1
|
Afsar B, Afsar RE, Caliskan Y, Lentine KL, Edwards JC. Renin angiotensin system-induced muscle wasting: putative mechanisms and implications for clinicians. Mol Cell Biochem 2025; 480:1935-1949. [PMID: 38811433 PMCID: PMC11961475 DOI: 10.1007/s11010-024-05043-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024]
Abstract
Renin angiotensin system (RAS) alters various mechanisms related to muscle wasting. The RAS system consists of classical and non-classical pathways, which mostly function differently. Classical RAS pathway, operates through angiotensin II (AngII) and angiotensin type 1 receptors, is associated with muscle wasting and sarcopenia. On the other hand, the non-classical RAS pathway, which operates through angiotensin 1-7 and Mas receptor, is protective against sarcopenia. The classical RAS pathway might induce muscle wasting by variety of mechanisms. AngII reduces body weight, via reduction in food intake, possibly by decreasing hypothalamic expression of orexin and neuropeptide Y, insulin like growth factor-1 (IGF-1) and mammalian target of rapamycin (mTOR), signaling, AngII increases skeletal muscle proteolysis by forkhead box transcription factors (FOXO), caspase activation and muscle RING-finger protein-1 transcription. Furthermore, AngII infusion in skeletal muscle reduces phospho-Bad (Ser136) expression and induces apoptosis through increased cytochrome c release and DNA fragmentation. Additionally, Renin angiotensin system activation through AT1R and AngII stimulates tumor necrosis factor-α, and interleukin-6 which induces muscle wasting, Last but not least classical RAS pathway, induce oxidative stress, disturb mitochondrial energy metabolism, and muscle satellite cells which all lead to muscle wasting and decrease muscle regeneration. On the contrary, the non-classical RAS pathway functions oppositely to mitigate these mechanisms and protects against muscle wasting. In this review, we summarize the mechanisms of RAS-induced muscle wasting and putative implications for clinical practice. We also emphasize the areas of uncertainties and suggest potential research areas.
Collapse
Affiliation(s)
- Baris Afsar
- Department of Nephrology, School of Medicine, Suleyman Demirel University, Isparta, Turkey.
- Division of Nephrology, School of Medicine, Saint Louis University, St. Louis, MO, USA.
| | - Rengin Elsurer Afsar
- Department of Nephrology, School of Medicine, Suleyman Demirel University, Isparta, Turkey
- Division of Nephrology, School of Medicine, Saint Louis University, St. Louis, MO, USA
| | - Yasar Caliskan
- Division of Nephrology, School of Medicine, Saint Louis University, St. Louis, MO, USA
| | - Krista L Lentine
- Division of Nephrology, School of Medicine, Saint Louis University, St. Louis, MO, USA
| | - John C Edwards
- Division of Nephrology, School of Medicine, Saint Louis University, St. Louis, MO, USA
| |
Collapse
|
2
|
Fekete ÉM, Gomez J, Ghobrial M, Kaminski K, Muskus PC, Boychuk CR, Guixa AH, Vazirabad I, Xie M, Ganiyu A, Golosova D, Mathieu NM, Wang YB, Lu KT, Wackman KK, Brozoski DT, Mouradian GC, Hodges MR, Segar JL, Grobe JL, Sigmund CD, Nakagawa P. Definitive Evidence for the Identification and Function of Renin-Expressing Cholinergic Neurons in the Nucleus Ambiguus. Hypertension 2025; 82:282-292. [PMID: 39618396 PMCID: PMC11735315 DOI: 10.1161/hypertensionaha.124.23740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/15/2024] [Indexed: 01/18/2025]
Abstract
BACKGROUND The importance of the brain renin-angiotensin system in cardiovascular function is well accepted. However, not knowing the precise source of renin in the brain has been a limitation toward a complete understanding of how the brain renin-angiotensin system operates. METHODS Highly sensitive in situ hybridization techniques and conditional knockout mice were used to address the location and function of renin in the brainstem. RESULTS We identified novel renin-expressing cholinergic neurons in the nucleus ambiguus (NuAm), a major vagal cardioinhibitory center in the brainstem. The expression of renin-angiotensin system genes was relatively abundant in the NuAm, implying that angiotensin II might mediate an important regulatory role in this nucleus and other regions with neural connectivity to the NuAm. Then, we generated conditional knockout mice lacking the classical renin isoform (Ren-aChAT-KO), specifically in cholinergic neurons. Ablation of Ren-a in cholinergic neurons abrogated renin expression in the NuAm. Moreover, studies using radiotelemetry, heart rate variability analyses, and pharmacological approaches revealed that the parasympathetic nervous system is depressed in Ren-aChAT-KO males while augmented in the Ren-aChAT-KO females. Subsequently, transcriptomic approaches were used to infer putative genes and signaling pathways regulated by renin within the NuAm. CONCLUSIONS This study revealed that renin in cholinergic neurons plays a fundamental role in preserving autonomic balance and cardiovascular homeostasis in a sex-dependent manner. These findings define the NuAm as an endogenous, local source of renin with biological function and serve as conclusive evidence for the presence and functionality of the brain renin-angiotensin system.
Collapse
Affiliation(s)
- Éva M. Fekete
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI
| | - Javier Gomez
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI
| | - Mina Ghobrial
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI
| | - Kathren Kaminski
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI
| | | | - Carie R. Boychuk
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO
| | - Ana Hantke Guixa
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI
| | - Ibrahim Vazirabad
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI
| | - Michelle Xie
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI
| | - Azeez Ganiyu
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI
| | - Daria Golosova
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI
| | | | - Yoko B. Wang
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO
| | - Ko-Ting Lu
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI
| | - Kelsey K. Wackman
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI
| | | | - Gary C. Mouradian
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI
| | - Matthew R. Hodges
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI
| | - Jeffrey L. Segar
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI
| | - Justin L. Grobe
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI
- Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, WI
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI
| | - Curt D. Sigmund
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI
| | - Pablo Nakagawa
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
3
|
Lawton SB, Wagner VA, Nakagawa P, Segar JL, Sigmund CD, Morselli LL, Grobe JL. Angiotensin in the Arcuate: Mechanisms Integrating Cardiometabolic Control: The 2022 COH Mid-Career Award for Research Excellence. Hypertension 2024; 81:2209-2217. [PMID: 39315447 PMCID: PMC11483214 DOI: 10.1161/hypertensionaha.124.20524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The American Heart Association has identified obesity as a primary impediment to ongoing improvements in cardiovascular diseases, including hypertension. Although drugs, exercise, diets, and surgeries can each cause weight loss, few subjects maintain a reduced weight over the long term. Dysfunctional integrative control (ie, adaptation) of resting metabolic rate (RMR) appears to underlie this failed weight maintenance, yet the neurobiology of physiological and pathophysiological RMR control is poorly understood. Here, we review recent insights into the cellular and molecular control of RMR by Ang-II (angiotensin II) signaling within the arcuate nucleus of the hypothalamus. Within a unique subset of agouti-related peptide neurons, AT1R (Ang-II type 1 receptors) are implicated in the integrative control of RMR. Furthermore, a spontaneous G protein signal switch of AT1R within this neuron type appears to underlie the pathogenesis of RMR adaptation by qualitatively changing the cellular response to AT1R activation from a β-arrestin-1/Gαi (heterotrimeric G protein, α i subtype)-mediated inhibitory response to a Gαq (heterotrimeric G protein, α q subtype)-mediated stimulatory response. We conclude that therapeutic approaches to obesity are likely hampered by the plasticity of the signaling mechanisms that mediate the normal integrative control of energy balance. The same stimulus that would increase RMR in the normal physiological state may decrease RMR during obesity due to qualitative changes in second-messenger coupling. Understanding the mechanisms that regulate interactions between receptors such as AT1R and its various second messenger signaling cascades will provide novel insights into the pathogenesis of RMR adaptation and potentially point toward new therapeutic approaches for obesity and hypertension.
Collapse
Affiliation(s)
- Samuel B.R. Lawton
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226
- Medical Scientist Training Program, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Valerie A. Wagner
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Pablo Nakagawa
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Jeffrey L. Segar
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Curt D. Sigmund
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Lisa L. Morselli
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226
- Department of Medicine, Division of Endocrinology and Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI
| | - Justin L. Grobe
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226
- Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, WI 53226
| |
Collapse
|
4
|
Vecchie’ D, Wolter JM, Perry J, Jumbo-Lucioni P, De Luca M. The Impact of the Angiotensin-Converting Enzyme Inhibitor Lisinopril on Metabolic Rate in Drosophila melanogaster. Int J Mol Sci 2024; 25:10103. [PMID: 39337588 PMCID: PMC11432024 DOI: 10.3390/ijms251810103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Evidence suggests that angiotensin-converting enzyme inhibitors (ACEIs) may increase metabolic rate by promoting thermogenesis, potentially through enhanced fat oxidation and improved insulin. More research is, however, needed to understand this intricate process. In this study, we used 22 lines from the Drosophila Genetic Reference Panel to assess the metabolic rate of virgin female and male flies that were either fed a standard medium or received lisinopril for one week or five weeks. We demonstrated that lisinopril affects the whole-body metabolic rate in Drosophila melanogaster in a genotype-dependent manner. However, the effects of genotypes are highly context-dependent, being influenced by sex and age. Our findings also suggest that lisinopril may increase the Drosophila metabolic rate via the accumulation of a bradykinin-like peptide, which, in turn, enhances cold tolerance by upregulating Ucp4b and Ucp4c genes. Finally, we showed that knocking down Ance, the ortholog of mammalian ACE in Malpighian/renal tubules and the nervous system, leads to opposite changes in metabolic rate, and that the effect of lisinopril depends on Ance in these systems, but in a sex- and age-specific manner. In conclusion, our results regarding D. melanogaster support existing evidence of a connection between ACEI drugs and metabolic rate while offering new insights into this relationship.
Collapse
Affiliation(s)
- Denise Vecchie’
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (D.V.); (J.M.W.); (J.P.)
| | - Julia M. Wolter
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (D.V.); (J.M.W.); (J.P.)
| | - Jesse Perry
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (D.V.); (J.M.W.); (J.P.)
| | - Patricia Jumbo-Lucioni
- Department of Pharmaceutical, Social and Administrative Sciences, Samford University, Birmingham, AL 35229, USA;
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Maria De Luca
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (D.V.); (J.M.W.); (J.P.)
| |
Collapse
|
5
|
Renin-a in the Subfornical Organ Plays a Critical Role in the Maintenance of Salt-Sensitive Hypertension. Biomolecules 2022; 12:biom12091169. [PMID: 36139008 PMCID: PMC9496084 DOI: 10.3390/biom12091169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
The brain renin-angiotensin system plays important roles in blood pressure and cardiovascular regulation. There are two isoforms of prorenin in the brain: the classic secreted form (prorenin/sREN) encoded by renin-a, and an intracellular form (icREN) encoded by renin-b. Emerging evidence indicates the importance of renin-b in cardiovascular and metabolic regulation. However, the role of endogenous brain prorenin in the development of salt-sensitive hypertension remains undefined. In this study, we test the hypothesis that renin-a produced locally in the brain contributes to the pathogenesis of hypertension. Using RNAscope, we report for the first time that renin mRNA is expressed in several regions of the brain, including the subfornical organ (SFO), the paraventricular nucleus of the hypothalamus (PVN), and the brainstem, where it is found in glutamatergic, GABAergic, cholinergic, and tyrosine hydroxylase-positive neurons. Notably, we found that renin mRNA was significantly elevated in the SFO and PVN in a mouse model of DOCA-salt–induced hypertension. To examine the functional importance of renin-a in the SFO, we selectively ablated renin-a in the SFO in renin-a–floxed mice using a Cre-lox strategy. Importantly, renin-a ablation in the SFO attenuated the maintenance of DOCA-salt–induced hypertension and improved autonomic function without affecting fluid or sodium intake. Molecularly, ablation of renin-a prevented the DOCA-salt–induced elevation in NADPH oxidase 2 (NOX2) in the SFO without affecting NOX4 or angiotensin II type 1 and 2 receptors. Collectively, our findings demonstrate that endogenous renin-a within the SFO is important for the pathogenesis of salt-sensitive hypertension.
