1
|
Pang B, Bai Y, Chen Y, Zhang S, Xu Z, Li C, Nie Z, Liu H, Guo Z, Ling J, Mei L. Circadian rhythm disruptions exacerbate inner ear damage in a murine endolymphatic hydrops model. FASEB J 2025; 39:e70310. [PMID: 39781606 DOI: 10.1096/fj.202402445r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/24/2024] [Accepted: 12/30/2024] [Indexed: 01/12/2025]
Abstract
Meniere's disease (MD) is an inner ear disease characterized by endolymphatic hydrops (EH). Maintaining a regular daily routine is crucial for MD patients. However, the relationship between circadian rhythms and MD remains unclear. Therefore, we investigated the effect of circadian rhythm on endolymphatic hydrops and its underlying mechanisms. Mice with endolymphatic hydrops were subjected to chronic jet lag (CJL) conditions to simulate the MD patients under circadian rhythm disruptions. We assessed whether this disruption would exacerbate inner ear damage with endolymphatic hydrops. RNA-seq of the inner ear and bioinformatic analysis were performed. Then, the expression of PER2, AQP2, AQP4, AQP5, and BDNF were assessed, and the morphological changes were evaluated in the inner ear. Our findings showed circadian rhythm disruption affected the cochlear internal clock genes in the inner ear, particularly in mice with EH. EH mice under CJL conditions exhibited exacerbated hearing impairment and an increased severity of EH. GO enrichment analysis revealed that the regulation of fluid homeostasis and neurotransmitter release at synapses were significantly enriched. Disruption of circadian rhythms disturbed the expression pattern of PER2, reduced BDNF levels, and affected the expression of aquaporins in the cochlea. Moreover, the disruption of circadian rhythm compromised inner hair cell synapses and auditory nerve fibers. This study indicated that disruption of circadian rhythms may exacerbate inner ear damage in endolymphatic hydrops mice by affecting the aquaporins and compromising synapses and auditory nerves in the inner ear. BDNF and PER2 may play a central role in these pathophysiological processes.
Collapse
Affiliation(s)
- Bo Pang
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan, China
- National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yijiang Bai
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan, China
- National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yongjia Chen
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan, China
- National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shuai Zhang
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan, China
- National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhenhang Xu
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan, China
- National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chenglong Li
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan, China
- National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zequn Nie
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan, China
- National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Heng Liu
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan, China
- National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zihang Guo
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan, China
- National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jie Ling
- Medical Functional Experiment Center, Xiangya School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Lingyun Mei
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan, China
- National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
2
|
Koizumi T, Seo T, Saito K, Fujita H, Kitahara T. Gray-tone appearances on 4-hour delayed gadolinium-enhanced magnetic resonance imaging indicate severe inner ear pathology and symptoms in sudden sensorineural hearing loss. Laryngoscope Investig Otolaryngol 2024; 9:e1295. [PMID: 38984072 PMCID: PMC11231738 DOI: 10.1002/lio2.1295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 04/17/2024] [Accepted: 06/08/2024] [Indexed: 07/11/2024] Open
Abstract
Objective Hybrid of reversed image of positive endolymph signal and negative image of perilymph signal (HYDROPS) in delayed gadolinium-enhanced magnetic resonance imaging (MRI) typically depicts normal inner ear as "white-tone" and endolymphatic hydrops as "black-transparent" appearances, whereas ears with auditory and vestibular disorders are occasionally depicted as "gray-tone." This study aimed to investigate the pathological basis of sudden sensorineural hearing loss (SSNHL) patients with "gray-tone" appearances on HYDROPS. Methods Delayed gadolinium-enhanced MRI examinations were conducted on 29 subjects with unilateral SSNHL. We mainly analyzed positive perilymph image (PPI) and positive endolymph image (PEI), which were components HYDROPS. Results On PPI, signal intensity (SI) values extracted from the cochlear and vestibular region of interest (ROI) were higher in the SSNHL ears with dizziness/vertigo symptom at the first visit compared to the healthy ear. Additionally, the PPI/PEI enhancement pattern in the vestibule was associated with a high prevalence of hearing and vestibular deteriorations at the first visit and poor hearing improvement after treatment. Conclusion Enhancement on PPI/PEI may result from leakage of gadolinium into the inner ear following breakdown of the blood-labyrinth barrier, with high SI being correlated with the amount of leakage. Particularly, a significant leakage into the endolymphatic space, defined as PPI+/PEI+, indicates severe inner ear pathology. Ultimately, we emphasize that the "gray-tone" appearance in the inner ear on HYDROPS comprises enhancements on both PPI and PEI and propose a new classification for evaluating SSNHL Peri- and Endolymphatic image Enhancement pattern in Delayed gadolinium-enhanced MRI (SPEED). Level of Evidence 4.
