1
|
Topriceanu CC, Vissing CR, Axelsson Raja A, Day SM, Russell MW, Zahka K, Pereira AC, Colan SD, Murphy AM, Canter C, Bach RG, Wheeler MT, Rossano JW, Owens AT, Mestroni L, Taylor MRG, Moon JC, Captur G, Patel AR, Wilmot I, Soslow JH, Becker JR, Seidman CE, Lakdawala NK, Bundgaard H, Tahir UA, Ho CY. Proteomic Analysis of Valsartan for Attenuating Disease Evolution in Early Sarcomeric Hypertrophic Cardiomyopathy (VANISH) Clinical Trial. Circ Heart Fail 2025:e012393. [PMID: 40340372 DOI: 10.1161/circheartfailure.124.012393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 04/07/2025] [Indexed: 05/10/2025]
Abstract
BACKGROUND In hypertrophic cardiomyopathy (HCM), the mechanisms through which pathogenic sarcomere variants (G+) lead to left ventricular hypertrophy (LVH) are not understood. METHODS VANISH (Valsartan for Attenuating Disease Evolution in Early Sarcomeric Hypertrophic Cardiomyopathy) was a multicenter, double-blind, placebo-controlled randomized trial testing valsartan's ability to attenuate phenotypic progression in early sarcomeric (G+LVH+) and subclinical HCM (G+LVH-). The outcome was a composite Z score reflecting cardiac remodeling from baseline to year 2 (end of study). Baseline and year 2 blood samples were used to quantify 276 proteins using a proximity extension assay (Olink, Sweden). We explored relative differences in protein abundance between early and subclinical HCM at baseline. In addition, we compared proteomic changes between baseline and year 2 in subclinical HCM participants who experienced phenotypic conversion to early HCM (converters) versus nonconverters; early HCM participants receiving valsartan versus placebo; and in association with changes in Z score. Comparisons were made using t test/Mann-Whitney U test, linear mixed models, and generalized linear models, correcting for multiple testing. RESULTS Circulating proteins were analyzed in 192 participants (32 subclinical and 160 early HCM [81 allocated to valsartan]). NT-proBNP (N-terminal pro-B-type natriuretic peptide) differentiated early from subclinical HCM and tracked with phenotypic progression in early HCM (1-unit worsening in Z score associated with a 27% increase in NT-proBNP [95% CI, 17-37%]). Some extracellular matrix remodeling proteins showed higher abundance (tissue-type plasminogen activator) in early compared with subclinical HCM or tracked with disease progression (decorin) in early HCM. Growth factors had higher relative abundance in early HCM (fibroblast growth factor-21). While no individual protein was able to distinguish converters from nonconverters, multiprotein the panels lipocalin 2, lectin-like oxidized low-density lipoprotein receptor 1, and either NT-proBNP or interleukin-17 receptor A, could distinguish these groups. CONCLUSIONS NT-proBNP was the most robust protein to track progression. Studying pathways involving growth factors and extracellular matrix remodeling may yield additional insights into mechanisms behind disease progression. REGISTRATION URL: https://www.clinicaltrials.gov; Unique identifier: NCT01912534.
Collapse
Affiliation(s)
- Constantin-Cristian Topriceanu
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (C.-C.T., A.C.P., C.E.S., N.K.L., C.Y.H.)
- UCL Institute of Cardiovascular Science, University College London, United Kingdom (C.-C.T., J.C.M., G.C.)
- UCL MRC Unit for Lifelong Health and Ageing, University College London, United Kingdom (C.-C.T., G.C.)
- Cardiac MRI Unit, Barts Heart Centre, London, United Kingdom (C.-C.T., J.C.M.)
| | - Christoffer Rasmus Vissing
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Denmark (C.R.V., A.A.R., H.B.)
| | - Anna Axelsson Raja
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Denmark (C.R.V., A.A.R., H.B.)
| | - Sharlene M Day
- Division of Cardiovascular Medicine, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia (S.M.D., A.T.O.)
| | | | | | - Alexandre C Pereira
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (C.-C.T., A.C.P., C.E.S., N.K.L., C.Y.H.)
