1
|
Hu J, Liu J, Yan Y, Shen Z, Sun J, Zheng Y. Activating Striatal Parvalbumin Interneurons to Alleviate Chemotherapy-Induced Muscle Atrophy. J Cachexia Sarcopenia Muscle 2025; 16:e13782. [PMID: 40196908 PMCID: PMC11976163 DOI: 10.1002/jcsm.13782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 02/15/2025] [Accepted: 02/26/2025] [Indexed: 04/09/2025] Open
Abstract
BACKGROUND Cisplatin is a widely used chemotherapeutic agent for treating solid tumours. Still, it induces severe side effects, including muscle atrophy. Understanding the mechanisms of cisplatin-induced muscle loss and exploring potential therapeutic strategies are essential. Parvalbumin (PV) interneurons in the striatum play a crucial role in motor control, and recent studies suggest that their activation may alleviate motor deficits. This study investigates the effects of chemogenetic activation of PV interneurons on cisplatin-induced muscle atrophy and motor dysfunction in mice. METHODS Wild-type C57BL/6 mice and transgenic hM3Dq mice were used in this study. Cisplatin (3 mg/kg) was administered intraperitoneally for 7 days to induce muscle atrophy. Mice were then treated with clozapine-n-oxide (CNO) to activate PV interneurons. Muscle strength and endurance were assessed using grip strength measurements, the inverted grid test and the wire hang test. Neuromuscular junction (NMJ) integrity was examined via histological analysis. Exercise intervention was also included, using a treadmill with a 15° incline for 60 min at varying speeds during seven consecutively days. RESULTS Cisplatin treatment significantly reduced body weight (p < 0.001), grip strength (forelimb strength: p < 0.001, four-limb strength: p < 0.001), endurance (inverted grid test: p = 0.047, wire hang test: p = 0.014) and NMJ integrity (partially innervated NMJs: p = 0.0383). PV interneuron activation with CNO improved spontaneous motor activity in cisplatin-treated mice, as evidenced by a significant increase in total travel distance (p = 0.049) in the open-field test. Histological analysis showed a reduced ratio of partially innervated NMJs in the PV-cre group compared to the control virus group (p = 0.0441). Muscle strength also improved significantly, with forelimb grip strength increased (p < 0.001) and four-limb grip strength increased (p = 0.018). Muscle wet-weight ratios were significantly higher in the PV-cre group (quadriceps: p = 0.030). Exercise intervention significantly improved grip strength (forelimb: p < 0.001, four-limb: p = 0.002), muscle endurance (four-limb hang test: p = 0.048) and muscle weight (quadriceps: p = 0.015, gastrocnemius: p = 0.022), with an increase in muscle fibre cross-sectional area (p = 0.0018). CONCLUSION Activation of PV interneurons significantly alleviates cisplatin-induced motor deficits and muscle atrophy by improving spontaneous motor activity, NMJ integrity and muscle function. It has a similar effect to short-term exercise and may offer a promising therapeutic strategy for mitigating chemotherapy-induced muscle atrophy.
Collapse
Affiliation(s)
- Jun Hu
- Department of Pain, Huadong HospitalFudan UniversityShanghaiChina
- Shanghai Key Laboratory of Clinical Geriatric MedicineFudan UniversityShanghaiChina
- School of Exercise and HealthShanghai University of SportShanghaiChina
- Department of Rehabilitation MedicineShanghai University of Medicine & Health Sciences Affiliated Zhoupu HospitalShanghaiChina
| | - Jingyuan Liu
- Department of Pain, Huadong HospitalFudan UniversityShanghaiChina
- Shanghai Key Laboratory of Clinical Geriatric MedicineFudan UniversityShanghaiChina
| | - Yuqing Yan
- Department of Pain, Huadong HospitalFudan UniversityShanghaiChina
- School of Exercise and HealthShanghai University of SportShanghaiChina
| | - Ziyu Shen
- Department of Pain, Huadong HospitalFudan UniversityShanghaiChina
- Shanghai Key Laboratory of Clinical Geriatric MedicineFudan UniversityShanghaiChina
| | - Junlong Sun
- Department of Pain, Huadong HospitalFudan UniversityShanghaiChina
- Shanghai Key Laboratory of Clinical Geriatric MedicineFudan UniversityShanghaiChina
| | - Yongjun Zheng
- Department of Pain, Huadong HospitalFudan UniversityShanghaiChina
- Shanghai Key Laboratory of Clinical Geriatric MedicineFudan UniversityShanghaiChina
| |
Collapse
|
2
|
Sousa Silva M, Lima Rocha CH, Aguiar Dos Santos A, da Silva MTB. Moderately intense physical exercise alleviates electrocardiographic changes induced by cisplatin in rats. Rev Port Cardiol 2024; 43:613-620. [PMID: 38992427 DOI: 10.1016/j.repc.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/23/2024] [Accepted: 03/29/2024] [Indexed: 07/13/2024] Open
Abstract
INTRODUCTION AND OBJECTIVE Cisplatin induces many collateral effects such as gastrointestinal disorders, nephrotoxicity, and dysautonomia. Recently our group showed that cisplatin treatment induces gastric emptying delay and that physical exercise and treatment with pyridostigmine prevent this change. In the current study, we investigated the role of moderate exercise on cardiac activity and autonomic balance in rats treated with cisplatin. METHODS Male Wistar rats were divided into saline, cisplatin, exercise, and exercise+cisplatin groups. Cardiac and autonomic disorders were induced by (cisplatin - 3 mg/kg, i.p. once a week/per 5 weeks). Exercise consists of swimming (1 hour per day/5× day per week/per 5 weeks without overload). Forty-eight hours after the last session of the training or treatment, we assessed the cardiac activity and HRV via electrocardiogram analysis in DII derivation. RESULTS Cisplatin increase (p<0.05) R-R' interval and decrease (p<0.05) heart rate vs. saline. Exercise+cisplatin prevented (p<0.05) changes in R-R' interval. Exercise per se induced bradycardia vs. saline group. We observed an increase in LF (nu) and a decrease in HF (nu) in the cisplatin group vs. saline. These changes were not significant. Moreover, cisplatin treatment increased (p<0.05) QT, QTc, and JT intervals compared with the saline group. In the exercise+cisplatin groups these increases were prevented significantly (p<0.05). CONCLUSION In the current study, chronic use of cisplatin induced electrocardiographic changes without altering autonomic balance. Moderate physical exercise prevented this phenomenon indicating that exercise can be beneficial in patients in chemotherapy.
Collapse
Affiliation(s)
- Mariana Sousa Silva
- Graduate Program in Pharmacology, Federal University of Piauí, Teresina, PI, Brazil; Laboratory of Exercise and Gastrointestinal Tract - Department of Physical Education, Federal University of Piauí, Teresina, PI, Brazil
| | - Cláudio Henrique Lima Rocha
- Oncoclinics and Oncology Sector at the University Hospital, Federal University of Piauí, Teresina, PI, Brazil
| | - Arménio Aguiar Dos Santos
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Moisés Tolentino Bento da Silva
- Graduate Program in Pharmacology, Federal University of Piauí, Teresina, PI, Brazil; Laboratory of Exercise and Gastrointestinal Tract - Department of Physical Education, Federal University of Piauí, Teresina, PI, Brazil; Laboratory of Physiology, Department of Immuno-Physiology and Pharmacology, School of Medicine and Biomedical Sciences, Institute of the Biomedical Science Abel Salazar, ICBAS, Center for Drug Discovery and Innovative Medicines (MedInUP), University of Porto, Porto, Portugal.
