1
|
Xian F, Yang L, Ye H, Xu J, Yue X, Wang X. Revealing the Mechanism of Aroma Production Driven by High Salt Stress in Trichomonascus ciferrii WLW. Foods 2024; 13:1593. [PMID: 38890822 PMCID: PMC11172348 DOI: 10.3390/foods13111593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 06/20/2024] Open
Abstract
Douchi is a Chinese traditional fermented food with a unique flavor. Methyl anthranilate (MA) plays an important role in formation of this flavor. However, the complicated relationship between the MA formation and the metabolic mechanism of the key functional microorganisms remains unclear. Here, we elucidated the response mechanism of aroma production driven by high salt stress in Trichomonascus ciferrii WLW (T. ciferrii WLW), which originates from the douchi fermentation process. The highest production of MA was obtained in a 10% NaCl environment. The enhanced expression of the key enzyme genes of the pentose phosphate pathway and shikimic acid pathway directed carbon flow toward aromatic amino acid synthesis and helped sustain an increased expression of metK to synthesize a large amount of the methyl donor S-adenosylmethionine, which promoted methyl anthranilate yield. This provides a theoretical basis for in-depth research on the applications of the flavor formation mechanisms of fermented foods.
Collapse
Affiliation(s)
- Fangying Xian
- School of Life Science (Health), Jiangxi Normal University, Nanchang 330022, China; (F.X.); (L.Y.); (H.Y.); (J.X.)
| | - Lin Yang
- School of Life Science (Health), Jiangxi Normal University, Nanchang 330022, China; (F.X.); (L.Y.); (H.Y.); (J.X.)
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Huaqing Ye
- School of Life Science (Health), Jiangxi Normal University, Nanchang 330022, China; (F.X.); (L.Y.); (H.Y.); (J.X.)
| | - Jinlin Xu
- School of Life Science (Health), Jiangxi Normal University, Nanchang 330022, China; (F.X.); (L.Y.); (H.Y.); (J.X.)
| | - Xiaoping Yue
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Xiaolan Wang
- School of Life Science (Health), Jiangxi Normal University, Nanchang 330022, China; (F.X.); (L.Y.); (H.Y.); (J.X.)
| |
Collapse
|
2
|
Geertsma ER, Oliver D. SLC26 Anion Transporters. Handb Exp Pharmacol 2024; 283:319-360. [PMID: 37947907 DOI: 10.1007/164_2023_698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Solute carrier family 26 (SLC26) is a family of functionally diverse anion transporters found in all kingdoms of life. Anions transported by SLC26 proteins include chloride, bicarbonate, and sulfate, but also small organic dicarboxylates such as fumarate and oxalate. The human genome encodes ten functional homologs, several of which are causally associated with severe human diseases, highlighting their physiological importance. Here, we review novel insights into the structure and function of SLC26 proteins and summarize the physiological relevance of human members.
Collapse
Affiliation(s)
- Eric R Geertsma
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| | - Dominik Oliver
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps University Marburg, Marburg, Germany.
- Center for Mind, Brain and Behavior (CMBB), Universities of Marburg and Giessen, Marburg, Giessen, Germany.
| |
Collapse
|
3
|
Wei S, Chen B, Low SW, Poore CP, Gao Y, Nilius B, Liao P. SLC26A11 Inhibition Reduces Oncotic Neuronal Death and Attenuates Stroke Reperfusion Injury. Mol Neurobiol 2023; 60:5931-5943. [PMID: 37380823 PMCID: PMC10471688 DOI: 10.1007/s12035-023-03453-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/19/2023] [Indexed: 06/30/2023]
Abstract
Neuronal swelling is a pathological feature of stroke which contributes to the formation of cytotoxic edema. Under hypoxic condition, aberrant accumulation of sodium and chloride ions inside neurons increases osmotic pressure, leading to cell volume increase. Sodium entry pathway in neurons has been studied extensively. Here, we determine whether SLC26A11 is the major chloride entry pathway under hypoxia and could be the target for protection against ischemic stroke. In this study, electrophysiological properties of chloride current in primary cultured neurons were characterized using low chloride solution, 4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid, and SLC26A11-specific siRNA under physiological conditions or ATP-depleted conditions. In vivo effect of SLC26A11 was evaluated on a rat stroke reperfusion model. We found that SLC26A11 mRNA in primary cultured neurons was upregulated as early as 6 h after oxygen glucose deprivation, and later, the protein level was elevated accordingly. Blockade of SLC26A11 activity could reduce chloride entry and attenuate hypoxia-induced neuronal swelling. In the animal stroke model, SLC26A11 upregulation was mainly located in surviving neurons close to the infarct core. SLC26A11 inhibition ameliorates infarct formation and improves functional recovery. These findings demonstrate that SLC26A11 is a major pathway for chloride entry in stroke, contributing to neuronal swelling. Inhibition of SLC26A11 could be a novel therapeutic strategy for stroke.
Collapse
Affiliation(s)
- Shunhui Wei
- Calcium Signalling Laboratory, Department of Research, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433 Singapore
| | - Bo Chen
- Calcium Signalling Laboratory, Department of Research, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433 Singapore
| | - See Wee Low
- Calcium Signalling Laboratory, Department of Research, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433 Singapore
| | - Charlene Priscilla Poore
- Calcium Signalling Laboratory, Department of Research, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433 Singapore
| | - Yahui Gao
- Calcium Signalling Laboratory, Department of Research, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433 Singapore
- Present Address: Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 119077 Singapore
| | - Bernd Nilius
- Department of Cellular and Molecular Medicine, KU Leuven, 3000 Louvain, Belgium
| | - Ping Liao
- Calcium Signalling Laboratory, Department of Research, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433 Singapore
- Duke-NUS Medical School, Singapore, 169857 Singapore
- Health and Social Sciences, Singapore Institute of Technology, Singapore, 138683 Singapore
| |
Collapse
|
4
|
Ahmed SBM, Radwan N, Amer S, Saheb Sharif-Askari N, Mahdami A, Samara KA, Halwani R, Jelinek HF. Assessing the Link between Diabetic Metabolic Dysregulation and Breast Cancer Progression. Int J Mol Sci 2023; 24:11816. [PMID: 37511575 PMCID: PMC10380477 DOI: 10.3390/ijms241411816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Diabetes mellitus is a burdensome disease that affects various cellular functions through altered glucose metabolism. Several reports have linked diabetes to cancer development; however, the exact molecular mechanism of how diabetes-related traits contribute to cancer progression is not fully understood. The current study aimed to explore the molecular mechanism underlying the potential effect of hyperglycemia combined with hyperinsulinemia on the progression of breast cancer cells. To this end, gene dysregulation induced by the exposure of MCF7 breast cancer cells to hyperglycemia (HG), or a combination of hyperglycemia and hyperinsulinemia (HGI), was analyzed using a microarray gene expression assay. Hyperglycemia combined with hyperinsulinemia induced differential expression of 45 genes (greater than or equal to two-fold), which were not shared by other treatments. On the other hand, in silico analysis performed using a publicly available dataset (GEO: GSE150586) revealed differential upregulation of 15 genes in the breast tumor tissues of diabetic patients with breast cancer when compared with breast cancer patients with no diabetes. SLC26A11, ALDH1A3, MED20, PABPC4 and SCP2 were among the top upregulated genes in both microarray data and the in silico analysis. In conclusion, hyperglycemia combined with hyperinsulinemia caused a likely unique signature that contributes to acquiring more carcinogenic traits. Indeed, these findings might potentially add emphasis on how monitoring diabetes-related metabolic alteration as an adjunct to diabetes therapy is important in improving breast cancer outcomes. However, further detailed studies are required to decipher the role of the highlighted genes, in this study, in the pathogenesis of breast cancer in patients with a different glycemic index.