Collapse
|
6
|
Souza LA, Earley YF. (Pro)renin Receptor and Blood Pressure Regulation: A Focus on the Central Nervous System. Curr Hypertens Rev 2022; 18:101-116. [PMID: 35086455 PMCID: PMC9662243 DOI: 10.2174/1570162x20666220127105655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 09/02/2021] [Accepted: 12/06/2021] [Indexed: 01/27/2023]
Abstract
The renin-angiotensin system (RAS) is classically described as a hormonal system in which angiotensin II (Ang II) is one of the main active peptides. The action of circulating Ang II on its cognate Ang II type-1 receptor (AT1R) in circumventricular organs has important roles in regulating the autonomic nervous system, blood pressure (BP) and body fluid homeostasis, and has more recently been implicated in cardiovascular metabolism. The presence of a local or tissue RAS in various tissues, including the central nervous system (CNS), is well established. However, because the level of renin, the rate-limiting enzyme in the systemic RAS, is very low in the brain, how endogenous angiotensin peptides are generated in the CNS-the focus of this review-has been the subject of considerable debate. Notable in this context is the identification of the (pro)renin receptor (PRR) as a key component of the brain RAS in the production of Ang II in the CNS. In this review, we highlight cellular and anatomical locations of the PRR in the CNS. We also summarize studies using gain- and loss-of function approaches to elucidate the functional importance of brain PRR-mediated Ang II formation and brain RAS activation, as well as PRR-mediated Ang II-independent signaling pathways, in regulating BP. We further discuss recent developments in PRR involvement in cardiovascular and metabolic diseases and present perspectives for future directions.
Collapse
Affiliation(s)
- Lucas A.C. Souza
- Departments of Pharmacology and Physiology & Cell Biology, University of Nevada, Reno, School of Medicine, Reno, NV, USA,Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno, Reno, NV, USA
| | - Yumei Feng Earley
- Departments of Pharmacology and Physiology & Cell Biology, University of Nevada, Reno, School of Medicine, Reno, NV, USA,Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno, Reno, NV, USA
| |
Collapse
|
7
|
Su H, Liu N, Zhang Y, Kong J. Vitamin D/VDR regulates peripheral energy homeostasis via central renin-angiotensin system. J Adv Res 2021; 33:69-80. [PMID: 34603779 PMCID: PMC8463910 DOI: 10.1016/j.jare.2021.01.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 01/19/2023] Open
Abstract
Introduction Some epidemiological studies have revealed that vitamin D (VD) deficiency is closely linked with the prevalence of obesity, however, the role of VD in energy homeostasis is yet to be investigated, especially in central nervous system. Given that VD negatively regulates renin in adipose tissue, we hypothesized that central VD might play a potential role in energy homeostasis. Objectives The present study aims to investigate the potential role of VD in energy homeostasis in the CNS and elaborate its underlying mechanisms. Methods This study was conducted in Cyp27b1−/− mice, VD-treated and wild-type mice. After the intraventricular injection of renin or its inhibitors, the changes of renin-angiotensin system (RAS) and its down-stream pathway as well as their effects on metabolic rate were examined. Results The RAS activity was enhanced in Cyp27b1−/− mice, exhibiting a increased metabolic rate. Additionally, corticotropin-releasing hormone (CRH), a RAS-mediated protein regulating energy metabolism in the hypothalamus, increased significantly in Cyp27b1−/− mice. While in VD-treated group, the RAS and sympathetic nerve activities were slightly inhibited, hence the reduced metabolic rate. Conclusion Collectively, the present study demonstrates that the VD/vitamin D receptor (VDR) has a significant impact on energy homeostasis through the modulation of RAS activity in the hypothalamus, subsequently altering CRH expression and sympathetic nervous activity.
Collapse
Affiliation(s)
- Han Su
- Department of Clinical Nutrition, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ning Liu
- Department of Clinical Nutrition, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yalin Zhang
- Department of Clinical Nutrition, Shengjing Hospital of China Medical University, Shenyang, China
| | - Juan Kong
- Department of Clinical Nutrition, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
8
|
Epigenetic modifications of the renin-angiotensin system in cardiometabolic diseases. Clin Sci (Lond) 2021; 135:127-142. [PMID: 33416084 DOI: 10.1042/cs20201287] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/01/2020] [Accepted: 12/14/2020] [Indexed: 12/13/2022]
Abstract
Cardiometabolic diseases (CMDs) are among the most prevalent and the highest mortality diseases. Single disease etiology such as gene mutation, polymorphisms, or environmental exposure has failed to explain the origin of CMD. This can be evident in the discrepancies in disease susceptibility among individuals exposed to the same environmental insult or who acquire the same genetic variation. Epigenetics is the intertwining of genetic and environmental factors that results in diversity in the disease course, severity, and prognosis among individuals. Environmental exposures modify the epigenome and thus provide a link for translating environmental impact on changes in gene expression and precipitation to pathological conditions. Renin-angiotensin system (RAS) is comprising genes responsible for the regulation of cardiovascular, metabolic, and glycemic functions. Epigenetic modifications of RAS genes can lead to overactivity of the system, increased sympathetic activity and autonomic dysfunction ultimately contributing to the development of CMD. In this review, we describe the three common epigenetic modulations targeting RAS components and their impact on the susceptibility to cardiometabolic dysfunction. Additionally, we highlight the therapeutic efforts of targeting these epigenetic imprints to the RAS and its effects.
Collapse
|
9
|
Fifty years of research on the brain renin-angiotensin system: what have we learned? Clin Sci (Lond) 2021; 135:1727-1731. [PMID: 34291792 DOI: 10.1042/cs20210579] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 01/19/2023]
Abstract
Although the existence of a brain renin-angiotensin system (RAS) had been proposed five decades ago, we still struggle to understand how it functions. The main reason for this is the virtual lack of renin at brain tissue sites. Moreover, although renin's substrate, angiotensinogen, appears to be synthesized locally in the brain, brain angiotensin (Ang) II disappeared after selective silencing of hepatic angiotensinogen. This implies that brain Ang generation depends on hepatic angiotensinogen after all. Rodrigues et al. (Clin Sci (Lond) (2021) 135:1353-1367) generated a transgenic mouse model overexpressing full-length rat angiotensinogen in astrocytes, and observed massively elevated brain Ang II levels, increased sympathetic nervous activity and vasopressin, and up-regulated erythropoiesis. Yet, blood pressure and kidney function remained unaltered, and surprisingly no other Ang metabolites occurred in the brain. Circulating renin was suppressed. This commentary critically discusses these findings, concluding that apparently in the brain, overexpressed angiotensinogen can be cleaved by an unidentified non-renin enzyme, yielding Ang II directly, which then binds to Ang receptors, allowing no metabolism by angiotensinases like ACE2 and aminopeptidase A. Future studies should now unravel the identity of this non-renin enzyme, and determine whether it also contributes to Ang II generation at brain tissue sites in wildtype animals. Such studies should also re-evaluate the concept that Ang-(1-7) and Ang III, generated by ACE2 and aminopeptidase A, respectively, have important functions in the brain.
Collapse
|
10
|
Worker CJ, Li W, Feng CY, Souza LAC, Gayban AJB, Cooper SG, Afrin S, Romanick S, Ferguson BS, Feng Earley Y. The neuronal (pro)renin receptor and astrocyte inflammation in the central regulation of blood pressure and blood glucose in mice fed a high-fat diet. Am J Physiol Endocrinol Metab 2020; 318:E765-E778. [PMID: 32228320 PMCID: PMC7272727 DOI: 10.1152/ajpendo.00406.2019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We report here that the neuronal (pro)renin receptor (PRR), a key component of the brain renin-angiotensin system (RAS), plays a critical role in the central regulation of high-fat-diet (HFD)-induced metabolic pathophysiology. The neuronal PRR is known to mediate formation of the majority of angiotensin (ANG) II, a key bioactive peptide of the RAS, in the central nervous system and to regulate blood pressure and cardiovascular function. However, little is known about neuronal PRR function in overnutrition-related metabolic physiology. Here, we show that PRR deletion in neurons reduces blood pressure, neurogenic pressor activity, and fasting blood glucose and improves glucose tolerance without affecting food intake or body weight following a 16-wk HFD. Mechanistically, we found that a HFD increases levels of the PRR ligand (pro)renin in the circulation and hypothalamus and of ANG II in the hypothalamus, indicating activation of the brain RAS. Importantly, PRR deletion in neurons reduced astrogliosis and activation of the astrocytic NF-κB p65 (RelA) in the arcuate nucleus and the ventromedial nucleus of the hypothalamus. Collectively, our findings indicate that the neuronal PRR plays essential roles in overnutrition-related metabolic pathophysiology.
