1
|
Meena K, Babu R, Pancholi B, Garabadu D. Exploring therapeutic potential of claudin in Flavivirus infection: A review on current advances and future perspectives. Int J Biol Macromol 2025; 309:142936. [PMID: 40203926 DOI: 10.1016/j.ijbiomac.2025.142936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/25/2025] [Accepted: 04/06/2025] [Indexed: 04/11/2025]
Abstract
Flavivirus such as Dengue, Zika, West Nile, Japanese encephalitis, and yellow fever virus, composed of single-stranded positive-sense RNA, predominantly contaminated through arthropods. Flavivirus infection characterises from asymptomatic signs to severe hemorrhagic fever and encephalitis. The host's immune system detects these viruses and provides a defence mechanism to sustain their life and growth. However, flaviviruses through different mechanisms compromise the host's immune defence. The current pharmacotherapeutic strategies against Flavivirus infection target different stages of the Flavivirus life cycle and its proteins. On the contrary, the host's immune defence mechanism is equally important to restrict their growth. It has been suggested that flaviviruses compromise claudins to sustain their life and growth inside the mammalian cells. This review primarily focuses on the effect of Flavivirus on claudins (CLDNs), transmembrane proteins that form tight junctions in mammalian cells. CLDNs are crucial in viral entry and pathogenesis by regulating paracellular permeability, particularly in tissues and the blood-brain barrier. Recent studies indicate that the Dengue and Zika viruses can potentially be treated by targeting specific CLDNs-specifically CLDN 1, CLDN 5, and CLDN 7 to inhibit viral entry and fusion. Additionally, it highlights the current challenges and future prospects in developing claudin-based antiviral agents against Flavivirus infections.
Collapse
Affiliation(s)
- Kiran Meena
- Department of Pharmacology, Central University of Punjab, Bathinda 151401, India
| | - Raja Babu
- Department of Pharmacology, Central University of Punjab, Bathinda 151401, India
| | | | - Debapriya Garabadu
- Department of Pharmacology, Central University of Punjab, Bathinda 151401, India.
| |
Collapse
|
2
|
Apoorva, Kumar A, Singh SK. Dengue virus NS1 hits hard at the barrier integrity of human cerebral microvascular endothelial cells via cellular microRNA dysregulations. Tissue Barriers 2024:2424628. [PMID: 39508307 DOI: 10.1080/21688370.2024.2424628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/25/2024] [Accepted: 10/27/2024] [Indexed: 11/15/2024] Open
Abstract
Dengue virus (DENV) infections are commonly reported in the tropical and subtropical regions of the world. DENV is reported to exploit various strategies to cross the blood-brain barrier. The NS1 protein of DENV plays an important role in viral neuropathogenesis, resulting in endothelial hyperpermeability and cytokine-induced vascular leak. miRNAs are short non-coding RNAs that play an important role in post-transcriptional gene regulations. However, no comprehensive information about the involvement of miRNAs in DENV-NS1-mediated neuropathogenesis has been explored to date. We observed that DENV-NS1 significantly alters the cellular miRNome of human cerebral microvascular endothelial cells in a bystander fashion. Subsequent target prediction and pathway enrichment analysis indicated that these microRNAs and their corresponding target genes are involved in pathways associated with blood-brain barrier dysfunction such as "Adherens junction" and "Tight junction". Additionally, several miRNA-mRNA pairs were also found to be involved in cellular signaling pathways related to cytokine production, for instance, "Jak-STAT signaling pathway", "Chemokine signaling pathway", "IL-17 signaling pathway", "NF-κB signaling pathway", and "Viral protein interaction with cytokine and cytokine receptor". The dysregulated production of inflammatory cytokines is reported to compromise BBB permeability. This study is the first report to demonstrate that DENV-NS1-mediated miRNA perturbations are crucial in compromising endothelial barrier integrity. It also offers insights into potential therapeutic targets to mitigate DENV-NS1-induced vascular permeability and inflammation.