- Laboratory of Genetics and Molecular Cardiology, Heart Institute, University of São Paulo Medical School, Brazil (A.C.P.)
| | - Steven D Colan
- Department of Cardiology, Boston Children's Hospital, MA (S.D.C.)
| | - Anne M Murphy
- Division of Pediatric Cardiology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD (A.M.M.)
| | - Charles Canter
- Washington University School of Medicine, St Louis, MO (C.C., R.G.B.)
| | - Richard G Bach
- Washington University School of Medicine, St Louis, MO (C.C., R.G.B.)
| | - Matthew T Wheeler
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, CA (M.T.W.)
| | | | - Anjali T Owens
- Division of Cardiovascular Medicine, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia (S.M.D., A.T.O.)
| | - Luisa Mestroni
- University of Colorado Anschutz Medical Campus, Aurora, CO (L.M., M.R.G.T.)
| | - Matthew R G Taylor
- University of Colorado Anschutz Medical Campus, Aurora, CO (L.M., M.R.G.T.)
| | - James C Moon
- UCL Institute of Cardiovascular Science, University College London, United Kingdom (C.-C.T., J.C.M., G.C.)
- Cardiac MRI Unit, Barts Heart Centre, London, United Kingdom (C.-C.T., J.C.M.)
| | - Gabriella Captur
- UCL Institute of Cardiovascular Science, University College London, United Kingdom (C.-C.T., J.C.M., G.C.)
- UCL MRC Unit for Lifelong Health and Ageing, University College London, United Kingdom (C.-C.T., G.C.)
- The Royal Free London NHS Foundation Trust, Centre for Inherited Heart Muscle Conditions, Cardiology Department, United Kingdom (G.C.)
| | - Amit R Patel
- Cardiovascular Division, Department of Medicine, University of Virginia Health System, Charlottesville (A.R.P.)
| | - Ivan Wilmot
- Heart Institute, Cincinnati Children's Hospital Medical Center, OH (I.W.)
| | | | - Jason R Becker
- Division of Cardiology, University of Pittsburgh School of Medicine and UPMC, PA (J.R.B.)
| | - Christine E Seidman
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (C.-C.T., A.C.P., C.E.S., N.K.L., C.Y.H.)
- Howard Hughes Medical Institute, Chevy Chase, MD (C.E.S.)
| | - Neal K Lakdawala
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (C.-C.T., A.C.P., C.E.S., N.K.L., C.Y.H.)
| | - Henning Bundgaard
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Denmark (C.R.V., A.A.R., H.B.)
| | - Usman A Tahir
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (U.A.T.)
| | - Carolyn Y Ho
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (C.-C.T., A.C.P., C.E.S., N.K.L., C.Y.H.)
| |
Collapse
|
2
|
Greer-Short A, Greenwood A, Leon EC, Qureshi TN, von Kraut K, Wong J, Tsui JH, Reid CA, Cheng Z, Easter E, Yang J, Ho J, Steltzer S, Budan A, Cho M, Chandrakumar R, Cisne-Thompson O, Feathers C, Chung TW, Rodriguez N, Jones S, Alleyne-Levy C, Liu J, Jing F, Prince WS, Lin J, Ivey KN, Tingley WG, Hoey T, Lombardi LM. AAV9-mediated MYBPC3 gene therapy with optimized expression cassette enhances cardiac function and survival in MYBPC3 cardiomyopathy models. Nat Commun 2025; 16:2196. [PMID: 40038304 PMCID: PMC11880196 DOI: 10.1038/s41467-025-57481-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 02/24/2025] [Indexed: 03/06/2025] Open
Abstract
Hypertrophic cardiomyopathy (HCM) affects approximately 600,000 people in the United States. Loss-of-function mutations in Myosin Binding Protein C3, MYBPC3, are the most common genetic cause of HCM, with the majority of mutations resulting in haploinsufficiency. To restore cardiac MYBPC3, we use an adeno-associated virus (AAV9) vector and engineer an optimized expression cassette with a minimal promoter and cis-regulatory elements (TN-201) to enhance packaging efficiency and cardiomyocyte expression. Rather than simply preventing cardiac dysfunction preclinically, we demonstrate in a symptomatic MYBPC3-deficient murine model the ability of AAV gene therapy to reverse cardiac hypertrophy and systolic dysfunction, improve diastolic dysfunction, and prolong survival. Dose-ranging efficacy studies exhibit restoration of wild-type MYBPC3 protein levels and saturation of cardiac improvement at the clinically relevant dose of 3E13 vg/kg, outperforming a previously published construct. These findings suggest that TN-201 may offer therapeutic benefits in MYBPC3-associated cardiomyopathy, pending further validation in clinical settings.