Collapse
Affiliation(s)
- Samrein B M Ahmed
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- College of Health, Wellbeing and Life Sciences, Department of Biosciences and Chemistry, Sheffield Hallam University, Sheffield S1 1WB, UK
| | - Nada Radwan
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Sara Amer
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Narjes Saheb Sharif-Askari
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Amena Mahdami
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Kamel A Samara
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Rabih Halwani
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Herbert F Jelinek
- Department of Biomedical Engineering and Health Engineering Innovation Center, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| |
Collapse
|
5
|
Swelling and membrane potential dynamics of glial Müller cells. Biosystems 2022; 221:104772. [PMID: 36113739 DOI: 10.1016/j.biosystems.2022.104772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/20/2022] [Accepted: 08/27/2022] [Indexed: 11/21/2022]
Abstract
Presently a detailed biophysical model describing reversible and irreversible swelling dynamics of Müller cells (MC) is reported. The model includes a biophysical block of ionic and neutral species transport via MC membrane, water transport induced by osmotic pressure and pressure generated by membrane deformations, MC membrane potential and membrane mechanical properties. The model describes reversible and irreversible MC swelling (MCS) using the same set of parameters. The model was used in fitting available experimental data, and produced numerical values of previously unknown model parameters, including those describing mechanical properties of Müller cell membrane (MCM) with respect to bending and stretching. Numerical experiments simulating MC swelling showed complex oscillation dynamics of the relevant parameters in physiological initial conditions. In particular, MC membrane potential (ΔΨMC) demonstrated complex oscillation dynamics, which may be described by a superposition of several oscillations with their periods in the milliseconds, 100-ms and seconds time ranges. Dynamics of reversible and irreversible MCS, and the transition criteria from reversible to irreversible MCS modes were determined in model simulations.
Collapse
|
6
|
Xu J, Barone S, Varasteh Kia M, Holliday LS, Zahedi K, Soleimani M. Identification of IQGAP1 as a SLC26A4 (Pendrin)-Binding Protein in the Kidney. Front Mol Biosci 2022; 9:874186. [PMID: 35601831 PMCID: PMC9117723 DOI: 10.3389/fmolb.2022.874186] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/22/2022] [Indexed: 11/25/2022] Open
Abstract
Background: Several members of the SLC26A family of transporters, including SLC26A3 (DRA), SLC26A5 (prestin), SLC26A6 (PAT-1; CFEX) and SLC26A9, form multi-protein complexes with a number of molecules (e.g., cytoskeletal proteins, anchoring or adaptor proteins, cystic fibrosis transmembrane conductance regulator, and protein kinases). These interactions provide regulatory signals for these molecules. However, the identity of proteins that interact with the Cl-/HCO3 - exchanger, SLC26A4 (pendrin), have yet to be determined. The purpose of this study is to identify the protein(s) that interact with pendrin. Methods: A yeast two hybrid (Y2H) system was employed to screen a mouse kidney cDNA library using the C-terminal fragment of SLC26A4 as bait. Immunofluorescence microscopic examination of kidney sections, as well as co-immunoprecipitation assays, were performed using affinity purified antibodies and kidney protein extracts to confirm the co-localization and interaction of pendrin and the identified binding partners. Co-expression studies were carried out in cultured cells to examine the effect of binding partners on pendrin trafficking and activity. Results: The Y2H studies identified IQ motif-containing GTPase-activating protein 1 (IQGAP1) as a protein that binds to SLC26A4's C-terminus. Co-immunoprecipitation experiments using affinity purified anti-IQGAP1 antibodies followed by western blot analysis of kidney protein eluates using pendrin-specific antibodies confirmed the interaction of pendrin and IQGAP1. Immunofluorescence microscopy studies demonstrated that IQGAP1 co-localizes with pendrin on the apical membrane of B-intercalated cells, whereas it shows basolateral expression in A-intercalated cells in the cortical collecting duct (CCD). Functional and confocal studies in HEK-293 cells, as well as confocal studies in MDCK cells, demonstrated that the co-transfection of pendrin and IQGAP1 shows strong co-localization of the two molecules on the plasma membrane along with enhanced Cl-/HCO3 - exchanger activity. Conclusion: IQGAP1 was identified as a protein that binds to the C-terminus of pendrin in B-intercalated cells. IQGAP1 co-localized with pendrin on the apical membrane of B-intercalated cells. Co-expression of IQGAP1 with pendrin resulted in strong co-localization of the two molecules and increased the activity of pendrin in the plasma membrane in cultured cells. We propose that pendrin's interaction with IQGAP1 may play a critical role in the regulation of CCD function and physiology, and that disruption of this interaction could contribute to altered pendrin trafficking and/or activity in pathophysiologic states.