Collapse
Affiliation(s)
- Caleb J Worker
- Department of Pharmacology and Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, Nevada
- Center for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno, Nevada
| | - Wencheng Li
- Department of Pathology, Wake Forest University, Winston-Salem, North Carolina
| | - Cheng-Yuan Feng
- Department of Neurology, Loma Linda University, Loma Linda, California
| | - Lucas A C Souza
- Department of Pharmacology and Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, Nevada
- Center for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno, Nevada
| | - Ariana Julia B Gayban
- Department of Pharmacology and Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, Nevada
- Center for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno, Nevada
| | - Silvana G Cooper
- Department of Pharmacology and Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, Nevada
- Center for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno, Nevada
| | - Sanzida Afrin
- Department of Pharmacology and Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, Nevada
- Center for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno, Nevada
| | - Samantha Romanick
- Center for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno, Nevada
- Department of Neurology, Loma Linda University, Loma Linda, California
| | - Bradley S Ferguson
- Center for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno, Nevada
- Department of Neurology, Loma Linda University, Loma Linda, California
| | - Yumei Feng Earley
- Department of Pharmacology and Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, Nevada
- Center for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno, Nevada
| |
Collapse
|
11
|
Sapouckey SA, Morselli LL, Deng G, Patil CN, Balapattabi K, Oliveira V, Claflin KE, Gomez J, Pearson NA, Potthoff MJ, Gibson-Corley KN, Sigmund CD, Grobe JL. Exploration of cardiometabolic and developmental significance of angiotensinogen expression by cells expressing the leptin receptor or agouti-related peptide. Am J Physiol Regul Integr Comp Physiol 2020; 318:R855-R869. [PMID: 32186897 DOI: 10.1152/ajpregu.00297.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Angiotensin II (ANG II) Agtr1a receptor (AT1A) is expressed in cells of the arcuate nucleus of the hypothalamus that express the leptin receptor (Lepr) and agouti-related peptide (Agrp). Agtr1a expression in these cells is required to stimulate resting energy expenditure in response to leptin and high-fat diets (HFDs), but the mechanism activating AT1A signaling by leptin remains unclear. To probe the role of local paracrine/autocrine ANG II generation and signaling in this mechanism, we bred mice harboring a conditional allele for angiotensinogen (Agt, encoding AGT) with mice expressing Cre-recombinase via the Lepr or Agrp promoters to cause cell-specific deletions of Agt (AgtLepr-KO and AgtAgrp-KO mice, respectively). AgtLepr-KO mice were phenotypically normal, arguing against a paracrine/autocrine AGT signaling mechanism for metabolic control. In contrast, AgtAgrp-KO mice exhibited reduced preweaning survival, and surviving adults exhibited altered renal structure and steroid flux, paralleling previous reports of animals with whole body Agt deficiency or Agt disruption in albumin (Alb)-expressing cells (thought to cause liver-specific disruption). Surprisingly, adult AgtAgrp-KO mice exhibited normal circulating AGT protein and hepatic Agt mRNA expression but reduced Agt mRNA expression in adrenal glands. Reanalysis of RNA-sequencing data sets describing transcriptomes of normal adrenal glands suggests that Agrp and Alb are both expressed in this tissue, and fluorescent reporter gene expression confirms Cre activity in adrenal gland of both Agrp-Cre and Alb-Cre mice. These findings lead to the iconoclastic conclusion that extrahepatic (i.e., adrenal) expression of Agt is critically required for normal renal development and survival.
Collapse
Affiliation(s)
- Sarah A Sapouckey
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa
| | - Lisa L Morselli
- Division of Endocrinology, Department of Internal Medicine, University of Iowa, Iowa City, Iowa
| | - Guorui Deng
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa
| | - Chetan N Patil
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | - Vanessa Oliveira
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Kristin E Claflin
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa
| | - Javier Gomez
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Nicole A Pearson
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa
| | - Matthew J Potthoff
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa.,Obesity Research & Education Initiative, University of Iowa, Iowa City, Iowa.,Fraternal Order of Eagles' Diabetes Research Center, University of Iowa, Iowa City, Iowa
| | - Katherine N Gibson-Corley
- Fraternal Order of Eagles' Diabetes Research Center, University of Iowa, Iowa City, Iowa.,Department of Pathology, University of Iowa, Iowa City, Iowa
| | - Curt D Sigmund
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin.,Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Justin L Grobe
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin.,Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin.,Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
12
|
Angiotensin generation in the brain: a re-evaluation. Clin Sci (Lond) 2018; 132:839-850. [PMID: 29712882 DOI: 10.1042/cs20180236] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 04/09/2018] [Accepted: 04/09/2018] [Indexed: 02/06/2023]
Abstract
The existence of a so-called brain renin-angiotensin system (RAS) is controversial. Given the presence of the blood-brain barrier, angiotensin generation in the brain, if occurring, should depend on local synthesis of renin and angiotensinogen. Yet, although initially brain-selective expression of intracellular renin was reported, data in intracellular renin knockout animals argue against a role for this renin in angiotensin generation. Moreover, renin levels in brain tissue at most represented renin in trapped blood. Additionally, in neurogenic hypertension brain prorenin up-regulation has been claimed, which would generate angiotensin following its binding to the (pro)renin receptor. However, recent studies reported no evidence for prorenin expression in the brain, nor for its selective up-regulation in neurogenic hypertension, and the (pro)renin receptor rather displays RAS-unrelated functions. Finally, although angiotensinogen mRNA is detectable in the brain, brain angiotensinogen protein levels are low, and even these low levels might be an overestimation due to assay artefacts. Taken together, independent angiotensin generation in the brain is unlikely. Indeed, brain angiotensin levels are extremely low, with angiotensin (Ang) I levels corresponding to the small amounts of Ang I in trapped blood plasma, and Ang II levels at most representing Ang II bound to (vascular) brain Ang II type 1 receptors. This review concludes with a unifying concept proposing the blood origin of angiotensin in the brain, possibly resulting in increased levels following blood-brain barrier disruption (e.g. due to hypertension), and suggesting that interfering with either intracellular renin or the (pro)renin receptor has consequences in an RAS-independent manner.
Collapse
|
13
|
de Morais SDB, Shanks J, Zucker IH. Integrative Physiological Aspects of Brain RAS in Hypertension. Curr Hypertens Rep 2018; 20:10. [PMID: 29480460 DOI: 10.1007/s11906-018-0810-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW The renin-angiotensin system (RAS) plays an important role in modulating cardiovascular function and fluid homeostasis. While the systemic actions of the RAS are widely accepted, the role of the RAS in the brain, its regulation of cardiovascular function, and sympathetic outflow remain controversial. In this report, we discuss the current understanding of central RAS on blood pressure (BP) regulation, in light of recent literature and new experimental techniques. RECENT FINDINGS Studies using neuronal or glial-specifc mouse models have allowed for greater understanding into the site-specific expression and role centrally expressed RAS proteins have on BP regulation. While all components of the RAS have been identified in cardiovascular regulatory regions of the brain, their actions may be site specific. In a number of animal models of hypertension, reduction in Ang II-mediated signaling, or upregulation of the central ACE2/Ang 1-7 pathway, has been shown to reduce BP, via a reduction in sympathetic signaling and increase parasympathetic tone, respectively. Emerging evidence also suggests that, in part, the female protective phenotype against hypertension may be due to inceased ACE2 activity within cardiovascular regulatory regions of the brain, potentially mediated by estrogen. Increasing evidence suggests the importance of a central renin-angiotensin pathway, although its localization and the mechanisms involved in its expression and regulation still need to be clarified and more precisely defined. All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).
Collapse
Affiliation(s)
- Sharon D B de Morais
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, 68198-5850, USA
| | - Julia Shanks
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, 68198-5850, USA
| | - Irving H Zucker
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, 68198-5850, USA.
| |
Collapse
|
14
|
Sapouckey SA, Deng G, Sigmund CD, Grobe JL. Potential mechanisms of hypothalamic renin-angiotensin system activation by leptin and DOCA-salt for the control of resting metabolism. Physiol Genomics 2017; 49:722-732. [PMID: 28986397 DOI: 10.1152/physiolgenomics.00087.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/22/2017] [Indexed: 02/07/2023] Open
Abstract
The renin-angiotensin system (RAS), originally described as a circulating hormone system, is an enzymatic cascade in which the final vasoactive peptide angiotensin II (ANG) regulates cardiovascular, hydromineral, and metabolic functions. The RAS is also synthesized locally in a number of tissues including the brain, where it can act in a paracrine fashion to regulate blood pressure, thirst, fluid balance, and resting energy expenditure/resting metabolic rate (RMR). Recent studies demonstrate that ANG AT1A receptors (Agtr1a) specifically in agouti-related peptide (AgRP) neurons of the arcuate nucleus (ARC) coordinate autonomic and energy expenditure responses to various stimuli including deoxycorticosterone acetate (DOCA)-salt, high-fat feeding, and leptin. It remains unclear, however, how these disparate stimuli converge upon and activate this specific population of AT1A receptors in AgRP neurons. We hypothesize that these stimuli may act to stimulate local expression of the angiotensinogen (AGT) precursor for ANG, or the expression of AT1A receptors, and thereby local activity of the RAS within the (ARC). Here we review mechanisms that may control AGT and AT1A expression within the central nervous system, with a particular focus on mechanisms activated by steroids, dietary fat, and leptin.
Collapse
Affiliation(s)
- Sarah A Sapouckey
- Department of Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, Iowa.,Molecular Medicine Graduate Program, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Guorui Deng
- Department of Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Curt D Sigmund
- Department of Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, Iowa.,Molecular Medicine Graduate Program, Carver College of Medicine, University of Iowa, Iowa City, Iowa.,Center for Hypertension Research, Carver College of Medicine, University of Iowa, Iowa City, Iowa.,Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa.,Fraternal Order of Eagles' Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Justin L Grobe
- Department of Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, Iowa; .,Molecular Medicine Graduate Program, Carver College of Medicine, University of Iowa, Iowa City, Iowa.,Center for Hypertension Research, Carver College of Medicine, University of Iowa, Iowa City, Iowa.,Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa.,Fraternal Order of Eagles' Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa.,Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, Iowa; and.,Obesity Research & Education Initiative, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| |
Collapse
|
15
|
Shinohara K, Nakagawa P, Gomez J, Morgan DA, Littlejohn NK, Folchert MD, Weidemann BJ, Liu X, Walsh SA, Ponto LL, Rahmouni K, Grobe JL, Sigmund CD. Selective Deletion of Renin-b in the Brain Alters Drinking and Metabolism. Hypertension 2017; 70:990-997. [PMID: 28874461 DOI: 10.1161/hypertensionaha.117.09923] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 07/10/2017] [Accepted: 08/15/2017] [Indexed: 02/07/2023]
Abstract
The brain-specific isoform of renin (Ren-b) has been proposed as a negative regulator of the brain renin-angiotensin system (RAS). We analyzed mice with a selective deletion of Ren-b which preserved expression of the classical renin (Ren-a) isoform. We reported that Ren-bNull mice exhibited central RAS activation and hypertension through increased expression of Ren-a, but the dipsogenic and metabolic effects in Ren-bNull mice are unknown. Fluid intake was similar in control and Ren-bNull mice at baseline and both exhibited an equivalent dipsogenic response to deoxycorticosterone acetate-salt. Dehydration promoted increased water intake in Ren-bNull mice, particularly after deoxycorticosterone acetate-salt. Ren-bNull and control mice exhibited similar body weight when fed a chow diet. However, when fed a high-fat diet, male Ren-bNull mice gained significantly less weight than control mice, an effect blunted in females. This difference was not because of changes in food intake, energy absorption, or physical activity. Ren-bNull mice exhibited increased resting metabolic rate concomitant with increased uncoupled protein 1 expression and sympathetic nerve activity to the interscapular brown adipose tissue, suggesting increased thermogenesis. Ren-bNull mice were modestly intolerant to glucose and had normal insulin sensitivity. Another mouse model with markedly enhanced brain RAS activity (sRA mice) exhibited pronounced insulin sensitivity concomitant with increased brown adipose tissue glucose uptake. Altogether, these data support the hypothesis that the brain RAS regulates energy homeostasis by controlling resting metabolic rate, and that Ren-b deficiency increases brain RAS activity. Thus, the relative level of expression of Ren-b and Ren-a may control activity of the brain RAS.
