1
|
Takenaka T, Kobori H, Kurosaki Y, Ishii N, Inoue T, Miyazaki T, Suzuki H, Hasan A, Nishiyama A, Hayashi M. Klotho supplementation decreases blood pressure and albuminuria in mice with lupus nephritis. Eur J Pharmacol 2025; 988:177229. [PMID: 39725133 DOI: 10.1016/j.ejphar.2024.177229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 12/13/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024]
Abstract
Klotho deficiency is prevalent in various chronic kidney diseases. Although klotho is known to bind transforming growth factor β (TGFβ) receptor 1 to antagonize renal fibrosis, TGFβ also maintains regulatory T cells with inducing forkhead box protein P3 (FOXP3). Female New Zealand Black/White F1 (NZBWF1) mice were divided into two groups (n = 10 for each): one group was treated with daily subcutaneous injection of klotho protein (30 μg/kg/day) for 8 weeks, and the other only received vehicle. Klotho supplementation suppressed blood pressure, 8-epi-prostaglandin F2α excretion, albuminuria, and renal angiotensin II levels (p < 0.05 for all) without affecting the glomerular filtration rate (GFR) in NZBWF1 mice. Klotho protein supplementation reduced the number of cluster of differentiation (CD)4+FOXP3+ T cells (p < 0.05) without altering the anti-DNA antibody levels. Klotho supplementation augmented glomerular cellularity, but decreased glomerular crescent formation and interstitial fibrosis in NZBWF1 mice (p < 0.05). Klotho protein supplementation inactivated renal renin-angiotensin system, ameliorating blood pressure and albuminuria in NZBWF1 mice. Klotho supplementation hampered regulatory T cells without altering autoantibodies, exerting dual effects on glomerular pathology in NZBWF1 mice without changes in GFR.
Collapse
Affiliation(s)
- Tsuneo Takenaka
- International University of Health and Welfare, Tokyo, Japan.
| | - Hiroyuki Kobori
- International University of Health and Welfare, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Takenaka T, Hasan A, Marumo T, Inoue T, Miyazaki T, Suzuki H, Kurosaki Y, Ishii N, Nishiyama A, Hayashi M. Klotho Supplementation Reverses Renal Dysfunction and Interstitial Fibrosis in Remnant Kidney. Kidney Blood Press Res 2023; 48:326-337. [PMID: 37019097 DOI: 10.1159/000530469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 03/10/2023] [Indexed: 04/07/2023] Open
Abstract
INTRODUCTION While recent investigations show that klotho exerts renoprotective actions, it has not been fully addressed whether klotho protein supplementation reverses renal damage. METHODS The impacts of subcutaneous klotho supplementation on rats with subtotal nephrectomy were examined. Animals were divided into 3 groups: group 1 (short remnant [SR]): remnant kidney for 4 weeks, group 2 (long remnant [LR]): remnant kidney for 12 weeks, and group 3 (klotho supplementation [KL]): klotho protein (20 μg/kg/day) supplementation on the remnant kidney. Blood pressure, blood and urine compositions with conventional methods such as enzyme-linked immunosorbent assay and radioimmunoassay, kidney histology, and renal expressions of various genes were analyzed. In vitro studies were also performed to support in vivo findings. RESULTS Klotho protein supplementation decreased albuminuria (-43%), systolic blood pressure (-16%), fibroblast growth factor (FGF) 23 (-51%) and serum phosphate levels (-19%), renal angiotensin II concentration (-43%), fibrosis index (-70%), renal expressions of collagen I (-55%), and transforming growth factor β (-59%) (p < 0.05 for all). Klotho supplementation enhanced fractional excretion of phosphate (+45%), glomerular filtration rate (+76%), renal expressions of klotho (+148%), superoxide dismutase (+124%), and bone morphogenetic protein (BMP) 7 (+174%) (p < 0.05 for all). CONCLUSION Our data indicated that klotho protein supplementation inactivated renal renin-angiotensin system, reducing blood pressure and albuminuria in remnant kidney. Furthermore, exogenous klotho protein supplementation elevated endogenous klotho expression to increase phosphate excretion with resultant reductions in FGF23 and serum phosphate. Finally, klotho supplementation reversed renal dysfunction and fibrosis in association with improved BMP7 in remnant kidney.