Collapse
Affiliation(s)
- Jie Xu
- Research Services, VA Medical Center, Albuquerque, NM, United States,Department of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Sharon Barone
- Research Services, VA Medical Center, Albuquerque, NM, United States,Department of Medicine, University of Cincinnati, Cincinnati, OH, United States,Department of Medicine, University of New Mexico, Albuquerque, NM, United States
| | - Mujan Varasteh Kia
- Department of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - L. Shannon Holliday
- Department of Orthodontics, University of Florida, Gainesville, FL, United States
| | - Kamyar Zahedi
- Research Services, VA Medical Center, Albuquerque, NM, United States,Department of Medicine, University of Cincinnati, Cincinnati, OH, United States,Department of Medicine, University of New Mexico, Albuquerque, NM, United States
| | - Manoocher Soleimani
- Research Services, VA Medical Center, Albuquerque, NM, United States,Department of Medicine, University of Cincinnati, Cincinnati, OH, United States,Department of Medicine, University of New Mexico, Albuquerque, NM, United States,*Correspondence: Manoocher Soleimani,
| |
Collapse
|
7
|
Imenez Silva PH, Unwin R, Hoorn EJ, Ortiz A, Trepiccione F, Nielsen R, Pesic V, Hafez G, Fouque D, Massy ZA, De Zeeuw CI, Capasso G, Wagner CA. Acidosis, cognitive dysfunction and motor impairments in patients with kidney disease. Nephrol Dial Transplant 2021; 37:ii4-ii12. [PMID: 34718761 PMCID: PMC8713149 DOI: 10.1093/ndt/gfab216] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Indexed: 12/20/2022] Open
Abstract
Metabolic acidosis, defined as a plasma or serum bicarbonate concentration <22 mmol/L, is a frequent consequence of chronic kidney disease (CKD) and occurs in ~10–30% of patients with advanced stages of CKD. Likewise, in patients with a kidney transplant, prevalence rates of metabolic acidosis range from 20% to 50%. CKD has recently been associated with cognitive dysfunction, including mild cognitive impairment with memory and attention deficits, reduced executive functions and morphological damage detectable with imaging. Also, impaired motor functions and loss of muscle strength are often found in patients with advanced CKD, which in part may be attributed to altered central nervous system (CNS) functions. While the exact mechanisms of how CKD may cause cognitive dysfunction and reduced motor functions are still debated, recent data point towards the possibility that acidosis is one modifiable contributor to cognitive dysfunction. This review summarizes recent evidence for an association between acidosis and cognitive dysfunction in patients with CKD and discusses potential mechanisms by which acidosis may impact CNS functions. The review also identifies important open questions to be answered to improve prevention and therapy of cognitive dysfunction in the setting of metabolic acidosis in patients with CKD.
Collapse
Affiliation(s)
- Pedro H Imenez Silva
- Institute of Physiology, University of Zurich, Zürich, Switzerland.,National Center of Competence in Research NCCR Kidney.CH, Zürich, Switzerland
| | - Robert Unwin
- Department of Renal Medicine, Royal Free Hospital, University College London, London, UK
| | - Ewout J Hoorn
- Department of Internal Medicine, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Alberto Ortiz
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Madrid, Spain
| | - Francesco Trepiccione
- Biogem Institute of Molecular Biology and Genetics, Ariano Irpino, Italy.,Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli," Naples, Italy
| | - Rikke Nielsen
- Department of Biomedicine-Anatomy, University of Aarhus, Aarhus, Denmark
| | - Vesna Pesic
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Gaye Hafez
- Department of Pharmacology, Faculty of Pharmacy, Altinbas University, Istanbul, Turkey
| | - Denis Fouque
- CarMeN, INSERM 1060, Université Claude Bernard Lyon 1, Lyon, France.,Service de Néphrologie, Lyon-Sud Hospital, Pierre-Bénite, France
| | - Ziad A Massy
- Department of Nephrology, Ambroise Paré University Hospital, Assistance Publique Hôpitaux de Paris, Boulogne-Billancourt, France.,Centre de Recherche en Epidémiologie et Santé des Populations, Institut National de la Santé et de la Recherche Médicale U1018-Team 5, Université de Versailles Saint-Quentin-en-Yvelines, University Paris Saclay, Villejuif, France
| | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Netherlands Institute for Neuroscience, Royal Dutch Academy of Art and Science, Amsterdam, The Netherlands
| | - Giovambattista Capasso
- Biogem Institute of Molecular Biology and Genetics, Ariano Irpino, Italy.,Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli," Naples, Italy
| | - Carsten A Wagner
- Institute of Physiology, University of Zurich, Zürich, Switzerland.,National Center of Competence in Research NCCR Kidney.CH, Zürich, Switzerland
| | | |
Collapse
|
8
|
Insights into the Interaction of Lysosomal Amino Acid Transporters SLC38A9 and SLC36A1 Involved in mTORC1 Signaling in C2C12 Cells. Biomolecules 2021; 11:biom11091314. [PMID: 34572527 PMCID: PMC8467208 DOI: 10.3390/biom11091314] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 08/28/2021] [Accepted: 08/31/2021] [Indexed: 11/16/2022] Open
Abstract
Amino acids are critical for mammalian target of rapamycin complex 1 (mTORC1) activation on the lysosomal surface. Amino acid transporters SLC38A9 and SLC36A1 are the members of the lysosomal amino acid sensing machinery that activates mTORC1. The current study aims to clarify the interaction of SLC38A9 and SLC36A1. Here, we discovered that leucine increased expressions of SLC38A9 and SLC36A1, leading to mTORC1 activation. SLC38A9 interacted with SLC36A1 and they enhanced each other's expression levels and locations on the lysosomal surface. Additionally, the interacting proteins of SLC38A9 in C2C12 cells were identified to participate in amino acid sensing mechanism, mTORC1 signaling pathway, and protein synthesis, which provided a resource for future investigations of skeletal muscle mass.