Collapse
Affiliation(s)
- Keisuke Shinohara
- From the Departments of Pharmacology (K.S., P.N., J.G., D.A.M., N.K.L., M.D.F., B.J.W., X.L., K.R., J.L.G., C.D.S.), Radiology (S.A.W., L.L.P.), and UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City (K.R., J.L.G., C.D.S.)
| | - Pablo Nakagawa
- From the Departments of Pharmacology (K.S., P.N., J.G., D.A.M., N.K.L., M.D.F., B.J.W., X.L., K.R., J.L.G., C.D.S.), Radiology (S.A.W., L.L.P.), and UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City (K.R., J.L.G., C.D.S.)
| | - Javier Gomez
- From the Departments of Pharmacology (K.S., P.N., J.G., D.A.M., N.K.L., M.D.F., B.J.W., X.L., K.R., J.L.G., C.D.S.), Radiology (S.A.W., L.L.P.), and UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City (K.R., J.L.G., C.D.S.)
| | - Donald A Morgan
- From the Departments of Pharmacology (K.S., P.N., J.G., D.A.M., N.K.L., M.D.F., B.J.W., X.L., K.R., J.L.G., C.D.S.), Radiology (S.A.W., L.L.P.), and UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City (K.R., J.L.G., C.D.S.)
| | - Nicole K Littlejohn
- From the Departments of Pharmacology (K.S., P.N., J.G., D.A.M., N.K.L., M.D.F., B.J.W., X.L., K.R., J.L.G., C.D.S.), Radiology (S.A.W., L.L.P.), and UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City (K.R., J.L.G., C.D.S.)
| | - Matthew D Folchert
- From the Departments of Pharmacology (K.S., P.N., J.G., D.A.M., N.K.L., M.D.F., B.J.W., X.L., K.R., J.L.G., C.D.S.), Radiology (S.A.W., L.L.P.), and UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City (K.R., J.L.G., C.D.S.)
| | - Benjamin J Weidemann
- From the Departments of Pharmacology (K.S., P.N., J.G., D.A.M., N.K.L., M.D.F., B.J.W., X.L., K.R., J.L.G., C.D.S.), Radiology (S.A.W., L.L.P.), and UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City (K.R., J.L.G., C.D.S.)
| | - Xuebo Liu
- From the Departments of Pharmacology (K.S., P.N., J.G., D.A.M., N.K.L., M.D.F., B.J.W., X.L., K.R., J.L.G., C.D.S.), Radiology (S.A.W., L.L.P.), and UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City (K.R., J.L.G., C.D.S.)
| | - Susan A Walsh
- From the Departments of Pharmacology (K.S., P.N., J.G., D.A.M., N.K.L., M.D.F., B.J.W., X.L., K.R., J.L.G., C.D.S.), Radiology (S.A.W., L.L.P.), and UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City (K.R., J.L.G., C.D.S.)
| | - Laura L Ponto
- From the Departments of Pharmacology (K.S., P.N., J.G., D.A.M., N.K.L., M.D.F., B.J.W., X.L., K.R., J.L.G., C.D.S.), Radiology (S.A.W., L.L.P.), and UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City (K.R., J.L.G., C.D.S.)
| | - Kamal Rahmouni
- From the Departments of Pharmacology (K.S., P.N., J.G., D.A.M., N.K.L., M.D.F., B.J.W., X.L., K.R., J.L.G., C.D.S.), Radiology (S.A.W., L.L.P.), and UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City (K.R., J.L.G., C.D.S.)
| | - Justin L Grobe
- From the Departments of Pharmacology (K.S., P.N., J.G., D.A.M., N.K.L., M.D.F., B.J.W., X.L., K.R., J.L.G., C.D.S.), Radiology (S.A.W., L.L.P.), and UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City (K.R., J.L.G., C.D.S.)
| | - Curt D Sigmund
- From the Departments of Pharmacology (K.S., P.N., J.G., D.A.M., N.K.L., M.D.F., B.J.W., X.L., K.R., J.L.G., C.D.S.), Radiology (S.A.W., L.L.P.), and UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City (K.R., J.L.G., C.D.S.).
| |
Collapse
|
16
|
Affiliation(s)
- Pablo Nakagawa
- From the Department of Pharmacology, UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City
| | - Curt D Sigmund
- From the Department of Pharmacology, UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City.
| |
Collapse
|
17
|
van Thiel BS, Góes Martini A, Te Riet L, Severs D, Uijl E, Garrelds IM, Leijten FPJ, van der Pluijm I, Essers J, Qadri F, Alenina N, Bader M, Paulis L, Rajkovicova R, Domenig O, Poglitsch M, Danser AHJ. Brain Renin-Angiotensin System: Does It Exist? Hypertension 2017; 69:1136-1144. [PMID: 28396529 DOI: 10.1161/hypertensionaha.116.08922] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 01/12/2017] [Accepted: 01/29/2017] [Indexed: 12/14/2022]
Abstract
Because of the presence of the blood-brain barrier, brain renin-angiotensin system activity should depend on local (pro)renin synthesis. Indeed, an intracellular form of renin has been described in the brain, but whether it displays angiotensin (Ang) I-generating activity (AGA) is unknown. Here, we quantified brain (pro)renin, before and after buffer perfusion of the brain, in wild-type mice, renin knockout mice, deoxycorticosterone acetate salt-treated mice, and Ang II-infused mice. Brain regions were homogenized and incubated with excess angiotensinogen to detect AGA, before and after prorenin activation, using a renin inhibitor to correct for nonrenin-mediated AGA. Renin-dependent AGA was readily detectable in brain regions, the highest AGA being present in brain stem (>thalamus=cerebellum=striatum=midbrain>hippocampus=cortex). Brain AGA increased marginally after prorenin activation, suggesting that brain prorenin is low. Buffer perfusion reduced AGA in all brain areas by >60%. Plasma renin (per mL) was 40× to 800× higher than brain renin (per gram). Renin was undetectable in plasma and brain of renin knockout mice. Deoxycorticosterone acetate salt and Ang II suppressed plasma renin and brain renin in parallel, without upregulating brain prorenin. Finally, Ang I was undetectable in brains of spontaneously hypertensive rats, while their brain/plasma Ang II concentration ratio decreased by 80% after Ang II type 1 receptor blockade. In conclusion, brain renin levels (per gram) correspond with the amount of renin present in 1 to 20 μL of plasma. Brain renin disappears after buffer perfusion and varies in association with plasma renin. This indicates that brain renin represents trapped plasma renin. Brain Ang II represents Ang II taken up from blood rather than locally synthesized Ang II.
Collapse
Affiliation(s)
- Bibi S van Thiel
- From the Division of Vascular Medicine and Pharmacology, Department of Internal Medicine (B.S.v.T., A.G.M., L.t.R., D.S., E.U., I.M.G., F.P.J.L., A.H.J.D.), Department of Vascular Surgery (B.S.v.T., L.t.R., I.v.d.P., J.E.), Department of Molecular Genetics, Cancer Genomics Center Netherlands (B.S.v.T., I.v.d.P., J.E.), Division of Nephrology and Transplantation, Department of Internal Medicine (D.S., E.U.), Department of Radiation Oncology (J.E.), Erasmus MC, Rotterdam, The Netherlands; Department of Molecular Cardiovascular Endocrinology, Max Delbrück Center, Berlin, Germany (F.Q., N.A., M.B.); DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Germany (N.A., M.B.); Berlin Institute of Health (BIH), Germany (M.B.); Charité-University Medicine, Berlin, Germany (M.B.); Institute for Biology, University of Lübeck, Germany (M.B.); Institute of Pathophysiology, Faculty of Medicine, Comenius University (L.P., R.R.); Institute of Normal and Pathophysiological Physiology, Slovak Academy of Sciences, Bratislava, Slovak Republic (L.P.); and Attoquant Diagnostics (O.D., M.P.) and Department of Internal Medicine III (O.D.), Medical University of Vienna, Austria
| | - Alexandre Góes Martini
- From the Division of Vascular Medicine and Pharmacology, Department of Internal Medicine (B.S.v.T., A.G.M., L.t.R., D.S., E.U., I.M.G., F.P.J.L., A.H.J.D.), Department of Vascular Surgery (B.S.v.T., L.t.R., I.v.d.P., J.E.), Department of Molecular Genetics, Cancer Genomics Center Netherlands (B.S.v.T., I.v.d.P., J.E.), Division of Nephrology and Transplantation, Department of Internal Medicine (D.S., E.U.), Department of Radiation Oncology (J.E.), Erasmus MC, Rotterdam, The Netherlands; Department of Molecular Cardiovascular Endocrinology, Max Delbrück Center, Berlin, Germany (F.Q., N.A., M.B.); DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Germany (N.A., M.B.); Berlin Institute of Health (BIH), Germany (M.B.); Charité-University Medicine, Berlin, Germany (M.B.); Institute for Biology, University of Lübeck, Germany (M.B.); Institute of Pathophysiology, Faculty of Medicine, Comenius University (L.P., R.R.); Institute of Normal and Pathophysiological Physiology, Slovak Academy of Sciences, Bratislava, Slovak Republic (L.P.); and Attoquant Diagnostics (O.D., M.P.) and Department of Internal Medicine III (O.D.), Medical University of Vienna, Austria
| | - Luuk Te Riet
- From the Division of Vascular Medicine and Pharmacology, Department of Internal Medicine (B.S.v.T., A.G.M., L.t.R., D.S., E.U., I.M.G., F.P.J.L., A.H.J.D.), Department of Vascular Surgery (B.S.v.T., L.t.R., I.v.d.P., J.E.), Department of Molecular Genetics, Cancer Genomics Center Netherlands (B.S.v.T., I.v.d.P., J.E.), Division of Nephrology and Transplantation, Department of Internal Medicine (D.S., E.U.), Department of Radiation Oncology (J.E.), Erasmus MC, Rotterdam, The Netherlands; Department of Molecular Cardiovascular Endocrinology, Max Delbrück Center, Berlin, Germany (F.Q., N.A., M.B.); DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Germany (N.A., M.B.); Berlin Institute of Health (BIH), Germany (M.B.); Charité-University Medicine, Berlin, Germany (M.B.); Institute for Biology, University of Lübeck, Germany (M.B.); Institute of Pathophysiology, Faculty of Medicine, Comenius University (L.P., R.R.); Institute of Normal and Pathophysiological Physiology, Slovak Academy of Sciences, Bratislava, Slovak Republic (L.P.); and Attoquant Diagnostics (O.D., M.P.) and Department of Internal Medicine III (O.D.), Medical University of Vienna, Austria
| | - David Severs
- From the Division of Vascular Medicine and Pharmacology, Department of Internal Medicine (B.S.v.T., A.G.M., L.t.R., D.S., E.U., I.M.G., F.P.J.L., A.H.J.D.), Department of Vascular Surgery (B.S.v.T., L.t.R., I.v.d.P., J.E.), Department of Molecular Genetics, Cancer Genomics Center Netherlands (B.S.v.T., I.v.d.P., J.E.), Division of Nephrology and Transplantation, Department of Internal Medicine (D.S., E.U.), Department of Radiation Oncology (J.E.), Erasmus MC, Rotterdam, The Netherlands; Department of Molecular Cardiovascular Endocrinology, Max Delbrück Center, Berlin, Germany (F.Q., N.A., M.B.); DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Germany (N.A., M.B.); Berlin Institute of Health (BIH), Germany (M.B.); Charité-University Medicine, Berlin, Germany (M.B.); Institute for Biology, University of Lübeck, Germany (M.B.); Institute of Pathophysiology, Faculty of Medicine, Comenius University (L.P., R.R.); Institute of Normal and Pathophysiological Physiology, Slovak Academy of Sciences, Bratislava, Slovak Republic (L.P.); and Attoquant Diagnostics (O.D., M.P.) and Department of Internal Medicine III (O.D.), Medical University of Vienna, Austria
