1
|
Flori L, Lazzarini G, Spezzini J, Pirone A, Calderone V, Testai L, Miragliotta V. The isoproterenol-induced myocardial fibrosis: A biochemical and histological investigation. Biomed Pharmacother 2024; 174:116534. [PMID: 38565062 DOI: 10.1016/j.biopha.2024.116534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/25/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024] Open
Abstract
The isoproterenol (ISO)-induced myocardial fibrosis is considered a reliable and repeatable experimental model characterized by a relatively low mortality rate. Although is well-known that ISO stimulates the β1 adrenergic receptors at the myocardial level, a high degree of heterogeneity emerges around the doses and duration of the treatment generating unclear results. Therefore, we propose to gain insights into the progression of ISO-induced myocardial fibrosis, in order to critically analyze and optimize the experimental model. Male Wistar rats (12-14-week-old) were submitted to subcutaneous injection of ISO, in particular, two doses were selected: the commonly used dose of 5 mg/kg and a lower dose of 1 mg/kg, administered for 3 and 6 days. Biochemical and histological examinations were conducted either immediately after the last administration or after a recovering period of 7 or 14 days from the initial administration. Noteworthy, from our investigation emerged that even the lower dose of ISO was able to induce the maximal biochemical and histological alterations, suggesting that lower doses should be considered to control the progression of the damage more precisely and to identify a prodromic phase in which intervention with pharmacological or nutraceutical tools can be effectively attempted.
Collapse
Affiliation(s)
- Lorenzo Flori
- Department of Pharmacy, University of Pisa, via Bonanno 6-56120, Pisa, Italy
| | - Giulia Lazzarini
- Department of Veterinary Sciences, University of Pisa, via Delle Piagge 2-56124, Pisa, Italy
| | - Jacopo Spezzini
- Department of Pharmacy, University of Pisa, via Bonanno 6-56120, Pisa, Italy
| | - Andrea Pirone
- Department of Veterinary Sciences, University of Pisa, via Delle Piagge 2-56124, Pisa, Italy
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, via Bonanno 6-56120, Pisa, Italy; CISUP, Centro per l'Integrazione della Strumentazione dell'Università di Pisa, Lungarno Pacinotti 43, Pisa 56126, Italy
| | - Lara Testai
- Department of Pharmacy, University of Pisa, via Bonanno 6-56120, Pisa, Italy; CISUP, Centro per l'Integrazione della Strumentazione dell'Università di Pisa, Lungarno Pacinotti 43, Pisa 56126, Italy.
| | - Vincenzo Miragliotta
- Department of Veterinary Sciences, University of Pisa, via Delle Piagge 2-56124, Pisa, Italy; CISUP, Centro per l'Integrazione della Strumentazione dell'Università di Pisa, Lungarno Pacinotti 43, Pisa 56126, Italy
| |
Collapse
|
2
|
Mahmood A, Ahmed K, Zhang Y. β-Adrenergic Receptor Desensitization/Down-Regulation in Heart Failure: A Friend or Foe? Front Cardiovasc Med 2022; 9:925692. [PMID: 35845057 PMCID: PMC9283919 DOI: 10.3389/fcvm.2022.925692] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/06/2022] [Indexed: 11/22/2022] Open
Abstract
Cardiac sympathetic activation, mediated by β-adrenergic receptors (β-ARs), normally increases cardiac contraction and relaxation. Accomplishing this task requires a physiological, concerted Ca2+ signaling, being able to increase Ca2+ release from sarcoplasmic reticulum (SR) in systole and speed up Ca2+ re-uptake in diastole. In heart failure (HF) myocardial β-ARs undergo desensitization/down-regulation due to sustained sympathetic adrenergic activation. β-AR desensitization/down-regulation diminishes adrenergic signaling and cardiac contractile reserve, and is conventionally considered to be detrimental in HF progression. Abnormal Ca2+ handling, manifested as cardiac ryanodine receptor (RyR2) dysfunction and diastolic Ca2+ leak (due to sustained adrenergic activation) also occur in HF. RyR2 dysfunction and Ca2+ leak deplete SR Ca2+ store, diminish Ca2+ release in systole and elevate Ca2+ levels in diastole, impairing both systolic and diastolic ventricular function. Moreover, elevated Ca2+ levels in diastole promote triggered activity and arrhythmogenesis. In the presence of RyR2 dysfunction and Ca2+ leak, further activation of the β-AR signaling in HF would worsen the existing abnormal Ca2+ handling, exacerbating not only cardiac dysfunction, but also ventricular arrhythmogenesis and sudden cardiac death. Thus, we conclude that β-AR desensitization/down-regulation may be a self-preserving, adaptive process (acting like an intrinsic β-AR blocker) protecting the failing heart from developing lethal ventricular arrhythmias under conditions of elevated sympathetic drive and catecholamine levels in HF, rather than a conventionally considered detrimental process. This also implies that medications simply enhancing β-AR signaling (like β-AR agonists) may not be so beneficial unless they can also correct dysfunctional Ca2+ handling in HF.