Collapse
Affiliation(s)
- Toshizo Koizumi
- Department of Otolaryngology–Head and Neck SurgeryNippon Life HospitalOsakaJapan
| | - Toru Seo
- Department of OtolaryngologySt. Marianna University Yokohama Seibu HospitalYokohamaJapan
| | - Kazuya Saito
- Department of OtolaryngologyIzumi City General HospitalIzumiJapan
| | - Hiroto Fujita
- Department of Otolaryngology–Head and Neck SurgeryNippon Life HospitalOsakaJapan
| | - Tadashi Kitahara
- Department of Otolaryngology–Head and Neck SurgeryNara Medical UniversityKashiharaJapan
| |
Collapse
|
3
|
Micaletti F, Escoffre JM, Kerneis S, Bouakaz A, Galvin JJ, Boullaud L, Bakhos D. Microbubble-assisted ultrasound for inner ear drug delivery. Adv Drug Deliv Rev 2024; 204:115145. [PMID: 38042259 DOI: 10.1016/j.addr.2023.115145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/04/2023]
Abstract
Treating pathologies of the inner ear is a major challenge. To date, a wide range of procedures exists for administering therapeutic agents to the inner ear, with varying degrees of success. The key is to deliver therapeutics in a way that is minimally invasive, effective, long-lasting, and without adverse effects on vestibular and cochlear function. Microbubble-assisted ultrasound ("sonoporation") is a promising new modality that can be adapted to the inner ear. Combining ultrasound technology with microbubbles in the middle ear can increase the permeability of the round window, enabling therapeutic agents to be delivered safely and effectively to the inner ear in a targeted manner. As such, sonoporation is a promising new approach to treat hearing loss and vertigo. This review summarizes all studies on the delivery of therapeutic molecules to the inner ear using sonoporation.
Collapse
Affiliation(s)
- Fabrice Micaletti
- ENT and Cervico-Facial Surgery Department, University Hospital Center of Tours, 2 Boulevard Tonnellé, 37044 Tours, France.
| | | | - Sandrine Kerneis
- ENT and Cervico-Facial Surgery Department, University Hospital Center of Tours, 2 Boulevard Tonnellé, 37044 Tours, France
| | - Ayache Bouakaz
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | - John J Galvin
- Faculty of medicine, Université de Tours, 10 boulevard Tonnellé, 37044 Tours, France; House Institute Foundation, 2100 W 3rd Street, Suite 111, Los Angeles, CA 90057, USA
| | - Luc Boullaud
- ENT and Cervico-Facial Surgery Department, University Hospital Center of Tours, 2 Boulevard Tonnellé, 37044 Tours, France
| | - David Bakhos
- ENT and Cervico-Facial Surgery Department, University Hospital Center of Tours, 2 Boulevard Tonnellé, 37044 Tours, France; UMR 1253, iBrain, Université de Tours, Inserm, Tours, France; Faculty of medicine, Université de Tours, 10 boulevard Tonnellé, 37044 Tours, France; House Institute Foundation, 2100 W 3rd Street, Suite 111, Los Angeles, CA 90057, USA
| |
Collapse
|
4
|
Barbara M, Margani V, Covelli E, Filippi C, Volpini L, El-Borady OM, El-Kemary M, Elzayat S, Elfarargy HH. The Use of Nanoparticles in Otoprotection. Front Neurol 2022; 13:912647. [PMID: 35968304 PMCID: PMC9364836 DOI: 10.3389/fneur.2022.912647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/31/2022] [Indexed: 11/24/2022] Open
Abstract
The inner ear can be insulted by various noxious stimuli, including drugs (cisplatin and aminoglycosides) and over-acoustic stimulation. These stimuli damage the hair cells giving rise to progressive hearing loss. Systemic drugs have attempted protection from ototoxicity. Most of these drugs poorly reach the inner ear with consequent ineffective action on hearing. The reason for these failures resides in the poor inner ear blood supply, the presence of the blood-labyrinthine barrier, and the low permeability of the round window membrane (RWM). This article presents a review of the use of nanoparticles (NPs) in otoprotection. NPs were recently used in many fields of medicine because of their ability to deliver drugs to the target organs or cells. The studies included in the review regarded the biocompatibility of the used NPs by in vitro and in vivo experiments. In most studies, NPs proved safe without a significant decrease in cell viability or signs of ototoxicity. Many nano-techniques were used to improve the drugs' kinetics and efficiency. These techniques included encapsulation, polymerization, surface functionalization, and enhanced drug release. In such a way, it improved drug transmission through the RWM with increased and prolonged intra-cochlear drug concentrations. In all studies, the fabricated drug-NPs effectively preserved the hair cells and the functioning hearing from exposure to different ototoxic stimuli, simulating the actual clinical circumstances. Most of these studies regarded cisplatin ototoxicity due to the wide use of this drug in clinical oncology. Dexamethasone (DEX) and antioxidants represent the most used drugs in most studies. These drugs effectively prevented apoptosis and reactive oxygen species (ROS) production caused by ototoxic stimuli. These various successful experiments confirmed the biocompatibility of different NPs and made it successfully to human clinical trials.