Collapse
Affiliation(s)
| | | | - Elena C Leon
- Tenaya Therapeutics, South San Francisco, CA, USA
| | | | | | - Justin Wong
- Tenaya Therapeutics, South San Francisco, CA, USA
| | | | | | - Ze Cheng
- Tenaya Therapeutics, South San Francisco, CA, USA
| | | | - Jin Yang
- Tenaya Therapeutics, South San Francisco, CA, USA
| | - Jaclyn Ho
- Tenaya Therapeutics, South San Francisco, CA, USA
| | | | - Ana Budan
- Tenaya Therapeutics, South San Francisco, CA, USA
| | - Marie Cho
- Tenaya Therapeutics, South San Francisco, CA, USA
| | | | | | | | | | | | | | | | - Jun Liu
- Tenaya Therapeutics, South San Francisco, CA, USA
| | - Frank Jing
- Tenaya Therapeutics, South San Francisco, CA, USA
| | | | - JianMin Lin
- Tenaya Therapeutics, South San Francisco, CA, USA
| | | | | | - Timothy Hoey
- Tenaya Therapeutics, South San Francisco, CA, USA
| | | |
Collapse
|
3
|
Lu C, Gao C, Wei J, Dong D, Sun M. SIRT1-FOXOs signaling pathway: A potential target for attenuating cardiomyopathy. Cell Signal 2024; 124:111409. [PMID: 39277092 DOI: 10.1016/j.cellsig.2024.111409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
Cardiomyopathy constitutes a global health burden. It refers to myocardial injury that causes alterations in cardiac structure and function, ultimately leading to heart failure. Currently, there is no definitive treatment for cardiomyopathy. This is because existing treatments primarily focus on drug interventions to attenuate symptoms rather than addressing the underlying causes of the disease. Notably, the cardiomyocyte loss is one of the key risk factors for cardiomyopathy. This loss can occur through various mechanisms such as metabolic disturbances, cardiac stress (e.g., oxidative stress), apoptosis as well as cell death resulting from disorders in autophagic flux, etc. Sirtuins (SIRTs) are categorized as class III histone deacetylases, with their enzyme activity primarily reliant on the substrate nicotinamide adenine dinucleotide (NAD (+)). Among them, Sirtuin 1 (SIRT1) is the most intensively studied in the cardiovascular system. Forkhead O transcription factors (FOXOs) are the downstream effectors of SIRT1. Several reports have shown that SIRT1 can form a signaling pathway with FOXOs in myocardial tissue, and this pathway plays a key regulatory role in cell loss. Thus, this review describes the basic mechanism of SIRT1-FOXOs in inhibiting cardiomyocyte loss and its favorable role in cardiomyopathy. Additionally, we summarized the SIRT1-FOXOs related regulation factor and prospects the SIRT1-FOXOs potential clinical application, which provide reference for the development of cardiomyopathy treatment.
Collapse
Affiliation(s)
- Changxu Lu
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Can Gao
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Jinwen Wei
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Dan Dong
- College of Basic Medical Science, China Medical University, Shenyang, Liaoning, China.
| | - Mingli Sun
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, China.
| |
Collapse
|
4
|
Huang S, Li J, Li Q, Wang Q, Zhou X, Chen J, Chen X, Bellou A, Zhuang J, Lei L. Cardiomyopathy: pathogenesis and therapeutic interventions. MedComm (Beijing) 2024; 5:e772. [PMID: 39465141 PMCID: PMC11502724 DOI: 10.1002/mco2.772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 10/29/2024] Open
Abstract
Cardiomyopathy is a group of disease characterized by structural and functional damage to the myocardium. The etiologies of cardiomyopathies are diverse, spanning from genetic mutations impacting fundamental myocardial functions to systemic disorders that result in widespread cardiac damage. Many specific gene mutations cause primary cardiomyopathy. Environmental factors and metabolic disorders may also lead to the occurrence of cardiomyopathy. This review provides an in-depth analysis of the current understanding of the pathogenesis of various cardiomyopathies, highlighting the molecular and cellular mechanisms that contribute to their development and progression. The current therapeutic interventions for cardiomyopathies range from pharmacological interventions to mechanical support and heart transplantation. Gene therapy and cell therapy, propelled by ongoing advancements in overarching strategies and methodologies, has also emerged as a pivotal clinical intervention for a variety of diseases. The increasing number of causal gene of cardiomyopathies have been identified in recent studies. Therefore, gene therapy targeting causal genes holds promise in offering therapeutic advantages to individuals diagnosed with cardiomyopathies. Acting as a more precise approach to gene therapy, they are gradually emerging as a substitute for traditional gene therapy. This article reviews pathogenesis and therapeutic interventions for different cardiomyopathies.