Collapse
Affiliation(s)
- Apoorva
- Molecular Biology Unit, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Atul Kumar
- Molecular Biology Unit, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Sunit K Singh
- Molecular Biology Unit, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
- Dr. B.R. Ambedkar Center for Biomedical Research (ACBR), University of Delhi, New Delhi, India
- Delhi School of Public Health, University of Delhi, New Delhi, India
| |
Collapse
|
3
|
Ma Y, Xu J, Hao L, Wang G, Huang W, Liu Z. MiR-181a Negatively Regulates Claudin-3 to Facilitate Lateolabrax maculatus Iridovirus Replication in Lateolabrax maculatus Astroglia Cells. Viruses 2024; 16:1589. [PMID: 39459923 PMCID: PMC11512373 DOI: 10.3390/v16101589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/22/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
Lateolabrax maculatus iridovirus (LMIV) is a variant strain of red sea bream iridovirus (RSIV), causing serious economic losses in aquaculture. Claudins (CLDNs) are major components of tight junctions (TJs) forming an important line of defense against pathogens. Our pilot miRNA-mRNA joint analysis indicated the degradation of CLDN3, as well as its interaction with miR-181a during LMIV infection. To elucidate the miR-181a/CLDN3/LMIV interactions, in vitro assays were carried out on LMB-L cells. We first confirmed that LMIV infection could decrease the expression of CLDN3, accompanied by the enhancement of permeability, suggesting the dysfunction of TJs. Contrary to the inhibition of CLDN3, the activation of miR-181a was proved, presenting a negative correlation between miR-181a and CLDN3 (Pearson r = -0.773 and p < 0.01). In addition, the influence of CLDN3 on LMIV replication was analyzed by knockdown and over-expression of CLDN3. When CLDN3 was silenced in LMB-L cells with siCLDN3-623 at 9 days post transfection (dpt), LMIV copies and titers were significantly up-regulated by 1.59-fold and 13.87-fold, respectively. By contrast, LMIV replication in LMB-L cells was reduced by 60% and 71%, post transfection with pcDNA3.1-CLDN3 over-expressed plasmid at 6 dpt and 9 dpt, respectively. Ultimately, the regulatory relationship between miR-181a and CLDN3 was further validated by dual luciferase reporter assays. Taking into account the above-described results, we proposed a "miR-181a/CLDN3/LMIV" regulatory relationship. This study provides a new insight for understanding the mechanism of LMIV replication.
Collapse
Affiliation(s)
- Yanping Ma
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Y.M.); (J.X.); (L.H.); (G.W.)
- Collaborative Innovation Center of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou 510640, China
| | - Jingjing Xu
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Y.M.); (J.X.); (L.H.); (G.W.)
- Collaborative Innovation Center of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou 510640, China
| | - Le Hao
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Y.M.); (J.X.); (L.H.); (G.W.)
- Collaborative Innovation Center of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou 510640, China
| | - Gang Wang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Y.M.); (J.X.); (L.H.); (G.W.)
- Collaborative Innovation Center of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou 510640, China
| | - Wen Huang
- Collaborative Innovation Center of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Zhenxing Liu
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Y.M.); (J.X.); (L.H.); (G.W.)
- Collaborative Innovation Center of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou 510640, China
| |
Collapse
|
4
|
Lenárt S, Lenárt P, Knopfová L, Kotasová H, Pelková V, Sedláková V, Vacek O, Pokludová J, Čan V, Šmarda J, Souček K, Hampl A, Beneš P. TACSTD2 upregulation is an early reaction to lung infection. Sci Rep 2022; 12:9583. [PMID: 35688908 PMCID: PMC9185727 DOI: 10.1038/s41598-022-13637-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 05/18/2022] [Indexed: 11/16/2022] Open
Abstract
TACSTD2 encodes a transmembrane glycoprotein Trop2 commonly overexpressed in carcinomas. While the Trop2 protein was discovered already in 1981 and first antibody–drug conjugate targeting Trop2 were recently approved for cancer therapy, the physiological role of Trop2 is still not fully understood. In this article, we show that TACSTD2/Trop2 expression is evolutionarily conserved in lungs of various vertebrates. By analysis of publicly available transcriptomic data we demonstrate that TACSTD2 level consistently increases in lungs infected with miscellaneous, but mainly viral pathogens. Single cell and subpopulation based transcriptomic data revealed that the major source of TACSTD2 transcript are lung epithelial cells and their progenitors and that TACSTD2 is induced directly in lung epithelial cells following infection. Increase in TACSTD2 expression may represent a mechanism to maintain/restore epithelial barrier function and contribute to regeneration process in infected/damaged lungs.