Collapse
Affiliation(s)
- Abrahim Mahmood
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, United States
| | - Kinza Ahmed
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, United States
| | - Youhua Zhang
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, United States
| |
Collapse
|
3
|
Richalet J, Hermand E. Modeling the oxygen transport to the myocardium at maximal exercise at high altitude. Physiol Rep 2022; 10:e15262. [PMID: 35439356 PMCID: PMC9017981 DOI: 10.14814/phy2.15262] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023] Open
Abstract
Exposure to high altitude induces a decrease in oxygen pressure and saturation in the arterial blood, which is aggravated by exercise. Heart rate (HR) at maximal exercise decreases when altitude increases in prolonged exposure to hypoxia. We developed a simple model of myocardial oxygenation in order to demonstrate that the observed blunting of maximal HR at high altitude is necessary for the maintenance of a normal myocardial oxygenation. Using data from the available scientific literature, we estimated the myocardial venous oxygen pressure and saturation at maximal exercise in two conditions: (1) with actual values of maximal HR (decreasing with altitude); (2) with sea-level values of maximal heart rate, whatever the altitude (no change in HR). We demonstrated that, in the absence of autoregulation of maximal HR, myocardial tissue oxygenation would be incompatible with life above 6200 m-7600 m, depending on the hypothesis concerning a possible increase in coronary reserve (increase in coronary blood flow at exercise). The decrease in maximal HR at high altitude could be explained by several biological mechanisms involving the autonomic nervous system and its receptors on myocytes. These experimental and clinical observations support the hypothesis that there exists an integrated system at the cellular level, which protects the myocardium from a hazardous disequilibrium between O2 supply and O2 consumption at high altitude.
Collapse
Affiliation(s)
- Jean‐Paul Richalet
- UMR INSERM U1272 Hypoxie & PoumonUniversité Sorbonne Paris NordBobignyFrance
| | - Eric Hermand
- Université Littoral Côte d’OpaleUniversité ArtoisUniversité Lille, CHU LilleULR 7369 ‐ URePSSS‐Unité de Recherche Pluridisciplinaire Sport Santé SociétéDunkerqueFrance
| |
Collapse
|
4
|
Shugg T, Hudmon A, Overholser BR. Neurohormonal Regulation of I Ks in Heart Failure: Implications for Ventricular Arrhythmogenesis and Sudden Cardiac Death. J Am Heart Assoc 2020; 9:e016900. [PMID: 32865116 PMCID: PMC7726975 DOI: 10.1161/jaha.120.016900] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Heart failure (HF) results in sustained alterations in neurohormonal signaling, including enhanced signaling through the sympathetic nervous system and renin-angiotensin-aldosterone system pathways. While enhanced sympathetic nervous system and renin-angiotensin-aldosterone system activity initially help compensate for the failing myocardium, sustained signaling through these pathways ultimately contributes to HF pathophysiology. HF remains a leading cause of mortality, with arrhythmogenic sudden cardiac death comprising a common mechanism of HF-related death. The propensity for arrhythmia development in HF occurs secondary to cardiac electrical remodeling that involves pathological regulation of ventricular ion channels, including the slow component of the delayed rectifier potassium current, that contribute to action potential duration prolongation. To elucidate a mechanistic explanation for how HF-mediated electrical remodeling predisposes to arrhythmia development, a multitude of investigations have investigated the specific regulatory effects of HF-associated stimuli, including enhanced sympathetic nervous system and renin-angiotensin-aldosterone system signaling, on the slow component of the delayed rectifier potassium current. The objective of this review is to summarize the current knowledge related to the regulation of the slow component of the delayed rectifier potassium current in response to HF-associated stimuli, including the intracellular pathways involved and the specific regulatory mechanisms.
Collapse
Affiliation(s)
- Tyler Shugg
- Division of Clinical PharmacologyIndiana University School of MedicineIndianapolisIN
| | - Andy Hudmon
- Department of Medicinal Chemistry and Molecular PharmacologyPurdue University College of PharmacyWest LafayetteIN
| | - Brian R. Overholser
- Division of Clinical PharmacologyIndiana University School of MedicineIndianapolisIN
- Department of Pharmacy PracticePurdue University College of PharmacyIndianapolisIN
| |
Collapse
|
5
|
Osadchii OE. Antiarrhythmic drug effects on premature beats are partly determined by prior cardiac activation frequency in perfused guinea-pig heart. Exp Physiol 2020; 105:819-830. [PMID: 32175633 DOI: 10.1113/ep088165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 03/13/2020] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? Can antiarrhythmic drug effects on repolarization, conduction time and excitation wavelength in premature beats be determined by prior cardiac activation frequency? What is the main finding and its importance? In premature beats induced after a series of cardiac activations at a slow rate, antiarrhythmics prolong repolarization but evoke little or no conduction delay, thus increasing the excitation wavelength, which indicates an antiarrhythmic effect. Fast prior activation rate attenuates prolongation of repolarization, while amplifying the conduction delay induced by drugs, which translates into the reduced excitation wavelength, indicating proarrhythmia. These findings suggest that a sudden increase in heart rate can shape adverse pharmacological profiles in patients with ventricular ectopy. ABSTRACT Antiarrhythmic drugs used to treat atrial fibrillation can occasionally induce ventricular tachyarrhythmia, which is typically precipitated by a premature ectopic beat through a mechanism related, in part, to the shortening of the excitation wavelength (EW). The arrhythmia is likely to occur when a drug induces a reduction, rather than an increase, in the EW of ectopic beats. In this study, I examined whether the arrhythmic drug profile is shaped by the increased cardiac activation rate before ectopic excitation. Ventricular monophasic action potential durations, conduction times and EW values were assessed during programmed stimulations applied at long (S1 -S1 [basic drive cycle length] = 550 ms) and short (S1 -S1 = 200 ms) cycle lengths in perfused guinea-pig hearts. The premature activations were induced with extrastimulus application immediately upon termination of the refractory period. With dofetilide, a class III antiarrhythmic agent, a prolongation in action potential duration and the resulting increase in the EW obtained at S1 -S1 = 550 ms were significantly attenuated at S1 -S1 = 200 ms, in both the regular (S1 ) and the premature (S2 ) beats. With class I antiarrhythmic agents (quinidine, procainamide and flecainide), fast S1 -S1 pacing was found to attenuate the drug-induced increase in action potential duration, while amplifying drug-induced conduction slowing, in both S1 and S2 beats. As a result, although the EW was increased (quinidine and procainamide) or not changed (flecainide) at the long S1 -S1 intervals, it was invariably reduced by these agents at the short S1 -S1 intervals. These findings indicate that the increased heart rate before ectopic activation shapes the arrhythmic profiles by facilitating drug-induced EW reduction.