| |
Collapse
|
3
|
Miyauchi Y, Kiyama M, Soga S, Nanri H, Ogiwara T, Yonamine S, Kon R, Ikarashi N, Chiba Y, Hosoe T, Sakai H. Downregulation of Genes for Skeletal Muscle Extracellular Matrix Components by Cisplatin. Biol Pharm Bull 2024; 47:1846-1850. [PMID: 39522978 DOI: 10.1248/bpb.b24-00428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The extracellular matrix (ECM) in skeletal muscle is involved in a variety of physiological functions beyond the mechanical support of muscle tissue, nerves, and blood vessels; however, the role of the ECM in skeletal muscle remains unclear. There is little information regarding changes in the expression of factors comprising the ECM during cisplatin-induced muscle atrophy. In the present study, we examined the changes in gene expressions for skeletal muscle extracellular matrix components in skeletal muscle during cisplatin-induced muscle atrophy. Intraperitoneal administration of cisplatin caused muscle atrophy in mice and during this cisplatin-induced muscle atrophy, the expression of many procollagen genes (Col1a1, Col1a2, Col3a1, Col4a1, Col5a1, and Col5a2), elastin (Eln), fibronectin (Fn1), Laminin (Lama1, Lama2, and Lamb1) decorin (Dcn), heparan sulphate proteoglycans (Hspg2) and integrin (Itgb1) constituting the ECM was suppressed. Additional studies are needed to elucidate the pathological significance and mechanisms of reduced gene expression of ECM components associated with cisplatin-induced muscle atrophy.
Collapse
Affiliation(s)
- Yu Miyauchi
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University
| | - Miho Kiyama
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University
| | - Shinki Soga
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University
| | - Hayato Nanri
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University
| | - Takayuki Ogiwara
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University
| | - Shiori Yonamine
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University
| | - Risako Kon
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University
| | - Nobutomo Ikarashi
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University
| | - Yoshihiko Chiba
- Department of Physiology and Molecular Sciences, School of Pharmacy, Hoshi University
| | - Tomoo Hosoe
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University
- Department of Bioregulatory Science, School of Pharmacy, Hoshi University
| | - Hiroyasu Sakai
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University
| |
Collapse
|
4
|
Sato K, Satoshi Y, Miyauchi Y, Sato F, Kon R, Ikarashi N, Chiba Y, Hosoe T, Sakai H. Downregulation of PGC-1α during cisplatin-induced muscle atrophy in murine skeletal muscle. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166877. [PMID: 37673360 DOI: 10.1016/j.bbadis.2023.166877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/20/2023] [Accepted: 08/31/2023] [Indexed: 09/08/2023]
Abstract
This study aimed to investigate the effects of cisplatin on adenosine triphosphate (ATP) levels, expressions of genes related to mitochondrial oxidative phosphorylation (OXPHOS), and the factors related to mitochondrial biosynthesis in skeletal muscle. Systemic cisplatin administration decreased skeletal muscle mass, skeletal muscle strength, and endurance. The mitochondrial DNA /nuclear DNA ratio was also reduced after treatment with cisplatin. Moreover, among the factors related to mitochondrial biogenesis and function, peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) was significantly downregulated in the cisplatin-treated group. Downregulation of PGC-1α in the skeletal muscle may contribute to muscle weakness during cisplatin-induced muscle atrophy.
Collapse
Affiliation(s)
- Ken Sato
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 1428501, Japan
| | - Yoshida Satoshi
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 1428501, Japan
| | - Yu Miyauchi
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 1428501, Japan
| | - Fumiaki Sato
- Department of Analytical Pathophysiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 1428501, Japan
| | - Risako Kon
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 1428501, Japan
| | - Nobutomo Ikarashi
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 1428501, Japan
| | - Yoshihiko Chiba
- Department of Physiology and Molecular Sciences, School of Pharmacy, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 1428501, Japan
| | - Tomoo Hosoe
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 1428501, Japan; Department of Bioregulatory Science, School of Pharmacy, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 1428501, Japan
| | - Hiroyasu Sakai
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 1428501, Japan.
| |
Collapse
|
5
|
Hong SM, Lee EY, Park J, Kim J, Kim SY. Aerobic Exercise Ameliorates Muscle Atrophy Induced by Methylglyoxal via Increasing Gastrocnemius and Extensor Digitorum Longus Muscle Sensitivity. Biomol Ther (Seoul) 2023; 31:573-582. [PMID: 37562979 PMCID: PMC10468420 DOI: 10.4062/biomolther.2023.130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 07/28/2023] [Accepted: 07/30/2023] [Indexed: 08/12/2023] Open
Abstract
Muscle atrophy is characterized by the loss of muscle function. Many efforts are being made to prevent muscle atrophy, and exercise is an important alternative. Methylglyoxal is a well-known causative agent of metabolic diseases and diabetic complications. This study aimed to evaluate whether methylglyoxal induces muscle atrophy and to evaluate the ameliorative effect of moderate-intensity aerobic exercise in a methylglyoxal-induced muscle atrophy animal model. Each mouse was randomly divided into three groups: control, methylglyoxal-treated, and methylglyoxal-treated within aerobic exercise. In the exercise group, each mouse was trained on a treadmill for 2 weeks. On the last day, all groups were evaluated for several atrophic behaviors and skeletal muscles, including the soleus, plantaris, gastrocnemius, and extensor digitorum longus were analyzed. In the exercise group, muscle mass was restored, causing in attenuation of muscle atrophy. The gastrocnemius and extensor digitorum longus muscles showed improved fiber cross-sectional area and reduced myofibrils. Further, they produced regulated atrophy-related proteins (i.e., muscle atrophy F-box, muscle RING-finger protein-1, and myosin heavy chain), indicating that aerobic exercise stimulated their muscle sensitivity to reverse skeletal muscle atrophy. In conclusion, shortness of the gastrocnemius caused by methylglyoxal may induce the dynamic imbalance of skeletal muscle atrophy, thus methylglyoxal may be a key target for treating skeletal muscle atrophy. To this end, aerobic exercise may be a powerful tool for regulating methylglyoxal-induced skeletal muscle atrophy.
Collapse
Affiliation(s)
- Seong-Min Hong
- College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea
| | - Eun Yoo Lee
- College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea
| | - Jinho Park
- Department of Exercise Rehabilitation, Gachon University, Incheon 21936, Republic of Korea
| | - Jiyoun Kim
- Department of Exercise Rehabilitation, Gachon University, Incheon 21936, Republic of Korea
| | - Sun Yeou Kim
- College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea
- Gachon Institute of Pharmaceutical Science, Gachon University, Incheon 21936, Republic of Korea
| |
Collapse
|
6
|
Sato K, Miyauchi Y, Xu X, Kon R, Ikarashi N, Chiba Y, Hosoe T, Sakai H. Platinum-based anticancer drugs-induced downregulation of myosin heavy chain isoforms in skeletal muscle of mouse. J Pharmacol Sci 2023; 152:167-177. [PMID: 37257944 DOI: 10.1016/j.jphs.2023.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 06/02/2023] Open
Abstract
Cisplatin, a platinum-based anticancer drug used frequently in cancer treatment, causes skeletal muscle atrophy. It was predicted that the proteolytic pathway is enhanced as the mechanism of this atrophy. Therefore, we investigated whether a platinum-based anticancer drug affects the expression of the major proteins of skeletal muscle, myosin heavy chain (MyHC). Mice were injected with cisplatin or oxaliplatin for four consecutive days. C2C12 myotubes were treated using cisplatin and oxaliplatin. Administration of platinum-based anticancer drug reduced quadriceps mass and muscle strength compared to the control group. Protein levels of all MyHC isoforms were reduced in the platinum-based anticancer drug groups. However, only Myh2 (MyHC-IIa) gene expression in skeletal muscle of mice treated with platinum-based anticancer drugs was found to be reduced. Treatment of C2C12 myotubes with platinum-based anticancer drugs reduced the protein levels of all MyHCs, and treatment with the proteasome inhibitor MG-132 restored this reduction. The expression of Mef2c, which was predicted to act upstream of Myh2, was reduced in the skeletal muscle of mice treated systemically with platinum-based anticancer drug. Degradation of skeletal muscle MyHCs by proteasomes may be a factor that plays an important role in muscle mass loss in platinum-based anticancer drug-induced muscle atrophy.