Collapse
|
9
|
Zahedi K, Brooks M, Barone S, Rahmati N, Murray Stewart T, Dunworth M, Destefano-Shields C, Dasgupta N, Davidson S, Lindquist DM, Fuller CE, Smith RD, Cleveland JL, Casero RA, Soleimani M. Ablation of polyamine catabolic enzymes provokes Purkinje cell damage, neuroinflammation, and severe ataxia. J Neuroinflammation 2020; 17:301. [PMID: 33054763 PMCID: PMC7559641 DOI: 10.1186/s12974-020-01955-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Polyamine catabolism plays a key role in maintaining intracellular polyamine pools, yet its physiological significance is largely unexplored. Here, we report that the disruption of polyamine catabolism leads to severe cerebellar damage and ataxia, demonstrating the fundamental role of polyamine catabolism in the maintenance of cerebellar function and integrity. METHODS Mice with simultaneous deletion of the two principal polyamine catabolic enzymes, spermine oxidase and spermidine/spermine N1-acetyltransferase (Smox/Sat1-dKO), were generated by the crossbreeding of Smox-KO (Smox-/-) and Sat1-KO (Sat1-/-) animals. Development and progression of tissue injury was monitored using imaging, behavioral, and molecular analyses. RESULTS Smox/Sat1-dKO mice are normal at birth, but develop progressive cerebellar damage and ataxia. The cerebellar injury in Smox/Sat1-dKO mice is associated with Purkinje cell loss and gliosis, leading to neuroinflammation and white matter demyelination during the latter stages of the injury. The onset of tissue damage in Smox/Sat1-dKO mice is not solely dependent on changes in polyamine levels as cerebellar injury was highly selective. RNA-seq analysis and confirmatory studies revealed clear decreases in the expression of Purkinje cell-associated proteins and significant increases in the expression of transglutaminases and markers of neurodegenerative microgliosis and astrocytosis. Further, the α-Synuclein expression, aggregation, and polyamination levels were significantly increased in the cerebellum of Smox/Sat1-dKO mice. Finally, there were clear roles of transglutaminase-2 (TGM2) in the cerebellar pathologies manifest in Smox/Sat1-dKO mice, as pharmacological inhibition of transglutaminases reduced the severity of ataxia and cerebellar injury in Smox/Sat1-dKO mice. CONCLUSIONS These results indicate that the disruption of polyamine catabolism, via coordinated alterations in tissue polyamine levels, elevated transglutaminase activity and increased expression, polyamination, and aggregation of α-Synuclein, leads to severe cerebellar damage and ataxia. These studies indicate that polyamine catabolism is necessary to Purkinje cell survival, and for sustaining the functional integrity of the cerebellum.
Collapse
Affiliation(s)
- Kamyar Zahedi
- Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
- Research Services, Veterans Affairs Medical Center, Cincinnati, OH, 45220, USA.
- Department of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA.
- Research Services, Veterans Affairs Medical Center, Albuquerque, NM, 87108, USA.
- Department of Internal Medicine, Division of Nephrology, University of New Mexico College of Medicine, 915 Camino de Salud, Bldg. 289, IDTC 3315, Albuquerque, NM, 87113, USA.
- Present Address: Department of Internal Medicine, Division of Nephrology, University of New Mexico College of Medicine, Albuquerque, NM, 87131, USA.
| | - Marybeth Brooks
- Research Services, Veterans Affairs Medical Center, Cincinnati, OH, 45220, USA
- Department of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
- Present Address: Department of Internal Medicine, Division of Nephrology, University of New Mexico College of Medicine, Albuquerque, NM, 87131, USA
| | - Sharon Barone
- Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
- Research Services, Veterans Affairs Medical Center, Cincinnati, OH, 45220, USA
- Department of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
- Research Services, Veterans Affairs Medical Center, Albuquerque, NM, 87108, USA
- Present Address: Department of Internal Medicine, Division of Nephrology, University of New Mexico College of Medicine, Albuquerque, NM, 87131, USA
| | - Negah Rahmati
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA
| | - Tracy Murray Stewart
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Matthew Dunworth
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Christina Destefano-Shields
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Nupur Dasgupta
- The Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Steve Davidson
- Department of Anesthesiology and Pain Research Center, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Diana M Lindquist
- Department of Radiology, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Christine E Fuller
- Upstate Medical University Department of Pathology, Syracuse, NY, 13219, USA
| | - Roger D Smith
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - John L Cleveland
- Department of Tumor Biology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
- Department of Cancer Biology, The Scripps Research Institute, Jupiter, FL, USA
| | - Robert A Casero
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Manoocher Soleimani
- Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
- Research Services, Veterans Affairs Medical Center, Cincinnati, OH, 45220, USA.
- Department of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA.
- Research Services, Veterans Affairs Medical Center, Albuquerque, NM, 87108, USA.
- Department of Internal Medicine, Division of Nephrology, University of New Mexico College of Medicine, 915 Camino de Salud, Bldg. 289, IDTC 3315, Albuquerque, NM, 87113, USA.
- Present Address: Department of Internal Medicine, Division of Nephrology, University of New Mexico College of Medicine, Albuquerque, NM, 87131, USA.
| |
Collapse
|
10
|
Auer T, Schreppel P, Erker T, Schwarzer C. Impaired chloride homeostasis in epilepsy: Molecular basis, impact on treatment, and current treatment approaches. Pharmacol Ther 2020; 205:107422. [DOI: 10.1016/j.pharmthera.2019.107422] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 10/07/2019] [Indexed: 12/14/2022]
|
11
|
Touré A. Importance of SLC26 Transmembrane Anion Exchangers in Sperm Post-testicular Maturation and Fertilization Potential. Front Cell Dev Biol 2019; 7:230. [PMID: 31681763 PMCID: PMC6813192 DOI: 10.3389/fcell.2019.00230] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/26/2019] [Indexed: 12/17/2022] Open
Abstract
In mammals, sperm cells produced within the testis are structurally differentiated but remain immotile and are unable to fertilize the oocyte unless they undergo a series of maturation events during their transit in the male and female genital tracts. This post-testicular functional maturation is known to rely on the micro-environment of both male and female genital tracts, and is tightly controlled by the pH of their luminal milieus. In particular, within the epididymis, the establishment of a low bicarbonate (HCO3–) concentration contributes to luminal acidification, which is necessary for sperm maturation and subsequent storage in a quiescent state. Following ejaculation, sperm is exposed to the basic pH of the female genital tract and bicarbonate (HCO3–), calcium (Ca2+), and chloride (Cl–) influxes induce biochemical and electrophysiological changes to the sperm cells (cytoplasmic alkalinization, increased cAMP concentration, and protein phosphorylation cascades), which are indispensable for the acquisition of fertilization potential, a process called capacitation. Solute carrier 26 (SLC26) members are conserved membranous proteins that mediate the transport of various anions across the plasma membrane of epithelial cells and constitute important regulators of pH and HCO3– concentration. Most SLC26 members were shown to physically interact and cooperate with the cystic fibrosis transmembrane conductance regulator channel (CFTR) in various epithelia, mainly by stimulating its Cl– channel activity. Among SLC26 members, the function of SLC26A3, A6, and A8 were particularly investigated in the male genital tract and the sperm cells. In this review, we will focus on SLC26s contributions to ionic- and pH-dependent processes during sperm post-testicular maturation. We will specify the current knowledge regarding their functions, based on data from the literature generated by means of in vitro and in vivo studies in knock-out mouse models together with genetic studies of infertile patients. We will also discuss the limits of those studies, the current research gaps and identify some key points for potential developments in this field.