Collapse
Affiliation(s)
- Oleg E Osadchii
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen N, Denmark.,Department of Health Science and Technology, University of Aalborg, Aalborg, Denmark
| |
Collapse
|
6
|
Grandi E, Ripplinger CM. Antiarrhythmic mechanisms of beta blocker therapy. Pharmacol Res 2019; 146:104274. [PMID: 31100336 DOI: 10.1016/j.phrs.2019.104274] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 05/04/2019] [Accepted: 05/13/2019] [Indexed: 02/07/2023]
Abstract
Sympathetic activity plays an important role in modulation of cardiac rhythm. Indeed, while exerting positive tropic effects in response to physiologic and pathologic stressors, β-adrenergic stimulation influences cardiac electrophysiology and can lead to disturbances of the heart rhythm and potentially lethal arrhythmias, particularly in pathological settings. For this reason, β-blockers are widely utilized clinically as antiarrhythmics. In this review, the molecular mechanisms of β-adrenergic action in the heart, the cellular and tissue level cardiac responses to β-adrenergic stimulation, and the clinical use of β-blockers as antiarrhythmic agents are reviewed. We emphasize the complex interaction between cardiomyocyte signaling, contraction, and electrophysiology occurring over multiple time- and spatial-scales during pathophysiological responses to β-adrenergic stimulation. An integrated understanding of this complex system is essential for optimizing therapies aimed at preventing arrhythmias.
Collapse
Affiliation(s)
- Eleonora Grandi
- Department of Pharmacology, University of California Davis, United States.
| | | |
Collapse
|
7
|
Osadchii OE. Effects of antiarrhythmics on the electrical restitution in perfused guinea-pig heart are critically determined by the applied cardiac pacing protocol. Exp Physiol 2019; 104:490-504. [PMID: 30758086 DOI: 10.1113/ep087531] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/12/2019] [Indexed: 01/11/2023]
Abstract
NEW FINDINGS What is the central question of this study? Are modifications in the restitution of ventricular action potential duration induced by antiarrhythmic drugs the same when assessed with premature extrastimulus application at variable coupling intervals (the standard stimulation protocol) and with steady state pacing at variable rates (the dynamic stimulation protocol)? What is the main finding and its importance? With class I and class III antiarrhythmics, the effects on electrical restitution determined with the standard stimulation protocol dissociate from those obtained during dynamic pacing. These findings indicate a limited value of the electrical restitution assessments based on extrasystolic stimulations alone, as performed in the clinical studies, in estimating the outcomes of antiarrhythmic drug therapies. ABSTRACT A steep slope of the ventricular action potential duration (APD) to diastolic interval (DI) relationships (the electrical restitution) can precipitate tachyarrhythmia, whereas a flattened slope is antiarrhythmic. The derangements in APD restitution responsible for transition of tachycardia to ventricular fibrillation can be assessed with cardiac pacing at progressively increasing rates (the dynamic stimulation protocol). Nevertheless, this method is not used clinically owing to the risk of inducing myocardial ischaemia. Instead, the restitution kinetics is determined with a premature extrastimulus application at variable coupling intervals (the standard stimulation protocol). Whether the two protocols are equivalent in estimating antiarrhythmic drug effects is uncertain. In this study, dofetilide and quinidine, the agents blocking repolarizing K+ currents, increased epicardial APD in perfused guinea-pig hearts, with effects being greater at long vs. short DIs. These changes were more pronounced during dynamic pacing compared to premature extrastimulations. Accordingly, although both agents markedly steepened the dynamic restitution, there was only a marginal increase in the standard restitution slope with dofetilide, and no effect with quinidine. Lidocaine and mexiletine, selective Na+ channel blockers, prolonged the effective refractory period without changing APD, and increased the minimum DI that enabled ventricular capture during extrastimulations. No change in the minimum DI was noted during dynamic pacing. Consequently, although lidocaine and mexiletine reduced the standard restitution slope, they failed to flatten the dynamic restitution. Overall, these findings imply a limited value of the electrical restitution assessments with premature extrastimulations alone in discriminating arrhythmic vs. antiarrhythmic changes during drug therapies.