Collapse
Affiliation(s)
- Sára Lenárt
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, 62500, Czech Republic
| | - Peter Lenárt
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, 62500, Czech Republic.,Faculty of Science, Research Centre for Toxic Compounds in the Environment, Masaryk University, Brno, Czech Republic.,Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Lucia Knopfová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, 62500, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Hana Kotasová
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic.,Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Vendula Pelková
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Veronika Sedláková
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Ondřej Vacek
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, 62500, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic.,Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Jana Pokludová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, 62500, Czech Republic
| | - Vladimír Čan
- Department of Surgery, University Hospital Brno, Brno, Czech Republic
| | - Jan Šmarda
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, 62500, Czech Republic
| | - Karel Souček
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, 62500, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic.,Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Aleš Hampl
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic.,Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Petr Beneš
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, 62500, Czech Republic. .,International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic.
| |
Collapse
|
5
|
Mendoza C, Nagidi SH, Collett K, Mckell J, Mizrachi D. Calcium regulates the interplay between the tight junction and epithelial adherens junction at the plasma membrane. FEBS Lett 2022; 596:219-231. [PMID: 34882783 DOI: 10.1002/1873-3468.14252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/05/2021] [Accepted: 12/05/2021] [Indexed: 01/15/2023]
Abstract
The apical junctional complex (AJC) is a membrane protein ultrastructure that regulates cell adhesion and homeostasis. The tight junction (TJ) and the adherens junction (AJ) are substructures of the AJC. The interplay between TJ and AJ membrane proteins to assemble the AJC remains unclear. We employed synthetic biology strategies to express the basic membrane elements of a simple AJC-the adhesive extracellular domains of junctional adhesion molecule A (JAM-A), epithelial cadherin, claudin 1, and occludin-to study their interactions. Our results suggest that calcium concentration fluctuations and JAM-A, acting as an interface molecule between the TJ and AJ, orchestrate their interplay. Calcium affects the secondary structure, oligomerization, and binding affinity of homotypic and heterotypic interactions of TJ and AJ components, thus acting as a molecular switch influencing AJC dynamics.
Collapse
Affiliation(s)
- Christopher Mendoza
- Department of Physiology and Developmental Biology, College of Life Sciences, Brigham Young University, Provo, UT, USA
| | - Sai Harsha Nagidi
- Department of Molecular Microbiology, College of Life Sciences, Brigham Young University, Provo, UT, USA
| | - Kjetil Collett
- Department of Physiology and Developmental Biology, College of Life Sciences, Brigham Young University, Provo, UT, USA
| | - Jacob Mckell
- Department of Physiology and Developmental Biology, College of Life Sciences, Brigham Young University, Provo, UT, USA
| | - Dario Mizrachi
- Department of Physiology and Developmental Biology, College of Life Sciences, Brigham Young University, Provo, UT, USA
| |
Collapse
|
6
|
Zoladek J, Legros V, Jeannin P, Chazal M, Pardigon N, Ceccaldi PE, Gessain A, Jouvenet N, Afonso PV. Zika Virus Requires the Expression of Claudin-7 for Optimal Replication in Human Endothelial Cells. Front Microbiol 2021; 12:746589. [PMID: 34616388 PMCID: PMC8488266 DOI: 10.3389/fmicb.2021.746589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 08/23/2021] [Indexed: 01/31/2023] Open
Abstract
Zika virus (ZIKV) infection has been associated with a series of neurological pathologies. In patients with ZIKV-induced neurological disorders, the virus is detectable in the central nervous system. Thus, ZIKV is capable of neuroinvasion, presumably through infection of the endothelial cells that constitute the blood-brain barrier (BBB). We demonstrate that susceptibility of BBB endothelial cells to ZIKV infection is modulated by the expression of tight-junction protein claudin-7 (CLDN7). Downregulation of CLDN7 reduced viral RNA yield, viral protein production, and release of infectious viral particles in several endothelial cell types, but not in epithelial cells, indicating that CLDN7 implication in viral infection is cell-type specific. The proviral activity of CLDN7 in endothelial cells is ZIKV-specific since related flaviviruses were not affected by CLDN7 downregulation. Together, our data suggest that CLDN7 facilitates ZIKV infection in endothelial cells at a post-internalization stage and prior to RNA production. Our work contributes to a better understanding of the mechanisms exploited by ZIKV to efficiently infect and replicate in endothelial cells and thus of its ability to cross the BBB.