Collapse
Affiliation(s)
- Aminata Touré
- INSERM U1016, Centre National de la Recherche Scientifique, UMR 8104, Institut Cochin, Université de Paris, Paris, France
| |
Collapse
|
12
|
Walter JD, Sawicka M, Dutzler R. Cryo-EM structures and functional characterization of murine Slc26a9 reveal mechanism of uncoupled chloride transport. eLife 2019; 8:46986. [PMID: 31339488 PMCID: PMC6656431 DOI: 10.7554/elife.46986] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/21/2019] [Indexed: 12/14/2022] Open
Abstract
The epithelial anion transporter SLC26A9 contributes to airway surface hydration and gastric acid production. Colocalizing with CFTR, SLC26A9 has been proposed as a target for the treatment of cystic fibrosis. To provide molecular details of its transport mechanism, we present cryo-EM structures and a functional characterization of murine Slc26a9. These structures define the general architecture of eukaryotic SLC26 family members and reveal an unusual mode of oligomerization which relies predominantly on the cytosolic STAS domain. Our data illustrates conformational transitions of Slc26a9, supporting a rapid alternate-access mechanism which mediates uncoupled chloride transport with negligible bicarbonate or sulfate permeability. The characterization of structure-guided mutants illuminates the properties of the ion transport path, including a selective anion binding site located in the center of a mobile module within the transmembrane domain. This study thus provides a structural foundation for the understanding of the entire SLC26 family and potentially facilitates their therapeutic exploitation. Many processes in the human body are regulated by chloride and other charged particles (known as ions) moving in and out of cells. Each cell is surrounded by a membrane barrier, which prevents ions from entering or exiting. Therefore, to control the levels of ions inside the cell, specific proteins in the membrane act as channels or transporters to provide routes for the ions to pass through the membrane. Channel proteins form pores that, when open, allow a steady stream of ions to pass through the membrane. Transporter proteins, on the other hand, generally contain a pocket that is only accessible from one side of the membrane. When individual ions enter this pocket the transporter changes shape. This causes the entrance of the pocket to close and then re-open on the other side of the membrane. Inside the lung, an ion channel known as CFTR provides a route for chloride ions to move out of cells, which helps clear harmful material from the airways. Mutations affecting this protein cause the mucus lining the airways to become very sticky, leading to a severe disease known as cystic fibrosis. CFTR works together with another protein that is also found in the membrane, called SLC26A9. Previous studies have suggested that SLC26A9 also allows chloride ions to pass through the membrane. It was not clear, however, if SLC26A9 operates as an ion channel or a transporter protein, or how the protein is arranged in the membrane. Now, Walter, Sawicka and Dutzler combined two techniques known as cryo-electron microscopy and patch-clamp electrophysiology to reveal the detailed three-dimensional structure of the mouse version of SLC26A9, which is highly similar to the human form. The experiments found that mouse SLC26A9 proteins form pairs in the membrane referred to as homodimers, which arranged themselves in an unexpected way. Further investigation into the structure of these homodimers suggests that despite having many channel-like properties, SLC26A9 operates as a fast transporter, rather than a true channel. These findings help us understand the role of SLC26A9 and other similar proteins in the lung and other parts of the body. In the future it may be possible to develop drugs that target SLC26A9 to treat cystic fibrosis and other severe lung diseases.
Collapse
Affiliation(s)
- Justin D Walter
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Marta Sawicka
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Raimund Dutzler
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| |
Collapse
|
13
|
Ramesh K, Yarra T, Clark MS, John U, Melzner F. Expression of calcification-related ion transporters during blue mussel larval development. Ecol Evol 2019; 9:7157-7172. [PMID: 31380040 PMCID: PMC6662379 DOI: 10.1002/ece3.5287] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 05/06/2019] [Accepted: 05/08/2019] [Indexed: 01/03/2023] Open
Abstract
The physiological processes driving the rapid rates of calcification in larval bivalves are poorly understood. Here, we use a calcification substrate-limited approach (low dissolved inorganic carbon, C T) and mRNA sequencing to identify proteins involved in bicarbonate acquisition during shell formation. As a secondary approach, we examined expression of ion transport and shell matrix proteins (SMPs) over the course of larval development and shell formation. We reared four families of Mytilus edulis under ambient (ca. 1865 µmol/kg) and low C T (ca. 941 µmol/kg) conditions and compared expression patterns at six developmental time points. Larvae reared under low C T exhibited a developmental delay, and a small subset of contigs was differentially regulated between ambient and low C T conditions. Of particular note was the identification of one contig encoding an anion transporter (SLC26) which was strongly upregulated (2.3-2.9 fold) under low C T conditions. By analyzing gene expression profiles over the course of larval development, we are able to isolate sequences encoding ion transport and SMPs to enhance our understanding of cellular pathways underlying larval calcification processes. In particular, we observe the differential expression of contigs encoding SLC4 family members (sodium bicarbonate cotransporters, anion exchangers), calcium-transporting ATPases, sodium/calcium exchangers, and SMPs such as nacrein, tyrosinase, and transcripts related to chitin production. With a range of candidate genes, this work identifies ion transport pathways in bivalve larvae and by applying comparative genomics to investigate temporal expression patterns, provides a foundation for further studies to functionally characterize the proteins involved in larval calcification.
Collapse
Affiliation(s)
- Kirti Ramesh
- GEOMAR Helmholtz Centre for Ocean ResearchKielGermany
- Department of Biological and Environmental Sciences, Sven Lovén Centre for Marine Infrastructure‐KristinebergUniversity of GothenburgFiskebäckskilSweden
| | - Tejaswi Yarra
- British Antarctic SurveyNatural Environment Research CouncilCambridgeUK
- Ashworth Laboratories, Institute of Evolutionary BiologyUniversity of EdinburghEdinburghUK
| | - Melody S. Clark
- British Antarctic SurveyNatural Environment Research CouncilCambridgeUK
| | - Uwe John
- Ecological ChemistryAlfred‐Wegener‐Institut Helmholtz‐Zentrum für Polar‐und MeeresforschungBremerhavenGermany
- Helmholtz‐Institute for Functional Marine BiodiversityOldenburgGermany
| | - Frank Melzner
- GEOMAR Helmholtz Centre for Ocean ResearchKielGermany
| |
Collapse
|
14
|
Seidler U, Nikolovska K. Slc26 Family of Anion Transporters in the Gastrointestinal Tract: Expression, Function, Regulation, and Role in Disease. Compr Physiol 2019; 9:839-872. [DOI: 10.1002/cphy.c180027] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
15
|
Rahmati N, Hoebeek FE, Peter S, De Zeeuw CI. Chloride Homeostasis in Neurons With Special Emphasis on the Olivocerebellar System: Differential Roles for Transporters and Channels. Front Cell Neurosci 2018; 12:101. [PMID: 29765304 PMCID: PMC5938380 DOI: 10.3389/fncel.2018.00101] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 03/28/2018] [Indexed: 12/14/2022] Open
Abstract
The intraneuronal ionic composition is an important determinant of brain functioning. There is growing evidence that aberrant homeostasis of the intracellular concentration of Cl- ([Cl-]i) evokes, in addition to that of Na+ and Ca2+, robust impairments of neuronal excitability and neurotransmission and thereby neurological conditions. More specifically, understanding the mechanisms underlying regulation of [Cl-]i is crucial for deciphering the variability in GABAergic and glycinergic signaling of neurons, in both health and disease. The homeostatic level of [Cl-]i is determined by various regulatory mechanisms, including those mediated by plasma membrane Cl- channels and transporters. This review focuses on the latest advances in identification, regulation and characterization of Cl- channels and transporters that modulate neuronal excitability and cell volume. By putting special emphasis on neurons of the olivocerebellar system, we establish that Cl- channels and transporters play an indispensable role in determining their [Cl-]i and thereby their function in sensorimotor coordination.