Collapse
Affiliation(s)
- Oleg E Osadchii
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen N, Denmark.,Department of Health Science and Technology, University of Aalborg, Fredrik Bajers Vej 7E, 9220, Aalborg, Denmark
| |
Collapse
|
8
|
Osadchii OE. Determinants of slowed conduction in premature ventricular beats induced during programmed stimulations in perfused guinea-pig heart. Exp Physiol 2018; 103:1230-1242. [PMID: 29956404 DOI: 10.1113/ep087019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 06/27/2018] [Indexed: 12/26/2022]
Abstract
NEW FINDINGS What is the central question of this study? Is the slowed conduction upon premature ventricular activations during clinical electrophysiological testing attributable to the prolonged activation latency, or increased impulse propagation time, or both? What is the main finding and its importance? Prolonged activation latency at the stimulation site is the critical determinant of conduction slowing and associated changes in the ventricular response intervals in premature beats initiated during phase 3 repolarization in perfused guinea-pig heart. These relations are likely to have an effect on arrhythmia induction and termination independently of the presence of ventricular conduction defects or the proximity of the stimulation site to the re-entrant circuit. ABSTRACT During cardiac electrophysiological testing, slowed conduction upon premature ventricular activation can limit the delivery of the closely coupled impulses from the stimulation site to the region of tachycardia origin. In order to examine the contributing factors, in this study, cardiac conduction intervals and refractory periods were determined from left ventricular (LV) and the right ventricular (RV) monophasic action potential recordings obtained in perfused guinea-pig hearts. A premature activation induced immediately after the termination of the refractory period was associated with conduction slowing. The latter was primarily accounted for by the markedly increased (+54%) activation latency at the LV stimulation site, with only negligible changes (+12%) noted in the LV-to-RV delay. The prolonged activation latency was acting to limit the shortest interval at which two successive action potentials can be induced in the LV and RV chambers. The prolongation of the activation latency in premature beats was accentuated upon an increase in the stimulating current intensity, or during hypokalaemia. This change was related to the reduced ratio of the refractory period to the action potential duration, which allowed extrastimulus capture to occur earlier during phase 3 repolarization. Flecainide, a Na+ channel blocker, prolonged both the activation latency and the LV-to-RV delay, without changing their relative contributions to conduction slowing. In summary, these findings suggest that the activation latency is the critical determinant of conduction slowing and associated changes in the ventricular response intervals upon extrastimulus application during phase 3 of the action potential.
Collapse
Affiliation(s)
- Oleg E Osadchii
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen N, Denmark.,Department of Health Science and Technology, University of Aalborg, Fredrik Bajers Vej 7E, Aalborg, Denmark
| |
Collapse
|
9
|
Arrhythmogenic drugs can amplify spatial heterogeneities in the electrical restitution in perfused guinea-pig heart: An evidence from assessments of monophasic action potential durations and JT intervals. PLoS One 2018; 13:e0191514. [PMID: 29352276 PMCID: PMC5774816 DOI: 10.1371/journal.pone.0191514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/06/2018] [Indexed: 01/01/2023] Open
Abstract
Non-uniform shortening of the action potential duration (APD90) in different myocardial regions upon heart rate acceleration can set abnormal repolarization gradients and promote arrhythmia. This study examined whether spatial heterogeneities in APD90 restitution can be amplified by drugs with clinically proved proarrhythmic potential (dofetilide, quinidine, procainamide, and flecainide) and, if so, whether these effects can translate to the appropriate changes of the ECG metrics of ventricular repolarization, such as JT intervals. In isolated, perfused guinea-pig heart preparations, monophasic action potentials and volume-conducted ECG were recorded at progressively increased pacing rates. The APD90 measured at distinct ventricular sites, as well as the JTpeak and JTend values were plotted as a function of preceding diastolic interval, and the maximum slopes of the restitution curves were determined at baseline and upon drug administration. Dofetilide, quinidine, and procainamide reverse rate-dependently prolonged APD90 and steepened the restitution curve, with effects being greater at the endocardium than epicardium, and in the right ventricular (RV) vs. the left ventricular (LV) chamber. The restitution slope was increased to a greater extent for the JTend vs. the JTpeak interval. In contrast, flecainide reduced the APD90 restitution slope at LV epicardium without producing effect at LV endocardium and RV epicardium, and reduced the JTpeak restitution slope without changing the JTend restitution. Nevertheless, with all agents, these effects translated to the amplified epicardial-to-endocardial and the LV-to-RV non-uniformities in APD90 restitution, paralleled by the increased JTend vs. JTpeak difference in the restitution slope. In summary, these findings suggest that arrhythmic drug profiles are partly attributable to the accentuated regional heterogeneities in APD90 restitution, which can be indirectly determined through ECG assessments of the JTend vs. JTpeak dynamics at variable pacing rates.