Collapse
Affiliation(s)
- Shitong Huang
- Department of Cardiac Surgical Intensive Care UnitGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Jiaxin Li
- Department of Cardiac Surgical Intensive Care UnitGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Qiuying Li
- Department of Cardiac Surgical Intensive Care UnitGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Qiuyu Wang
- Department of Cardiac Surgical Intensive Care UnitGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Xianwu Zhou
- Department of Cardiovascular SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Jimei Chen
- Department of Cardiovascular SurgeryGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
- Department of Cardiovascular SurgeryGuangdong Provincial Key Laboratory of South China Structural Heart DiseaseGuangzhouChina
| | - Xuanhui Chen
- Department of Medical Big Data CenterGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Abdelouahab Bellou
- Department of Emergency Medicine, Institute of Sciences in Emergency MedicineGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
- Department of Emergency MedicineWayne State University School of MedicineDetroitMichiganUSA
| | - Jian Zhuang
- Department of Cardiovascular SurgeryGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
- Department of Cardiovascular SurgeryGuangdong Provincial Key Laboratory of South China Structural Heart DiseaseGuangzhouChina
| | - Liming Lei
- Department of Cardiac Surgical Intensive Care UnitGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
- Department of Cardiovascular SurgeryGuangdong Provincial Key Laboratory of South China Structural Heart DiseaseGuangzhouChina
| |
Collapse
|
5
|
Li G, Lin D, Fan X, Peng B. Exploring Hypertrophic Cardiomyopathy Biomarkers through Integrated Bioinformatics Analysis: Uncovering Novel Diagnostic Candidates. Cardiol Res Pract 2024; 2024:4639334. [PMID: 38994496 PMCID: PMC11239233 DOI: 10.1155/2024/4639334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/03/2024] [Accepted: 06/11/2024] [Indexed: 07/13/2024] Open
Abstract
HCM is a heterogeneous monogenic cardiac disease that can lead to arrhythmia, heart failure, and atrial fibrillation. This study aims to identify biomarkers that have a positive impact on the treatment, diagnosis, and prediction of HCM through bioinformatics analysis. We selected the GSE36961 and GSE180313 datasets from the Gene Expression Omnibus (GEO) database for differential analysis. GSE36961 generated 6 modules through weighted gene co-expression network analysis (WGCNA), with the green and grey modules showing the highest positive correlation with HCM (green module: cor = 0.88, p = 2e - 48; grey module: cor = 0.78, p = 4e - 31). GSE180313 generated 17 modules through WGCNA, with the turquoise module exhibiting the highest positive correlation with HCM (turquoise module: cor = 0.92, p = 6e - 09). We conducted GO and KEGG pathway analysis on the intersection genes of the selected modules from GSE36961 and GSE180313 and intersected their GO enriched pathways with the GO enriched pathways of endothelial cell subtypes calculated after clustering single-cell data GSE181764, resulting in 383 genes on the enriched pathways. Subsequently, we used LASSO prediction on these 383 genes and identified RTN4, COL4A1, and IER3 as key genes involved in the occurrence and development of HCM. The expression levels of these genes were validated in the GSE68316 and GSE32453 datasets. In conclusion, RTN4, COL4A1, and IER3 are potential biomarkers of HCM, and protein degradation, mechanical stress, and hypoxia may be associated with the occurrence and development of HCM.