Collapse
Affiliation(s)
- Tsuneo Takenaka
- Department of Nephrology, International University of Health and Welfare, Tokyo, Japan
| | - Arif Hasan
- Department of Nephrology, International University of Health and Welfare, Tokyo, Japan
| | - Takeshi Marumo
- Department of Nephrology, International University of Health and Welfare, Tokyo, Japan
| | - Tsutomu Inoue
- Department of Nephrology, Saitama Medical University, Iruma, Japan
| | - Takashi Miyazaki
- Department of Nephrology, Saitama Medical University, Iruma, Japan
| | - Hiromichi Suzuki
- Department of Nephrology, Saitama Medical University, Iruma, Japan
| | | | - Naohito Ishii
- Department of Biochemistry, Kitasato University, Sagamihara, Japan
| | - Akira Nishiyama
- Department of Pharmacology, Kagawa University, Takamatsu, Japan
| | | |
Collapse
|
3
|
Klotho supplementation attenuates blood pressure and albuminuria in murine model of IgA nephropathy. J Hypertens 2021; 39:1567-1576. [PMID: 33758157 DOI: 10.1097/hjh.0000000000002845] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Klotho interacts with various membrane proteins, such as transforming growth factor-β (TGFβ) and insulin-like growth factor (IGF) receptors. The renal expression of klotho is diminished in chronic kidney disease. METHOD In this study, we assessed the effects of klotho supplementation on a murine model of IgA nephropathy. Twenty-four-week-old hyper serum IgA (HIGA) mice were subcutaneously injected daily with recombinant human klotho protein (20 μg/kg per day) or the vehicle. After 2 months, the mice were killed using an anesthesia overdose and their kidneys were harvested for analysis. RESULTS Supplementation of exogenous klotho protein reduced SBP, albuminuria, 8-epi-prostaglandin F2α excretion, glomerular filtration rate, renal angiotensin II concentration, and angiotensinogen expression in HIGA mice. Additionally, it enhanced renal expression of superoxide dismutase (SOD) and renal klotho itself. The findings using laser-manipulated microdissection demonstrated that klotho supplementation reduced the glomerular expression of TGFβ, fibronectin, and IGF, and increased the glomerular expression of connexin (Cx) 40. CONCLUSION These results indicate that klotho supplementation reduces blood pressure by suppressing the renin--angiotensin system in HIGA mice. Klotho inhibits IGF signaling to preserve glomerular Cx40 levels, ameliorating albuminuria in HIGA mice. Klotho protein supplementation attenuates mesangial expansion by inhibiting TGFβ signaling in HIGA mice.
Collapse
|
4
|
Abstract
During the evolution of skeletons, vertebrates acquired the bone made of calcium phosphate. By keeping the extracellular fluid in a supersaturated condition regarding calcium and phosphate, vertebrates create the bone when and where they want simply by providing a cue for precipitation. To secure this strategy, a new endocrine system has evolved that strictly controls the extracellular phosphate concentration. In response to phosphate intake, fibroblast growth factor-23 (FGF23) is secreted from the bone and acts on the kidney through binding to its receptor Klotho to increase urinary phosphate excretion and maintain phosphate homeostasis. The FGF23-Klotho endocrine system, when disrupted, results in hyperphosphatemia and ectopic precipitation of calcium phosphate in mice and humans. In addition to disturbed phosphate homeostasis, mice lacking Klotho suffer from premature aging. They exhibit multiple organ atrophy, arteriosclerosis characterized by vascular calcification, cardiac hypertrophy, sarcopenia, cognition impairment, frailty, and a shortened life span associated with chronic non-infectious inflammation. Restoration of the phosphate balance by placing Klotho- or FGF23-deficient mice on low phosphate diet rescued them from the aging-like phenotypes, indicating that phosphate was responsible for the accelerated aging. The similar pathophysiology is universally observed in patients with chronic kidney disease (CKD), rendering advanced CKD a clinical model of accelerated aging. CKD patients bear colloidal nanoparticles containing calcium phosphate in the blood, which are termed calciprotein particles (CPPs). CPPs have the ability to induce cell damage and inflammation, potentially contributing to accelerated aging. Terrestrial vertebrates with the bone made of calcium phosphate may be destined to age due to ectopic calcium phosphate.
Collapse
Affiliation(s)
- Makoto Kuro-O
- Division of Anti-Aging Medicine, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan.
| |
Collapse
|
5
|
Takenaka T, Kobori H, Inoue T, Miyazaki T, Suzuki H, Nishiyama A, Ishii N, Hayashi M. Klotho supplementation ameliorates blood pressure and renal function in DBA/2-pcy mice, a model of polycystic kidney disease. Am J Physiol Renal Physiol 2020; 318:F557-F564. [PMID: 31928223 DOI: 10.1152/ajprenal.00299.2019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Klotho interacts with various membrane proteins such as receptors for transforming growth factor-β (TGF-β) and insulin-like growth factor (IGF). Renal expression of klotho is diminished in polycystic kidney disease (PKD). In the present study, the effects of klotho supplementation on PKD were assessed. Recombinant human klotho protein (10 μg·kg-1·day-1) or a vehicle was administered daily by subcutaneous injection to 6-wk-old mice with PKD (DBA/2-pcy). Blood pressure was measured using tail-cuff methods. After 2 mo, mice were killed, and the kidneys were harvested for analysis. Exogenous klotho protein supplementation reduced kidney weight, cystic area, systolic blood pressure, renal angiotensin II levels, and 8-epi-PGF2α excretion (P < 0.05). Klotho protein supplementation enhanced glomerular filtration rate, renal expression of superoxide dismutase, and klotho itself (P < 0.05). Klotho supplementation attenuated renal expressions of TGF-β and collagen type I and diminished renal abundance of Twist, phosphorylated Akt, and mammalian target of rapamycin (P < 0.05). Pathological examination revealed that klotho decreased the fibrosis index and nuclear staining of Smad in PKD kidneys (P < 0.05). Our data indicate that klotho protein supplementation ameliorates the renin-angiotensin system, reducing blood pressure in PKD mice. Furthermore, the present results implicate klotho supplementation in the suppression of Akt/mammalian target of rapamycin signaling, slowing cystic expansion. Finally, our findings suggest that klotho protein supplementation attenuated fibrosis at least partly by inhibiting epithelial mesenchymal transition in PKD.