Collapse
Affiliation(s)
- Maurizio Barbara
- Department of Neuroscience, Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Sapienza University, Rome, Italy
| | - Valerio Margani
- Department of Neuroscience, Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Sapienza University, Rome, Italy
| | - Edoardo Covelli
- Department of Neuroscience, Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Sapienza University, Rome, Italy
| | - Chiara Filippi
- Department of Neuroscience, Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Sapienza University, Rome, Italy
| | - Luigi Volpini
- Otolaryngology Department, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| | - Ola M. El-Borady
- Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, Kafr El-Shaikh, Egypt
| | - Maged El-Kemary
- Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, Kafr El-Shaikh, Egypt
| | - Saad Elzayat
- Otolaryngology Department, Faculty of Medicine, Kafrelsheikh University, Kafr El-Shaikh, Egypt
| | - Haitham H. Elfarargy
- Otolaryngology Department, Faculty of Medicine, Kafrelsheikh University, Kafr El-Shaikh, Egypt
- *Correspondence: Haitham H. Elfarargy ;
| |
Collapse
|
5
|
A Perspective for Ménière’s Disease: In Silico Investigations of Dexamethasone as a Direct Modulator of AQP2. Biomolecules 2022; 12:biom12040511. [PMID: 35454100 PMCID: PMC9028334 DOI: 10.3390/biom12040511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 12/04/2022] Open
Abstract
Ménière’s disease is a chronic illness characterized by intermittent episodes of vertigo associated with fluctuating sensorineural hearing loss, tinnitus and aural pressure. This pathology strongly correlates with a dilatation of the fluid compartment of the endolymph, so-called hydrops. Dexamethasone is one of the therapeutic approaches recommended when conventional antivertigo treatments have failed. Several mechanisms of actions have been hypothesized for the mode of action of dexamethasone, such as the anti-inflammatory effect or as a regulator of inner ear water homeostasis. However, none of them have been experimentally confirmed so far. Aquaporins (AQPs) are transmembrane water channels and are hence central in the regulation of transcellular water fluxes. In the present study, we investigated the hypothesis that dexamethasone could impact water fluxes in the inner ear by targeting AQP2. We addressed this question through molecular dynamics simulations approaches and managed to demonstrate a direct interaction between AQP2 and dexamethasone and its significant impact on the channel water permeability. Through compartmentalization of sodium and potassium ions, a significant effect of Na+ upon AQP2 water permeability was highlighted as well. The molecular mechanisms involved in dexamethasone binding and in its regulatory action upon AQP2 function are described.
Collapse
|
6
|
Abstract
OBJECTIVE In this review the authors discuss evidence from the literature concerning vitamin D and temporal bone diseases (benign paroxysmal positional vertigo [BPPV], Menière's disease [MD], vestibular neuritis, idiopathic facial paralysis, idiopathic acute hearing loss). Common features shared by Menière's disease, glaucoma, and the possible influence by vitamin D are briefly discussed. DATA SOURCES, STUDY SELECTION Publications from 1970 until recent times have been reviewed according to a keyword search (see above) in PubMed. CONCLUSIONS MD, BPPV, vestibular neuritis, idiopathic facial paralysis, idiopathic acute hearing loss may all have several etiological factors, but a common feature of the current theories is that an initial viral infection and a subsequent autoimmune/autoinflammatory reaction might be involved. Additionally, in some of these entities varying degrees of demyelination have been documented. Given the immunomodulatory effect of vitamin D, we postulate that it may play a role in suppressing an eventual postviral autoimmune reaction. This beneficial effect may be enhanced by the antioxidative activity of vitamin D and its potential in stabilizing endothelial cells. The association of vitamin D deficiency with demyelination has already been established in other entities such as multiple sclerosis and experimental autoimmune encephalitis. Mice without vitamin D receptor show degenerative features in inner ear ganglia, hair cells, as well as otoconia. The authors suggest further studies concerning the role of vitamin D deficiency in diseases of the temporal bone. Additionally, the possible presence and degree of demyelination in these entities will have to be elucidated more systematically in the future.
