDNA of calsequestrin 1 or a variant that binds less Ca(2+). "D4cpv-Casq1," expressed in adult mouse at concentrations up to 22 µmole/liter of muscle cell, displayed the accurate targeting of calsequestrin and stayed inside cells after permeabilization of surface and t system membranes, which confirmed its strict targeting. FRET ratio changes of D4cpv-Casq1 were calibrated inside cells, with an effective K(D) of 222 µM and a dynamic range [(R(max) - R(min))/R(min)] of 2.5, which are improvements over comparable sensors. Both the maximal ratio, R(max), and its resting value were slightly lower in areas of high expression, a variation that was inversely correlated to distance from the sites of protein synthesis. The average [Ca(2+)](SR) in 74 viable cells at rest was 416 µM. The distribution of individual ratio values was Gaussian, but that of the calculated [Ca(2+)](SR) was skewed, with a tail of very large values, up to 6 mM. Model calculations reproduce this skewness as the consequence of quantifiably small variations in biosensor performance. Local variability, a perceived weakness of biosensors, thus becomes quantifiable. It is demonstrably small in D4cpv. D4cpv-Casq1 therefore provides substantial improvements in sensitivity, specificity, and reproducibility over existing monitors of SR free Ca(2+) concentration.
Collapse
Affiliation(s)
- Monika Sztretye
- Section of Cellular Signaling, Department of Molecular Biophysics and Physiology, Rush University, Chicago, IL 60612, USA
| | | | | | | | | | | |
Collapse
|
23
|
Allen DG, Clugston E, Petersen Y, Röder IV, Chapman B, Rudolf R. Interactions between intracellular calcium and phosphate in intact mouse muscle during fatigue. J Appl Physiol (1985) 2011; 111:358-66. [DOI: 10.1152/japplphysiol.01404.2010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Fatigue was studied in intact tibialis anterior muscle of anesthetized mice. The distal tendon was detached and connected to a force transducer while blood flow continued normally. The muscle was stimulated with electrodes applied directly to the muscle surface and fatigued by repeated (1 per 4 s), brief (0.4 s), maximal (100-Hz stimulation frequency) tetani. Force declined monotonically to 49 ± 5% of the initial value with a half time of 36 ± 5 s and recovered to 86 ± 4% after 4 min. Intracellular phosphate concentration ([Pi]) was measured by 31P-NMR on perchloric acid extracts of muscles. [Pi] increased during fatigue from 7.6 ± 1.7 to 16.0 ± 1.6 mmol/kg muscle wet wt and returned to control during recovery. Intracellular Ca2+ was measured with cameleons whose plasmids had been transfected in the muscle 2 wk before the experiment. Yellow cameleon 2 was used to measure myoplasmic Ca2+, and D1ER was used to measure sarcoplasmic reticulum (SR) Ca2+. The myoplasmic Ca2+ during tetani declined steadily during the period of fatigue and showed complete recovery over 4 min. The SR Ca2+ also declined monotonically during fatigue and showed a partial recovery with rest. These results show that the initial phase of force decline is accompanied by a rise in [Pi] and a reduction in the tetanic myoplasmic Ca2+. We suggest that both changes contribute to the fatigue. A likely cause of the decline in tetanic myoplasmic Ca2+ is precipitation of CaPi in the SR.