Collapse
Affiliation(s)
- Tsuneo Takenaka
- International University of Health and Welfare, Minato, Tokyo
| | - Hiroyuki Kobori
- International University of Health and Welfare, Minato, Tokyo
| | | | | | | | | | - Naohito Ishii
- Kitasato University, Sagamihara, Kanagawa, Tokyo, Japan
| | | |
Collapse
|
6
|
Takenaka T, Inoue T, Miyazaki T, Kobori H, Nishiyama A, Ishii N, Hayashi M, Suzuki H. Klotho Ameliorates Medullary Fibrosis and Pressure Natriuresis in Hypertensive Rat Kidneys. Hypertension 2019; 72:1151-1159. [PMID: 30354813 DOI: 10.1161/hypertensionaha.118.11176] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Renal expression of klotho is reduced in hypertension. Experiments were performed to examine whether exogenous klotho protein supplementation ameliorates pressure natriuresis in early phase of hypertension, using stroke-prone spontaneously hypertensive rats (sp-SHR). The interactions between klotho protein and renal renin-Ang (angiotensin) system were examined with immunoprecipitation and cell culture methods. Uninephrectomy was performed in sp-SHRs to induce nephrosclerosis, and they were treated with exogenous klotho protein or vehicle. Exogenous klotho protein supplementation to sp-SHR decreased blood pressure, renal Ang II levels, AGT (angiotensinogen) expression, HIF (hypoxia-inducible factor)-1α abundance, and medullary fibronectin levels, with increased renal klotho expression and serum and urine klotho levels. Klotho supplementation also reduced kidney weight, renal phosphorylated Akt, and mTOR (mammalian target of rapamycin) abundance. Furthermore, klotho supplementation restored renal autoregulation of glomerular filtration rate and enhanced pressure-induced natriuresis in sp-SHR. Klotho protein bound to AT1R (Ang II type-1 receptor) and decreased the presence of AT1R on HK-2 (human proximal tubular) cells, attenuating inositol triphosphate generation. Klotho protein suppressed Ang II-induced increments of AGT expression in HK-2 cells. Collectively, the present data demonstrate that klotho binds with the AT1R to suppress Ang signal transduction, participating in inactivating renal renin-Ang system. Our results also suggest that exogenous klotho supplementation represses Akt-mTOR signaling to reduce renal hypertrophy and restore the autoregulatory ability of glomerular filtration rate in uninephrectomized sp-SHRs. Finally, the present findings implicate that klotho supplementation inhibits HIF-1α pathway and medullary fibrosis, contributing to enhancements of pressure natriuresis and reduction in blood pressure.
Collapse
Affiliation(s)
- Tsuneo Takenaka
- From the Department of Medicine, International University of Health and Welfare, Minato, Tokyo, Japan (T.T., H.K.)
| | - Tsutomu Inoue
- Department of Nephrology, Saitama Medical University, Iruma, Japan (T.I., T.M., H.S.)
| | - Takashi Miyazaki
- Department of Nephrology, Saitama Medical University, Iruma, Japan (T.I., T.M., H.S.)
| | - Hiroyuki Kobori
- From the Department of Medicine, International University of Health and Welfare, Minato, Tokyo, Japan (T.T., H.K.)
| | - Akira Nishiyama
- Department of Pharmacology, Kagawa University, Kita, Japan (A.N.)
| | - Naohito Ishii
- Department of Clinical Chemistry, Kitasato University, Sagamihara, Kanagawa, Japan (N.I.)
| | - Matsuhiko Hayashi
- Blood Purification Center, Keio University, Shinjuku, Tokyo, Japan (M.H.)
| | - Hiromichi Suzuki
- Department of Nephrology, Saitama Medical University, Iruma, Japan (T.I., T.M., H.S.)