Collapse
|
10
|
Osadchii OE. Assessments of the QT/QRS restitution in perfused guinea-pig heart can discriminate safe and arrhythmogenic drugs. J Pharmacol Toxicol Methods 2017; 87:27-37. [PMID: 28552278 DOI: 10.1016/j.vascn.2017.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 04/25/2017] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Drug-induced arrhythmia remains a matter of serious clinical concern, partly due to low prognostic value of currently available arrhythmic biomarkers. METHODS This study examined whether arrhythmogenic risks can be predicted through assessments of the rate adaptation of QT interval, ventricular effective refractory period (ERP), or the QT/QRS ratio, in perfused guinea-pig hearts. RESULTS When the maximum restitution slope was taken as a metric of proarrhythmia, neither QT interval nor ERP measurements at progressively increased pacing rates were found to fully discriminate arrhythmogenic drugs (dofetilide, quinidine, flecainide, and procainamide) from those recognized as safe antiarrhythmics (lidocaine and mexiletine). For example, the slope of QT restitution was increased by dofetilide and quinidine, but remained unchanged by flecainide, procainamide, lidocaine, and mexiletine. With ERP rate adaptation, even though the restitution slope was increased by dofetilide, all class I agents reduced the slope value independently of their safety profile. The QRS measurements revealed variable drug effects, ranging from significant use-dependent conduction slowing (flecainide, quinidine, and procainamide) to only modest increase in QRS (lidocaine and mexiletine), or no change at all (dofetilide). However, with the QT/QRS rate adaptation, the restitution slope was significantly increased by all agents which have been reported to produce proarrhythmic effects (dofetilide, quinidine, flecainide, and procainamide), but not changed by lidocaine and mexiletine. DISCUSSION These findings suggest that the slope of the QT/QRS rate adaptation can be considered as a novel electrophysiological biomarker in predicting potential arrhythmic risks associated with pharmacotherapy in cardiac patients.
Collapse
Affiliation(s)
- Oleg E Osadchii
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark; Department of Health Science and Technology, University of Aalborg, Fredrik Bajers Vej 7E, 9220 Aalborg, Denmark.
| |
Collapse
|
11
|
Effects of Na+ channel blockers on the restitution of refractory period, conduction time, and excitation wavelength in perfused guinea-pig heart. PLoS One 2017; 12:e0172683. [PMID: 28231318 PMCID: PMC5322976 DOI: 10.1371/journal.pone.0172683] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 02/08/2017] [Indexed: 12/29/2022] Open
Abstract
Na+ channel blockers flecainide and quinidine can increase propensity to ventricular tachyarrhythmia, whereas lidocaine and mexiletine are recognized as safe antiarrhythmics. Clinically, ventricular fibrillation is often precipitated by transient tachycardia that reduces action potential duration, suggesting that a critical shortening of the excitation wavelength (EW) may contribute to the arrhythmic substrate. This study examined whether different INa blockers can produce contrasting effects on the rate adaptation of the EW, which would explain the difference in their safety profile. In perfused guinea-pig hearts, effective refractory periods (ERP), conduction times, and EW values were determined over a wide range of cardiac pacing intervals. All INa blockers tested were found to flatten the slope of ERP restitution, indicating antiarrhythmic tendency. However, with flecainide and quinidine, the beneficial changes in ERP were reversed owing to the use-dependent conduction slowing, thereby leading to significantly steepened restitution of the EW. In contrast, lidocaine and mexiletine had no effect on ventricular conduction, and therefore reduced the slope of the EW restitution, as expected from their effect on ERP. These findings suggest that the slope of the EW restitution is an important electrophysiological determinant which can discriminate INa blockers with proarrhythmic and antiarrhythmic profile.
Collapse
|
12
|
Gardner RT, Ripplinger CM, Myles RC, Habecker BA. Molecular Mechanisms of Sympathetic Remodeling and Arrhythmias. Circ Arrhythm Electrophysiol 2016; 9:e001359. [PMID: 26810594 DOI: 10.1161/circep.115.001359] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ryan T Gardner
- From the Department of Physiology and Pharmacology and Knight Cardiovascular Institute, Oregon Health and Science University, Portland (R.T.G., B.A.H.); Department of Pharmacology, School of Medicine, University of California, Davis (C.M.R.); and Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom (R.C.M.)
| | - Crystal M Ripplinger
- From the Department of Physiology and Pharmacology and Knight Cardiovascular Institute, Oregon Health and Science University, Portland (R.T.G., B.A.H.); Department of Pharmacology, School of Medicine, University of California, Davis (C.M.R.); and Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom (R.C.M.)
| | - Rachel C Myles
- From the Department of Physiology and Pharmacology and Knight Cardiovascular Institute, Oregon Health and Science University, Portland (R.T.G., B.A.H.); Department of Pharmacology, School of Medicine, University of California, Davis (C.M.R.); and Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom (R.C.M.)
| | - Beth A Habecker
- From the Department of Physiology and Pharmacology and Knight Cardiovascular Institute, Oregon Health and Science University, Portland (R.T.G., B.A.H.); Department of Pharmacology, School of Medicine, University of California, Davis (C.M.R.); and Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom (R.C.M.).