Collapse
Affiliation(s)
- D. G. Allen
- School of Medical Sciences and Bosch Institute and
| | - E. Clugston
- School of Medical Sciences and Bosch Institute and
| | - Y. Petersen
- Institute for Toxicology and Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - I. V. Röder
- Institute for Toxicology and Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - B. Chapman
- School of Molecular Bioscience, University of Sydney, Sydney, New South Wales, Australia; and
| | - R. Rudolf
- Institute for Toxicology and Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| |
Collapse
|
24
|
Fitts RH. New insights on sarcoplasmic reticulum calcium regulation in muscle fatigue. J Appl Physiol (1985) 2011; 111:345-6. [PMID: 21680881 DOI: 10.1152/japplphysiol.00720.2011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
25
|
Fluorescent Genetically Encoded Calcium Indicators and Their In Vivo Application. FLUORESCENT PROTEINS II 2011. [DOI: 10.1007/4243_2011_29] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
26
|
Canato M, Scorzeto M, Giacomello M, Protasi F, Reggiani C, Stienen GJM. Massive alterations of sarcoplasmic reticulum free calcium in skeletal muscle fibers lacking calsequestrin revealed by a genetically encoded probe. Proc Natl Acad Sci U S A 2010; 107:22326-31. [PMID: 21135222 PMCID: PMC3009789 DOI: 10.1073/pnas.1009168108] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The cytosolic free Ca(2+) transients elicited by muscle fiber excitation are well characterized, but little is known about the free [Ca(2+)] dynamics within the sarcoplasmic reticulum (SR). A targetable ratiometric FRET-based calcium indicator (D1ER Cameleon) allowed us to investigate SR Ca(2+) dynamics and analyze the impact of calsequestrin (CSQ) on SR [Ca(2+)] in enzymatically dissociated flexor digitorum brevis muscle fibers from WT and CSQ-KO mice lacking isoform 1 (CSQ-KO) or both isoforms [CSQ-double KO (DKO)]. At rest, free SR [Ca(2+)] did not differ between WT, CSQ-KO, and CSQ-DKO fibers. During sustained contractions, changes were rather small in WT, reflecting powerful buffering of CSQ, whereas in CSQ-KO fibers, significant drops in SR [Ca(2+)] occurred. Their amplitude increased with stimulation frequency between 1 and 60 Hz. At 60 Hz, the SR became virtually depleted of Ca(2+), both in CSQ-KO and CSQ-DKO fibers. In CSQ-KO fibers, cytosolic free calcium detected with Fura-2 declined during repetitive stimulation, indicating that SR calcium content was insufficient for sustained contractile activity. SR Ca(2+) reuptake during and after stimulation trains appeared to be governed by three temporally distinct processes with rate constants of 50, 1-5, and 0.3 s(-1) (at 26 °C), reflecting activity of the SR Ca(2+) pump and interplay of luminal and cytosolic Ca(2+) buffers and pointing to store-operated calcium entry (SOCE). SOCE might play an essential role during muscle contractures responsible for the malignant hyperthermia-like syndrome in mice lacking CSQ.
Collapse
Affiliation(s)
- M. Canato
- Departments of Human Anatomy and Physiology and
| | - M. Scorzeto
- Departments of Human Anatomy and Physiology and
| | - M. Giacomello
- Experimental Veterinary Sciences, University of Padua, 35121 Padua, Italy
| | - F. Protasi
- CeSI, Department of Basic and Applied Medical Sciences, University G. d'Annunzio, I-66013 Chieti, Italy
- IIM-Interuniversity Institute of Myology and
| | - C. Reggiani
- Departments of Human Anatomy and Physiology and
- IIM-Interuniversity Institute of Myology and
| | - G. J. M. Stienen
- Laboratory for Physiology, Institute for Cardiovascular Research, VU University Medical Center, 1081BT, Amsterdam, The Netherlands
| |
Collapse
|
27
|
Ziman AP, Ward CW, Rodney GG, Lederer WJ, Bloch RJ. Quantitative measurement of Ca²(+) in the sarcoplasmic reticulum lumen of mammalian skeletal muscle. Biophys J 2010; 99:2705-14. [PMID: 20959112 PMCID: PMC2955505 DOI: 10.1016/j.bpj.2010.08.032] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Revised: 08/10/2010] [Accepted: 08/12/2010] [Indexed: 12/18/2022] Open
Abstract
Skeletal muscle stores Ca²(+) in the sarcoplasmic reticulum (SR) and releases it to initiate contraction, but the concentration of luminal Ca²(+) in the SR ([Ca²(+)](SR)) and the amount that is released by physiological or pharmacological stimulation has been difficult to measure. Here we present a novel, yet simple and direct, method that provides the first quantitative estimates of static content and dynamic changes in [Ca²(+)](SR) in mammalian skeletal muscle, to our knowledge. The method uses fluo-5N loaded into the SR of single, mammalian skeletal muscle cells (murine flexor digitorum brevis myofibers) and confocal imaging to detect and calibrate the signals. Using this method, we have determined that [Ca²(+)](SR, free) is 390 μM. 4-Chloro-m-cresol, an activator of the skeletal muscle ryanodine receptor, reduces [Ca²(+)](SR, free) to ∼8 μM, when values are corrected for background fluorescence from cytoplasmic pools of dye. Prolonged electrical stimulation (10 s) at 50 Hz releases 88% of the SR Ca²(+) content, whereas stimulation at 1 Hz (10 s) releases only 20%. Our results lay the foundation for molecular modeling of the dynamics of luminal SR Ca²(+) and for future studies of the role of SR Ca²(+) in healthy and diseased mammalian muscle.