| |
Collapse
|
7
|
Takenaka T, Kobori H, Miyazaki T, Suzuki H, Nishiyama A, Ishii N, Yamashita M, Hayashi M. Klotho protein supplementation reduces blood pressure and renal hypertrophy in db/db mice, a model of type 2 diabetes. Acta Physiol (Oxf) 2019; 225:e13190. [PMID: 30251773 DOI: 10.1111/apha.13190] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 09/19/2018] [Accepted: 09/19/2018] [Indexed: 12/18/2022]
Abstract
AIMS Klotho interacts with various membrane proteins, such as receptors for transforming growth factor (TGF)-β and insulin-like growth factor (IGF), to alter their function. Renal expression of klotho is diminished in diabetes. The present study examined whether exogenous klotho protein supplementation ameliorates kidney injury and renin-angiotensin system (RAS) in db/db mice. METHODS We investigated the effects of klotho supplementation on diabetic kidney injury and RAS. Recombinant human klotho protein (10 μg/kg/d) was administered to db/db mice daily. RESULTS Klotho protein supplementation reduced kidney weight, systolic blood pressure (SBP), albuminuria, glomerular filtration rate, and 8-epi-prostaglandin F2α excretion without affecting body weight. Although klotho supplementation did not alter glycated albumin, it reduced renal angiotensin II levels associated with reduced renal expression of angiotensinogen. Klotho supplementation improved renal expression of superoxide dismutase (SOD), and endogenous renal expression of klotho. Klotho supplementation reduced the levels of hypoxia-inducible factor, phosphorylated Akt, and phosphorylated mTOR and decreased the renal expression of TGF-β, tumour necrosis factor (TNF), and fibronectin. CONCLUSIONS These data indicate that klotho supplementation reduces blood pressure and albuminuria along with ameliorating renal RAS activation in db/db mice. Furthermore, these results suggest that klotho inhibits IGF signalling, induces SOD expression to reduce oxidative stress, and suppresses Akt-mTOR signalling to inhibit abnormal kidney growth. Collectively, the results suggest that klotho inhibits TGF-β and TNF signalling, resulting in a decline in renal fibrosis.
Collapse
Affiliation(s)
- Tsuneo Takenaka
- International University of Health and Welfare; Minato Japan
| | - Hiroyuki Kobori
- International University of Health and Welfare; Minato Japan
| | | | | | | | | | | | | |
Collapse
|
8
|
Hu MC, Shi M, Moe OW. Role of αKlotho and FGF23 in regulation of type II Na-dependent phosphate co-transporters. Pflugers Arch 2018; 471:99-108. [PMID: 30506274 DOI: 10.1007/s00424-018-2238-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 11/16/2018] [Accepted: 11/18/2018] [Indexed: 11/26/2022]
Abstract
Alpha-Klotho is a member of the Klotho family consisting of two other single-pass transmembrane proteins: βKlotho and γKlotho; αKlotho has been shown to circulate in the blood. Fibroblast growth factor (FGF)23 is a member of the FGF superfamily of 22 genes/proteins. αKlotho serves as a co-receptor with FGF receptors (FGFRs) to provide a receptacle for physiological FGF23 signaling including regulation of phosphate metabolism. The extracellular domain of transmembrane αKlotho is shed by secretases and released into blood circulation (soluble αKlotho). Soluble αKlotho has both FGF23-independent and FGF23-dependent roles in phosphate homeostasis by modulating intestinal phosphate absorption, urinary phosphate excretion, and phosphate distribution into bone in concerted interaction with other calciophosphotropic hormones such as PTH and 1,25-(OH)2D. The direct role of αKlotho and FGF23 in the maintenance of phosphate homeostasis is partly mediated by modulation of type II Na+-dependent phosphate co-transporters in target organs. αKlotho and FGF23 are principal phosphotropic hormones, and the manipulation of the αKlotho-FGF23 axis is a novel therapeutic strategy for genetic and acquired phosphate disorders and for conditions with FGF23 excess and αKlotho deficiency such as chronic kidney disease.
Collapse
Affiliation(s)
- Ming Chang Hu
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA.
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Mingjun Shi
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Orson W Moe
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA.
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
9
|
Shikida Y, Mizobuchi M, Inoue T, Hamada T, Ogata H, Koiwa F, Shibata T. Effect of Continuous Intravenous Calcium Loading on Fibroblast Growth Factor 23 in Normal and Uremic Rats. Calcif Tissue Int 2018; 103:455-464. [PMID: 29882057 DOI: 10.1007/s00223-018-0440-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 06/02/2018] [Indexed: 12/20/2022]
Abstract
Fibroblast growth factor 23 (FGF23) is associated with mortality in patients with CKD. However, the mechanisms underlying stimulation of FGF23 remain to be investigated. We examined whether hypercalcemia induced by continuous intravenous (CIV) calcium (Ca) infusion regulates FGF23 levels in normal rats (Normal) and 5/6 nephrectomized uremic rats (Nx). Microinfusion pumps were implanted in the Normal and Nx rats for CIV Ca infusion, and blood, urine, kidney, and tibia were collected. The results showed an increase in serum Ca-stimulated FGF23 independently of serum phosphate (P) and creatinine levels in Normal and Nx rats. FGF23 mRNA from the tibia was also increased by the Ca infusion. Despite high FGF23 levels after Ca infusion, urinary P excretion was decreased. Renal α-Klotho expression was significantly reduced by Ca infusion. These results suggest that intravenous Ca loading might stimulate FGF23 production from bone in normal and uremic rats. Reduction of renal P excretion suggests that the bioactivity of FGF23 is inhibited, and the decrease in renal α-Klotho expression might have a role in this pathological process. In conclusion, CIV Ca loading increased FGF23 in normal and uremic rats, and renal α-Klotho is necessary to maintain the bioactivity of FGF23 as a phosphaturic factor.