Collapse
Affiliation(s)
- Guanmou Li
- Zhujiang Hospital of Southern Medical University, Guangzhou 510120, Guangdong, China
| | - Dongqun Lin
- Department of Cardiovascular Surgery Guangdong Provincial Hospital of Chinese Medicine The Second Affiliated Hospital of Guangzhou University of Chinese Medicine The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou 510120, Guangdong, China
- Guangdong Provincial Key Laboratory of TCM Emergency Research, Guangzhou 510120, Guangdong, China
| | - Xiaoping Fan
- Department of Cardiovascular Surgery Guangdong Provincial Hospital of Chinese Medicine The Second Affiliated Hospital of Guangzhou University of Chinese Medicine The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou 510120, Guangdong, China
- Guangdong Provincial Key Laboratory of TCM Emergency Research, Guangzhou 510120, Guangdong, China
| | - Bo Peng
- Department of Cardiovascular Surgery Guangdong Provincial Hospital of Chinese Medicine The Second Affiliated Hospital of Guangzhou University of Chinese Medicine The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou 510120, Guangdong, China
- Guangdong Provincial Key Laboratory of TCM Emergency Research, Guangzhou 510120, Guangdong, China
| |
Collapse
|
6
|
Xu W, Zhu F, Zhang Y, Li P, Sheng Y. An overview of the treatments for hypertrophic cardiomyopathy. Front Cardiovasc Med 2024; 11:1387596. [PMID: 38887447 PMCID: PMC11180737 DOI: 10.3389/fcvm.2024.1387596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/09/2024] [Indexed: 06/20/2024] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a very prevalent inherited disease with a wide global distribution and a prevalence rate of approximately 0.2% in the general population. Left ventricular hypertrophy (LVH) caused by sarcomere mutation is the primary reason of HCM. The histopathology feature is that cardiomyocyte hypertrophy, myocyte disorder and myocardial fibrosis lead to diminished diastolic function, left ventricular outflow tract obstruction (LVOTO) and arrhythmia, all of which result in serious cardiac complications. Previously, HCM was considered a malignant disease that was almost untreatable. With the improvement of medical standards and increasing awareness of HCM, it has become a highly treatable disease in contemporary times, with a significant decrease in mortality rates. However, there are still significant unmet requirements in the therapy of HCM. This paper draws on more than 100 references from the past four decades and summarizes current advances in the treatment of HCM. The article will review the pathogenesis and types, recent development in pharmacotherapy, invasive treatments and gene therapies, as well as dilemma and future development of HCM.
Collapse
Affiliation(s)
- Wenna Xu
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Fuyu Zhu
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Yue Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Peng Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yanhui Sheng
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
- Department of Cardiology, Jiangsu Province Hospital, Nanjing, Jiangsu, China
| |
Collapse
|
7
|
Menezes Junior ADS, de França-e-Silva ALG, de Oliveira HL, de Lima KBA, Porto IDOP, Pedroso TMA, Silva DDME, Freitas AF. Genetic Mutations and Mitochondrial Redox Signaling as Modulating Factors in Hypertrophic Cardiomyopathy: A Scoping Review. Int J Mol Sci 2024; 25:5855. [PMID: 38892064 PMCID: PMC11173352 DOI: 10.3390/ijms25115855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a heart condition characterized by cellular and metabolic dysfunction, with mitochondrial dysfunction playing a crucial role. Although the direct relationship between genetic mutations and mitochondrial dysfunction remains unclear, targeting mitochondrial dysfunction presents promising opportunities for treatment, as there are currently no effective treatments available for HCM. This review adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis Extension for Scoping Reviews guidelines. Searches were conducted in databases such as PubMed, Embase, and Scopus up to September 2023 using "MESH terms". Bibliographic references from pertinent articles were also included. Hypertrophic cardiomyopathy (HCM) is influenced by ionic homeostasis, cardiac tissue remodeling, metabolic balance, genetic mutations, reactive oxygen species regulation, and mitochondrial dysfunction. The latter is a common factor regardless of the cause and is linked to intracellular calcium handling, energetic and oxidative stress, and HCM-induced hypertrophy. Hypertrophic cardiomyopathy treatments focus on symptom management and complication prevention. Targeted therapeutic approaches, such as improving mitochondrial bioenergetics, are being explored. This includes coenzyme Q and elamipretide therapies and metabolic strategies like therapeutic ketosis. Understanding the biomolecular, genetic, and mitochondrial mechanisms underlying HCM is crucial for developing new therapeutic modalities.
Collapse
Affiliation(s)
- Antonio da Silva Menezes Junior
- Faculdade de Medicina, Departamento de Clínica Médica, Universidade Federal de Goiás (UFG), Goiânia 74020-020, Brazil; (A.L.G.d.F.-e.-S.); (H.L.d.O.); (K.B.A.d.L.); (D.d.M.e.S.); (A.F.F.J.)
| | - Ana Luísa Guedes de França-e-Silva
- Faculdade de Medicina, Departamento de Clínica Médica, Universidade Federal de Goiás (UFG), Goiânia 74020-020, Brazil; (A.L.G.d.F.-e.-S.); (H.L.d.O.); (K.B.A.d.L.); (D.d.M.e.S.); (A.F.F.J.)
| | - Henrique Lima de Oliveira
- Faculdade de Medicina, Departamento de Clínica Médica, Universidade Federal de Goiás (UFG), Goiânia 74020-020, Brazil; (A.L.G.d.F.-e.-S.); (H.L.d.O.); (K.B.A.d.L.); (D.d.M.e.S.); (A.F.F.J.)