Collapse
Affiliation(s)
- Negah Rahmati
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
| | - Freek E. Hoebeek
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
- NIDOD Institute, Wilhelmina Children's Hospital, University Medical Center Utrecht and Brain Center Rudolf Magnus, Utrecht, Netherlands
| | - Saša Peter
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
| | - Chris I. De Zeeuw
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
- Netherlands Institute for Neuroscience, Royal Dutch Academy for Arts and Sciences, Amsterdam, Netherlands
| |
Collapse
|
16
|
A Biophysical Model for Cytotoxic Cell Swelling. J Neurosci 2017; 36:11881-11890. [PMID: 27881775 DOI: 10.1523/jneurosci.1934-16.2016] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 09/07/2016] [Accepted: 10/04/2016] [Indexed: 02/02/2023] Open
Abstract
We present a dynamic biophysical model to explain neuronal swelling underlying cytotoxic edema in conditions of low energy supply, as observed in cerebral ischemia. Our model contains Hodgkin-Huxley-type ion currents, a recently discovered voltage-gated chloride flux through the ion exchanger SLC26A11, active KCC2-mediated chloride extrusion, and ATP-dependent pumps. The model predicts changes in ion gradients and cell swelling during ischemia of various severity or channel blockage with realistic timescales. We theoretically substantiate experimental observations of chloride influx generating cytotoxic edema, while sodium entry alone does not. We show a tipping point of Na+/K+-ATPase functioning, where below cell volume rapidly increases as a function of the remaining pump activity, and a Gibbs-Donnan-like equilibrium state is reached. This precludes a return to physiological conditions even when pump strength returns to baseline. However, when voltage-gated sodium channels are temporarily blocked, cell volume and membrane potential normalize, yielding a potential therapeutic strategy. SIGNIFICANCE STATEMENT Cytotoxic edema most commonly results from energy shortage, such as in cerebral ischemia, and refers to the swelling of brain cells due to the entry of water from the extracellular space. We show that the principle of electroneutrality explains why chloride influx is essential for the development of cytotoxic edema. With the help of a biophysical model of a single neuron, we show that a tipping point of the energy supply exists, below which the cell volume rapidly increases. We simulate realistic time courses to and reveal critical components of neuronal swelling in conditions of low energy supply. Furthermore, we show that, after transient blockade of the energy supply, cytotoxic edema may be reversed by temporary blockade of Na+ channels.
Collapse
|
17
|
Satoh N, Suzuki M, Nakamura M, Suzuki A, Horita S, Seki G, Moriya K. Functional coupling of V-ATPase and CLC-5. World J Nephrol 2017; 6:14-20. [PMID: 28101447 PMCID: PMC5215204 DOI: 10.5527/wjn.v6.i1.14] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 10/04/2016] [Accepted: 11/02/2016] [Indexed: 02/06/2023] Open
Abstract
Dent’s disease is an X-linked renal tubulopathy characterized by low molecular weight proteinuria, hypercalciuria and progressive renal failure. Disease aetiology is associated with mutations in the CLCN5 gene coding for the electrogenic 2Cl-/H+ antiporter chloride channel 5 (CLC-5), which is expressed in the apical endosomes of renal proximal tubules with the vacuolar type H+-ATPase (V-ATPase). Initially identified as a member of the CLC family of Cl- channels, CLC-5 was presumed to provide Cl- shunt into the endosomal lumen to dissipate H+ accumulation by V-ATPase, thereby facilitating efficient endosomal acidification. However, recent findings showing that CLC-5 is in fact not a Cl- channel but a 2Cl-/H+ antiporter challenged this classical shunt model, leading to a renewed and intense debate on its physiological roles. Cl- accumulation via CLC-5 is predicted to play a critical role in endocytosis, as illustrated in mice carrying an artificial Cl- channel mutation E211A that developed defective endocytosis but normal endosomal acidification. Conversely, a recent functional analysis of a newly identified disease-causing Cl- channel mutation E211Q in a patient with typical Dent’s disease confirmed the functional coupling between V-ATPase and CLC-5 in endosomal acidification, lending support to the classical shunt model. In this editorial, we will address the current recognition of the physiological role of CLC-5 with a specific focus on the functional coupling of V-ATPase and CLC-5.
Collapse
|
18
|
SLC26A11 (KBAT) in Purkinje Cells Is Critical for Inhibitory Transmission and Contributes to Locomotor Coordination. eNeuro 2016; 3:eN-NWR-0028-16. [PMID: 27390771 PMCID: PMC4908300 DOI: 10.1523/eneuro.0028-16.2016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 05/21/2016] [Accepted: 05/24/2016] [Indexed: 11/24/2022] Open
Abstract
Chloride homeostasis determines the impact of inhibitory synaptic transmission and thereby mediates the excitability of neurons. Even though cerebellar Purkinje cells (PCs) receive a pronounced inhibitory GABAergic input from stellate and basket cells, the role of chloride homeostasis in these neurons is largely unknown. Here we studied at both the cellular and systems physiological level the function of a recently discovered chloride channel, SLC26A11 or kidney brain anion transporter (KBAT), which is prominently expressed in PCs. Using perforated patch clamp recordings of PCs, we found that a lack of KBAT channel in PC-specific KBAT KO mice (L7-KBAT KOs) induces a negative shift in the reversal potential of chloride as reflected in the GABAA-receptor-evoked currents, indicating a decrease in intracellular chloride concentration. Surprisingly, both in vitro and in vivo PCs in L7-KBAT KOs showed a significantly increased action potential firing frequency of simple spikes, which correlated with impaired motor performance on the Erasmus Ladder. Our findings support an important role for SLC26A11 in moderating chloride homeostasis and neuronal activity in the cerebellum.