Collapse
Affiliation(s)
- Yasuto Shikida
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, 1-5-8, Hatanodai, Shinagawa-ku, Tokyo, Japan
| | - Masahide Mizobuchi
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, 1-5-8, Hatanodai, Shinagawa-ku, Tokyo, Japan.
| | - Takashi Inoue
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, 1-5-8, Hatanodai, Shinagawa-ku, Tokyo, Japan
| | - Toma Hamada
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, 1-5-8, Hatanodai, Shinagawa-ku, Tokyo, Japan
| | - Hiroaki Ogata
- Department of Internal Medicine, Showa University Northern Yokohama Hospital, Yokohama, Japan
| | - Fumihiko Koiwa
- Division of Nephrology, Department of Medicine, Showa University Fujigaoka Hospital, Yokohama, Japan
| | - Takanori Shibata
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, 1-5-8, Hatanodai, Shinagawa-ku, Tokyo, Japan
| |
Collapse
|
10
|
Erythropoietin stimulates fibroblast growth factor 23 (FGF23) in mice and men. Pflugers Arch 2018; 470:1569-1582. [DOI: 10.1007/s00424-018-2171-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 06/08/2018] [Accepted: 06/20/2018] [Indexed: 02/06/2023]
|
11
|
Takenaka T, Inoue T, Miyazaki T, Kobori H, Nishiyama A, Ishii N, Hayashi M, Suzuki H. Klotho suppresses the renin-angiotensin system in adriamycin nephropathy. Nephrol Dial Transplant 2018; 32:791-800. [PMID: 27798196 DOI: 10.1093/ndt/gfw340] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 08/10/2016] [Indexed: 11/13/2022] Open
Abstract
Backgrounds Klotho protein interacts with the transforming growth factor β (TGF-β) receptor and Wnt, which contribute to the progression of renal disease, inhibiting their signals. Renal and circulating klotho levels are diminished in chronic kidney disease. Methods Experiments were performed to assess whether supplementation of klotho protein could have protective effects on the kidney. Rats were injected with adriamycin (5 mg/kg) and divided into three groups: those treated with vehicle, those treated with klotho protein and those treated with klotho plus 4-benzyl-2-methyl-1,2,4-thiadiazolidine-3,5-dione (TDZD). Rats without adriamycin treatment were used as a control. Results Adriamycin reduced the serum klotho concentration and renal expression of klotho and E-cadherin. Adriamycin also increased the renal expression of Wnt, TGF-β, and angiotensinogen, as well as the renal abundance of β-catenin and angiotensin II. Klotho supplementation suppressed adriamycin-induced elevations of β-catenin and angiotensin II with sustained Wnt expression. Combined treatment with klotho and TDZD reversed the klotho-induced improvements in the renal abundance of β-catenin and angiotensin II as well as the expression of TGF-β and angiotensinogen without affecting E-cadherin. Conclusions Our data indicate that Wnt is involved in the pathogenesis of adriamycin nephropathy. Furthermore, klotho supplementation inhibited Wnt signaling, ameliorating renal angiotensin II. Finally, klotho protein appears to suppress epithelial-mesenchymal transition by inhibiting TGF-β and Wnt signaling.
Collapse
Affiliation(s)
- Tsuneo Takenaka
- Department of Medicine, International University of Health and Welfare, 8-10-16 Akasaka, Minato, Tokyo 107-0052, Japan
| | - Tsutomu Inoue
- Department of Nephrology, Saitama Medical University, Iruma, Saitama, Japan
| | - Takashi Miyazaki
- Department of Nephrology, Saitama Medical University, Iruma, Saitama, Japan
| | - Hiroyuki Kobori
- Department of Medicine, International University of Health and Welfare, 8-10-16 Akasaka, Minato, Tokyo 107-0052, Japan
| | - Akira Nishiyama
- Department of Pharmacology, Kagawa University, Kida, Kagawa, Japan
| | - Naohito Ishii
- Department of Clinical Chemistry, Kitasato University, Sagamihara, Kanagawa, Japan
| | | | - Hiromichi Suzuki
- Department of Nephrology, Saitama Medical University, Iruma, Saitama, Japan
| |
Collapse
|
12
|
Takenaka T, Inoue T, Miyazaki T, Hayashi M, Suzuki H. Xeno-Klotho Inhibits Parathyroid Hormone Signaling. J Bone Miner Res 2016; 31:455-62. [PMID: 26287968 DOI: 10.1002/jbmr.2691] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 08/02/2015] [Accepted: 08/14/2015] [Indexed: 01/13/2023]
Abstract
Although fibroblast growth factor (FGF) 23 was recently identified as a phosphatonin that influences vitamin D metabolism, the underlying signaling mechanisms remain unclear. FGF23 elevates the renal levels of membrane-associated klotho as well as soluble klotho. Klotho is expressed on distal tubules. Upon enzymatic cleavage, soluble klotho is released into the renal interstitial space and then into the systemic circulation. The expression of 25-hydroxyvitamin D3 1α-hydroxylase (1-OH) on proximal tubular cells is controlled by parathyroid hormone (PTH). Klotho binds to various membrane proteins to alter their function. Here, the interaction between the PTH receptor and klotho was studied using various approaches, including immunoprecipitation, in vitro cell culture, and in vivo animal experiments. Immunoprecipitation studies demonstrate, for the first time, that recombinant human klotho protein interacts with human PTH receptors to inhibit the binding of human PTH. Furthermore, when applied to human proximal tubular cells, recombinant human klotho suppresses PTH-stimulated generation of inositol trisphosphate in vitro. Moreover, PTH-induced increase of cyclic AMP secretion and 1α,25-dihydroxyvitamin D3 (1,25VD) was attenuated by recombinant human klotho in vivo. In addition, recombinant human klotho inhibits the expression of 1-OH by PTH both in vitro and in vivo. These results suggest that free klotho mediates the FGF23-induced inhibition of 1,25VD synthesis.