Collapse
|
7
|
Histology of the Cochlear Outer Sulcus Cells in Normal Human Ears, Presbycusis, and Menière's Disease. Otol Neurotol 2020; 41:e507-e515. [PMID: 32176147 DOI: 10.1097/mao.0000000000002535] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
HYPOTHESIS Outer sulcus cell features and distribution are hypothesized to differ throughout regions of the human cochlea and between diseased and normal specimens. BACKGROUND Outer sulcus cells play a role in inner ear fluid homeostasis. However, their anatomy and distribution in the human are not well described. METHODS Temporal bone specimens with normal hearing (n = 10), Menière's disease (n = 10), presbycusis with flat audiograms (n = 4), and presbycusis with sloping audiograms (n = 5) were examined by light microscopy. Outer sulcus cells were assessed quantitatively and qualitatively in each cochlear turn. One specimen was stained for tubulin immunofluorescence and imaged using confocal microscopy. RESULTS Outer sulcus cells interface with endolymph throughout the cochlea, with greatest contact in the apical turn. Mean outer sulcus cell counts in the upper apical turn (8.82) were generally smaller (all p < 0.05) than those of the upper basal (17.71), lower middle (18.99) upper middle (18.23), and lower apical (16.42) turns. Mean outer sulcus cell counts were higher (p < 0.05) in normal controls (20.1) than in diseased specimens (15.29). There was a significant correlation between mean cell counts and tonotopically expected hearing thresholds in the upper basal (r = -0.662, p = 0.0001), lower middle (r = -0.565, p = 0.0017), and upper middle (r = -0.507, p = 0.0136) regions. Other differences in cell morphology, distribution, or relationship with Claudius cells were not appreciated between normal and diseased specimens. Menière's specimens had no apparent unique features in the cochlear apex. Immunofluorescence staining demonstrated outer sulcus cells extending into the spiral ligament in bundles forming tapering processes which differed between the cochlear turns in morphology. CONCLUSION Outer sulcus cells vary throughout the cochlear turns and correlate with hearing status, but not in a manner specific to the underlying diagnoses of Menière's disease or presbycusis.
Collapse
|
8
|
Lee C, Valenzuela CV, Goodman SS, Kallogjeri D, Buchman CA, Lichtenhan JT. Early Detection of Endolymphatic Hydrops using the Auditory Nerve Overlapped Waveform (ANOW). Neuroscience 2020; 425:251-266. [PMID: 31809731 PMCID: PMC6935415 DOI: 10.1016/j.neuroscience.2019.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/30/2019] [Accepted: 11/04/2019] [Indexed: 01/14/2023]
Abstract
Endolymphatic hydrops is associated with low-frequency sensorineural hearing loss, with a large body of research dedicated to examining its putative causal role in low-frequency hearing loss. Investigations have been thwarted by the fact that hearing loss is measured in intact ears, but gold standard assessments of endolymphatic hydrops are made postmortem only; and that no objective low-frequency hearing measure has existed. Yet the association of endolymphatic hydrops with low-frequency hearing loss is so strong that it has been established as one of the important defining features for Ménière's disease, rendering it critical to detect endolymphatic hydrops early, regardless of whether it serves a causal role or is the result of other disease mechanisms. We surgically induced endolymphatic hydrops in guinea pigs and employed our recently developed objective neural measure of low-frequency hearing, the Auditory Nerve Overlapped Waveform (ANOW). Hearing loss and endolymphatic hydrops were assessed at various time points after surgery. The ANOW detected low-frequency hearing loss as early as the first day after surgery, well before endolymphatic hydrops was found histologically. The ANOW detected low-frequency hearing loss with perfect sensitivity and specificity in all ears after endolymphatic hydrops developed, where there was a strong linear relationship between degree of endolymphatic hydrops and severity of low-frequency hearing loss. Further, histological data demonstrated that endolymphatic hydrops is seen first in the high-frequency cochlear base, though the ANOW demonstrated that dysfunction begins in the low-frequency apical cochlear half. The results lay the groundwork for future investigations of the causal role of endolymphatic hydrops in low-frequency hearing loss.