| |
Collapse
|
13
|
Osadchii OE. Emerging role of neurotensin in regulation of the cardiovascular system. Eur J Pharmacol 2015; 762:184-92. [DOI: 10.1016/j.ejphar.2015.05.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 04/29/2015] [Accepted: 05/11/2015] [Indexed: 10/23/2022]
|
14
|
Thaung HPA, Baldi JC, Wang HY, Hughes G, Cook RF, Bussey CT, Sheard PW, Bahn A, Jones PP, Schwenke DO, Lamberts RR. Increased Efferent Cardiac Sympathetic Nerve Activity and Defective Intrinsic Heart Rate Regulation in Type 2 Diabetes. Diabetes 2015; 64:2944-56. [PMID: 25784543 DOI: 10.2337/db14-0955] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 03/09/2015] [Indexed: 11/13/2022]
Abstract
Elevated sympathetic nerve activity (SNA) coupled with dysregulated β-adrenoceptor (β-AR) signaling is postulated as a major driving force for cardiac dysfunction in patients with type 2 diabetes; however, cardiac SNA has never been assessed directly in diabetes. Our aim was to measure the sympathetic input to and the β-AR responsiveness of the heart in the type 2 diabetic heart. In vivo recording of SNA of the left efferent cardiac sympathetic branch of the stellate ganglion in Zucker diabetic fatty rats revealed an elevated resting cardiac SNA and doubled firing rate compared with nondiabetic rats. Ex vivo, in isolated denervated hearts, the intrinsic heart rate was markedly reduced. Contractile and relaxation responses to β-AR stimulation with dobutamine were compromised in externally paced diabetic hearts, but not in diabetic hearts allowed to regulate their own heart rate. Protein levels of left ventricular β1-AR and Gs (guanine nucleotide binding protein stimulatory) were reduced, whereas left ventricular and right atrial β2-AR and Gi (guanine nucleotide binding protein inhibitory regulatory) levels were increased. The elevated resting cardiac SNA in type 2 diabetes, combined with the reduced cardiac β-AR responsiveness, suggests that the maintenance of normal cardiovascular function requires elevated cardiac sympathetic input to compensate for changes in the intrinsic properties of the diabetic heart.
Collapse
Affiliation(s)
- H P Aye Thaung
- HeartOtago, Department of Physiology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - J Chris Baldi
- Department of Medicine, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Heng-Yu Wang
- HeartOtago, Department of Physiology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - Gillian Hughes
- HeartOtago, Department of Physiology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - Rosalind F Cook
- HeartOtago, Department of Physiology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - Carol T Bussey
- HeartOtago, Department of Physiology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - Phil W Sheard
- HeartOtago, Department of Physiology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - Andrew Bahn
- HeartOtago, Department of Physiology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - Peter P Jones
- HeartOtago, Department of Physiology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - Daryl O Schwenke
- HeartOtago, Department of Physiology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - Regis R Lamberts
- HeartOtago, Department of Physiology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
15
|
Mochizuki Y, Tanaka H, Matsumoto K, Sano H, Toki H, Shimoura H, Ooka J, Sawa T, Motoji Y, Ryo K, Hirota Y, Ogawa W, Hirata KI. Association of peripheral nerve conduction in diabetic neuropathy with subclinical left ventricular systolic dysfunction. Cardiovasc Diabetol 2015; 14:47. [PMID: 25946999 PMCID: PMC4428100 DOI: 10.1186/s12933-015-0213-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Accepted: 04/10/2015] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Subclinical left ventricular (LV) longitudinal myocardial systolic dysfunction occurs in patients with diabetes mellitus (DM) and preserved LV ejection fraction (LVEF), and is closely related to DM-related complications. However, the association of diabetic neuropathy (DN) with subclinical LV systolic longitudinal dysfunction in such patients has not been fully clarified. METHODS The subjects of this study were 112 consecutive DM patients with preserved LVEF (all ≥50%) without coronary artery disease and overt heart failure (aged 59 ± 14 years; 60 women, 52 men). Global longitudinal strain (GLS) was determined as the average peak strain of 18 segments from the three standard apical views, and was expressed as an absolute value. DN was diagnosed by experienced diabetologists. Median, ulnar, and sural nerves were subjected to motor and sensory nerve conduction studies. F-wave latency was defined as the minimum F-wave latency after a total of 16 stimulations of the tibial nerve. RESULTS Forty-one (37%) patients were clinically diagnosed with DN. LV functions of DM patients with and without DN were similar except for GLS being significantly smaller in patients with than in patients without DN (18 ± 2% vs. 20 ± 2%, p < 0.001). It was noteworthy that, of the parameters for the nerve conduction study, only F-wave latency correlated with GLS (r = -0.34, p < 0.001), and also was identified as an independent determinative value of GLS in a multivariate linear regression model (β = -0.25, p = 0.001) even after adjustment for other closely related GLS factors. CONCLUSIONS Monitoring of F-wave latency may aid early detection of not only DN but also subclinical LV dysfunction. Joint planning of assessment by diabetologists and cardiologists is therefore advisable for better management of DM patients.
Collapse
Affiliation(s)
- Yasuhide Mochizuki
- Department of Internal Medicine, Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| | - Hidekazu Tanaka
- Department of Internal Medicine, Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| | - Kensuke Matsumoto
- Department of Internal Medicine, Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| | - Hiroyuki Sano
- Department of Internal Medicine, Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| | - Hiromi Toki
- Department of Internal Medicine, Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| | - Hiroyuki Shimoura
- Department of Internal Medicine, Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| | - Junichi Ooka
- Department of Internal Medicine, Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| | - Takuma Sawa
- Department of Internal Medicine, Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| | - Yoshiki Motoji
- Department of Internal Medicine, Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| | - Keiko Ryo
- Department of Internal Medicine, Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| | - Yushi Hirota
- Department of Internal Medicine, Division of Diabetes and Endocrinology, Kobe University Graduate School of Medicine, Kobe, Japan.
| | - Wataru Ogawa
- Department of Internal Medicine, Division of Diabetes and Endocrinology, Kobe University Graduate School of Medicine, Kobe, Japan.