Collapse
Affiliation(s)
- Tsuneo Takenaka
- Department of Medicine, International University of Health and Welfare, Clinical Research Center, Sanno Hospital, Tokyo, Japan
| | - Tsutomu Inoue
- Department of Nephrology, Saitama Medical University, Saitama, Japan
| | - Takashi Miyazaki
- Community Health Science Center, Saitama Medical University, Saitama, Japan
| | - Matsuhiko Hayashi
- Dialysis and Blood Purification Center, Keio University, Tokyo, Japan
| | - Hiromichi Suzuki
- Department of Nephrology, Saitama Medical University, Saitama, Japan
| |
Collapse
|
13
|
Takenaka T, Inoue T, Miyazaki T, Nishiyama A, Ishii N, Hayashi M, Suzuki H. Antialbuminuric actions of calcilytics in the remnant kidney. Am J Physiol Renal Physiol 2015; 309:F216-26. [PMID: 26017971 DOI: 10.1152/ajprenal.00003.2015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Hyperphosphatemia accelerates the progression of chronic kidney diseases. In the present study, the effects of ronacaleret, a calcilytic agent, on renal injury were assessed in the following four groups of rats: 5/6-nephrectomized Wistar rats as a control (C group), rats treated with ronacaleret (3 mg·kg(-1)·day(-1); R group), rats treated with calcitriol (30 ng·kg(-1)·day(-1); V group), and rats treated with both ronacaleret and calcitriol (R + V group). Three months later, rats were euthanized under anesthesia, and the remnant kidneys were harvested for analysis. Albuminuria was lower in the R and V groups than in the C group (P < 0.05). Creatinine clearance was elevated in the R and V groups compared with the C group (P < 0.05). Serum Ca(2+) and renal ANG II were higher in the R + V group than in the C group (P < 0.05 for each), and serum phosphate was reduced in the R group compared with the C group (P < 0.05). Fibroblast growth factor-23 was lower in the R group and higher in the V and R + V groups than in the C group. However, parathyroid hormone did not differ significantly among the four groups. Renal klotho expression was elevated in the R and V groups compared with the C group (P < 0.05). The present data indicate that ronacaleret preserves klotho expression and renal function with reductions in serum phosphate and albuminuria in 5/6-nephrectomized rats. Our findings demonstrate that vitamin D prevents declines in klotho expression and renal function, suppressing albuminuria.
Collapse
Affiliation(s)
- Tsuneo Takenaka
- International University of Health and Welfare, Minato, Tokyo, Japan;
| | | | | | | | - Naohito Ishii
- Kitasato University, Sagamihara, Kanagawa, Japan; and
| | | | | |
Collapse
|
14
|
Abstract
The Klotho family consists of three single-pass transmembrane proteins—αKlotho, βKlotho and γKlotho. Each of them combines with fibroblast growth factor (FGF) receptors (FGFRs) to form receptor complexes for various FGF’s. αKlotho is a co-receptor for physiological FGF23 signaling and appears essential for FGF23-mediated regulation of mineral metabolism. αKlotho protein also plays a FGF23-independent role in phosphate homeostasis. Animal experimental studies and clinical observations have demonstrated that αKlotho deficiency leads to severe hyperphosphatemia; moderate elevation of αKlotho reduces serum phosphate and extremely high αKlotho induces hypophosphatemia and high-FGF23. αKlotho maintains circulating phosphate in a narrow range by modulating intestinal phosphate absorption, urinary phosphate excretion by the kidney, and phosphate distribution into bone rather than soft tissue in concerted interaction with other calciophosphotropic hormones such as PTH, FGF23, and 1,25-(OH)2 vitamin D. The role of αKlotho in maintenance of phosphate homeostasis is mediated by direct suppression of Na-dependent phosphate cotransporters in target organs. Therefore, αKlotho manipulation may be a novel strategy for genetic and acquired phosphate disorders and for medical conditions with αKlotho deficiency such as chronic kidney disease in future.