Collapse
|
19
|
Satoh N, Yamada H, Yamazaki O, Suzuki M, Nakamura M, Suzuki A, Ashida A, Yamamoto D, Kaku Y, Sekine T, Seki G, Horita S. A pure chloride channel mutant of CLC-5 causes Dent's disease via insufficient V-ATPase activation. Pflugers Arch 2016; 468:1183-1196. [PMID: 27044412 DOI: 10.1007/s00424-016-1808-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 02/02/2016] [Accepted: 03/08/2016] [Indexed: 01/22/2023]
Abstract
Dent's disease is characterized by defective endocytosis in renal proximal tubules (PTs) and caused by mutations in the 2Cl(-)/H(+) exchanger, CLC-5. However, the pathological role of endosomal acidification in endocytosis has recently come into question. To clarify the mechanism of pathogenesis for Dent's disease, we examined the effects of a novel gating glutamate mutation, E211Q, on CLC-5 functions and endosomal acidification. In Xenopus oocytes, wild-type (WT) CLC-5 showed outward-rectifying currents that were inhibited by extracellular acidosis, but E211Q and an artificial pure Cl(-) channel mutant, E211A, showed linear currents that were insensitive to extracellular acidosis. Moreover, depolarizing pulse trains induced a robust reduction in the surface pH of oocytes expressing WT CLC-5 but not E211Q or E211A, indicating that the E211Q mutant functions as a pure Cl(-) channel similar to E211A. In HEK293 cells, E211A and E211Q stimulated endosomal acidification and hypotonicity-inducible vacuolar-type H(+)-ATPase (V-ATPase) activation at the plasma membrane. However, the stimulatory effects of these mutants were reduced compared with WT CLC-5. Furthermore, gene silencing experiments confirmed the functional coupling between V-ATPase and CLC-5 at the plasma membrane of isolated mouse PTs. These results reveal for the first time that the conversion of CLC-5 from a 2Cl(-)/H(+) exchanger into a Cl(-) channel induces Dent's disease in humans. In addition, defective endosomal acidification as a result of insufficient V-ATPase activation may still be important in the pathogenesis of Dent's disease.
Collapse
Affiliation(s)
- Nobuhiko Satoh
- Department of Internal Medicine, Faculty of Medicine, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hideomi Yamada
- Department of Internal Medicine, Faculty of Medicine, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Osamu Yamazaki
- Apheresis and Dialysis Center, General Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Masashi Suzuki
- Department of Internal Medicine, Faculty of Medicine, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Motonobu Nakamura
- Department of Internal Medicine, Faculty of Medicine, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Atsushi Suzuki
- Department of Internal Medicine, Faculty of Medicine, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Akira Ashida
- Department of Pediatrics, Osaka Medical College, Takatsuki, Osaka, Japan
| | - Daisuke Yamamoto
- Biomedical Computation Center, Osaka Medical College, Takatsuki, Osaka, Japan
| | - Yoshitsugu Kaku
- Department of Nephrology, Fukuoka Children's Hospital, Fukuoka, Japan
| | - Takashi Sekine
- Department of Pediatrics, Ohashi Medical Center, Toho University, Meguro-ku, Tokyo, Japan
| | | | - Shoko Horita
- Department of Internal Medicine, Faculty of Medicine, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
20
|
Sabirov RZ, Merzlyak PG, Islam MR, Okada T, Okada Y. The properties, functions, and pathophysiology of maxi-anion channels. Pflugers Arch 2016; 468:405-20. [PMID: 26733413 DOI: 10.1007/s00424-015-1774-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 12/11/2015] [Accepted: 12/15/2015] [Indexed: 01/19/2023]
|
21
|
Pallagi P, Hegyi P, Rakonczay Z. The Physiology and Pathophysiology of Pancreatic Ductal Secretion: The Background for Clinicians. Pancreas 2015; 44:1211-1233. [PMID: 26465950 DOI: 10.1097/mpa.0000000000000421] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The human exocrine pancreas consists of 2 main cell types: acinar and ductal cells. These exocrine cells interact closely to contribute to the secretion of pancreatic juice. The most important ion in terms of the pancreatic ductal secretion is HCO3. In fact, duct cells produce an alkaline fluid that may contain up to 140 mM NaHCO3, which is essential for normal digestion. This article provides an overview of the basics of pancreatic ductal physiology and pathophysiology. In the first part of the article, we discuss the ductal electrolyte and fluid transporters and their regulation. The central role of cystic fibrosis transmembrane conductance regulator (CFTR) is highlighted, which is much more than just a Cl channel. We also review the role of pancreatic ducts in severe debilitating diseases such as cystic fibrosis (caused by various genetic defects of cftr), pancreatitis, and diabetes mellitus. Stimulation of ductal secretion in cystic fibrosis and pancreatitis may have beneficial effects in their treatment.
Collapse
Affiliation(s)
- Petra Pallagi
- From the *First Department of Medicine, University of Szeged; and †Hungarian Academy of Sciences-University of Szeged Translational Gastroenterology Research Group, Szeged, Hungary
| | | | | |
Collapse
|
22
|
Rungta R, Choi H, Tyson J, Malik A, Dissing-Olesen L, Lin P, Cain S, Cullis P, Snutch T, MacVicar B. The Cellular Mechanisms of Neuronal Swelling Underlying Cytotoxic Edema. Cell 2015; 161:610-621. [DOI: 10.1016/j.cell.2015.03.029] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 02/03/2015] [Accepted: 03/12/2015] [Indexed: 01/08/2023]
|
23
|
Soleimani M. The multiple roles of pendrin in the kidney. Nephrol Dial Transplant 2014; 30:1257-66. [PMID: 25281699 DOI: 10.1093/ndt/gfu307] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 08/25/2014] [Indexed: 12/30/2022] Open
Abstract
The [Formula: see text] exchanger pendrin (SLC26A4, PDS) is located on the apical membrane of B-intercalated cells in the kidney cortical collecting duct and the connecting tubules and mediates the secretion of bicarbonate and the reabsorption of chloride. Given its dual function of bicarbonate secretion and chloride reabsorption in the distal tubules, it was thought that pendrin plays important roles in systemic acid-base balance and electrolyte and vascular volume homeostasis under basal conditions. Mice with the genetic deletion of pendrin or humans with inactivating mutations in PDS gene, however, do not display excessive salt and fluid wasting or altered blood pressure under baseline conditions. Very recent reports have unmasked the basis of incongruity between the mild phenotype in mutant mice and the role of pendrin as an important player in salt reabsorption in the distal tubule. These studies demonstrate that pendrin and the Na-Cl cotransporter (NCC; SLC12A3) cross compensate for the loss of each other, therefore masking the role that each transporter plays in salt reabsorption under baseline conditions. In addition, pendrin regulates calcium reabsorption in the distal tubules. Furthermore, combined deletion of pendrin and NCC not only causes severe volume depletion but also results in profound calcium wasting and luminal calcification in medullary collecting ducts. Based on studies in pathophysiological states and the examination of genetically engineered mouse models, the evolving picture points to important roles for pendrin (SLC26A4) in kidney physiology and in disease states. This review summarizes recent advances in the characterization of pendrin and the multiple roles it plays in the kidney, with emphasis on its essential roles in several diverse physiological processes, including chloride homeostasis, vascular volume and blood pressure regulation, calcium excretion and kidney stone formation.