| | - Estrellita Uijl
- From the Division of Vascular Medicine and Pharmacology, Department of Internal Medicine (B.S.v.T., A.G.M., L.t.R., D.S., E.U., I.M.G., F.P.J.L., A.H.J.D.), Department of Vascular Surgery (B.S.v.T., L.t.R., I.v.d.P., J.E.), Department of Molecular Genetics, Cancer Genomics Center Netherlands (B.S.v.T., I.v.d.P., J.E.), Division of Nephrology and Transplantation, Department of Internal Medicine (D.S., E.U.), Department of Radiation Oncology (J.E.), Erasmus MC, Rotterdam, The Netherlands; Department of Molecular Cardiovascular Endocrinology, Max Delbrück Center, Berlin, Germany (F.Q., N.A., M.B.); DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Germany (N.A., M.B.); Berlin Institute of Health (BIH), Germany (M.B.); Charité-University Medicine, Berlin, Germany (M.B.); Institute for Biology, University of Lübeck, Germany (M.B.); Institute of Pathophysiology, Faculty of Medicine, Comenius University (L.P., R.R.); Institute of Normal and Pathophysiological Physiology, Slovak Academy of Sciences, Bratislava, Slovak Republic (L.P.); and Attoquant Diagnostics (O.D., M.P.) and Department of Internal Medicine III (O.D.), Medical University of Vienna, Austria
| | - Ingrid M Garrelds
- From the Division of Vascular Medicine and Pharmacology, Department of Internal Medicine (B.S.v.T., A.G.M., L.t.R., D.S., E.U., I.M.G., F.P.J.L., A.H.J.D.), Department of Vascular Surgery (B.S.v.T., L.t.R., I.v.d.P., J.E.), Department of Molecular Genetics, Cancer Genomics Center Netherlands (B.S.v.T., I.v.d.P., J.E.), Division of Nephrology and Transplantation, Department of Internal Medicine (D.S., E.U.), Department of Radiation Oncology (J.E.), Erasmus MC, Rotterdam, The Netherlands; Department of Molecular Cardiovascular Endocrinology, Max Delbrück Center, Berlin, Germany (F.Q., N.A., M.B.); DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Germany (N.A., M.B.); Berlin Institute of Health (BIH), Germany (M.B.); Charité-University Medicine, Berlin, Germany (M.B.); Institute for Biology, University of Lübeck, Germany (M.B.); Institute of Pathophysiology, Faculty of Medicine, Comenius University (L.P., R.R.); Institute of Normal and Pathophysiological Physiology, Slovak Academy of Sciences, Bratislava, Slovak Republic (L.P.); and Attoquant Diagnostics (O.D., M.P.) and Department of Internal Medicine III (O.D.), Medical University of Vienna, Austria
| | - Frank P J Leijten
- From the Division of Vascular Medicine and Pharmacology, Department of Internal Medicine (B.S.v.T., A.G.M., L.t.R., D.S., E.U., I.M.G., F.P.J.L., A.H.J.D.), Department of Vascular Surgery (B.S.v.T., L.t.R., I.v.d.P., J.E.), Department of Molecular Genetics, Cancer Genomics Center Netherlands (B.S.v.T., I.v.d.P., J.E.), Division of Nephrology and Transplantation, Department of Internal Medicine (D.S., E.U.), Department of Radiation Oncology (J.E.), Erasmus MC, Rotterdam, The Netherlands; Department of Molecular Cardiovascular Endocrinology, Max Delbrück Center, Berlin, Germany (F.Q., N.A., M.B.); DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Germany (N.A., M.B.); Berlin Institute of Health (BIH), Germany (M.B.); Charité-University Medicine, Berlin, Germany (M.B.); Institute for Biology, University of Lübeck, Germany (M.B.); Institute of Pathophysiology, Faculty of Medicine, Comenius University (L.P., R.R.); Institute of Normal and Pathophysiological Physiology, Slovak Academy of Sciences, Bratislava, Slovak Republic (L.P.); and Attoquant Diagnostics (O.D., M.P.) and Department of Internal Medicine III (O.D.), Medical University of Vienna, Austria
| | - Ingrid van der Pluijm
- From the Division of Vascular Medicine and Pharmacology, Department of Internal Medicine (B.S.v.T., A.G.M., L.t.R., D.S., E.U., I.M.G., F.P.J.L., A.H.J.D.), Department of Vascular Surgery (B.S.v.T., L.t.R., I.v.d.P., J.E.), Department of Molecular Genetics, Cancer Genomics Center Netherlands (B.S.v.T., I.v.d.P., J.E.), Division of Nephrology and Transplantation, Department of Internal Medicine (D.S., E.U.), Department of Radiation Oncology (J.E.), Erasmus MC, Rotterdam, The Netherlands; Department of Molecular Cardiovascular Endocrinology, Max Delbrück Center, Berlin, Germany (F.Q., N.A., M.B.); DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Germany (N.A., M.B.); Berlin Institute of Health (BIH), Germany (M.B.); Charité-University Medicine, Berlin, Germany (M.B.); Institute for Biology, University of Lübeck, Germany (M.B.); Institute of Pathophysiology, Faculty of Medicine, Comenius University (L.P., R.R.); Institute of Normal and Pathophysiological Physiology, Slovak Academy of Sciences, Bratislava, Slovak Republic (L.P.); and Attoquant Diagnostics (O.D., M.P.) and Department of Internal Medicine III (O.D.), Medical University of Vienna, Austria
| | - Jeroen Essers
- From the Division of Vascular Medicine and Pharmacology, Department of Internal Medicine (B.S.v.T., A.G.M., L.t.R., D.S., E.U., I.M.G., F.P.J.L., A.H.J.D.), Department of Vascular Surgery (B.S.v.T., L.t.R., I.v.d.P., J.E.), Department of Molecular Genetics, Cancer Genomics Center Netherlands (B.S.v.T., I.v.d.P., J.E.), Division of Nephrology and Transplantation, Department of Internal Medicine (D.S., E.U.), Department of Radiation Oncology (J.E.), Erasmus MC, Rotterdam, The Netherlands; Department of Molecular Cardiovascular Endocrinology, Max Delbrück Center, Berlin, Germany (F.Q., N.A., M.B.); DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Germany (N.A., M.B.); Berlin Institute of Health (BIH), Germany (M.B.); Charité-University Medicine, Berlin, Germany (M.B.); Institute for Biology, University of Lübeck, Germany (M.B.); Institute of Pathophysiology, Faculty of Medicine, Comenius University (L.P., R.R.); Institute of Normal and Pathophysiological Physiology, Slovak Academy of Sciences, Bratislava, Slovak Republic (L.P.); and Attoquant Diagnostics (O.D., M.P.) and Department of Internal Medicine III (O.D.), Medical University of Vienna, Austria
| | - Fatimunnisa Qadri
- From the Division of Vascular Medicine and Pharmacology, Department of Internal Medicine (B.S.v.T., A.G.M., L.t.R., D.S., E.U., I.M.G., F.P.J.L., A.H.J.D.), Department of Vascular Surgery (B.S.v.T., L.t.R., I.v.d.P., J.E.), Department of Molecular Genetics, Cancer Genomics Center Netherlands (B.S.v.T., I.v.d.P., J.E.), Division of Nephrology and Transplantation, Department of Internal Medicine (D.S., E.U.), Department of Radiation Oncology (J.E.), Erasmus MC, Rotterdam, The Netherlands; Department of Molecular Cardiovascular Endocrinology, Max Delbrück Center, Berlin, Germany (F.Q., N.A., M.B.); DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Germany (N.A., M.B.); Berlin Institute of Health (BIH), Germany (M.B.); Charité-University Medicine, Berlin, Germany (M.B.); Institute for Biology, University of Lübeck, Germany (M.B.); Institute of Pathophysiology, Faculty of Medicine, Comenius University (L.P., R.R.); Institute of Normal and Pathophysiological Physiology, Slovak Academy of Sciences, Bratislava, Slovak Republic (L.P.); and Attoquant Diagnostics (O.D., M.P.) and Department of Internal Medicine III (O.D.), Medical University of Vienna, Austria
| | - Natalia Alenina
- From the Division of Vascular Medicine and Pharmacology, Department of Internal Medicine (B.S.v.T., A.G.M., L.t.R., D.S., E.U., I.M.G., F.P.J.L., A.H.J.D.), Department of Vascular Surgery (B.S.v.T., L.t.R., I.v.d.P., J.E.), Department of Molecular Genetics, Cancer Genomics Center Netherlands (B.S.v.T., I.v.d.P., J.E.), Division of Nephrology and Transplantation, Department of Internal Medicine (D.S., E.U.), Department of Radiation Oncology (J.E.), Erasmus MC, Rotterdam, The Netherlands; Department of Molecular Cardiovascular Endocrinology, Max Delbrück Center, Berlin, Germany (F.Q., N.A., M.B.); DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Germany (N.A., M.B.); Berlin Institute of Health (BIH), Germany (M.B.); Charité-University Medicine, Berlin, Germany (M.B.); Institute for Biology, University of Lübeck, Germany (M.B.); Institute of Pathophysiology, Faculty of Medicine, Comenius University (L.P., R.R.); Institute of Normal and Pathophysiological Physiology, Slovak Academy of Sciences, Bratislava, Slovak Republic (L.P.); and Attoquant Diagnostics (O.D., M.P.) and Department of Internal Medicine III (O.D.), Medical University of Vienna, Austria
| | - Michael Bader
- From the Division of Vascular Medicine and Pharmacology, Department of Internal Medicine (B.S.v.T., A.G.M., L.t.R., D.S., E.U., I.M.G., F.P.J.L., A.H.J.D.), Department of Vascular Surgery (B.S.v.T., L.t.R., I.v.d.P., J.E.), Department of Molecular Genetics, Cancer Genomics Center Netherlands (B.S.v.T., I.v.d.P., J.E.), Division of Nephrology and Transplantation, Department of Internal Medicine (D.S., E.U.), Department of Radiation Oncology (J.E.), Erasmus MC, Rotterdam, The Netherlands; Department of Molecular Cardiovascular Endocrinology, Max Delbrück Center, Berlin, Germany (F.Q., N.A., M.B.); DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Germany (N.A., M.B.); Berlin Institute of Health (BIH), Germany (M.B.); Charité-University Medicine, Berlin, Germany (M.B.); Institute for Biology, University of Lübeck, Germany (M.B.); Institute of Pathophysiology, Faculty of Medicine, Comenius University (L.P., R.R.); Institute of Normal and Pathophysiological Physiology, Slovak Academy of Sciences, Bratislava, Slovak Republic (L.P.); and Attoquant Diagnostics (O.D., M.P.) and Department of Internal Medicine III (O.D.), Medical University of Vienna, Austria
| | - Ludovit Paulis
- From the Division of Vascular Medicine and Pharmacology, Department of Internal Medicine (B.S.v.T., A.G.M., L.t.R., D.S., E.U., I.M.G., F.P.J.L., A.H.J.D.), Department of Vascular Surgery (B.S.v.T., L.t.R., I.v.d.P., J.E.), Department of Molecular Genetics, Cancer Genomics Center Netherlands (B.S.v.T., I.v.d.P., J.E.), Division of Nephrology and Transplantation, Department of Internal Medicine (D.S., E.U.), Department of Radiation Oncology (J.E.), Erasmus MC, Rotterdam, The Netherlands; Department of Molecular Cardiovascular Endocrinology, Max Delbrück Center, Berlin, Germany (F.Q., N.A., M.B.); DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Germany (N.A., M.B.); Berlin Institute of Health (BIH), Germany (M.B.); Charité-University Medicine, Berlin, Germany (M.B.); Institute for Biology, University of Lübeck, Germany (M.B.); Institute of Pathophysiology, Faculty of Medicine, Comenius University (L.P., R.R.); Institute of Normal and Pathophysiological Physiology, Slovak Academy of Sciences, Bratislava, Slovak Republic (L.P.); and Attoquant Diagnostics (O.D., M.P.) and Department of Internal Medicine III (O.D.), Medical University of Vienna, Austria