Collapse
Affiliation(s)
- Jim Zoladek
- Unité Épidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, Centre National de la Recherche Scientifique UMR 3569, Université de Paris, Paris, France
| | - Vincent Legros
- Unité Épidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, Centre National de la Recherche Scientifique UMR 3569, Université de Paris, Paris, France.,VetAgro Sup, Centre International de Recherche en Infectiologie (CIRI), Lyon, France
| | - Patricia Jeannin
- Unité Épidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, Centre National de la Recherche Scientifique UMR 3569, Université de Paris, Paris, France
| | - Maxime Chazal
- Unité Signalisation Antivirale, Institut Pasteur, Centre National de la Recherche Scientifique UMR 3569, Paris, France
| | - Nathalie Pardigon
- Groupe Arbovirus, Unité Environnement et Risques Infectieux, Institut Pasteur, Paris, France
| | - Pierre-Emmanuel Ceccaldi
- Unité Épidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, Centre National de la Recherche Scientifique UMR 3569, Université de Paris, Paris, France
| | - Antoine Gessain
- Unité Épidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, Centre National de la Recherche Scientifique UMR 3569, Université de Paris, Paris, France
| | - Nolwenn Jouvenet
- Unité Signalisation Antivirale, Institut Pasteur, Centre National de la Recherche Scientifique UMR 3569, Paris, France
| | - Philippe V Afonso
- Unité Épidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, Centre National de la Recherche Scientifique UMR 3569, Université de Paris, Paris, France
| |
Collapse
|
7
|
Wang X, Yang Y, Yang X, Liu X, Wang X, Gao L, Yang C, Lan R, Bi J, Zhao Q, Yang G, Wang J, Lin Y, Liu J, Yin G. Classical swine fever virus infection suppresses claudin-1 expression to facilitate its replication in PK-15 cells. Microb Pathog 2021; 157:105012. [PMID: 34062228 DOI: 10.1016/j.micpath.2021.105012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/16/2021] [Accepted: 05/24/2021] [Indexed: 11/18/2022]
Abstract
Classical swine fever (CSF) is one of the most epidemic viral diseases in swine industry. The causative pathogen is CSF virus (CSFV), a small enveloped RNA virus of Flaviviridae family. Claudin-1 was reported to be involved in the infections of a number of viruses, including many from Flaviviridae family, but no studies have investigated the role of porcine claudin-1 during CSFV infection in PK-15 cells. In this study, on the one hand, we demonstrated that CSFV infection reduced the claudin-1 expression at both mRNA and protein levels; on the other hand, CSFV infection was enhanced after claudin-1 knockdown, but inhibited by claudin-1 overexpression in a dose-dependent manner. Furthermore, negative correlation was demonstrated between the claudin-1 expression and CSFV titer. In conclusion, claudin-1 might be a barrier for CSFV infection in PK-15 cells, while CSFV bypasses the barrier through lysosome mediated degradation of claudin-1, which could be repressed by bafilomycin A1. Although the elaborate mechanisms how claudin-1 plays its roles in CSFV infection require further investigations, this study may advance our understanding of the molecular host-pathogen interaction mechanisms underlying CSFV infection and suggests enhancement of porcine claudin-1 as a potential preventive or therapeutic strategy for CSF control.