Collapse
Affiliation(s)
- Ken Sato
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 1428501, Japan
| | - Yu Miyauchi
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 1428501, Japan
| | - Xinran Xu
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 1428501, Japan
| | - Risako Kon
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 1428501, Japan
| | - Nobutomo Ikarashi
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 1428501, Japan
| | - Yoshihiko Chiba
- Department of Physiology and Molecular Sciences, School of Pharmacy, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 1428501, Japan
| | - Tomoo Hosoe
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 1428501, Japan; Department of Bioregulatory Science, School of Pharmacy, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 1428501, Japan
| | - Hiroyasu Sakai
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 1428501, Japan.
| |
Collapse
|
7
|
Matsumoto C, Sekine H, Zhang N, Mogami S, Fujitsuka N, Takeda H. Role of p53 in Cisplatin-Induced Myotube Atrophy. Int J Mol Sci 2023; 24:ijms24119176. [PMID: 37298128 DOI: 10.3390/ijms24119176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/21/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Chemotherapy-induced sarcopenia is an unfavorable prognostic factor implicated in the development of postoperative complications and reduces the quality of life of patients with cancer. Skeletal muscle loss due to cisplatin use is caused by mitochondrial dysfunction and activation of muscle-specific ubiquitin ligases Atrogin-1 and muscle RING finger 1 (MuRF1). Although animal studies suggest the involvement of p53 in age-, immobility-, and denervation-related muscle atrophy, the association between cisplatin-induced atrophy and p53 remains unknown. Herein, we investigated the effect of a p53-specific inhibitor, pifithrin-alpha (PFT-α), on cisplatin-induced atrophy in C2C12 myotubes. Cisplatin increased the protein levels of p53, phosphorylated p53, and upregulated the mRNA expression of p53 target genes PUMA and p21 in C2C12 myotubes. PFT-α ameliorated the increase in intracellular reactive oxygen species production and mitochondrial dysfunction, and also reduced the cisplatin-induced increase in the Bax/Bcl-2 ratio. Although PFT-α also reduced the cisplatin-induced increase in MuRF1 and Atrogin-1 gene expression, it did not ameliorate the decrease in myosin heavy chain mRNA and protein levels and muscle-specific actin and myoglobin protein levels. We conclude that cisplatin increases muscle degradation in C2C12 myotubes in a p53-dependent manner, but p53 has minimal involvement in the reduction of muscle protein synthesis.
Collapse
Affiliation(s)
- Chinami Matsumoto
- Tsumura Kampo Research Laboratories, Tsumura & Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun 300-1192, Japan
| | - Hitomi Sekine
- Tsumura Kampo Research Laboratories, Tsumura & Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun 300-1192, Japan
| | - Nana Zhang
- Tsumura Kampo Research Laboratories, Tsumura & Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun 300-1192, Japan
| | - Sachiko Mogami
- Tsumura Kampo Research Laboratories, Tsumura & Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun 300-1192, Japan
| | - Naoki Fujitsuka
- Tsumura Kampo Research Laboratories, Tsumura & Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun 300-1192, Japan
| | - Hiroshi Takeda
- Gastroenterology, Tokeidai Memorial Hospital, 2-3 North-1, East 1, Chuo-ku, Sapporo 060-0031, Japan
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo 060-0812, Japan
| |
Collapse
|
8
|
Macedo AG, Almeida TAF, Massini DA, De Paula VF, De Oliveira DM, Pessôa Filho DM. Effects of exercise training on glucocorticoid-induced muscle atrophy: literature review. Steroids 2023; 195:109240. [PMID: 37061112 DOI: 10.1016/j.steroids.2023.109240] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/08/2023] [Accepted: 04/11/2023] [Indexed: 04/17/2023]
Abstract
Glucocorticoids (GCs) administration, such as cortisol acetate (CA) and dexamethasone (DEXA), is used worldwide due to their anti-inflammatory, anti-allergic, and immunosuppressive properties. However, muscle atrophy is one of the primary deleterious induced responses from the chronic treatment with GCs since it stimulates muscle degradation inhibiting muscle protein synthesis. Animal models allow a better understanding of the molecular pathways involved in this process of gene modulation and production of hypertrophic and atrophic proteins. The treatment with GCs, such as DEXA, promotes the reduction of hypertrophic proteins such as serine/threonine tyrosine kinase (AKT), protein kinase mammalian target of rapamycin (mTOR), and ribosomal protein S6 kinase (p70S6K) and increased gene expression or production of atrophic proteins, such as myostatin, muscle atrophic F-box (atrogin-1), or muscle ring finger protein-1 (MuRF-1). In both continuous exercise (CE) and resistance exercise (RE) forms, exercise training is used to mitigate muscle atrophy induced by GCs. The CE attenuated muscle atrophy induced by CA or DEXA in the plantaris and extensor digitorum longus muscle, while RE mitigated the DEXA-induced atrophy in plantaris and flexor hallux longus muscles. The RE response appears to have occurred by modulation of hypertrophic proteins through increased protein production or phosphorylated/total ratio of mTOR and p70S6K and decreased atrophic protein production of atrogin-1 and MuRF-1. CE needs future research to understand the molecular pathways of its protective response. Abreviations: GCs, glucocorticoids; CA, cortisol acetate. DEXA, dexamethason; ET, exercise training; CE, continuous exercise; RE, resistance exercise; AKT, serine/threonine tyrosine kinase; mTOR, protein kinase mammalian target of rapamycin; p70S6K, ribosomal protein S6 kinase; FOXO3A, forkead box 3A; atrogin-1, muscle atrophic F-box; MuRF-1, muscle ring finger protein; PI3K, phosphatidylinositol 3 kinase; IGF-I, Insulin-like Growth Factor-I; IRS-1, insulin receptor substrate; REDD1, regulated in development and DNA damage responses 1; HSP70, heat shock protein 70; GR, glucocorticoid receptor; Smad2, Cytoplasmic Smad2; Smad3, Cytoplasmic Smad3; CS, Cushing's syndrome.
Collapse
Affiliation(s)
- Anderson G Macedo
- Department of Physical Education, Science Faculty, São Paulo State University (UNESP), Av. Eng. Luiz Edmundo Carrijo Coube, 14-01, Vargem Limpa, Bauru, São Paulo, Brazil; Graduate Programe in Human Development and Technology, São Paulo State University (UNESP), 13506-900, São Paulo, Rio Claro, Brazil.