| | - Khissya Beatryz Alves de Lima
- Faculdade de Medicina, Departamento de Clínica Médica, Universidade Federal de Goiás (UFG), Goiânia 74020-020, Brazil; (A.L.G.d.F.-e.-S.); (H.L.d.O.); (K.B.A.d.L.); (D.d.M.e.S.); (A.F.F.J.)
| | - Iane de Oliveira Pires Porto
- Faculdade de Medicina, Universidade de Rio Verde (UniRV), Campus Aparecida, Aparecida de Goiânia 74345-030, Brazil; (I.d.O.P.P.); (T.M.A.P.)
| | - Thays Millena Alves Pedroso
- Faculdade de Medicina, Universidade de Rio Verde (UniRV), Campus Aparecida, Aparecida de Goiânia 74345-030, Brazil; (I.d.O.P.P.); (T.M.A.P.)
| | - Daniela de Melo e Silva
- Faculdade de Medicina, Departamento de Clínica Médica, Universidade Federal de Goiás (UFG), Goiânia 74020-020, Brazil; (A.L.G.d.F.-e.-S.); (H.L.d.O.); (K.B.A.d.L.); (D.d.M.e.S.); (A.F.F.J.)
| | - Aguinaldo F. Freitas
- Faculdade de Medicina, Departamento de Clínica Médica, Universidade Federal de Goiás (UFG), Goiânia 74020-020, Brazil; (A.L.G.d.F.-e.-S.); (H.L.d.O.); (K.B.A.d.L.); (D.d.M.e.S.); (A.F.F.J.)
| |
Collapse
|
8
|
Pu L, Li J, Qi W, Zhang J, Chen H, Tang Z, Han Y, Wang J, Chen Y. Current perspectives of sudden cardiac death management in hypertrophic cardiomyopathy. Heart Fail Rev 2024; 29:395-404. [PMID: 37865929 DOI: 10.1007/s10741-023-10355-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/25/2023] [Indexed: 10/24/2023]
Abstract
Hypertrophic cardiomyopathy (HCM) is an autosomal dominant disorder characterized by left ventricular hypertrophy. Sudden cardiac death (SCD) is a rare but the most catastrophic complication in patients with HCM. Implantable cardioverter-defibrillators (ICDs) are widely recognized as effective preventive measures for SCD. Individualized risk stratification and early intervention in HCM can significantly improve patient prognosis. In this study, we review the latest findings regarding pathogenesis, risk stratification, and prevention of SCD in HCM patients, highlighting the clinic practice of cardiovascular magnetic resonance imaging for SCD management.
Collapse
Affiliation(s)
- Lutong Pu
- Department of Cardiology, West China Hospital, Sichuan University, Sichuan Province, Guoxue Xiang No. 37, Chengdu, 610041, China
| | - Jialin Li
- Department of Cardiology, West China Hospital, Sichuan University, Sichuan Province, Guoxue Xiang No. 37, Chengdu, 610041, China
| | - Weitang Qi
- Department of Cardiology, West China Hospital, Sichuan University, Sichuan Province, Guoxue Xiang No. 37, Chengdu, 610041, China
| | - Jinquan Zhang
- West China School of Public Health, Sichuan University, Chengdu, Sichuan, China
| | - Hongyu Chen
- West China School of Public Health, Sichuan University, Chengdu, Sichuan, China
| | - Zihuan Tang
- West China School of Public Health, Sichuan University, Chengdu, Sichuan, China
| | - Yuchi Han
- Wexner Medical Center, College of Medicine, The Ohio State University, Columbus, USA
| | - Jie Wang
- Department of Cardiology, West China Hospital, Sichuan University, Sichuan Province, Guoxue Xiang No. 37, Chengdu, 610041, China.
| | - Yucheng Chen
- Department of Cardiology, West China Hospital, Sichuan University, Sichuan Province, Guoxue Xiang No. 37, Chengdu, 610041, China.