Collapse
Affiliation(s)
- Andrew P Ziman
- Department of Physiology, University of Maryland, Baltimore, Maryland, USA.
| | | | | | | | | |
Collapse
|
28
|
Royer L, Sztretye M, Manno C, Pouvreau S, Zhou J, Knollmann BC, Protasi F, Allen PD, Ríos E. Paradoxical buffering of calcium by calsequestrin demonstrated for the calcium store of skeletal muscle. J Gen Physiol 2010; 136:325-38. [PMID: 20713548 PMCID: PMC2931149 DOI: 10.1085/jgp.201010454] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Accepted: 07/22/2010] [Indexed: 11/20/2022] Open
Abstract
Contractile activation in striated muscles requires a Ca(2+) reservoir of large capacity inside the sarcoplasmic reticulum (SR), presumably the protein calsequestrin. The buffering power of calsequestrin in vitro has a paradoxical dependence on [Ca(2+)] that should be valuable for function. Here, we demonstrate that this dependence is present in living cells. Ca(2+) signals elicited by membrane depolarization under voltage clamp were compared in single skeletal fibers of wild-type (WT) and double (d) Casq-null mice, which lack both calsequestrin isoforms. In nulls, Ca(2+) release started normally, but the store depleted much more rapidly than in the WT. This deficit was reflected in the evolution of SR evacuability, E, which is directly proportional to SR Ca(2+) permeability and inversely to its Ca(2+) buffering power, B. In WT mice E starts low and increases progressively as the SR is depleted. In dCasq-nulls, E started high and decreased upon Ca(2+) depletion. An elevated E in nulls is consistent with the decrease in B expected upon deletion of calsequestrin. The different value and time course of E in cells without calsequestrin indicate that the normal evolution of E reflects loss of B upon SR Ca(2+) depletion. Decrement of B upon SR depletion was supported further. When SR calcium was reduced by exposure to low extracellular [Ca(2+)], release kinetics in the WT became similar to that in the dCasq-null. E became much higher, similar to that of null cells. These results indicate that calsequestrin not only stores Ca(2+), but also varies its affinity in ways that progressively increase the ability of the store to deliver Ca(2+) as it becomes depleted, a novel feedback mechanism of potentially valuable functional implications. The study revealed a surprisingly modest loss of Ca(2+) storage capacity in null cells, which may reflect concurrent changes, rather than detract from the physiological importance of calsequestrin.
Collapse
Affiliation(s)
- Leandro Royer
- Section of Cellular Signaling, Department of Molecular Biophysics and Physiology, Rush University, Chicago, IL 60612
| | - Monika Sztretye
- Section of Cellular Signaling, Department of Molecular Biophysics and Physiology, Rush University, Chicago, IL 60612
| | - Carlo Manno
- Section of Cellular Signaling, Department of Molecular Biophysics and Physiology, Rush University, Chicago, IL 60612
| | - Sandrine Pouvreau
- Section of Cellular Signaling, Department of Molecular Biophysics and Physiology, Rush University, Chicago, IL 60612
| | - Jingsong Zhou
- Section of Cellular Signaling, Department of Molecular Biophysics and Physiology, Rush University, Chicago, IL 60612
| | - Bjorn C. Knollmann
- Department of Medicine and Pharmacology, Vanderbilt University, Nashville, TN 37240
| | - Feliciano Protasi
- Centro Scienze dell’Invecchiamento, Università G. d’Annunzio, 66100 Chieti, Italy
| | - Paul D. Allen
- Department of Anesthesia, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Eduardo Ríos
- Section of Cellular Signaling, Department of Molecular Biophysics and Physiology, Rush University, Chicago, IL 60612
| |
Collapse
|