Collapse
Affiliation(s)
- Manoocher Soleimani
- Center on Genetics of Transport and Epithelial Biology, University of Cincinnati, Cincinnati, OH, USA Research Services, Veterans Affairs Medical Center, Cincinnati, OH, USA Department of Medicine, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
24
|
Alka K, Casey JR. Bicarbonate transport in health and disease. IUBMB Life 2014; 66:596-615. [PMID: 25270914 DOI: 10.1002/iub.1315] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 09/10/2014] [Indexed: 12/28/2022]
Abstract
Bicarbonate (HCO3(-)) has a central place in human physiology as the waste product of mitochondrial energy production and for its role in pH buffering throughout the body. Because bicarbonate is impermeable to membranes, bicarbonate transport proteins are necessary to enable control of bicarbonate levels across membranes. In humans, 14 bicarbonate transport proteins, members of the SLC4 and SLC26 families, function by differing transport mechanisms. In addition, some anion channels and ZIP metal transporters contribute to bicarbonate movement across membranes. Defective bicarbonate transport leads to diseases, including systemic acidosis, brain dysfunction, kidney stones, and hypertension. Altered expression levels of bicarbonate transporters in patients with breast, colon, and lung cancer suggest an important role of these transporters in cancer.
Collapse
Affiliation(s)
- Kumari Alka
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | | |
Collapse
|
25
|
Anoctamin 6 differs from VRAC and VSOAC but is involved in apoptosis and supports volume regulation in the presence of Ca2+. Pflugers Arch 2014; 466:1899-910. [PMID: 24419539 PMCID: PMC4159566 DOI: 10.1007/s00424-013-1428-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 12/17/2013] [Accepted: 12/19/2013] [Indexed: 10/25/2022]
Abstract
Anoctamin 6 (ANO6), also known as TMEM16F, has been shown to be a calcium-activated anion channel with delayed calcium activation. The cellular function of ANO6 is under debate, and different groups have come to different conclusions about ANO6's physiological role. Although it is now quite well established that ANO6 is distinct from the volume-regulated anion channel, it is still unclear whether ANO6 or other anoctamins can be activated by cell swelling. In this study, we suggest that ANO1, ANO6, and ANO10 do not contribute to the volume-activated current in ANO-overexpressing HEK293 cells. Furthermore, knock-down of ANO6 in Ehrlich ascites tumor cells (EATC) and Ehrlich-Lettre ascites (ELA) did not decrease but instead significantly increased swelling-activated membrane currents. Knock-down of ANO6 in EATC did not reduce regulatory volume decrease (RVD) in the absence of extracellular calcium, whereas it significantly reduced RVD in the presence of calcium. Interestingly, we found that knock-down of ANO6 in ELA cells resulted in a decrease in cisplatin-induced caspase-3 activity, confirming earlier findings that ANO6 is involved in apoptosis. Finally, knock-down of ANO1 and ANO6 did not affect the volume-sensitive release of taurine in ELA cells. Thus, our data provide evidence that ANO6 cannot be activated directly by cell swelling unless Ca(2+) is present. We also conclude that ANO6 carries a current during RVD, provided extracellular calcium is present. Thus, swelling activation of ANO6 requires the presence of free calcium.
Collapse
|
26
|
Hong JH, Park S, Shcheynikov N, Muallem S. Mechanism and synergism in epithelial fluid and electrolyte secretion. Pflugers Arch 2013; 466:1487-99. [PMID: 24240699 DOI: 10.1007/s00424-013-1390-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 10/16/2013] [Accepted: 10/17/2013] [Indexed: 01/04/2023]
Abstract
A central function of epithelia is the control of the volume and electrolyte composition of bodily fluids through vectorial transport of electrolytes and the obligatory H2O. In exocrine glands, fluid and electrolyte secretion is carried out by both acinar and duct cells, with the portion of fluid secreted by each cell type varying among glands. All acinar cells secrete isotonic, plasma-like fluid, while the duct determines the final electrolyte composition of the fluid by absorbing most of the Cl(-) and secreting HCO3 (-). The key transporters mediating acinar fluid and electrolyte secretion are the basolateral Na(+)/K(+) /2Cl(-) cotransporter, the luminal Ca(2+)-activated Cl(-) channel ANO1 and basolateral and luminal Ca(2+)-activated K(+) channels. Ductal fluid and HCO3 (-) secretion are mediated by the basolateral membrane Na(+)-HCO3 (-) cotransporter NBCe1-B and the luminal membrane Cl(-)/HCO3 (-) exchanger slc26a6 and the Cl(-) channel CFTR. The function of the transporters is regulated by multiple inputs, which in the duct include major regulation by the WNK/SPAK pathway that inhibit secretion and the IRBIT/PP1 pathway that antagonize the effects of the WNK/SPAK pathway to both stimulate and coordinate the secretion. The function of these regulatory pathways in secretory glands acinar cells is yet to be examined. An important concept in biology is synergism among signaling pathways to generate the final physiological response that ensures regulation with high fidelity and guards against cell toxicity. While synergism is observed in all epithelial functions, the molecular mechanism mediating the synergism is not known. Recent work reveals a central role for IRBIT as a third messenger that integrates and synergizes the function of the Ca(2+) and cAMP signaling pathways in activation of epithelial fluid and electrolyte secretion. These concepts are discussed in this review using secretion by the pancreatic and salivary gland ducts as model systems.
Collapse
Affiliation(s)
- Jeong Hee Hong
- Epithelial Signaling and Transport Section, Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institute of Health, Bethesda, MD, 20892, USA
| | | | | | | |
Collapse
|