- Center of Rare Diseases, West China Hospital, Sichuan University, Sichuan Province, Chengdu, 610041, China.
| |
Collapse
|
9
|
Zhang F, Zhou H, Xue J, Zhang Y, Zhou L, Leng J, Fang G, Liu Y, Wang Y, Liu H, Wu Y, Qi L, Duan R, He X, Wang Y, Liu Y, Li L, Yang J, Liang D, Chen YH. Deficiency of Transcription Factor Sp1 Contributes to Hypertrophic Cardiomyopathy. Circ Res 2024; 134:290-306. [PMID: 38197258 DOI: 10.1161/circresaha.123.323272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 01/02/2024] [Indexed: 01/11/2024]
Abstract
BACKGROUND Hypertrophic cardiomyopathy (HCM) is the most prevalent monogenic heart disorder. However, the pathogenesis of HCM, especially its nongenetic mechanisms, remains largely unclear. Transcription factors are known to be involved in various biological processes including cell growth. We hypothesized that SP1 (specificity protein 1), the first purified TF in mammals, plays a role in the cardiomyocyte growth and cardiac hypertrophy of HCM. METHODS Cardiac-specific conditional knockout of Sp1 mice were constructed to investigate the role of SP1 in the heart. The echocardiography, histochemical experiment, and transmission electron microscope were performed to analyze the cardiac phenotypes of cardiac-specific conditional knockout of Sp1 mice. RNA sequencing, chromatin immunoprecipitation sequencing, and adeno-associated virus experiments in vivo were performed to explore the downstream molecules of SP1. To examine the therapeutic effect of SP1 on HCM, an SP1 overexpression vector was constructed and injected into the mutant allele of Myh6 R404Q/+ (Myh6 c. 1211C>T) HCM mice. The human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) from a patient with HCM were used to detect the potential therapeutic effects of SP1 in human HCM. RESULTS The cardiac-specific conditional knockout of Sp1 mice developed a typical HCM phenotype, displaying overt myocardial hypertrophy, interstitial fibrosis, and disordered myofilament. In addition, Sp1 knockdown dramatically increased the cell area of hiPSC-CMs and caused intracellular myofibrillar disorganization, which was similar to the hypertrophic cardiomyocytes of HCM. Mechanistically, Tuft1 was identified as the key target gene of SP1. The hypertrophic phenotypes induced by Sp1 knockdown in both hiPSC-CMs and mice could be rescued by TUFT1 (tuftelin 1) overexpression. Furthermore, SP1 overexpression suppressed the development of HCM in the mutant allele of Myh6 R404Q/+ mice and also reversed the hypertrophic phenotype of HCM hiPSC-CMs. CONCLUSIONS Our study demonstrates that SP1 deficiency leads to HCM. SP1 overexpression exhibits significant therapeutic effects on both HCM mice and HCM hiPSC-CMs, suggesting that SP1 could be a potential intervention target for HCM.
Collapse
Affiliation(s)
- Fulei Zhang
- State Key Laboratory of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Shanghai Arrhythmias Research Center (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., Yuanyuan Liu, Y. Wang, H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Department of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
| | - Huixing Zhou
- State Key Laboratory of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Shanghai Arrhythmias Research Center (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., Yuanyuan Liu, Y. Wang, H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Department of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
| | - Jinfeng Xue
- Department of Regenerative Medicine (J.X., L.Q.), Tongji University School of Medicine, Shanghai, China
| | - Yuemei Zhang
- State Key Laboratory of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Shanghai Arrhythmias Research Center (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., Yuanyuan Liu, Y. Wang, H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Department of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
| | - Liping Zhou
- State Key Laboratory of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Shanghai Arrhythmias Research Center (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., Yuanyuan Liu, Y. Wang, H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Department of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
| | - Junwei Leng
- State Key Laboratory of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Shanghai Arrhythmias Research Center (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., Yuanyuan Liu, Y. Wang, H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Department of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
| | - Guojian Fang
- State Key Laboratory of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Shanghai Arrhythmias Research Center (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., Yuanyuan Liu, Y. Wang, H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Department of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
| | - Yuanyuan Liu
- Shanghai Arrhythmias Research Center (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., Yuanyuan Liu, Y. Wang, H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Jinzhou Medical University, China (Yuanyuan Liu, Y. Wang, Yan Wang)
| | - Yan Wang
- Shanghai Arrhythmias Research Center (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., Yuanyuan Liu, Y. Wang, H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Jinzhou Medical University, China (Yuanyuan Liu, Y. Wang, Yan Wang)
| | - Hongyu Liu
- State Key Laboratory of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Shanghai Arrhythmias Research Center (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., Yuanyuan Liu, Y. Wang, H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Department of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
| | - Yahan Wu
- State Key Laboratory of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Shanghai Arrhythmias Research Center (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., Yuanyuan Liu, Y. Wang, H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Department of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
| | - Lingbin Qi
- Department of Regenerative Medicine (J.X., L.Q.), Tongji University School of Medicine, Shanghai, China
| | - Ran Duan
- State Key Laboratory of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Shanghai Arrhythmias Research Center (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., Yuanyuan Liu, Y. Wang, H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Department of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
| | - Xiaoyu He
- State Key Laboratory of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Shanghai Arrhythmias Research Center (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., Yuanyuan Liu, Y. Wang, H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Department of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
| | - Yan Wang
- Jinzhou Medical University, China (Yuanyuan Liu, Y. Wang, Yan Wang)
| | - Yi Liu
- State Key Laboratory of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Shanghai Arrhythmias Research Center (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., Yuanyuan Liu, Y. Wang, H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
| | - Li Li
- State Key Laboratory of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Shanghai Arrhythmias Research Center (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., Yuanyuan Liu, Y. Wang, H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Department of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Department of Pathology and Pathophysiology (L.L., J.Y., Y.-H.C.), Tongji University School of Medicine, Shanghai, China
- Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai, China (L.L., J.Y., D.L., Y.-H.C.)