Collapse
Affiliation(s)
- Ao Bian
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Nephrology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR of China
| | - Changying Xing
- Department of Nephrology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR of China
| | - Ming Chang Hu
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
- Corresponding author: Ming Chang Hu, M.D.; Ph.D., Department of Internal Medicine, Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390-885 USA, Telephone: 1-214-648-9797, Tax: 1-214-648-5652,
| |
Collapse
|
15
|
Huang JS, Chuang CT, Liu MH, Lin SH, Guh JY, Chuang LY. Klotho attenuates high glucose-induced fibronectin and cell hypertrophy via the ERK1/2-p38 kinase signaling pathway in renal interstitial fibroblasts. Mol Cell Endocrinol 2014; 390:45-53. [PMID: 24721634 DOI: 10.1016/j.mce.2014.04.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 03/12/2014] [Accepted: 04/01/2014] [Indexed: 12/19/2022]
Abstract
Although exogenous klotho attenuates renal fibrosis, it is not known if exogenous klotho attenuates diabetic nephropathy (DN). Thus, we studied the anti-fibrotic mechanisms of klotho in terms of transforming growth factor-β (TGF-β) and signaling pathways in high glucose (HG, 30 mM)-cultured renal interstitial fibroblast (NRK-49F) cells. We found that HG increased klotho mRNA and protein expression. HG also activated TGF-β Smad2/3 signaling and activated extracellular signal-regulated kinase (ERK1/2) and p38 kinase signaling. Exogenous klotho (400 pM) attenuated HG-induced TGF-β bioactivity, type II TGF-β receptor (TGF-βRII) protein expression and TGF-β Smad2/3 signaling. Klotho also attenuated HG-activated ERK1/2 and p38 kinase. Additionally, klotho and inhibitors of ERK1/2 or p38 kinase attenuated HG-induced fibronectin and cell hypertrophy. Finally, renal tubular expression of klotho decreased in the streptozotin-diabetic rats at 8 weeks. Thus, exogenous klotho attenuates HG-induced profibrotic genes, TGF-β signaling and cell hypertrophy in NRK-49F cells. Moreover, klotho attenuates HG-induced fibronectin expression and cell hypertrophy via the ERK1/2 and p38 kinase-dependent pathways.
Collapse
Affiliation(s)
- Jau-Shyang Huang
- Department of Biological Science and Technology, Chung Hwa University of Medical Technology, Tainan, Taiwan
| | - Chao-Tang Chuang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Mei-Hsin Liu
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Sheng-Hsuan Lin
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jinn-Yuh Guh
- Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Internal Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Lea-Yea Chuang
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
16
|
Takenaka T, Inoue T, Ohno Y, Miyazaki T, Nishiyama A, Ishii N, Suzuki H. Calcitriol supplementation improves endothelium-dependent vasodilation in rat hypertensive renal injury. Kidney Blood Press Res 2014; 39:17-27. [PMID: 24821359 DOI: 10.1159/000355773] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Vitamin D increases renal expression of klotho in normotensive rats. Klotho reduces oxidative stress. METHODS In this study, we aimed to determine if vitamin D would suppress oxidative stress using 4 groups of hypertensive rats: uninephrectomized, stroke-prone, spontaneously hypertensive rats fed a high-salt (6%) diet (controls; C); those treated with irbesartan (I); those treated with calcitriol (V); and those treated with both irbesartan and calcitriol (I+V). RESULTS Systolic blood pressure was higher in the C group than in the I and I+V groups. Albuminuria was attenuated in groups I, V, and I+V. Renal angiotensin II (AngII) concentration was lower in groups I and I+V than in group C, and plasma AngII levels of groups I and V were higher and lower than those in group C, respectively. Compared with group C, renal klotho expression, 8-epi-prostaglandin F2α excretion, and acetylcholine-induced decrease in blood pressure improved in the V and I+V groups. CONCLUSIONS The data indicate that irbesartan effectively decreases blood pressure and renal AngII levels, and improves albuminuria. Our findings indicate that vitamin D enhances klotho expression, suppressing oxidative stress and albuminuria without substantial changes in renal AngII levels. These results suggest that the amelioration of endothelium function by vitamin D involves free klotho.