| | - Tiago A F Almeida
- Department of Physical Education, Science Faculty, São Paulo State University (UNESP), Av. Eng. Luiz Edmundo Carrijo Coube, 14-01, Vargem Limpa, Bauru, São Paulo, Brazil; Graduate Programe in Human Development and Technology, São Paulo State University (UNESP), 13506-900, São Paulo, Rio Claro, Brazil; CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Lisboa, Portugal
| | - Danilo A Massini
- Graduate Programe in Human Development and Technology, São Paulo State University (UNESP), 13506-900, São Paulo, Rio Claro, Brazil
| | - Vinícius F De Paula
- Joint Graduate Program in Physiological Sciences, PIPGCF UFSCar/UNESP, Rodovia Washington Luiz, km 235 Monjolinho, 676, São Carlos, SP, Brazil
| | - David M De Oliveira
- Federal University Jataí, Department of Physical Education, km 195, 3900, Goiás, Jataí, Brazil
| | - Dalton M Pessôa Filho
- Department of Physical Education, Science Faculty, São Paulo State University (UNESP), Av. Eng. Luiz Edmundo Carrijo Coube, 14-01, Vargem Limpa, Bauru, São Paulo, Brazil; Graduate Programe in Human Development and Technology, São Paulo State University (UNESP), 13506-900, São Paulo, Rio Claro, Brazil
| |
Collapse
|
9
|
Pan T, Wang Y, Ye L, Wang Q, Yin F, Qin C. EFFECTS OF CONTUSION AND EXHAUSTIVE EXERCISE ON MURF1 AND MAFBX IN THE SKELETAL MUSCLE OF RATS. REV BRAS MED ESPORTE 2023. [DOI: 10.1590/1517-8692202329012021_0396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT Objective To study the effects of contusion and exhaustive exercise on the expression of degradation-related factors MuRF1 and MAFbx in the skeletal muscle of rats and describe the repair mechanism of skeletal muscle injury. Methods Forty-two male SD rats were randomly divided into 7 groups. The rats in each group were killed at different time points (0h, 24h, 48h) after exhaustive exercise (E0, E24, E48) and contusion (D0, D24, D48), respectively, and in the resting state in control group (C). The right gastrocnemius muscles were resected and divided into two parts, one for the mRNAs of MuRF1 and MAFbx by real-time PCR, and the other for protein measurement by Western blotting. Results Compared with the control group, the MuRF1 mRNA and protein expression of the skeletal muscle in the E0 group was markedly increased (P <0.05) and followed by a downward trend in E24 the E48 groups. On the other hand, MuRF1 mRNA expression of the skeletal muscle in the D24 group was significantly upregulated (P <0.01), then decreased in the D48 group (P <0.01). Meanwhile, compared with the C group, MAFbx mRNA gene expression continued to be upregulated in D24 and D48 (P <0.05), but decreased in E24 and E48 (p<0.01). On the other hand, the NF-κB protein contents of the skeletal muscle in the D0, D24, and D48 groups, as well as in the E48 group, were markedly downregulated (P <0.05), and the one in E48 was also remarkably downregulated (P <0.05). Conclusion NF-κB may negatively regulate the process of protein degradation by the NF-κB / MuRF1 signal pathway. Level of evidence III; Therapeutic studies investigating the results of treatment.
Collapse
|
10
|
Downregulation of Sparc-like protein 1 during cisplatin-induced inhibition of myogenic differentiation of C2C12 myoblasts. Biochem Pharmacol 2022; 204:115234. [PMID: 36041542 DOI: 10.1016/j.bcp.2022.115234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 11/20/2022]
Abstract
Patients with cancer often experience muscle atrophy, which worsens their prognosis. Decreased muscle regenerative capacity plays an important role in the complex processes involved in muscle atrophy. Administration of cisplatin, a cancer chemotherapeutic agent, has been implicated as a cause of muscle atrophy. In this study, we examined whether cisplatin affects the differentiation of myoblasts into myotubes. We treated C2C12 myoblasts with a differentiation medium containing cisplatin and its vehicle during for 8 days and observed the changes in the expression of myosin heavy chain (MyHC) and myogenin in the myoblasts. Cisplatin was injected in mice for 4 consecutive days; on Day 5, the mice quadriceps muscles were sampled and examined. The expression of MyHCs increased and that of myogenin decreased after cisplatin treatment. The secretion of acidic cysteine-rich proteins (e.g., Sparc proteins) reportedly promotes C2C12 myoblast differentiation. Therefore, we investigated the Sparc family gene expression during myogenesis in C2C12 myoblasts after cisplatin treatment. Of all the genes investigated, Sparc-like protein 1 (Sparcl1) expression was significantly suppressed by cisplatin on Days 4-8. Simultaneous treatment with recombinant mouse Sparcl1 almost inhibited the cisplatin-induced suppression of total MyHC and myogenin protein levels. Moreover, Sparcl1 expression decreased in the skeletal muscles of mice, leading to cisplatin-induced muscle atrophy. Our results suggest that cisplatin-induced myogenesis suppression causes muscle atrophy and inhibits the expression of Sparcl1, which promotes C2C12 cell differentiation during myogenesis.
Collapse
|
11
|
Sakai H, Zhou Y, Miyauchi Y, Suzuki Y, Ikeno Y, Kon R, Ikarashi N, Chiba Y, Hosoe T, Kamei J. Increased 20S Proteasome Expression and the Effect of Bortezomib during Cisplatin-Induced Muscle Atrophy. Biol Pharm Bull 2022; 45:910-918. [PMID: 35786599 DOI: 10.1248/bpb.b22-00177] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cisplatin is a chemotherapy drug used to treat a variety of cancers. Muscle loss in cancer patients is associated with increased cancer-related mortality. Previously, we suggested that cisplatin administration increases the atrophic gene expressions of ubiquitin E3 ligases, such as atrogin-1 and muscle RING finger-1 (MuRF1), which may lead to muscle atrophy. In this study, C57BL/6J mice were treated with cisplatin (3 mg/kg, intraperitoneally) or saline for 4 consecutive days. Twenty-four hours after the final injection of cisplatin, quadriceps muscles were removed from the mice. The gene expression of Psma and Psmb, which comprise the 20S proteasome, was upregulated by cisplatin administration in the quadriceps muscle of mouse. Systemic administration of cisplatin significantly reduced not only the quadriceps muscle mass but also the diameter of the myofibers. In addition, bortezomib (0.125 mg/kg, intraperitoneally) was administered 30 min before each cisplatin treatment. The co-administration of bortezomib, a proteasome inhibitor, significantly recovered the reductions in the mass of quadriceps and myofiber diameter, although it did not recover the decline in the forelimb and forepaw strength induced by cisplatin. Increased 20S proteasome abundance may play a significant role in the development of cisplatin-induced muscle atrophy. During cisplatin-induced skeletal muscle atrophy, different mechanisms may be involved between loss of muscle mass and strength. In addition, it is suggested that bortezomib has essentially no effect on cisplatin-induced muscle atrophy.
Collapse
Affiliation(s)
- Hiroyasu Sakai
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University
| | - Yujie Zhou
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University
| | - Yu Miyauchi
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University
| | - Yuta Suzuki
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University
| | - Yohei Ikeno
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University
| | - Risako Kon
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University
| | - Nobutomo Ikarashi
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University
| | - Yoshihiko Chiba
- Department of Physiology and Molecular Sciences, School of Pharmacy, Hoshi University
| | - Tomoo Hosoe
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University.,Department of Bioregulatory Science, School of Pharmacy, Hoshi University
| | - Junzo Kamei
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University.,Juntendo Advanced Research Institute for Health Science, Juntendo University
| |
Collapse
|
12
|
Ikeno Y, Inomata M, Tsukimura Y, Suzuki Y, Takeuchi H, Harada Y, Kon R, Ikarashi N, Chiba Y, Yamada T, Kamei J, Sakai H. Eicosapentaenoic acid suppresses cisplatin-induced muscle atrophy by attenuating the up-regulated gene expression of ubiquitin. J Nutr Biochem 2022; 103:108953. [PMID: 35121023 DOI: 10.1016/j.jnutbio.2022.108953] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/15/2021] [Accepted: 01/04/2022] [Indexed: 10/19/2022]
Abstract
Previously it was shown that cisplatin causes muscle atrophy. Under this condition, cisplatin increased the expression of atorogenes, such as muscle ring finger 1 and atrogin-1 (also known as muscle atrophy F-box protein), in mouse skeletal muscle. It was reported recently that ubiquitin (Ub) and ubiquitinated protein levels in skeletal muscle were also up-regulated in cisplatin-induced muscle atrophy, and cisplatin-induced ubiquitinated proteins were degraded by the 26S proteasome pathway. Eicosapentaenoic acid (EPA) is effective against skeletal muscle atrophy in mice. However, it is unclear how EPA suppresses the Ub-proteasome pathway. In this study, the effect of EPA on cisplatin-induced muscle atrophy in mice was examined. Mice were intraperitoneally injected with cisplatin or vehicle control once daily for 4 days. EPA or its vehicle was orally administered 30 min before cisplatin administration. Cisplatin systemic administration induced decrease in muscle mass, myofiber diameter, and increase in Ub genes and ubiquitinated proteins in mouse skeletal muscle were recovered by co-treatment with EPA. However, weight loss and up-regulated atrogenes induced by cisplatin were not changed by co-treatment with EPA in skeletal muscle. In this study, EPA attenuated cisplatin-induced muscle atrophy via down-regulation of up-regulated Ub gene expression. Although further clinical studies are needed, EPA administration can be effective in the development of muscle atrophy in cisplatin-treated patients.