Collapse
Affiliation(s)
- C Lee
- Washington University School of Medicine in St. Louis, Department of Otolaryngology, Saint Louis, MO, USA
| | - C V Valenzuela
- Washington University School of Medicine in St. Louis, Department of Otolaryngology, Saint Louis, MO, USA
| | - S S Goodman
- University of Iowa, Department of Communication Sciences and Disorders, Iowa City, IA, USA
| | - D Kallogjeri
- Washington University School of Medicine in St. Louis, Department of Otolaryngology, Saint Louis, MO, USA
| | - C A Buchman
- Washington University School of Medicine in St. Louis, Department of Otolaryngology, Saint Louis, MO, USA
| | - J T Lichtenhan
- Washington University School of Medicine in St. Louis, Department of Otolaryngology, Saint Louis, MO, USA.
| |
Collapse
|
9
|
Mittal R, Pena SA, Zhu A, Eshraghi N, Fesharaki A, Horesh EJ, Mittal J, Eshraghi AA. Nanoparticle-based drug delivery in the inner ear: current challenges, limitations and opportunities. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:1312-1320. [PMID: 30987439 DOI: 10.1080/21691401.2019.1573182] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hearing loss is the most common neurosensory impairment worldwide. While conductive hearing loss can be managed by surgery, the management of sensorineural hearing loss (SNHL), related to the damage of sensory cells of the inner ear is more challenging to manage medically. Many causes of SNHL such as sudden idiopathic SNHL, Meniere's disease, noise-induced hearing loss, autoimmune hearing loss or hearing loss from exposure to ototoxic substances can benefit from delivery of otoprotective drugs to the inner ear. However, systemic drug delivery through oral, intravenous and intramuscular methods leads to undesirable side effects due to the inner ear's limited blood supply and the relatively poor penetration of the blood-inner ear barrier (BLB). Therefore, there has been an increased interest for the targeted drug delivery to the inner ear using nanoparticles. Drug delivery through nanoparticles offers several advantages including drug stabilization for controlled release and surface modification for specific targeting. Understanding the biocompatibility of nanoparticles with cochlea and developing novel non-invasive delivery methods will promote the translation of nanoparticle-mediated drug delivery for auditory disorders from bench to bedside.
Collapse
Affiliation(s)
- Rahul Mittal
- a Department of Otolaryngology, Hearing Research Laboratory , University of Miami Miller School of Medicine , Miami , FL, USA
| | - Stefanie A Pena
- a Department of Otolaryngology, Hearing Research Laboratory , University of Miami Miller School of Medicine , Miami , FL, USA
| | - Angela Zhu
- a Department of Otolaryngology, Hearing Research Laboratory , University of Miami Miller School of Medicine , Miami , FL, USA
| | - Nicolas Eshraghi
- a Department of Otolaryngology, Hearing Research Laboratory , University of Miami Miller School of Medicine , Miami , FL, USA
| | - Arian Fesharaki
- a Department of Otolaryngology, Hearing Research Laboratory , University of Miami Miller School of Medicine , Miami , FL, USA
| | - Elijah J Horesh
- a Department of Otolaryngology, Hearing Research Laboratory , University of Miami Miller School of Medicine , Miami , FL, USA
| | - Jeenu Mittal
- a Department of Otolaryngology, Hearing Research Laboratory , University of Miami Miller School of Medicine , Miami , FL, USA
| | - Adrien A Eshraghi
- a Department of Otolaryngology, Hearing Research Laboratory , University of Miami Miller School of Medicine , Miami , FL, USA.,b Department of Neurological Surgery , University of Miami Miller School of Medicine , Miami , FL, USA
| |
Collapse
|
10
|
In vivo Assessment of an Endolymphatic Hydrops Gradient Along the Cochlea in Patients With Menière's Disease by Magnetic Resonance Imaging—A Pilot Study. Otol Neurotol 2018; 39:e1091-e1099. [DOI: 10.1097/mao.0000000000002016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Glueckert R, Johnson Chacko L, Rask-Andersen H, Liu W, Handschuh S, Schrott-Fischer A. Anatomical basis of drug delivery to the inner ear. Hear Res 2018; 368:10-27. [PMID: 30442227 DOI: 10.1016/j.heares.2018.06.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 06/16/2018] [Accepted: 06/25/2018] [Indexed: 12/19/2022]
Abstract
The isolated anatomical position and blood-labyrinth barrier hampers systemic drug delivery to the mammalian inner ear. Intratympanic placement of drugs and permeation via the round- and oval window are established methods for local pharmaceutical treatment. Mechanisms of drug uptake and pathways for distribution within the inner ear are hard to predict. The complex microanatomy with fluid-filled spaces separated by tight- and leaky barriers compose various compartments that connect via active and passive transport mechanisms. Here we provide a review on the inner ear architecture at light- and electron microscopy level, relevant for drug delivery. Focus is laid on the human inner ear architecture. Some new data add information on the human inner ear fluid spaces generated with high resolution microcomputed tomography at 15 μm resolution. Perilymphatic spaces are connected with the central modiolus by active transport mechanisms of mesothelial cells that provide access to spiral ganglion neurons. Reports on leaky barriers between scala tympani and the so-called cortilymph compartment likely open the best path for hair cell targeting. The complex barrier system of tight junction proteins such as occludins, claudins and tricellulin isolates the endolymphatic space for most drugs. Comparison of relevant differences of barriers, target cells and cell types involved in drug spread between main animal models and humans shall provide some translational aspects for inner ear drug applications.