Collapse
Affiliation(s)
- Tsuneo Takenaka
- International University of Health and Welfare, Department of Medicine, Minato, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW Disturbances in calcium-phosphate homeostasis play an important role in children with chronic kidney disease, and not only cause renal osteodystrophy but also result in increased cardiovascular morbidity and mortality. This review outlines the current aspects in the pathogenesis, diagnostic approach and treatment of renal osteodystrophy. RECENT FINDINGS The pathogenesis of renal osteodystrophy is under strong influence of the fibroblast growth factor 23/Klotho system, which is able to enhance phosphate excretion and reduce calcitriol synthesis in the kidney. Fibroblast growth factor 23 increases tissue calcinosis and is cardiotoxic, and is independently associated with mortality. Despite improvement in diagnostic imaging (bone density measurements), determination of biomarkers, mainly parathyroid hormone, still plays a central role. New treatment options resulted in improved bone health and also a reduction in mortality was achieved in adults with calcium-free phosphate binders. Substitution of active and inactive vitamin D is important and also has a beneficial effect on proteinuria. SUMMARY Knowledge about the biochemical and molecular mechanisms of renal osteodystrophy is increasing dramatically and has an impact not only to bone health but also overall morbidity and mortality. This will ultimately translate into further improved diagnostic approaches and novel treatment options.
Collapse
|
18
|
Fakhri H, Pathare G, Fajol A, Zhang B, Bock T, Kandolf R, Schleicher E, Biber J, Föller M, Lang UE, Lang F. Regulation of mineral metabolism by lithium. Pflugers Arch 2014; 466:467-475. [PMID: 24013758 DOI: 10.1007/s00424-013-1340-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 08/21/2013] [Accepted: 08/21/2013] [Indexed: 12/12/2022]
Abstract
Lithium, an inhibitor of glycogen synthase kinase 3 (GSK3), is widely used for the treatment of mood disorders. Side effects of lithium include nephrogenic diabetes insipidus, leading to renal water loss. Dehydration has in turn been shown to downregulate Klotho, which is required as co-receptor for the downregulation of 1,25(OH)2D3 formation by fibroblast growth factor 23 (FGF23). FGF23 decreases and 1,25(OH)2D3 stimulates renal tubular phosphate reabsorption. The present study explored whether lithium influences renal Klotho expression, FGF23 serum levels, 1,25(OH)2D3 formation, and renal phosphate excretion. To this end, mice were analyzed after a 14-day period of sham treatment or of treatment with lithium (200 mg/kg/day subcutaneously). Serum antidiuretic hormone (ADH), FGF23, and 1,25(OH)2D3 concentrations were determined by ELISA or EIA, renal Klotho protein abundance and GSK3 phosphorylation were analyzed by Western blotting, and serum phosphate and calcium concentration by photometry. Lithium treatment significantly increased renal GSK3 phosphorylation, enhanced serum ADH and FGF23 concentrations, downregulated renal Klotho expression, stimulated renal calcium and phosphate excretion, and decreased serum 1,25(OH)2D3 and phosphate concentrations. In conclusion, lithium treatment upregulates FGF23 formation, an effect paralleled by substantial decrease of serum 1,25(OH)2D3, and phosphate concentrations and thus possibly affecting tissue calcification.
Collapse
Affiliation(s)
- Hajar Fakhri
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Acromegaly is characterized by excessively high GH and IGF1 levels. Recent data suggest that soluble Klotho (sKlotho) is also elevated in patients with active acromegaly. sKlotho decreases towards normal following removal of the GH-producing pituitary adenoma. The Klotho gene was identified in mice following its accidental disruption by ectopic DNA. It is an ageing suppressor gene of restricted expression (mainly in kidneys, brain, and parathyroid and pituitary glands) encoding a transmembrane protein, mKlotho. mKlotho serves as a co-receptor in fibroblast growth factor 23 (FGF23) signalling. FGF23 promotes urinary phosphate excretion and inhibits the synthesis of calcitriol. The ectodomain of mKlotho is enzymatically released to result in a humoral factor, sKlotho, which exerts systemic effects (on ion channels and signalling pathways), possibly by working as an enzyme that modifies glycans of cell surface glycoproteins. GH enhances renal phosphate reabsorption and calcitriol production, i.e. exerts effects in the proximal tubule opposing those attributed to mKlotho, and attenuates calciuria in the distal tubule similar to sKlotho. sKlotho can be measured in extracellular fluids (serum, urine and cerebrospinal fluid (CSF)) by an ELISA. In line with predominant expression of Klotho in kidneys and choroid plexus, concentrations of sKlotho are particularly high in urine and CSF. Determination of sKlotho in serum and urine (both presumably reflecting GH action on the kidneys) could be used as a supplementary tool in the diagnosis and follow-up of patients with acromegaly. The question arises whether GH exerts selected actions via modifying activities of Klotho.
Collapse
Affiliation(s)
- Christoph Schmid
- Division of Endocrinology and Diabetology, University Hospital Zurich, Rämistrasse 100, CH-8091 Zurich, Switzerland Department of Neurosurgery, University Hospital Zurich, Frauenklinikstrasse 10, 8091 Zurich, Switzerland Division of Endocrinology and Diabetology, Kantonsspital St Gallen, 9007 St Gallen, Switzerland Department of Neurosurgery, Clinic Hirslanden, Witellikerstrasse 40, 8032 Zurich, Switzerland
| | | | | | | | | |
Collapse
|