Collapse
Affiliation(s)
- Yohei Ikeno
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 1428501, Japan
| | - Maya Inomata
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 1428501, Japan
| | - Yuka Tsukimura
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 1428501, Japan
| | - Yuta Suzuki
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 1428501, Japan
| | - Hiroto Takeuchi
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 1428501, Japan
| | - Yui Harada
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 1428501, Japan
| | - Risako Kon
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 1428501, Japan
| | - Nobutomo Ikarashi
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 1428501, Japan
| | - Yoshihiko Chiba
- Laboratory of Molecular Biology and Physiology, School of Pharmacy, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 1428501, Japan
| | - Takeshi Yamada
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Nippon Medical School, Tokyo, Japan
| | - Junzo Kamei
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 1428501, Japan
| | - Hiroyasu Sakai
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 1428501, Japan.
| |
Collapse
|
13
|
Matsumoto C, Sekine H, Nahata M, Mogami S, Ohbuchi K, Fujitsuka N, Takeda H. Role of mitochondrial dysfunction in the pathogenesis of cisplatin-induced myotube atrophy. Biol Pharm Bull 2022; 45:780-792. [DOI: 10.1248/bpb.b22-00171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | | | - Miwa Nahata
- Tsumura Kampo Research Laboratories, Tsumura & Co
| | | | - Katsuya Ohbuchi
- Tsumura Advanced Technology Research Laboratories, Tsumura & Co
| | | | | |
Collapse
|
14
|
Sakai H, Asami M, Naito H, Kitora S, Suzuki Y, Miyauchi Y, Tachinooka R, Yoshida S, Kon R, Ikarashi N, Chiba Y, Kamei J. Exogenous insulin-like growth factor 1 attenuates cisplatin-induced muscle atrophy in mice. J Cachexia Sarcopenia Muscle 2021; 12:1570-1581. [PMID: 34268902 PMCID: PMC8718074 DOI: 10.1002/jcsm.12760] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 05/11/2021] [Accepted: 06/22/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND A reduction in the skeletal muscle mass worsens the prognosis of patients with various cancers. Our previous studies indicated that cisplatin administration to mice caused muscle atrophy. This is a concern for human patients receiving cisplatin. The insulin-like growth factor 1 (IGF-1)/phosphoinositide 3-kinase (PI3K)/Akt pathway stimulates the rate of protein synthesis in skeletal muscle. Thus, IGF-I can be a central therapeutic target for preventing the loss of skeletal muscle mass in muscle atrophy, although it remains unclear whether pharmacological activation of the IGF-1/PI3K/Akt pathway attenuates muscle atrophy induced by cisplatin. In this study, we examined whether exogenous recombinant human IGF-1 attenuated cisplatin-induced muscle atrophy. METHODS Male C57BL/6J mice (8-9 weeks old) were injected with cisplatin or saline for four consecutive days. On Day 5, quadriceps muscles were isolated. Mecasermin (recombinant human IGF-1) or the vehicle control was subcutaneously administered 30 min prior to cisplatin administration. A dietary restriction group achieving weight loss equivalent to that caused by cisplatin administration was used as a second control. C2C12 myotubes were treated with cisplatin with/without recombinant mouse IGF-1. The skeletal muscle protein synthesis/degradation pathway was analysed by histological and biochemical methods. RESULTS Cisplatin reduced protein level of IGF-1 by about 85% compared with the vehicle group and also reduced IGF-1/PI3K/Akt signalling in skeletal muscle. Under this condition, the protein levels of muscle ring finger protein 1 (MuRF1) and atrophy gene 1 (atrogin-1) were increased in quadriceps muscles (MuRF1; 3.0 ± 0.1 folds, atrogin-1; 3.0 ± 0.3 folds, P < 0.001, respectively). The administration of a combination of cisplatin and IGF-1 significantly suppressed the cisplatin-induced downregulation of IGF-1/PI3K/Akt signalling and upregulation of MuRF1 and atrogin-1 (up to 1.6 ± 0.3 and 1.5 ± 0.4 folds, P < 0.001, respectively), resulting in diminished muscular atrophy. IGF-1 showed similar effects in cisplatin-treated C2C12 myotubes, as well as the quadriceps muscle in mice. CONCLUSIONS The downregulation of IGF-1 expression in skeletal muscle might be one of the factors playing an important role in the development of cisplatin-induced muscular atrophy. Compensating for this downregulation with exogenous IGF-1 suggests that it could be a therapeutic target for limiting the loss of skeletal muscle mass in cisplatin-induced muscle atrophy.
Collapse
Affiliation(s)
- Hiroyasu Sakai
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University, Tokyo, Japan
| | - Maho Asami
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University, Tokyo, Japan
| | - Hiroaki Naito
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University, Tokyo, Japan
| | - Satoko Kitora
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University, Tokyo, Japan
| | - Yuta Suzuki
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University, Tokyo, Japan
| | - Yu Miyauchi
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University, Tokyo, Japan
| | - Rei Tachinooka
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University, Tokyo, Japan
| | - Satoshi Yoshida
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University, Tokyo, Japan
| | - Risako Kon
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University, Tokyo, Japan
| | - Nobutomo Ikarashi
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University, Tokyo, Japan
| | - Yoshihiko Chiba
- Department of Physiology and Molecular Sciences, School of Pharmacy, Hoshi University, Tokyo, Japan
| | - Junzo Kamei
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University, Tokyo, Japan
| |
Collapse
|
15
|
Bae JH, Seo DY, Lee SH, Shin C, Jamrasi P, Han J, Song W. Effects of exercise on AKT/PGC1-α/FOXO3a pathway and muscle atrophy in cisplatin-administered rat skeletal muscle. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2021; 25:585-592. [PMID: 34697269 PMCID: PMC8552830 DOI: 10.4196/kjpp.2021.25.6.585] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/19/2021] [Accepted: 08/26/2021] [Indexed: 01/06/2023]
Abstract
Cisplatin has been reported to cause side effects such as muscle wasting in
humans and rodents. The physiological mechanisms involved in preventing muscle
wasting, such as the regulation of AKT, PGC1-α, and autophagy-related
factor FOXO3a by MuRF 1 and Atrogin-1, remain unclear following different types
of exercise and in various skeletal muscle types. Eight-week-old male Wistar
rats (n = 34) were assigned to one of four groups: control (CON, n = 6),
cisplatin injection (1 mg/kg) without exercise (CC, n = 8), cisplatin (1 mg/kg)
+ resistance exercise (CRE, n = 9) group, and cisplatin (1 mg/kg) + aerobic
exercise (CAE, n = 11). The CRE group performed progressive ladder exercise
(starting with 10% of body weight on a 1-m ladder with 2-cm-interval grids, at
85°) for 8 weeks. The CAE group exercised by treadmill running (20 m/min
for 60 min daily, 4 times/week) for 8 weeks. Compared with the CC group, the
levels of the autophagy-related factors BNIP3, Beclin 1, LC3-II/I ratio, p62,
and FOXO3a in the gastrocnemius and soleus muscles were significantly decreased
in the CRE and CAE groups. The CRE and CAE groups further showed significantly
decreased MuRF 1 and Atrogin-1 levels and increased phosphorylation of AKT,
FOXO3a, and PGC1-α. These results suggest that both ladder and aerobic
exercise directly affected muscle wasting by modulating the
AKT/PGC1-α/FOXO3a signaling pathways regardless of the skeletal muscle
type.