Collapse
Affiliation(s)
- R Glueckert
- Department of Otolaryngology, Medical University of Innsbruck, Innsbruck, Austria; University Clinics Innsbruck, Tirol Kliniken, University Clinic for Ear, Nose and Throat Medicine Innsbruck, Austria.
| | - L Johnson Chacko
- Department of Otolaryngology, Medical University of Innsbruck, Innsbruck, Austria
| | - H Rask-Andersen
- Department of Surgical Sciences, Section of Otolaryngology, Uppsala University Hospital, SE-751 85, Uppsala, Sweden
| | - W Liu
- Department of Surgical Sciences, Section of Otolaryngology, Uppsala University Hospital, SE-751 85, Uppsala, Sweden
| | - S Handschuh
- VetImaging, VetCore Facility for Research, University of Veterinary Medicine, Vienna, Austria
| | - A Schrott-Fischer
- Department of Otolaryngology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
12
|
Salt AN, Hirose K. Communication pathways to and from the inner ear and their contributions to drug delivery. Hear Res 2018; 362:25-37. [PMID: 29277248 PMCID: PMC5911243 DOI: 10.1016/j.heares.2017.12.010] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 11/08/2017] [Accepted: 12/05/2017] [Indexed: 01/04/2023]
Abstract
The environment of the inner ear is highly regulated in a manner that some solutes are permitted to enter while others are excluded or transported out. Drug therapies targeting the sensory and supporting cells of the auditory and vestibular systems require the agent to gain entry to the fluid spaces of the inner ear, perilymph or endolymph, which surround the sensory organs. Access to the inner ear fluids from the vasculature is limited by the blood-labyrinth barriers, which include the blood-perilymph and blood-strial barriers. Intratympanic applications provide an alternative approach in which drugs are applied locally. Drug from the applied solution enters perilymph through the round window membrane, through the stapes, and under some circumstances, through thin bone in the otic capsule. The amount of drug applied to the middle ear is always substantially more than the amount entering perilymph. As a result, significant amounts of the applied drug can pass to the digestive system, to the vasculature, and to the brain. Drugs in perilymph pass to the vasculature and to cerebrospinal fluid via the cochlear aqueduct. Conversely, drugs applied to cerebrospinal fluid, including those given intrathecally, can enter perilymph through the cochlear aqueduct. Other possible routes in or out of the ear include passage by neuronal pathways, passage via endolymph and the endolymphatic sac, and possibly via lymphatic pathways. A better understanding of the pathways for drug movements in and out of the ear will enable better intervention strategies.
Collapse
Affiliation(s)
- Alec N Salt
- Department of Otolaryngology, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, USA.