| | - Romana Rajkovicova
- From the Division of Vascular Medicine and Pharmacology, Department of Internal Medicine (B.S.v.T., A.G.M., L.t.R., D.S., E.U., I.M.G., F.P.J.L., A.H.J.D.), Department of Vascular Surgery (B.S.v.T., L.t.R., I.v.d.P., J.E.), Department of Molecular Genetics, Cancer Genomics Center Netherlands (B.S.v.T., I.v.d.P., J.E.), Division of Nephrology and Transplantation, Department of Internal Medicine (D.S., E.U.), Department of Radiation Oncology (J.E.), Erasmus MC, Rotterdam, The Netherlands; Department of Molecular Cardiovascular Endocrinology, Max Delbrück Center, Berlin, Germany (F.Q., N.A., M.B.); DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Germany (N.A., M.B.); Berlin Institute of Health (BIH), Germany (M.B.); Charité-University Medicine, Berlin, Germany (M.B.); Institute for Biology, University of Lübeck, Germany (M.B.); Institute of Pathophysiology, Faculty of Medicine, Comenius University (L.P., R.R.); Institute of Normal and Pathophysiological Physiology, Slovak Academy of Sciences, Bratislava, Slovak Republic (L.P.); and Attoquant Diagnostics (O.D., M.P.) and Department of Internal Medicine III (O.D.), Medical University of Vienna, Austria
| | - Oliver Domenig
- From the Division of Vascular Medicine and Pharmacology, Department of Internal Medicine (B.S.v.T., A.G.M., L.t.R., D.S., E.U., I.M.G., F.P.J.L., A.H.J.D.), Department of Vascular Surgery (B.S.v.T., L.t.R., I.v.d.P., J.E.), Department of Molecular Genetics, Cancer Genomics Center Netherlands (B.S.v.T., I.v.d.P., J.E.), Division of Nephrology and Transplantation, Department of Internal Medicine (D.S., E.U.), Department of Radiation Oncology (J.E.), Erasmus MC, Rotterdam, The Netherlands; Department of Molecular Cardiovascular Endocrinology, Max Delbrück Center, Berlin, Germany (F.Q., N.A., M.B.); DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Germany (N.A., M.B.); Berlin Institute of Health (BIH), Germany (M.B.); Charité-University Medicine, Berlin, Germany (M.B.); Institute for Biology, University of Lübeck, Germany (M.B.); Institute of Pathophysiology, Faculty of Medicine, Comenius University (L.P., R.R.); Institute of Normal and Pathophysiological Physiology, Slovak Academy of Sciences, Bratislava, Slovak Republic (L.P.); and Attoquant Diagnostics (O.D., M.P.) and Department of Internal Medicine III (O.D.), Medical University of Vienna, Austria
| | - Marko Poglitsch
- From the Division of Vascular Medicine and Pharmacology, Department of Internal Medicine (B.S.v.T., A.G.M., L.t.R., D.S., E.U., I.M.G., F.P.J.L., A.H.J.D.), Department of Vascular Surgery (B.S.v.T., L.t.R., I.v.d.P., J.E.), Department of Molecular Genetics, Cancer Genomics Center Netherlands (B.S.v.T., I.v.d.P., J.E.), Division of Nephrology and Transplantation, Department of Internal Medicine (D.S., E.U.), Department of Radiation Oncology (J.E.), Erasmus MC, Rotterdam, The Netherlands; Department of Molecular Cardiovascular Endocrinology, Max Delbrück Center, Berlin, Germany (F.Q., N.A., M.B.); DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Germany (N.A., M.B.); Berlin Institute of Health (BIH), Germany (M.B.); Charité-University Medicine, Berlin, Germany (M.B.); Institute for Biology, University of Lübeck, Germany (M.B.); Institute of Pathophysiology, Faculty of Medicine, Comenius University (L.P., R.R.); Institute of Normal and Pathophysiological Physiology, Slovak Academy of Sciences, Bratislava, Slovak Republic (L.P.); and Attoquant Diagnostics (O.D., M.P.) and Department of Internal Medicine III (O.D.), Medical University of Vienna, Austria
| | - A H Jan Danser
- From the Division of Vascular Medicine and Pharmacology, Department of Internal Medicine (B.S.v.T., A.G.M., L.t.R., D.S., E.U., I.M.G., F.P.J.L., A.H.J.D.), Department of Vascular Surgery (B.S.v.T., L.t.R., I.v.d.P., J.E.), Department of Molecular Genetics, Cancer Genomics Center Netherlands (B.S.v.T., I.v.d.P., J.E.), Division of Nephrology and Transplantation, Department of Internal Medicine (D.S., E.U.), Department of Radiation Oncology (J.E.), Erasmus MC, Rotterdam, The Netherlands; Department of Molecular Cardiovascular Endocrinology, Max Delbrück Center, Berlin, Germany (F.Q., N.A., M.B.); DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Germany (N.A., M.B.); Berlin Institute of Health (BIH), Germany (M.B.); Charité-University Medicine, Berlin, Germany (M.B.); Institute for Biology, University of Lübeck, Germany (M.B.); Institute of Pathophysiology, Faculty of Medicine, Comenius University (L.P., R.R.); Institute of Normal and Pathophysiological Physiology, Slovak Academy of Sciences, Bratislava, Slovak Republic (L.P.); and Attoquant Diagnostics (O.D., M.P.) and Department of Internal Medicine III (O.D.), Medical University of Vienna, Austria.
| |
Collapse
|
18
|
Claflin KE, Sandgren JA, Lambertz AM, Weidemann BJ, Littlejohn NK, Burnett CML, Pearson NA, Morgan DA, Gibson-Corley KN, Rahmouni K, Grobe JL. Angiotensin AT1A receptors on leptin receptor-expressing cells control resting metabolism. J Clin Invest 2017; 127:1414-1424. [PMID: 28263184 DOI: 10.1172/jci88641] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 01/12/2017] [Indexed: 12/13/2022] Open
Abstract
Leptin contributes to the control of resting metabolic rate (RMR) and blood pressure (BP) through its actions in the arcuate nucleus (ARC). The renin-angiotensin system (RAS) and angiotensin AT1 receptors within the brain are also involved in the control of RMR and BP, but whether this regulation overlaps with leptin's actions is unclear. Here, we have demonstrated the selective requirement of the AT1A receptor in leptin-mediated control of RMR. We observed that AT1A receptors colocalized with leptin receptors (LEPRs) in the ARC. Cellular coexpression of AT1A and LEPR was almost exclusive to the ARC and occurred primarily within neurons expressing agouti-related peptide (AgRP). Mice lacking the AT1A receptor specifically in LEPR-expressing cells failed to show an increase in RMR in response to a high-fat diet and deoxycorticosterone acetate-salt (DOCA-salt) treatments, but BP control remained intact. Accordingly, loss of RMR control was recapitulated in mice lacking AT1A in AgRP-expressing cells. We conclude that angiotensin activates divergent mechanisms to control BP and RMR and that the brain RAS functions as a major integrator for RMR control through its actions at leptin-sensitive AgRP cells of the ARC.
Collapse
|
19
|
Abstract
Increasing evidence supports a major role for the renin-angiotensin system (RAS) in energy balance physiology. The RAS exists as a circulating system but also as a local paracrine/autocrine signaling mechanism in target tissues including the gastrointestinal tract, the brain, the kidney, and distinct adipose beds. Through activation of various receptors in these target tissues, the RAS contributes to the control of food intake behavior, digestive efficiency, spontaneous physical activity, and aerobic and anaerobic resting metabolism. Although the assortment of methodologies available to assess the various aspects of energy balance can be daunting for an investigator new to this area, a relatively straightforward array of entry-level and advanced methodologies can be employed to comprehensively and quantitatively dissect the effects of experimental manipulations on energy homeostasis. Such methodologies and a simple initial workflow for the use of these methods are described in this chapter, including the use of metabolic caging systems, bomb calorimetry, body composition analyzers, respirometry systems, and direct calorimetry systems. Finally, a brief discussion of the statistical analyses of metabolic data is included.
Collapse
Affiliation(s)
- Justin L Grobe
- Department of Pharmacology, Center for Hypertension Research, The Obesity Research and Education Initiative, François M. Abboud Cardiovascular Research Center, The Fraternal Order of Eagles' Diabetes Research Center, University of Iowa, 51 Newton Rd., 2-307 BSB, Iowa City, IA, 52242, USA.
| |
Collapse
|
20
|
Shinohara K, Liu X, Morgan DA, Davis DR, Sequeira-Lopez MLS, Cassell MD, Grobe JL, Rahmouni K, Sigmund CD. Selective Deletion of the Brain-Specific Isoform of Renin Causes Neurogenic Hypertension. Hypertension 2016; 68:1385-1392. [PMID: 27754863 DOI: 10.1161/hypertensionaha.116.08242] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 08/11/2016] [Accepted: 09/21/2016] [Indexed: 11/16/2022]
Abstract
The renin-angiotensin system (RAS) in the brain is a critical determinant of blood pressure, but the mechanisms regulating RAS activity in the brain remain unclear. Expression of brain renin (renin-b) occurs from an alternative promoter-first exon. The predicted translation product is a nonsecreted enzymatically active renin whose function is unknown. We generated a unique mouse model by selectively ablating the brain-specific isoform of renin (renin-b) while preserving the expression and function of the classical isoform expressed in the kidney (renin-a). Preservation of renal renin was confirmed by measurements of renin gene expression and immunohistochemistry. Surprisingly, renin-b-deficient mice exhibited hypertension, increased sympathetic nerve activity to the kidney and heart, and impaired baroreflex sensitivity. Whereas these mice displayed decreased circulating RAS activity, there was a paradoxical increase in brain RAS activity. Physiologically, renin-b-deficient mice exhibited an exaggerated depressor response to intracerebroventricular administration of losartan, captopril, or aliskiren. At the molecular level, renin-b-deficient mice exhibited increased expression of angiotensin-II type 1 receptor in the paraventricular nucleus, which correlated with an increased renal sympathetic nerve response to leptin, which was dependent on angiotensin-II type 1 receptor activity. Interestingly, despite an ablation of renin-b expression, expression of renin-a was significantly increased in rostral ventrolateral medulla. These data support a new paradigm for the genetic control of RAS activity in the brain by a coordinated regulation of the renin isoforms, with expression of renin-b tonically inhibiting expression of renin-a under baseline conditions. Impairment of this control mechanism causes neurogenic hypertension.