| | - Ken-ichi Hirata
- Department of Internal Medicine, Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| |
Collapse
|
16
|
Osadchii OE. Reduced intrinsic heart rate is associated with reduced arrhythmic susceptibility in guinea-pig heart. SCAND CARDIOVASC J 2014; 48:357-67. [PMID: 25334079 DOI: 10.3109/14017431.2014.976256] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVES In the clinical setting, patients with slower resting heart rate are less prone to cardiovascular death compared with those with elevated heart rate. However, electrophysiological adaptations associated with reduced cardiac rhythm have not been thoroughly explored. In this study, relationships between intrinsic heart rate and arrhythmic susceptibility were examined by assessments of action potential duration (APD) rate adaptation and inducibility of repolarization alternans in sinoatrial node (SAN)-driven and atrioventricular (AV)-blocked guinea-pig hearts perfused with Langendorff apparatus. DESIGN Electrocardiograms, epicardial monophasic action potentials, and effective refractory periods (ERP) were assessed in normokalemic and hypokalemic conditions. RESULTS Slower basal heart rate in AV-blocked hearts was associated with prolonged ventricular repolarization during spontaneous beating, and with attenuated APD shortening at increased cardiac activation rates during dynamic pacing, when compared with SAN-driven hearts. During hypokalemic perfusion, the inducibility of repolarization alternans and tachyarrhythmia by rapid pacing was found to be lower in AV-blocked hearts. This difference was ascribed to prolonged ERP in the setting of reduced basal heart rate, which prevented ventricular capture at critically short pacing intervals required to induce arrhythmia. CONCLUSIONS Reduced basal heart rate is associated with electrophysiological changes that prevent electrical instability upon an abrupt cardiac acceleration.
Collapse
Affiliation(s)
- Oleg E Osadchii
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen N, Denmark and Department of Health Science and Technology, University of Aalborg , Aalborg , Denmark
| |
Collapse
|
17
|
Boguslavskyi A, Pavlovic D, Aughton K, Clark JE, Howie J, Fuller W, Shattock MJ. Cardiac hypertrophy in mice expressing unphosphorylatable phospholemman. Cardiovasc Res 2014; 104:72-82. [PMID: 25103111 PMCID: PMC4174889 DOI: 10.1093/cvr/cvu182] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
AIMS Elevation of intracellular Na in the failing myocardium contributes to contractile dysfunction, the negative force-frequency relationship, and arrhythmias. Although phospholemman (PLM) is recognized to form the link between signalling pathways and Na/K pump activity, the possibility that defects in its regulation contribute to elevation of intracellular Na has not been investigated. Our aim was to test the hypothesis that the prevention of PLM phosphorylation in a PLM(3SA) knock-in mouse (in which PLM has been rendered unphosphorylatable) will exacerbate cardiac hypertrophy and cellular Na overload. Testing this hypothesis should determine whether changes in PLM phosphorylation are simply bystander effects or are causally involved in disease progression. METHODS AND RESULTS In wild-type (WT) mice, aortic constriction resulted in hypophosphorylation of PLM with no change in Na/K pump expression. This under-phosphorylation of PLM occurred at 3 days post-banding and was associated with a progressive decline in Na/K pump current and elevation of [Na]i. Echocardiography, morphometry, and pressure-volume (PV) catheterization confirmed remodelling, dilation, and contractile dysfunction, respectively. In PLM(3SA) mice, expression of Na/K ATPase was increased and PLM decreased such that net Na/K pump current under quiescent conditions was unchanged (cf. WT myocytes); [Na(+)]i was increased and forward-mode Na/Ca exchanger was reduced in paced PLM(3SA) myocytes. Cardiac hypertrophy and Na/K pump inhibition were significantly exacerbated in banded PLM(3SA) mice compared with banded WT. CONCLUSIONS Decreased phosphorylation of PLM reduces Na/K pump activity and exacerbates Na overload, contractile dysfunction, and adverse remodelling following aortic constriction in mice. This suggests a novel therapeutic target for the treatment of heart failure.