| | - Keiko Hirose
- Department of Otolaryngology, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, USA
| |
Collapse
|
13
|
Abstract
HYPOTHESIS Endolymphatic hydrops of the human inner ear may be localized focally in the pars inferior of the human inner ear. BACKGROUND Endolymphatic hydrops may be found in the human inner ear in patients who in life had suffered from Ménière's syndrome or a variety of other disorders. The degree of endolymphatic hydrops may differ based on location in the inner ear. METHODS A computer-assisted search of all cases in the collection of the Massachusetts Eye and Ear Infirmary in which endolymphatic hydrops was found in the inner ear yielded 13 specimens in which there was good evidence for focal endolymphatic hydrops in the pars inferior. Temporal bones were prepared for light microscopy. Semi-serial sections were reviewed to generate localization data for endolymphatic hydrops and also to search for evidence of a previous inflammatory process, including fibrosis or new bone formation. RESULTS Endolymphatic hydrops was present in the saccule in 10 of 13 specimens. In the cochlear duct, there were segments of the cochlea in which there was no cochlear hydrops juxtaposed to other regions in which there was severe endolymphatic hydrops. Transition between hydropic and non-hydropic status in the cochlear duct was often abrupt.Evidence for a previous inflammation process was found in 6 of 13 specimens including fibrosis because of temporal bone fracture, or traumatic stapedectomy and in those cases in which the cause of hearing loss was idiopathic, fibrosis, and osteoid between the labyrinthine surface of the footplate and the hydropic saccular wall, and/or osteoid in the scala vestibuli, or in the proximate Rosenthal's canal. Evidence of a previous inflammatory process was uniformly seen in the perilymphatic compartment. CONCLUSIONS Endolymphatic hydrops of the pars inferior in the human may have a focal distribution. This study suggests that the pathogenesis of endolymphatic hydrops is unlikely to be because of distal obstruction of longitudinal flow and was more consistent with the hypothesis that homeostasis of the endolymphatic and perilymphatic volumes occurs all along the cochlear duct. Other factors including variable distensibility of Reissner's membrane or disturbance of local solute homeostatic mechanisms may be responsible for wide variations in the degree of hydrops. A focal inflammatory process during life may be one cause of focal endolymphatic hydrops as seen histopathologically.
Collapse
|
14
|
Eckhard A, Dos Santos A, Liu W, Bassiouni M, Arnold H, Gleiser C, Hirt B, Harteneck C, Müller M, Rask-Andersen H, Löwenheim H. Regulation of the perilymphatic-endolymphatic water shunt in the cochlea by membrane translocation of aquaporin-5. Pflugers Arch 2015; 467:2571-88. [PMID: 26208470 PMCID: PMC4646919 DOI: 10.1007/s00424-015-1720-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 07/01/2015] [Accepted: 07/04/2015] [Indexed: 12/02/2022]
Abstract
Volume homeostasis of the cochlear endolymph depends on radial and longitudinal endolymph movements (LEMs). LEMs measured in vivo have been exclusively recognized under physiologically challenging conditions, such as experimentally induced alterations of perilymph osmolarity or endolymph volume. The regulatory mechanisms that adjust LEMs to the physiological requirements of endolymph volume homeostasis remain unknown. Here, we describe the formation of an aquaporin (AQP)-based "water shunt" during the postnatal development of the mouse cochlea and its regulation by different triggers. The final complementary expression pattern of AQP5 (apical membrane) and AQP4 (basolateral membrane) in outer sulcus cells (OSCs) of the cochlear apex is acquired at the onset of hearing function (postnatal day (p)8-p12). In vitro, hyperosmolar perfusion of the perilymphatic fluid spaces or the administration of the muscarinic agonist pilocarpine in cochlear explants (p14) induced the translocation of AQP5 channel proteins into the apical membranes of OSCs. AQP5 membrane translocation was blocked by the muscarinic antagonist atropine. The muscarinic M3 acetylcholine (ACh) receptor (M3R) was identified in murine OSCs via mRNA expression, immunolabeling, and in vitro binding studies using an M3R-specific fluorescent ligand. Finally, the water shunt elements AQP4, AQP5, and M3R were also demonstrated in OSCs of the human cochlea. The regulation of the AQP4/AQP5 water shunt in OSCs of the cochlear apex provides a molecular basis for regulated endolymphatic volume homeostasis. Moreover, its dysregulation or disruption may have pathophysiologic implications for clinical conditions related to endolymphatic hydrops, such as Ménière's disease.