Collapse
Affiliation(s)
- Keisuke Shinohara
- From the Department of Pharmacology (K.S., X.L., D.A.M., D.R.D., J.L.G., K.R., C.D.S.), Department of Anatomy and Cell Biology (M.D.C.), and UIHC Center for Hypertension Research (J.L.G., K.R., C.D.S.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City; and Department of Pediatrics (M.L.S.S.-L.), University of Virginia, Charlottesville
| | - Xuebo Liu
- From the Department of Pharmacology (K.S., X.L., D.A.M., D.R.D., J.L.G., K.R., C.D.S.), Department of Anatomy and Cell Biology (M.D.C.), and UIHC Center for Hypertension Research (J.L.G., K.R., C.D.S.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City; and Department of Pediatrics (M.L.S.S.-L.), University of Virginia, Charlottesville
| | - Donald A Morgan
- From the Department of Pharmacology (K.S., X.L., D.A.M., D.R.D., J.L.G., K.R., C.D.S.), Department of Anatomy and Cell Biology (M.D.C.), and UIHC Center for Hypertension Research (J.L.G., K.R., C.D.S.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City; and Department of Pediatrics (M.L.S.S.-L.), University of Virginia, Charlottesville
| | - Deborah R Davis
- From the Department of Pharmacology (K.S., X.L., D.A.M., D.R.D., J.L.G., K.R., C.D.S.), Department of Anatomy and Cell Biology (M.D.C.), and UIHC Center for Hypertension Research (J.L.G., K.R., C.D.S.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City; and Department of Pediatrics (M.L.S.S.-L.), University of Virginia, Charlottesville
| | - Maria Luisa S Sequeira-Lopez
- From the Department of Pharmacology (K.S., X.L., D.A.M., D.R.D., J.L.G., K.R., C.D.S.), Department of Anatomy and Cell Biology (M.D.C.), and UIHC Center for Hypertension Research (J.L.G., K.R., C.D.S.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City; and Department of Pediatrics (M.L.S.S.-L.), University of Virginia, Charlottesville
| | - Martin D Cassell
- From the Department of Pharmacology (K.S., X.L., D.A.M., D.R.D., J.L.G., K.R., C.D.S.), Department of Anatomy and Cell Biology (M.D.C.), and UIHC Center for Hypertension Research (J.L.G., K.R., C.D.S.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City; and Department of Pediatrics (M.L.S.S.-L.), University of Virginia, Charlottesville
| | - Justin L Grobe
- From the Department of Pharmacology (K.S., X.L., D.A.M., D.R.D., J.L.G., K.R., C.D.S.), Department of Anatomy and Cell Biology (M.D.C.), and UIHC Center for Hypertension Research (J.L.G., K.R., C.D.S.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City; and Department of Pediatrics (M.L.S.S.-L.), University of Virginia, Charlottesville
| | - Kamal Rahmouni
- From the Department of Pharmacology (K.S., X.L., D.A.M., D.R.D., J.L.G., K.R., C.D.S.), Department of Anatomy and Cell Biology (M.D.C.), and UIHC Center for Hypertension Research (J.L.G., K.R., C.D.S.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City; and Department of Pediatrics (M.L.S.S.-L.), University of Virginia, Charlottesville
| | - Curt D Sigmund
- From the Department of Pharmacology (K.S., X.L., D.A.M., D.R.D., J.L.G., K.R., C.D.S.), Department of Anatomy and Cell Biology (M.D.C.), and UIHC Center for Hypertension Research (J.L.G., K.R., C.D.S.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City; and Department of Pediatrics (M.L.S.S.-L.), University of Virginia, Charlottesville.
| |
Collapse
|
21
|
Littlejohn NK, Keen HL, Weidemann BJ, Claflin KE, Tobin KV, Markan KR, Park S, Naber MC, Gourronc FA, Pearson NA, Liu X, Morgan DA, Klingelhutz AJ, Potthoff MJ, Rahmouni K, Sigmund CD, Grobe JL. Suppression of Resting Metabolism by the Angiotensin AT2 Receptor. Cell Rep 2016; 16:1548-1560. [PMID: 27477281 DOI: 10.1016/j.celrep.2016.07.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 06/09/2016] [Accepted: 07/01/2016] [Indexed: 11/15/2022] Open
Abstract
Activation of the brain renin-angiotensin system (RAS) stimulates energy expenditure through increasing of the resting metabolic rate (RMR), and this effect requires simultaneous suppression of the circulating and/or adipose RAS. To identify the mechanism by which the peripheral RAS opposes RMR control by the brain RAS, we examined mice with transgenic activation of the brain RAS (sRA mice). sRA mice exhibit increased RMR through increased energy flux in the inguinal adipose tissue, and this effect is attenuated by angiotensin II type 2 receptor (AT2) activation. AT2 activation in inguinal adipocytes opposes norepinephrine-induced uncoupling protein-1 (UCP1) production and aspects of cellular respiration, but not lipolysis. AT2 activation also opposes inguinal adipocyte function and differentiation responses to epidermal growth factor (EGF). These results highlight a major, multifaceted role for AT2 within inguinal adipocytes in the control of RMR. The AT2 receptor may therefore contribute to body fat distribution and adipose depot-specific effects upon cardio-metabolic health.
Collapse
Affiliation(s)
| | - Henry L Keen
- Department of Pharmacology, University of Iowa, Iowa City, IA 52242, USA
| | | | - Kristin E Claflin
- Department of Pharmacology, University of Iowa, Iowa City, IA 52242, USA
| | - Kevin V Tobin
- Department of Pharmacology, University of Iowa, Iowa City, IA 52242, USA
| | - Kathleen R Markan
- Department of Pharmacology, University of Iowa, Iowa City, IA 52242, USA
| | - Sungmi Park
- Department of Pharmacology, University of Iowa, Iowa City, IA 52242, USA
| | - Meghan C Naber
- Department of Pharmacology, University of Iowa, Iowa City, IA 52242, USA
| | | | - Nicole A Pearson
- Department of Pharmacology, University of Iowa, Iowa City, IA 52242, USA
| | - Xuebo Liu
- Department of Pharmacology, University of Iowa, Iowa City, IA 52242, USA
| | - Donald A Morgan
- Department of Pharmacology, University of Iowa, Iowa City, IA 52242, USA
| | - Aloysius J Klingelhutz
- Department of Microbiology, University of Iowa, Iowa City, IA 52242, USA; Fraternal Order of Eagles' Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
| | - Matthew J Potthoff
- Department of Pharmacology, University of Iowa, Iowa City, IA 52242, USA; Fraternal Order of Eagles' Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA; Obesity Research and Education Initiative, University of Iowa, Iowa City, IA 52242, USA
| | - Kamal Rahmouni
- Department of Pharmacology, University of Iowa, Iowa City, IA 52242, USA; Fraternal Order of Eagles' Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA; Obesity Research and Education Initiative, University of Iowa, Iowa City, IA 52242, USA; François M. Abboud Cardiovascular Research Center, University of Iowa, Iowa City, IA 52242, USA; Center for Hypertension Research, University of Iowa, Iowa City, IA 52242, USA
| | - Curt D Sigmund
- Department of Pharmacology, University of Iowa, Iowa City, IA 52242, USA; Fraternal Order of Eagles' Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA; Obesity Research and Education Initiative, University of Iowa, Iowa City, IA 52242, USA; François M. Abboud Cardiovascular Research Center, University of Iowa, Iowa City, IA 52242, USA; Center for Hypertension Research, University of Iowa, Iowa City, IA 52242, USA.
| | - Justin L Grobe
- Department of Pharmacology, University of Iowa, Iowa City, IA 52242, USA; Fraternal Order of Eagles' Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA; Obesity Research and Education Initiative, University of Iowa, Iowa City, IA 52242, USA; François M. Abboud Cardiovascular Research Center, University of Iowa, Iowa City, IA 52242, USA; Center for Hypertension Research, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
22
|
Affiliation(s)
- Amy C Arnold
- From the Division of Clinical Pharmacology, Vanderbilt University School of Medicine, Nashville, TN.
| |
Collapse
|
23
|
Littlejohn NK, Grobe JL. Opposing tissue-specific roles of angiotensin in the pathogenesis of obesity, and implications for obesity-related hypertension. Am J Physiol Regul Integr Comp Physiol 2015; 309:R1463-73. [PMID: 26491099 DOI: 10.1152/ajpregu.00224.2015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 10/15/2015] [Indexed: 12/24/2022]
Abstract
Metabolic disease, specifically obesity, has now become the greatest challenge to improving cardiovascular health. The renin-angiotensin system (RAS) exists as both a circulating hormone system and as a local paracrine signaling mechanism within various tissues including the brain, kidney, and adipose, and this system is strongly implicated in cardiovascular health and disease. Growing evidence also implicates the RAS in the control of energy balance, supporting the concept that the RAS may be mechanistically involved in the pathogenesis of obesity and obesity hypertension. Here, we review the involvement of the RAS in the entire spectrum of whole organism energy balance mechanisms, including behaviors (food ingestion and spontaneous physical activity) and biological processes (digestive efficiency and both aerobic and nonaerobic resting metabolic rates). We hypothesize that opposing, tissue-specific effects of the RAS to modulate these various components of energy balance can explain the apparently paradoxical results reported by energy-balance studies that involve stimulating, versus disrupting, the RAS. We propose a model in which such opposing and tissue-specific effects of the RAS can explain the failure of simple, global RAS blockade to result in weight loss in humans, and hypothesize that obesity-mediated uncoupling of endogenous metabolic rate control mechanisms can explain the phenomenon of obesity-related hypertension.
Collapse
Affiliation(s)
- Nicole K Littlejohn
- Department of Pharmacology, the Obesity Research and Education Initiative, the Fraternal Order of Eagles' Diabetes Research Center, the François M. Abboud Cardiovascular Research Center, and the Center for Hypertension Research, University of Iowa, Iowa City, Iowa
| | - Justin L Grobe
- Department of Pharmacology, the Obesity Research and Education Initiative, the Fraternal Order of Eagles' Diabetes Research Center, the François M. Abboud Cardiovascular Research Center, and the Center for Hypertension Research, University of Iowa, Iowa City, Iowa
| |
Collapse
|
24
|
Jia G, Aroor AR, DeMarco VG, Martinez-Lemus LA, Meininger GA, Sowers JR. Vascular stiffness in insulin resistance and obesity. Front Physiol 2015; 6:231. [PMID: 26321962 PMCID: PMC4536384 DOI: 10.3389/fphys.2015.00231] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 07/31/2015] [Indexed: 12/17/2022] Open
Abstract
Obesity, insulin resistance, and type 2 diabetes are associated with a substantially increased prevalence of vascular fibrosis and stiffness, with attendant increased risk of cardiovascular and chronic kidney disease. Although the underlying mechanisms and mediators of vascular stiffness are not well understood, accumulating evidence supports the role of metabolic and immune dysregulation related to increased adiposity, activation of the renin angiotensin aldosterone system, reduced bioavailable nitric oxide, increased vascular extracellular matrix (ECM) and ECM remodeling in the pathogenesis of vascular stiffness. This review will give a brief overview of the relationship between obesity, insulin resistance and increased vascular stiffness to provide a contemporary understanding of the proposed underlying mechanisms and potential therapeutic strategies.