Collapse
Affiliation(s)
- Xiangmin Wang
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Yu'ai Yang
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Xiaoying Yang
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Xiao Liu
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, China; Department of Oncology-Pathology, Karolinska Institutet, 17176, Stockholm, Sweden
| | - Xiaochun Wang
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Libo Gao
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Chao Yang
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Rui Lan
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Junlong Bi
- Institute of Science and Technology, Chuxiong Normal University, 546 Lucheng South Rd, Chuxiong, 675000, Yunnna, China
| | - Qian Zhao
- Center for Animal Disease Control and Prevention, Chuxiong, 675000, Yunnan, China
| | - Guishu Yang
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Jing Wang
- School of Clinical Medicine, Dali University, Dali, 671003, Yunnan, China
| | - Yingbo Lin
- Department of Oncology-Pathology, Karolinska Institutet, 17176, Stockholm, Sweden
| | - Jianping Liu
- School of Clinical Medicine, Dali University, Dali, 671003, Yunnan, China.
| | - Gefen Yin
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, China.
| |
Collapse
|
8
|
Epithelial barrier function properties of the 16HBE14o- human bronchial epithelial cell culture model. Biosci Rep 2021; 40:226530. [PMID: 32985670 PMCID: PMC7569203 DOI: 10.1042/bsr20201532] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/08/2020] [Accepted: 09/25/2020] [Indexed: 01/23/2023] Open
Abstract
The human bronchial epithelial cell line, 16HBE14o- (16HBE), is widely used as a model for respiratory epithelial diseases and barrier function. During differentiation, transepithelial electrical resistance (TER) increased to approximately 800 Ohms × cm2, while 14C-d-mannitol flux rates (Jm) simultaneously decreased. Tight junctions (TJs) were shown by diffusion potential studies to be anion-selective with PC1/PNa = 1.9. Transepithelial leakiness could be induced by the phorbol ester, protein kinase C (PKC) activator, 12-O-tetradecanoylphorbol-13-acetate (TPA), and the proinflammatory cytokine, tumor necrosis factor-α (TNF-α). Basal barrier function could not be improved by the micronutrients, zinc, or quercetin. Of methodological significance, TER was observed to be more variable and to spontaneously, significantly decrease after initial barrier formation, whereas Jm did not significantly fluctuate or increase. Unlike the strong inverse relationship between TER and Jm during differentiation, differentiated cell layers manifested no relationship between TER and Jm. There was also much greater variability for TER values compared with Jm. Investigating the dependence of 16HBE TER on transcellular ion conductance, inhibition of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) chloride channel with GlyH-101 produced a large decrease in short-circuit current (Isc) and a slight increase in TER, but no significant change in Jm. A strong temperature dependence was observed not only for Isc, but also for TER. In summary, research utilizing 16HBE as a model in airway barrier function studies needs to be aware of the complexity of TER as a parameter of barrier function given the influence of CFTR-dependent transcellular conductance on TER.
Collapse
|
9
|
Abstract
The apical junctional complexes (AJCs) of airway epithelial cells are a key component of the innate immune system by creating barriers to pathogens, inhaled allergens, and environmental particles. AJCs form between adjacent cells and consist of tight junctions (TJs) and adherens junctions (AJs). Respiratory viruses have been shown to target various components of the AJCs, leading to airway epithelial barrier dysfunction by different mechanisms. Virus-induced epithelial permeability may allow for allergens and bacterial pathogens to subsequently invade. In this review, we discuss the pathophysiologic mechanisms leading to disruption of AJCs and the potential ensuing ramifications. We focus on the following viruses that affect the pulmonary system: respiratory syncytial virus, rhinovirus, influenza viruses, immunodeficiency virus, and other viruses such as coxsackievirus, adenovirus, coronaviruses, measles, parainfluenza virus, bocavirus, and vaccinia virus. Understanding the mechanisms by which viruses target the AJC and impair barrier function may help design therapeutic innovations to treat these infections.