Collapse
Affiliation(s)
- Jun Hyun Bae
- Health and Exercise Science Laboratory, Institute of Sports Science, Seoul National University, Seoul 08826, Korea
| | - Dae Yun Seo
- National ResearchLaboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Smart Marine Therapeutics Center, Cardiovascular and Metabolic Disease Center, Inje University
| | - Sang Ho Lee
- Department of Taekwondo, Dong-A University, Busan 49315, Korea
| | - Chaeyoung Shin
- Health and Exercise Science Laboratory, Institute of Sports Science, Seoul National University, Seoul 08826, Korea
| | - Parivash Jamrasi
- Health and Exercise Science Laboratory, Institute of Sports Science, Seoul National University, Seoul 08826, Korea
| | - Jin Han
- National ResearchLaboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Smart Marine Therapeutics Center, Cardiovascular and Metabolic Disease Center, Inje University
| | - Wook Song
- Health and Exercise Science Laboratory, Institute of Sports Science, Seoul National University, Seoul 08826, Korea.,Institute of Aging, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
16
|
Chemotherapy-Induced Myopathy: The Dark Side of the Cachexia Sphere. Cancers (Basel) 2021; 13:cancers13143615. [PMID: 34298829 PMCID: PMC8304349 DOI: 10.3390/cancers13143615] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/11/2021] [Accepted: 07/14/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary In addition to cancer-related factors, anti-cancer chemotherapy treatment can drive life-threatening body wasting in a syndrome known as cachexia. Emerging evidence has described the impact of several key chemotherapeutic agents on skeletal muscle in particular, and the mechanisms are gradually being unravelled. Despite this evidence, there remains very little research regarding therapeutic strategies to protect muscle during anti-cancer treatment and current global grand challenges focused on deciphering the cachexia conundrum fail to consider this aspect—chemotherapy-induced myopathy remains very much on the dark side of the cachexia sphere. This review explores the impact and mechanisms of, and current investigative strategies to protect against, chemotherapy-induced myopathy to illuminate this serious issue. Abstract Cancer cachexia is a debilitating multi-factorial wasting syndrome characterised by severe skeletal muscle wasting and dysfunction (i.e., myopathy). In the oncology setting, cachexia arises from synergistic insults from both cancer–host interactions and chemotherapy-related toxicity. The majority of studies have surrounded the cancer–host interaction side of cancer cachexia, often overlooking the capability of chemotherapy to induce cachectic myopathy. Accumulating evidence in experimental models of cachexia suggests that some chemotherapeutic agents rapidly induce cachectic myopathy, although the underlying mechanisms responsible vary between agents. Importantly, we highlight the capacity of specific chemotherapeutic agents to induce cachectic myopathy, as not all chemotherapies have been evaluated for cachexia-inducing properties—alone or in clinically compatible regimens. Furthermore, we discuss the experimental evidence surrounding therapeutic strategies that have been evaluated in chemotherapy-induced cachexia models, with particular focus on exercise interventions and adjuvant therapeutic candidates targeted at the mitochondria.
Collapse
|
17
|
Zhang H, Chi M, Chen L, Sun X, Wan L, Yang Q, Guo C. Daidzein alleviates cisplatin-induced muscle atrophy by regulating Glut4/AMPK/FoxO pathway. Phytother Res 2021; 35:4363-4376. [PMID: 33876509 DOI: 10.1002/ptr.7132] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/22/2021] [Accepted: 04/06/2021] [Indexed: 12/19/2022]
Abstract
Cisplatin (DDP) is widely used in cancer treatment, but DDP can cause skeletal muscle atrophy and cachexia. This study explored the effect and mechanism of daidzein (DAI) in reducing DDP-induced skeletal muscle atrophy and cachexia in vivo and in vitro. DAI alleviated the weight, food intake, muscle, adipose tissue, kidney weight and forelimb grip of LLC tumour-bearing mice after DDP treatment, and did not affect the antitumour effect of DDP. DAI can reduce the decrease of the cross-sectional area of skeletal muscle fibre-induced by DDP and prevent the change of fibre type proportion. In skeletal muscle, it can inhibit Glut4/AMPK/FoxO pathway, down-regulate the expression of atrogin1 and MuRF1, and inhibit skeletal muscle protein degradation. In DDP treated C2C12 myotubes, DAI could inhibit Glut4/AMPK/FoxO pathway to reduce myotubes atrophy, while AMPK agonist MK-3903 could reverse the protective effect of DAI. These results suggest that DAI can alleviate DDP-induced skeletal muscle atrophy by downregulating the expression of Atrogin1 and MuRF1 through the regulation of Glut4/AMPK/FoxO pathway.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Shanghai Sixth People's Hospital, Shanghai, China.,School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Mengyi Chi
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Shanghai Sixth People's Hospital, Shanghai, China.,School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Linlin Chen
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Shanghai Sixth People's Hospital, Shanghai, China.,School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xipeng Sun
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Shanghai Sixth People's Hospital, Shanghai, China
| | - Lili Wan
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Shanghai Sixth People's Hospital, Shanghai, China
| | - Quanjun Yang
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Shanghai Sixth People's Hospital, Shanghai, China
| | - Cheng Guo
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Shanghai Sixth People's Hospital, Shanghai, China.,School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
18
|
Silva MS, de Andrade Gomes Y, de Sousa Cavalcante ML, Telles PVN, da Silva ACA, Severo JS, de Oliveira Santos R, Dos Santos BLB, Cavalcante GL, Rocha CHL, Palheta-Junior RC, de Cássia Meneses Oliveira R, Dos Santos RF, Sabino JPJ, Dos Santos AA, Tolentino Bento da Silva M. Exercise and pyridostigmine prevents gastric emptying delay and increase blood pressure and cisplatin-induced baroreflex sensitivity in rats. Life Sci 2021; 267:118972. [PMID: 33383052 DOI: 10.1016/j.lfs.2020.118972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/14/2020] [Accepted: 12/22/2020] [Indexed: 02/08/2023]
Abstract
Cisplatin treatment induces an autonomic dysfunction and gastrointestinal and cardiovascular disorders. Physical exercise as well as pyridostigmine treatment induces improves in the autonomic nervous system. In the current study, we investigated the effect of physical exercise and pyridostigmine treatment on gastrointestinal and cardiovascular changes in cisplatin-treated rats. Rats were divided into groups: Saline (S), Cisplatin (Cis), Exercise (Ex), Cisplatin+Exercise (Cis+Ex), Pyridostigmine (Pyr), and Cisplatin+Pyridostigmine (Cis+Pyr). We induced gastrointestinal dysmotility by administering 3 mg kg-1 of cisplatin once week for 5 weeks. The Ex was swimming (1 h per day/5 days per week for 5 weeks with 5% b.w.). GE was evaluated through the colorimetric method of fractional red phenol recovery 10 min after feeding. Pyr groups received 1.5 mg kg-1, p.o. or concomitant Cis treatment. Moreover, gastric contraction in vitro and hemodynamic parameters such as MAP, HR, and evoked baroreflex sensitivity were assessed, as well as sympathetic and parasympathetic tone and intrinsic heart rate (IHR). Cis decrease GE vs. saline (p<0.05). Cis+Ex or Cis+Pyr prevented (p<0.05) decrease in GE vs. Cis rats. Cis decreased (p<0.05) gastric responsiveness in vitro vs. saline. Cis+Ex or Cis+Pyr prevented this phenomenon. Cis treatment increase MAP and decrease in HR (p<0.05) vs saline. Cis+Ex or Cis+Pyr attenuated (p<0.05) both alterations. Cis increased sympathetic tone and decreased vagal tone and IHR (p<0.05) vs. the saline. Cis+Ex or Cis+Pyr prevented those effects vs. the Cis group. In conclusion, physical exercise and pyridostigmine treatment improves autonomic dysfunction and prevented GE delay and changes in hemodynamic parameters, baroreflex sensitivity, and cardiac autonomic control in cisplatin-treated rats.