Collapse
Affiliation(s)
- Guanghong Jia
- Department of Medicine, Division of Endocrinology and Metabolism, University of Missouri School of Medicine Columbia, MO, USA ; Research Service, Harry S Truman Memorial Veterans Hospital Columbia, MO, USA
| | - Annayya R Aroor
- Department of Medicine, Division of Endocrinology and Metabolism, University of Missouri School of Medicine Columbia, MO, USA ; Research Service, Harry S Truman Memorial Veterans Hospital Columbia, MO, USA
| | - Vincent G DeMarco
- Department of Medicine, Division of Endocrinology and Metabolism, University of Missouri School of Medicine Columbia, MO, USA ; Research Service, Harry S Truman Memorial Veterans Hospital Columbia, MO, USA ; Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine Columbia, MO, USA
| | - Luis A Martinez-Lemus
- Research Service, Harry S Truman Memorial Veterans Hospital Columbia, MO, USA ; Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine Columbia, MO, USA ; Dalton Cardiovascular Research Center, University of Missouri Columbia, MO, USA
| | - Gerald A Meininger
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine Columbia, MO, USA ; Dalton Cardiovascular Research Center, University of Missouri Columbia, MO, USA
| | - James R Sowers
- Department of Medicine, Division of Endocrinology and Metabolism, University of Missouri School of Medicine Columbia, MO, USA ; Research Service, Harry S Truman Memorial Veterans Hospital Columbia, MO, USA ; Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine Columbia, MO, USA ; Dalton Cardiovascular Research Center, University of Missouri Columbia, MO, USA
| |
Collapse
|
25
|
Weidemann BJ, Voong S, Morales-Santiago FI, Kahn MZ, Ni J, Littlejohn NK, Claflin KE, Burnett CML, Pearson NA, Lutter ML, Grobe JL. Dietary Sodium Suppresses Digestive Efficiency via the Renin-Angiotensin System. Sci Rep 2015; 5:11123. [PMID: 26068176 PMCID: PMC4464075 DOI: 10.1038/srep11123] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 05/18/2015] [Indexed: 12/22/2022] Open
Abstract
Dietary fats and sodium are both palatable and are hypothesized to synergistically contribute to ingestive behavior and thereby obesity. Contrary to this hypothesis, C57BL/6J mice fed a 45% high fat diet exhibited weight gain that was inhibited by increased dietary sodium content. This suppressive effect of dietary sodium upon weight gain was mediated specifically through a reduction in digestive efficiency, with no effects on food intake behavior, physical activity, or resting metabolism. Replacement of circulating angiotensin II levels reversed the effects of high dietary sodium to suppress digestive efficiency. While the AT1 receptor antagonist losartan had no effect in mice fed low sodium, the AT2 receptor antagonist PD-123,319 suppressed digestive efficiency. Correspondingly, genetic deletion of the AT2 receptor in FVB/NCrl mice resulted in suppressed digestive efficiency even on a standard chow diet. Together these data underscore the importance of digestive efficiency in the pathogenesis of obesity, and implicate dietary sodium, the renin-angiotensin system, and the AT2 receptor in the control of digestive efficiency regardless of mouse strain or macronutrient composition of the diet. These findings highlight the need for greater understanding of nutrient absorption control physiology, and prompt more uniform assessment of digestive efficiency in animal studies of energy balance.
Collapse
Affiliation(s)
| | - Susan Voong
- Departments of Pharmacology, University of Iowa, Iowa City, IA
| | | | - Michael Z Kahn
- Departments of Psychiatry, University of Iowa, Iowa City, IA
| | - Jonathan Ni
- Departments of Pharmacology, University of Iowa, Iowa City, IA
| | | | | | | | | | - Michael L Lutter
- 1] Departments of Psychiatry, University of Iowa, Iowa City, IA. [2] The Fraternal Order of Eagles' Diabetes Research Center, University of Iowa, Iowa City, IA. [3] The Obesity Research and Education Initiative, University of Iowa, Iowa City, IA
| | - Justin L Grobe
- 1] Departments of Pharmacology, University of Iowa, Iowa City, IA. [2] The Fraternal Order of Eagles' Diabetes Research Center, University of Iowa, Iowa City, IA. [3] The Obesity Research and Education Initiative, University of Iowa, Iowa City, IA. [4] The Center for Hypertension Research, University of Iowa, Iowa City, IA
| |
Collapse
|
26
|
Favre GA, Esnault VLM, Van Obberghen E. Modulation of glucose metabolism by the renin-angiotensin-aldosterone system. Am J Physiol Endocrinol Metab 2015; 308:E435-49. [PMID: 25564475 DOI: 10.1152/ajpendo.00391.2014] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The renin-angiotensin-aldosterone system (RAAS) is an enzymatic cascade functioning in a paracrine and autocrine fashion. In animals and humans, RAAS intrinsic to tissues modulates food intake, metabolic rate, adiposity, insulin sensitivity, and insulin secretion. A large array of observations shows that dysregulation of RAAS in the metabolic syndrome favors type 2 diabetes. Remarkably, angiotensin-converting enzyme inhibitors, suppressing the synthesis of angiotensin II (ANG II), and angiotensin receptor blockers, targeting the ANG II type 1 receptor, prevent diabetes in patients with hypertensive or ischemic cardiopathy. These drugs interrupt the negative feedback loop of ANG II on the RAAS cascade, which results in increased production of angiotensins. In addition, they change the tissue expression of RAAS components. Therefore, the concept of a dual axis of RAAS regarding glucose homeostasis has emerged. The RAAS deleterious axis increases the production of inflammatory cytokines and raises oxidative stress, exacerbating the insulin resistance and decreasing insulin secretion. The beneficial axis promotes adipogenesis, blocks the production of inflammatory cytokines, and lowers oxidative stress, thereby improving insulin sensitivity and secretion. Currently, drugs targeting RAAS are not given for the purpose of preventing diabetes in humans. However, we anticipate that in the near future the discovery of novel means to modulate the RAAS beneficial axis will result in a decisive therapeutic breakthrough.
Collapse
Affiliation(s)
- Guillaume A Favre
- Institut National de la Sante et de la Recherche Medicale, U 1081, Institute for Research on Cancer and Aging of Nice (IRCAN), "Aging and Diabetes" Team, Nice, France; Centre National de la Recherche Scientifique, UMR7284, IRCAN, Nice, France; University of Nice-Sophia Antipolis, Nice, France; Nephrology Department, University Hospital, Nice, France; and
| | - Vincent L M Esnault
- Institut National de la Sante et de la Recherche Medicale, U 1081, Institute for Research on Cancer and Aging of Nice (IRCAN), "Aging and Diabetes" Team, Nice, France; Centre National de la Recherche Scientifique, UMR7284, IRCAN, Nice, France; University of Nice-Sophia Antipolis, Nice, France; Nephrology Department, University Hospital, Nice, France; and
| | - Emmanuel Van Obberghen
- Institut National de la Sante et de la Recherche Medicale, U 1081, Institute for Research on Cancer and Aging of Nice (IRCAN), "Aging and Diabetes" Team, Nice, France; Centre National de la Recherche Scientifique, UMR7284, IRCAN, Nice, France; University of Nice-Sophia Antipolis, Nice, France; Clinical Chemistry Laboratory, University Hospital, Nice, France
| |
Collapse
|
27
|
Abstract
In addition to effects on appetite and metabolism, leptin influences many neuroendocrine and physiological systems, including the sympathetic nervous system. Building on my Carl Ludwig Lecture of the American Physiological Society, I review the sympathetic and cardiovascular actions of leptin. The review focuses on a critical analysis of the concept of selective leptin resistance (SLR) and the role of leptin in the pathogenesis of obesity-induced hypertension in both experimental animals and humans. We introduced the concept of SLR in 2002 to explain how leptin might increase blood pressure (BP) in obese states, such as diet-induced obesity (DIO), that are accompanied by partial leptin resistance. This concept, analogous to selective insulin resistance in the metabolic syndrome, holds that in several genetic and acquired models of obesity, there is preservation of the renal sympathetic and pressor actions of leptin despite attenuation of the appetite and weight-reducing actions. Two potential overlapping mechanisms of SLR are reviewed: 1) differential leptin molecular signaling pathways that mediate selective as opposed to universal leptin action and 2) brain site-specific leptin action and resistance. Although the phenomenon of SLR in DIO has so far focused on preservation of sympathetic and BP actions of leptin, consideration should be given to the possibility that this concept may extend to preservation of other actions of leptin. Finally, I review perplexing data on the effects of leptin on sympathetic activity and BP in humans and its role in human obesity-induced hypertension.
Collapse
Affiliation(s)
- Allyn L Mark
- Department of Internal Medicine and the Obesity Research and Education Initiative, University of Iowa Carver College of Medicine, Iowa City, Iowa
| |
Collapse
|
28
|
Grobe JL, Rahmouni K. The adipose/circulating renin-angiotensin system cross-talk enters a new dimension. Hypertension 2012; 60:1389-90. [PMID: 23108659 DOI: 10.1161/hypertensionaha.112.200543] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
29
|
Peti-Peterdi J, Gevorgyan H, Lam L, Riquier-Brison A. Metabolic control of renin secretion. Pflugers Arch 2012; 465:53-8. [PMID: 22729752 DOI: 10.1007/s00424-012-1130-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 06/09/2012] [Accepted: 06/11/2012] [Indexed: 01/04/2023]
Abstract
One emerging topic in renin-angiotensin system (RAS) research is the direct local control of renin synthesis and release by endogenous metabolic intermediates. During the past few years, our laboratory has characterized the localization and signaling of the novel metabolic receptor GPR91 in the normal and diabetic kidney and established GPR91 as a new, direct link between high glucose and RAS activation in diabetes. GPR91 (also called SUCNR1) binds tricarboxylic acid (TCA) cycle intermediate succinate which can rapidly accumulate in the local tissue environment when energy supply and demand are out of balance. In a variety of physiological and pathological conditions associated with metabolic stress, succinate signaling via GPR91 appears to be an important mediator or modulator of renin secretion. This review summarizes our current knowledge on the control of renin release by molecules of endogenous metabolic pathways with the main focus on succinate/GPR91.
Collapse
Affiliation(s)
- János Peti-Peterdi
- Department of Physiology and Biophysics, Zilkha Neurogenetic Institute, University of Southern California, 1501 San Pablo Street, ZNI 335, Los Angeles, CA 90033, USA.
| | | | | | | |
Collapse
|