Collapse
Affiliation(s)
- Debra T Linfield
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| | - Andjela Raduka
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, Ohio, USA
| | - Mahyar Aghapour
- Institute of Medical Microbiology, Otto-von-Guericke University, Magdeburg, Germany
| | - Fariba Rezaee
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, Ohio, USA.,Center for Pediatric Pulmonary Medicine, Cleveland, Ohio, USA
| |
Collapse
|
10
|
A human cell polarity protein Lgl2 regulates influenza A virus nucleoprotein exportation from nucleus in MDCK cells. J Biosci 2020. [DOI: 10.1007/s12038-020-00039-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
11
|
Zeisel MB, Dhawan P, Baumert TF. Tight junction proteins in gastrointestinal and liver disease. Gut 2019; 68:547-561. [PMID: 30297438 PMCID: PMC6453741 DOI: 10.1136/gutjnl-2018-316906] [Citation(s) in RCA: 211] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/16/2018] [Accepted: 08/19/2018] [Indexed: 12/11/2022]
Abstract
Over the past two decades a growing body of evidence has demonstrated an important role of tight junction (TJ) proteins in the physiology and disease biology of GI and liver disease. On one side, TJ proteins exert their functional role as integral proteins of TJs in forming barriers in the gut and the liver. Furthermore, TJ proteins can also be expressed outside TJs where they play important functional roles in signalling, trafficking and regulation of gene expression. A hallmark of TJ proteins in disease biology is their functional role in epithelial-to-mesenchymal transition. A causative role of TJ proteins has been established in the pathogenesis of colorectal cancer and gastric cancer. Among the best characterised roles of TJ proteins in liver disease biology is their function as cell entry receptors for HCV-one of the most common causes of hepatocellular carcinoma. At the same time TJ proteins are emerging as targets for novel therapeutic approaches for GI and liver disease. Here we review our current knowledge of the role of TJ proteins in the pathogenesis of GI and liver disease biology and discuss their potential as therapeutic targets.
Collapse
Affiliation(s)
- Mirjam B. Zeisel
- Inserm U1052, CNRS UMR 5286, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL), Lyon, France
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Punita Dhawan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE
- Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE
- VA Nebraska-Western Iowa Health Care System, Omaha, NE
| | - Thomas F. Baumert
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Institut Hospitalo-Universitaire, Pôle hépato-digestif, Nouvel Hôpital Civil, Strasbourg, France
| |
Collapse
|
12
|
Hashimoto Y, Okada Y, Shirakura K, Tachibana K, Sawada M, Yagi K, Doi T, Kondoh M. Anti-Claudin Antibodies as a Concept for Development of Claudin-Directed Drugs. J Pharmacol Exp Ther 2019; 368:179-186. [PMID: 30530622 DOI: 10.1124/jpet.118.252361] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 12/06/2018] [Indexed: 03/08/2025] Open
Abstract
Claudin (CLDN) proteins, a tetra-transmembrane family containing over 20 members, have been identified as key structural and functional components of intercellular seals, tight junctions (TJs). CLDNs are involved in the barrier and fence functions of TJs. Loosening the TJ barrier is one strategy for increasing drug absorption and delivery to the brain. Due to aberrant CLDN expression, the TJ fence function is frequently dysregulated in carcinogenesis. In addition, CLDN-1 is a co-receptor for the hepatitis C virus. Together these characteristics indicate CLDNs as promising targets for drug development, and CLDN binders are potential candidates for delivering drugs, treating cancer, and preventing viral infection. Before 2008, a receptor-binding fragment of Clostridium perfringens enterotoxin was the only CLDN binder available. Since then, several challenges regarding the generation of monoclonal antibodies against CLDNs have been surmounted, leading to breakthroughs in CLDN-targeted drug development. Here, we provide an overview of the recent progress in technology using created CLDN binders-anti-CLDN monoclonal antibodies.
Collapse
Affiliation(s)
- Yosuke Hashimoto
- Research Institute of Environmental Medicine, Nagoya University, Aichi, Japan (Y.H., M.S.) and Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan (Y.O., K.S., K.T., K.Y., T.D., M.K.)
| | - Yoshiaki Okada
- Research Institute of Environmental Medicine, Nagoya University, Aichi, Japan (Y.H., M.S.) and Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan (Y.O., K.S., K.T., K.Y., T.D., M.K.)
| | - Keisuke Shirakura
- Research Institute of Environmental Medicine, Nagoya University, Aichi, Japan (Y.H., M.S.) and Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan (Y.O., K.S., K.T., K.Y., T.D., M.K.)
| | - Keisuke Tachibana
- Research Institute of Environmental Medicine, Nagoya University, Aichi, Japan (Y.H., M.S.) and Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan (Y.O., K.S., K.T., K.Y., T.D., M.K.)
| | - Makoto Sawada
- Research Institute of Environmental Medicine, Nagoya University, Aichi, Japan (Y.H., M.S.) and Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan (Y.O., K.S., K.T., K.Y., T.D., M.K.)