Collapse
Affiliation(s)
- Mariana Sousa Silva
- Graduate Program in Pharmacology, Federal University of Piauí, Teresina, PI, Brazil
| | | | | | | | | | - Juliana Soares Severo
- Graduate Program in Food and Nutrition, Federal University of Piauí, Teresina, PI, Brazil
| | | | - Brenda Lois Barros Dos Santos
- Laboratory of Exercise and Gastrointestinal Tract - Department of Physical Education, Federal University of Piauí, Teresina, PI, Brazil
| | - Gisele Lopes Cavalcante
- Graduate Program in Pharmaceutical Science, Federal University of Piauí, Teresina, PI, Brazil
| | - Cláudio Henrique Lima Rocha
- Oncoclinics and Oncology Sector at the University Hospital, Federal University of Piaui, Teresina, PI, Brazil
| | | | | | | | - João Paulo Jacob Sabino
- Graduate Program in Pharmaceutical Science, Federal University of Piauí, Teresina, PI, Brazil
| | - Armenio Aguiar Dos Santos
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Moisés Tolentino Bento da Silva
- Graduate Program in Pharmacology, Federal University of Piauí, Teresina, PI, Brazil; Graduate Program in Food and Nutrition, Federal University of Piauí, Teresina, PI, Brazil; Laboratory of Exercise and Gastrointestinal Tract - Department of Physical Education, Federal University of Piauí, Teresina, PI, Brazil.
| |
Collapse
|
19
|
Nagata S, Kato A, Isobe S, Fujikura T, Ohashi N, Miyajima H, Yasuda H. Regular exercise and branched-chain amino acids prevent ischemic acute kidney injury-related muscle wasting in mice. Physiol Rep 2020; 8:e14557. [PMID: 32845566 PMCID: PMC7448801 DOI: 10.14814/phy2.14557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 12/20/2022] Open
Abstract
Acute kidney injury (AKI) causes glucose and protein metabolism abnormalities that result in muscle wasting, thereby affecting the long-term prognosis of critical illness survivors. Here, we examined whether early intervention with treadmill exercise and branched-chain amino acids (BCAA) can prevent AKI-related muscle wasting and reduced physical performance in mice. Unilateral 15 min ischemia-reperfusion injury was induced in contralateral nephrectomized mice, and muscle histological and physiological changes were assessed and compared with those of pair-fed control mice, since AKI causes severe anorexia. Mice exercised for 30 min each day and received oral BCAA for 7 days after AKI insult. By day 7, ischemic AKI significantly decreased wet weight, myofiber cross-sectional area, and central mitochondrial volume density of the anterior tibialis muscle, and significantly reduced maximal exercise time. Regular exercise and BCAA prevented AKI-related muscle wasting and low physical performance by suppressing myostatin and atrogin-1 mRNA upregulation, and restoring reduced phosphorylated Akt and PGC-1α mRNA expression in the muscle. Ischemic AKI induces muscle wasting by accelerating muscle protein degradation and reducing protein synthesis; however, we found that regular exercise and BCAA prevented AKI-related muscle wasting without worsening kidney damage, suggesting that early rehabilitation with nutritional support could prevent AKI-related muscle wasting.
Collapse
Affiliation(s)
- Soichiro Nagata
- Internal Medicine 1Hamamatsu University School of MedicineHamamatsuJapan
| | - Akihiko Kato
- Blood Purification UnitHamamatsu University HospitalHamamatsuJapan
| | - Shinsuke Isobe
- Internal Medicine 1Hamamatsu University School of MedicineHamamatsuJapan
| | - Tomoyuki Fujikura
- Internal Medicine 1Hamamatsu University School of MedicineHamamatsuJapan
| | - Naro Ohashi
- Internal Medicine 1Hamamatsu University School of MedicineHamamatsuJapan
| | - Hiroaki Miyajima
- Internal Medicine 1Hamamatsu University School of MedicineHamamatsuJapan
| | - Hideo Yasuda
- Internal Medicine 1Hamamatsu University School of MedicineHamamatsuJapan
| |
Collapse
|
20
|
Sakai H, Ikeno Y, Tsukimura Y, Inomata M, Suzuki Y, Kon R, Ikarashi N, Chiba Y, Yamada T, Kamei J. Upregulation of ubiquitinated proteins and their degradation pathway in muscle atrophy induced by cisplatin in mice. Toxicol Appl Pharmacol 2020; 403:115165. [PMID: 32738330 DOI: 10.1016/j.taap.2020.115165] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/13/2020] [Accepted: 07/26/2020] [Indexed: 12/26/2022]
Abstract
We previously demonstrated that cisplatin administration in mice induces muscle atrophy and an increase in the expression of two muscle-specific ubiquitin E3 ligase genes, muscle ring finger protein 1 (MuRF1), and atrophy gene-1 (atrogin-1), in skeletal muscle. Ubiquitination serves as a degradation signal in both the ubiquitin-proteasome and selective autophagy pathways. In the present study, we investigated changes in the expression of ubiquitin and ubiquitinated proteins and their degradation pathways. Ubiquitin and ubiquitinated protein levels were increased by cisplatin compared with those in the vehicle and dietary restriction (DR) groups. To quantify the levels of ubiquitin and ubiquitinated proteins, we conducted a dot blot assay using an anti-ubiquitin antibody. The expression of ubiquitin was also significantly increased by cisplatin compared with that in the vehicle and DR groups. Since the ubiquitin proteins were upregulated by cisplatin, we measured the mRNA levels of the ubiquitin genes: Ubb, Ubc, Rps27a, and Uba52. All these four genes were increased by cisplatin administration compared with those in both the vehicle-treated and DR groups in quadriceps muscle tissue. The anti-ubiquitin antibody-sensitive bands increased when C2C12 myotubes were treated with cisplatin. Furthermore, MG-132 (26 s proteasome inhibitor), but not bafilomycin A1 (autophagy inhibitor), caused a further increase in expression. In conclusion, ubiquitin and ubiquitinated proteins are upregulated in cisplatin-induced muscle atrophy. Cisplatin-induced ubiquitinated proteins are degraded by the 26 s proteasome pathway.
Collapse
Affiliation(s)
- Hiroyasu Sakai
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 1428501, Japan.
| | - Yohei Ikeno
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 1428501, Japan
| | - Yuka Tsukimura
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 1428501, Japan
| | - Maya Inomata
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 1428501, Japan
| | - Yuta Suzuki
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 1428501, Japan
| | - Risako Kon
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 1428501, Japan
| | - Nobutomo Ikarashi
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 1428501, Japan
| | - Yoshihiko Chiba
- Department of Physiology and Molecular Sciences, School of Pharmacy, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 1428501, Japan
| | - Takeshi Yamada
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Nippon Medical School Hospital, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 1138602, Japan
| | - Junzo Kamei
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 1428501, Japan
| |
Collapse
|
21
|
Suzuki T, Von Haehling S, Springer J. Promising models for cancer-induced cachexia drug discovery. Expert Opin Drug Discov 2020; 15:627-637. [PMID: 32050816 DOI: 10.1080/17460441.2020.1724954] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Cachexia is a frequent, multifactorial syndrome associated with cancer afflicting patients' quality of life, their ability to tolerate anti-neoplastic therapies and the therapies efficacy, as well as survival. Currently, there are no approved cancer cachexia treatments other than those for the treatment of the underlying cancer. Cancer cachexia (CC) is poorly understood and hence makes clinical trial design difficult at best. This underlines the importance of well-characterized animal models to further elucidate the pathophysiology of CC and drug discovery/development.Areas covered: This review gives an overview of the available animal models and their value and limitations in translational studies.Expert opinion: Using more than one CC model to test research questions or novel compounds/treatment strategies is strongly advisable. The main reason is that models have unique signaling modalities driving cachexia that may only relate to subgroups of cancer patients. Human xenograph CC models require the use of mice with a compromised immune system, limiting their value for translational experiments. It may prove beneficial to include standard care chemotherapy in the experimental design, as many chemotherapeutic agents can induce cachexia themselves and alter the metabolic and signaling derangements of CC and thus the response to new therapeutic strategies.