Collapse
Affiliation(s)
- A Eckhard
- Department of Otorhinolaryngology-Head & Neck Surgery, University of Tübingen Medical Centre, Tübingen, Germany
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - A Dos Santos
- Department of Otorhinolaryngology-Head & Neck Surgery, University of Tübingen Medical Centre, Tübingen, Germany
| | - W Liu
- Department of Surgical Sciences, Section of Otolaryngology, Uppsala University Hospital, Uppsala, Sweden
| | - M Bassiouni
- Department of Otorhinolaryngology-Head & Neck Surgery, University of Tübingen Medical Centre, Tübingen, Germany
| | - H Arnold
- Department of Otorhinolaryngology-Head & Neck Surgery, University of Tübingen Medical Centre, Tübingen, Germany
| | - C Gleiser
- Institute of Anatomy, University of Tübingen, Tübingen, Germany
| | - B Hirt
- Institute of Anatomy, University of Tübingen, Tübingen, Germany
| | - C Harteneck
- Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology, Interfaculty Center of Pharmacogenomics and Pharmaceutical Research (ICePhA), University of Tübingen, Tübingen, Germany
| | - M Müller
- School of Medicine and Health Sciences - European Medical School, University Hospital of Otorhinolaryngology, Medical Campus University of Oldenburg, Steinweg 13-17, 26122, Oldenburg, Germany
- Research Center of Neurosensory Science, University of Oldenburg, 26111, Oldenburg, Germany
- Cluster of Excellence Hearing4all, University of Oldenburg, 26111, Oldenburg, Germany
| | - H Rask-Andersen
- Department of Surgical Sciences, Section of Otolaryngology, Uppsala University Hospital, Uppsala, Sweden
| | - H Löwenheim
- School of Medicine and Health Sciences - European Medical School, University Hospital of Otorhinolaryngology, Medical Campus University of Oldenburg, Steinweg 13-17, 26122, Oldenburg, Germany.
- Research Center of Neurosensory Science, University of Oldenburg, 26111, Oldenburg, Germany.
- Cluster of Excellence Hearing4all, University of Oldenburg, 26111, Oldenburg, Germany.
| |
Collapse
|
15
|
Chen LY. Computing membrane-AQP5-phosphatidylserine binding affinities with hybrid steered molecular dynamics approach. Mol Membr Biol 2015; 32:19-25. [PMID: 25955791 DOI: 10.3109/09687688.2015.1006275] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In order to elucidate how phosphatidylserine (PS6) interacts with AQP5 in a cell membrane, we developed a hybrid steered molecular dynamics (hSMD) method that involved: (1) Simultaneously steering two centers of mass of two selected segments of the ligand, and (2) equilibrating the ligand-protein complex with and without biasing the system. Validating hSMD, we first studied vascular endothelial growth factor receptor 1 (VEGFR1) in complex with N-(4-Chlorophenyl)-2-((pyridin-4-ylmethyl)amino)benzamide (8ST), for which the binding energy is known from in vitro experiments. In this study, our computed binding energy well agreed with the experimental value. Knowing the accuracy of this hSMD method, we applied it to the AQP5-lipid-bilayer system to answer an outstanding question relevant to AQP5's physiological function: Will the PS6, a lipid having a single long hydrocarbon tail that was found in the central pore of the AQP5 tetramer crystal, actually bind to and inhibit AQP5's central pore under near-physiological conditions, namely, when AQP5 tetramer is embedded in a lipid bilayer? We found, in silico, using the CHARMM 36 force field, that binding PS6 to AQP5 was a factor of 3 million weaker than "binding" it in the lipid bilayer. This suggests that AQP5's central pore will not be inhibited by PS6 or a similar lipid in a physiological environment.
Collapse
Affiliation(s)
- Liao Y Chen
- Department of Physics, University of Texas at San Antonio , One UTSA Circle, San Antonio, Texas , USA
| |
Collapse
|
16
|
Zhao Y, Lai A, Dong W. Expression and Significance of Aquaporin-2 in Human Ectocervical-Vaginal Epithelial Cells. Gynecol Obstet Invest 2014; 78:186-93. [DOI: 10.1159/000363240] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 04/24/2014] [Indexed: 11/19/2022]
|
17
|
Abstract
Aquaporins (AQPs) are a family of membrane water channels that basically function as regulators of intracellular and intercellular water flow. To date, thirteen aquaporins have been characterized. They are distributed wildly in specific cell types in multiple organs and tissues. Each AQP channel consists of six membrane-spanning alpha-helices that have a central water-transporting pore. Four AQP monomers assemble to form tetramers, which are the functional units in the membrane. Some of AQPs also transport urea, glycerol, ammonia, hydrogen peroxide, and gas molecules. AQP-mediated osmotic water transport across epithelial plasma membranes facilitates transcellular fluid transport and thus water reabsorption. AQP-mediated urea and glycerol transport is involved in energy metabolism and epidermal hydration. AQP-mediated CO2 and NH3 transport across membrane maintains intracellular acid-base homeostasis. AQPs are also involved in the pathophysiology of a wide range of human diseases (including water disbalance in kidney and brain, neuroinflammatory disease, obesity, and cancer). Further work is required to determine whether aquaporins are viable therapeutic targets or reliable diagnostic and prognostic biomarkers.
Collapse
|