| | - Kiyohito Yagi
- Research Institute of Environmental Medicine, Nagoya University, Aichi, Japan (Y.H., M.S.) and Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan (Y.O., K.S., K.T., K.Y., T.D., M.K.)
| | - Takefumi Doi
- Research Institute of Environmental Medicine, Nagoya University, Aichi, Japan (Y.H., M.S.) and Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan (Y.O., K.S., K.T., K.Y., T.D., M.K.)
| | - Masuo Kondoh
- Research Institute of Environmental Medicine, Nagoya University, Aichi, Japan (Y.H., M.S.) and Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan (Y.O., K.S., K.T., K.Y., T.D., M.K.)
| |
Collapse
|
13
|
Khan S, Bernier A, Dapp D, Fortier E, Krajden M, King A, Grebely J, Sagan SM, Cooper CL, Crawley AM. 6th Canadian Symposium on Hepatitis C Virus: Delivering a cure for hepatitis C infection-What are the remaining gaps? CANADIAN LIVER JOURNAL 2018; 1:94-105. [PMID: 35990718 PMCID: PMC9202794 DOI: 10.3138/canlivj.1.2.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 03/12/2018] [Indexed: 08/31/2024]
Abstract
Estimates are that more than 250,000 people in Canada are chronically infected with hepatitis C virus (HCV), and many more are unaware of their infection status. If untreated, chronic HCV infection can lead to cirrhosis and subsequent complications such as hepatocellular carcinoma. The Canadian Network on Hepatitis C, supported by the Public Health Agency of Canada and the Canadian Institutes of Health Research, has been committed to the scientific study of chronic hepatitis C and to supporting the advocacy work to improve diagnosis and access to HCV care in Canada. Although the treatment of HCV infection has been greatly advanced with direct-acting antivirals, with cure rates as high as 95%, many challenges remain in the implementation of HCV care. These issues include the lack of an effective vaccine, infection screening, treatment failure or resistance, post-cure health issues, limitations of treatment access despite increased provincial subsidization, complex needs of at-risk populations (ie, injection drug users, societal obstacles). At the 6th Canadian Symposium on HCV in March 2017, the theme "Delivering a Cure for Hepatitis C Infection: What Are the Remaining Gaps?" provided a framework in which basic scientists, clinicians, epidemiologists, social scientists, and community members interested in HCV research in Canada could showcase how they are working to address these ongoing challenges.
Collapse
Affiliation(s)
- Sarwat Khan
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Annie Bernier
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Dustin Dapp
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Emmanuel Fortier
- Faculté de Médicine, Université de Montréal, Montreal, Quebec, Canada
| | - Mel Krajden
- British Columbia Center for Disease Control, Vancouver, British Columbia, Canada
| | - Alexandra King
- Department of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Jason Grebely
- The Kirby Institute, University of New South Wales Sydney, Sydney, New South Wales, Australia;
| | - Selena M Sagan
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Curtis L Cooper
- School of Epidemiology, Public Health and Preventative Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Division of Infectious Diseases, The Ottawa Hospital, Ottawa, Ontario, Canada
| | - Angela M Crawley
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- Chronic Diseases Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
14
|
Abstract
The passive and regulated movement of ions, solutes, and water via spaces between cells of the epithelial monolayer plays a critical role in the normal intestinal functioning. This paracellular pathway displays a high level of structural and functional specialization, with the membrane-spanning complexes of the tight junctions, adherens junctions, and desmosomes ensuring its integrity. Tight junction proteins, like occludin, tricellulin, and the claudin family isoforms, play prominent roles as barriers to unrestricted paracellular transport. The past decade has witnessed major advances in our understanding of the architecture and function of epithelial tight junctions. While it has been long appreciated that microbes, notably bacterial and viral pathogens, target and disrupt junctional complexes and alter paracellular permeability, the precise mechanisms remain to be defined. Notably, renewed efforts will be required to interpret the available data on pathogen-mediated barrier disruption in the context of the most recent findings on tight junction structure and function. While much of the focus has been on pathogen-induced dysregulation of junctional complexes, commensal microbiota and their products may influence paracellular permeability and contribute to the normal physiology of the gut. Finally, microbes and their products have become important tools in exploring host systems, including the junctional properties of epithelial cells. © 2018 American Physiological Society. Compr Physiol 8:823-842, 2018.