Collapse
Affiliation(s)
| | - Davor Pavlovic
- Cardiovascular Division, King's College London, London, UK
| | - Karen Aughton
- Cardiovascular Division, King's College London, London, UK
| | - James E Clark
- Cardiovascular Division, King's College London, London, UK
| | - Jacqueline Howie
- Division of Cardiovascular and Diabetes Medicine, University of Dundee, Dundee, UK
| | - William Fuller
- Division of Cardiovascular and Diabetes Medicine, University of Dundee, Dundee, UK
| | | |
Collapse
|
18
|
Davel AP, Brum PC, Rossoni LV. Isoproterenol induces vascular oxidative stress and endothelial dysfunction via a Giα-coupled β2-adrenoceptor signaling pathway. PLoS One 2014; 9:e91877. [PMID: 24622771 PMCID: PMC3951496 DOI: 10.1371/journal.pone.0091877] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 02/17/2014] [Indexed: 01/18/2023] Open
Abstract
OBJECTIVE Sustained β-adrenergic stimulation is a hallmark of sympathetic hyperactivity in cardiovascular diseases. It is associated with oxidative stress and altered vasoconstrictor tone. This study investigated the β-adrenoceptor subtype and the signaling pathways implicated in the vascular effects of β-adrenoceptor overactivation. METHODS AND RESULTS Mice lacking the β1- or β2-adrenoceptor subtype (β1KO, β2KO) and wild-type (WT) were treated with isoproterenol (ISO, 15 μg.g(-1) x day(-1), 7 days). ISO significantly enhanced the maximal vasoconstrictor response (Emax) of the aorta to phenylephrine in WT (+34%) and β1KO mice (+35%) but not in β2KO mice. The nitric oxide synthase (NOS) inhibitor L-NAME abolished the differences in phenylephrine response between the groups, suggesting that ISO impaired basal NO availability in the aorta of WT and β1KO mice. Superoxide dismutase (SOD), pertussis toxin (PTx) or PD 98,059 (p-ERK 1/2 inhibitor) incubation reversed the hypercontractility of aortic rings from ISO-treated WT mice; aortic contraction of ISO-treated β2KO mice was not altered. Immunoblotting revealed increased aortic expression of Giα-3 protein (+50%) and phosphorylated ERK1/2 (+90%) and decreased eNOS dimer/monomer ratio in ISO-treated WT mice. ISO enhanced the fluorescence response to dihydroethidium (+100%) in aortas from WT mice, indicating oxidative stress that was normalized by SOD, PTx and L-NAME. The ISO effects were abolished in β2KO mice. CONCLUSIONS The β2-adrenoceptor/Giα signaling pathway is implicated in the enhanced vasoconstrictor response and eNOS uncoupling-mediated oxidative stress due to ISO treatment. Thus, long-term β2-AR activation might results in endothelial dysfunction.
Collapse
MESH Headings
- Animals
- Aorta/drug effects
- Aorta/metabolism
- Aorta/physiology
- Endothelium, Vascular/cytology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- GTP-Binding Protein alpha Subunits, Gi-Go/metabolism
- Gene Expression Regulation/drug effects
- Gene Knockout Techniques
- Isoproterenol/pharmacology
- Male
- Mice
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3/metabolism
- Nitric Oxide/metabolism
- Nitric Oxide Synthase Type III/chemistry
- Oxidative Stress/drug effects
- Phenylephrine/pharmacology
- Phosphorylation/drug effects
- Protein Multimerization/drug effects
- Protein Structure, Quaternary
- Receptors, Adrenergic, beta-2/deficiency
- Receptors, Adrenergic, beta-2/genetics
- Receptors, Adrenergic, beta-2/metabolism
- Signal Transduction/drug effects
- Vasoconstriction/drug effects
Collapse
Affiliation(s)
- Ana P. Davel
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas-UNICAMP, Campinas, SP, Brazil
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Patricia C. Brum
- School of Physical Education and Sport, University of São Paulo, São Paulo, SP, Brazil
| | - Luciana V. Rossoni
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
- * E-mail:
| |
Collapse
|
19
|
Bojic T, Sudar E, Mikhailidis D, Alavantic D, Isenovic E. The role of G protein coupled receptor kinases in neurocardiovascular pathophysiology. Arch Med Sci 2012; 8:970-7. [PMID: 23319968 PMCID: PMC3542506 DOI: 10.5114/aoms.2012.29996] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 06/14/2012] [Accepted: 06/29/2012] [Indexed: 12/15/2022] Open
Abstract
In coronary artery disease the G protein related kinases (GRKs) play a role in desensitization of β-adrenoreceptors (AR) after coronary occlusion. Targeted deletion and lowering of cardiac myocyte GRK-2 decreases the risk of post-ischemic heart failure (HF). Studies carried out in humans confirm the role of GRK-2 as a marker for the progression of HF after myocardial infarction (MI). The level of GRK-2 could be an indicator of β-AR blocker efficacy in patients with acute coronary syndrome. Elevated levels of GRK-2 are an early ubiquitous consequence of myocardial injury. In hypertension an increased level of GRK-2 was reported in both animal models and human studies. The role of GRKs in vagally mediated disorders such as vasovagal syncope and atrial fibrillation remains controversial. The role of GRKs in the pathogenesis of neurocardiological diseases provides an insight into the molecular pathogenesis process, opens potential therapeutic options and suggests new directins for scientific research.
Collapse
Affiliation(s)
- Tijana Bojic
- Institute of Nuclear Sciences Vinča, University of Belgrade, Laboratory of Radiobiology and Molecular Genetics, Belgrade, Serbia
| | - Emina Sudar
- Institute of Nuclear Sciences Vinča, University of Belgrade, Laboratory of Radiobiology and Molecular Genetics, Belgrade, Serbia
| | - Dimitri Mikhailidis
- Department of Clinical Biochemistry (Vascular Disease Prevention Clinics), Royal Free Hospital Campus, University College London Medical School, UK
| | - Dragan Alavantic
- Institute of Nuclear Sciences Vinča, University of Belgrade, Laboratory of Radiobiology and Molecular Genetics, Belgrade, Serbia
| | - Esma Isenovic
- Institute of Nuclear Sciences Vinča, University of Belgrade, Laboratory of Radiobiology and Molecular Genetics, Belgrade, Serbia
| |
Collapse
|
20
|
Soltysinska E, Thomsen MB. Torsades de Pointes in the Guinea-pig heart : editorial to: "dofetilide promotes repolarization abnormalities in perfused Guinea-pig heart" by O.E. Osadchii. Cardiovasc Drugs Ther 2012; 26:437-9. [PMID: 23011586 DOI: 10.1007/s10557-012-6417-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|