Collapse
Affiliation(s)
- Tsuyoshi Suzuki
- Department of Cardiology and Pneumology, University Medical Center Göttingen (UMG), Germany and German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Stephan Von Haehling
- Department of Cardiology and Pneumology, University Medical Center Göttingen (UMG), Germany and German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Jochen Springer
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
22
|
Hain BA, Jude B, Xu H, Smuin DM, Fox EJ, Elfar JC, Waning DL. Zoledronic Acid Improves Muscle Function in Healthy Mice Treated with Chemotherapy. J Bone Miner Res 2020; 35:368-381. [PMID: 31614017 DOI: 10.1002/jbmr.3890] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/18/2019] [Accepted: 10/05/2019] [Indexed: 12/20/2022]
Abstract
Carboplatin is a chemotherapy drug used to treat solid tumors but also causes bone loss and muscle atrophy and weakness. Bone loss contributes to muscle weakness through bone-muscle crosstalk, which is prevented with the bisphosphonate zoledronic acid (ZA). We treated mice with carboplatin in the presence or absence of ZA to assess the impact of bone resorption on muscle. Carboplatin caused loss of body weight, muscle mass, and bone mass, and also led to muscle weakness as early as 7 days after treatment. Mice treated with carboplatin and ZA lost body weight and muscle mass but did not lose bone mass. In addition, muscle function in mice treated with ZA was similar to control animals. We also used the anti-TGFβ antibody (1D11) to prevent carboplatin-induced bone loss and showed similar results to ZA-treated mice. We found that atrogin-1 mRNA expression was increased in muscle from mice treated with carboplatin, which explained muscle atrophy. In mice treated with carboplatin for 1 or 3 days, we did not observe any bone or muscle loss, or muscle weakness. In addition, reduced caloric intake in the carboplatin treated mice did not cause loss of bone or muscle mass, or muscle weakness. Our results show that blocking carboplatin-induced bone resorption is sufficient to prevent skeletal muscle weakness and suggests another benefit to bone therapy beyond bone in patients receiving chemotherapy. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Brian A Hain
- Department of Cellular and Molecular Physiology, The Penn State College of Medicine, Hershey, PA, USA
| | - Baptiste Jude
- Department of Cellular and Molecular Physiology, The Penn State College of Medicine, Hershey, PA, USA
| | - Haifang Xu
- Department of Cellular and Molecular Physiology, The Penn State College of Medicine, Hershey, PA, USA
| | - Dallas M Smuin
- Department of Orthopaedics and Rehabilitation, The Penn State College of Medicine, Hershey, PA, USA
| | - Edward J Fox
- Department of Orthopaedics and Rehabilitation, The Penn State College of Medicine, Hershey, PA, USA.,Center for Orthopaedic Research and Translational Science, Hershey, PA, USA
| | - John C Elfar
- Department of Orthopaedics and Rehabilitation, The Penn State College of Medicine, Hershey, PA, USA.,Center for Orthopaedic Research and Translational Science, Hershey, PA, USA
| | - David L Waning
- Department of Cellular and Molecular Physiology, The Penn State College of Medicine, Hershey, PA, USA.,Center for Orthopaedic Research and Translational Science, Hershey, PA, USA.,Penn State Cancer Institute, Hershey, PA, USA
| |
Collapse
|
23
|
Abstract
The incidence of muscle atrophy is increasing with each passing year, which imposes a huge burden on the quality of life of patients. It is a public health issue that causes a growing concern around the world. Exercise is one of the key strategies to prevent and treat various diseases. Appropriate exercise is conducive to compensatory muscle hypertrophy, to improve muscle strength and elasticity, and to train muscle coordination, which is also beneficial to the recovery of skeletal muscle function and the regeneration of muscle cells. Sequelae of paralysis of patients with limb dyskinesia caused by muscle atrophy will be significantly alleviated after regular exercise therapy. Furthermore, exercise therapy can slow down or even reverse muscle atrophy. This article aims to introduce the characteristics of muscle atrophy and summarize the role and mechanism of exercise in the treatment of muscle atrophy in the existing studies, in order to further explore the mechanism of exercise to protect muscle atrophy and provide protection for patients with muscular atrophy.
Collapse
Affiliation(s)
- Nana He
- Department of Cardiology, Huamei Hospital, (previously named Ningbo No. 2 Hospital), University of Chinese Academy of Sciences, Ningbo, China
- Department of Experimental Medical Science, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, China
| | - Honghua Ye
- Department of Cardiology, Huamei Hospital, (previously named Ningbo No. 2 Hospital), University of Chinese Academy of Sciences, Ningbo, China
| |
Collapse
|
24
|
Lactobacillus supplementation prevents cisplatin-induced cardiotoxicity possibly by inflammation inhibition. Cancer Chemother Pharmacol 2018; 82:999-1008. [DOI: 10.1007/s00280-018-3691-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 09/20/2018] [Indexed: 12/18/2022]
|
25
|
Platinum-induced muscle wasting in cancer chemotherapy: Mechanisms and potential targets for therapeutic intervention. Life Sci 2018; 208:1-9. [PMID: 30146014 DOI: 10.1016/j.lfs.2018.07.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/01/2018] [Accepted: 07/05/2018] [Indexed: 02/07/2023]
Abstract
Platinum-based drugs are among the most effective anticancer therapies, integrating the standard of care for numerous human malignancies. However, platinum-based chemotherapy induces severe side-effects in cancer patients, such as cachexia. Weight loss, as well as fatigue and systemic inflammation are characteristics of this syndrome that adversely affects the survival and the quality of life of cancer patients. The signalling pathways involved in chemotherapy-induced cachexia are still to be fully understood, but the activity of several mediators associated with muscle wasting, such as myostatin and pro-inflammatory cytokines are increased by platinum-based drugs like cisplatin. Indeed, the molecular mechanisms behind chemotherapy-induced muscle wasting seem to be similar to the ones promoted by cancer in treatment-naive patients. Although some therapeutic agents are under investigation for treating muscle wasting in cancer patients, no effective treatment is yet available. Herein, we review the molecular mechanisms proposed to be involved in chemotherapy-related muscle wasting with a focus on the typical platinum-based drug cisplatin. Therapeutic strategies presently under investigation are also reviewed, providing an overview of the current efforts to preserve muscle mass and quality of life among cancer patients.
Collapse
|
26
|
Autophagy Is a Promoter for Aerobic Exercise Performance during High Altitude Training. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:3617508. [PMID: 29849885 PMCID: PMC5907404 DOI: 10.1155/2018/3617508] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/10/2018] [Accepted: 03/15/2018] [Indexed: 01/10/2023]
Abstract
High altitude training is one of the effective strategies for improving aerobic exercise performance at sea level via altitude acclimatization, thereby improving oxygen transport and/or utilization. But its underlying molecular mechanisms on physiological functions and exercise performance of athletes are still vague. More recent evidence suggests that the recycling of cellular components by autophagy is an important process of the body involved in the adaptive responses to exercise. Whether high altitude training can activate autophagy or whether high altitude training can improve exercise performance through exercise-induced autophagy is still unclear. In this narrative review article, we will summarize current research advances in the improvement of exercise performance through high altitude training and its reasonable molecular mechanisms associated with autophagy, which will provide a new field to explore the molecular mechanisms of adaptive response to high altitude training.
Collapse
|