Collapse
Affiliation(s)
- Jennifer Lising Roxas
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, USA
| | - V.K. Viswanathan
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, USA
- Department of Immunobiology, University of Arizona, Tucson, Arizona, USA
- BIO5 Institute for Collaborative Research, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
15
|
Rybakovsky E, Valenzano MC, Deis R, DiGuilio KM, Thomas S, Mullin JM. Improvement of Human-Oral-Epithelial-Barrier Function and of Tight Junctions by Micronutrients. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:10950-10958. [PMID: 29172516 DOI: 10.1021/acs.jafc.7b04203] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The oral epithelium represents a major interface between an organism and its external environment. Improving this barrier at the molecular level can provide an organism added protection from microbial-based diseases. Barrier function of the Gie-3B11-human-gingival-epithelial-cell-culture model is enhanced by the micronutrients zinc, quercetin, retinoic acid, and acetyl-11-keto-β-boswellic acid, as observed by a concentration-dependent increase in transepithelial electrical resistance and a decrease in transepithelial 14C-d-mannitol permeability. With this improvement of tight-junction (TJ)-barrier function (reduced leak) comes a pattern of micronutrient-induced changes in TJ claudin abundance that is specific to each individual micronutrient, along with changes in claudin subcellular localization. These micronutrients were effective not only when administered to both cell surfaces simultaneously but also when administered to the apical surface alone, the surface to which the micronutrients would be presented in routine clinical use. The biomedical implications of micronutrient enhancement of the oral-epithelial barrier are discussed.
Collapse
Affiliation(s)
- Elizabeth Rybakovsky
- Lankenau Institute for Medical Research , 100 East Lancaster Avenue, Wynnewood, Pennsylvania 19096 United States
| | - Mary Carmen Valenzano
- Lankenau Institute for Medical Research , 100 East Lancaster Avenue, Wynnewood, Pennsylvania 19096 United States
| | - Rachael Deis
- Lankenau Institute for Medical Research , 100 East Lancaster Avenue, Wynnewood, Pennsylvania 19096 United States
| | - Katherine M DiGuilio
- Lankenau Institute for Medical Research , 100 East Lancaster Avenue, Wynnewood, Pennsylvania 19096 United States
| | - Sunil Thomas
- Lankenau Institute for Medical Research , 100 East Lancaster Avenue, Wynnewood, Pennsylvania 19096 United States
| | - James M Mullin
- Lankenau Institute for Medical Research , 100 East Lancaster Avenue, Wynnewood, Pennsylvania 19096 United States
| |
Collapse
|
16
|
Yin P, Li Y, Zhang L. Sec24C-Dependent Transport of Claudin-1 Regulates Hepatitis C Virus Entry. J Virol 2017; 91:e00629-17. [PMID: 28679754 PMCID: PMC5571274 DOI: 10.1128/jvi.00629-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/26/2017] [Indexed: 02/07/2023] Open
Abstract
Claudin-1 is a hepatitis C virus (HCV) coreceptor required for viral entry. Although extensive studies have focused on claudin-1 as an anti-HCV target, little is known about how the level of claudin-1 at the cell surface is regulated by host vesicular transport. Here, we identified an interaction between claudin-1 and Sec24C, a cargo-sorting component of the coat protein complex II (COPII) vesicular transport system. By interacting with Sec24C through its C-terminal YV, claudin-1 is transported from the endoplasmic reticulum (ER) and is eventually targeted to the cell surface. Blocking COPII transport inhibits HCV entry by reducing the level of claudin-1 at the cell surface. These findings provide mechanistic insight into the role of COPII vesicular transport in HCV entry.IMPORTANCE Tight junction protein claudin-1 is one of the cellular receptors for hepatitis C virus, which infects 185 million people globally. Its cellular distribution plays important role in HCV entry; however, it is unclear how the localization of claudin-1 to the cell surface is controlled by host transport pathways. In this paper, we not only identified Sec24C as a key host factor for HCV entry but also uncovered a novel mechanism by which the COPII machinery transports claudin-1 to the cell surface. This mechanism might be extended to other claudins that contain a C-terminal YV or V motif.
Collapse
Affiliation(s)
- Peiqi Yin
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ye Li
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Leiliang Zhang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|