| | - Jian Yang
- State Key Laboratory of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Shanghai Arrhythmias Research Center (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., Yuanyuan Liu, Y. Wang, H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Department of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Department of Pathology and Pathophysiology (L.L., J.Y., Y.-H.C.), Tongji University School of Medicine, Shanghai, China
- Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai, China (L.L., J.Y., D.L., Y.-H.C.)
| | - Dandan Liang
- State Key Laboratory of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Shanghai Arrhythmias Research Center (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., Yuanyuan Liu, Y. Wang, H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Department of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai, China (L.L., J.Y., D.L., Y.-H.C.)
| | - Yi-Han Chen
- State Key Laboratory of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Shanghai Arrhythmias Research Center (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., Yuanyuan Liu, Y. Wang, H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Department of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Department of Pathology and Pathophysiology (L.L., J.Y., Y.-H.C.), Tongji University School of Medicine, Shanghai, China
- Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai, China (L.L., J.Y., D.L., Y.-H.C.)
| |
Collapse
|
10
|
Kaplan JL, Rivas VN, Connolly DJ. Advancing Treatments for Feline Hypertrophic Cardiomyopathy: The Role of Animal Models and Targeted Therapeutics. Vet Clin North Am Small Anim Pract 2023; 53:1293-1308. [PMID: 37414693 DOI: 10.1016/j.cvsm.2023.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Feline HCM is the most common cardiovascular disease in cats, leading to devastating outcomes, including congestive heart failure (CHF), arterial thromboembolism (ATE), and sudden death. Evidence demonstrating long-term survival benefit with currently available therapies is lacking. Therefore, it is imperative to explore intricate genetic and molecular pathways that drive HCM pathophysiology to inspire the development of novel therapeutics. Several clinical trials exploring new drug therapies are currently underway, including those investigating small molecule inhibitors and rapamycin. This article outlines the key work performed using cellular and animal models that has led to and continues to guide the development of new innovative therapeutic strategies.
Collapse
Affiliation(s)
- Joanna L Kaplan
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA, USA.
| | - Victor N Rivas
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - David J Connolly
- Department of Clinical Science and Services, Royal Veterinary College, Hatfield, Hertfordshire, UK
| |
Collapse
|
11
|
Hong KN, Eshraghian EA, Arad M, Argirò A, Brambatti M, Bui Q, Caspi O, de Frutos F, Greenberg B, Ho CY, Kaski JP, Olivotto I, Taylor MRG, Yesso A, Garcia-Pavia P, Adler ED. International Consensus on Differential Diagnosis and Management of Patients With Danon Disease: JACC State-of-the-Art Review. J Am Coll Cardiol 2023; 82:1628-1647. [PMID: 37821174 DOI: 10.1016/j.jacc.2023.08.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/03/2023] [Indexed: 10/13/2023]
Abstract
Danon disease is a rare X-linked autophagic vacuolar cardioskeletal myopathy associated with severe heart failure that can be accompanied with extracardiac neurologic, skeletal, and ophthalmologic manifestations. It is caused by loss of function variants in the LAMP2 gene and is among the most severe and penetrant of the genetic cardiomyopathies. Most patients with Danon disease will experience symptomatic heart failure. Male individuals generally present earlier than women and die of either heart failure or arrhythmia or receive a heart transplant by the third decade of life. Herein, the authors review the differential diagnosis of Danon disease, diagnostic criteria, natural history, management recommendations, and recent advances in treatment of this increasingly recognized and extremely morbid cardiomyopathy.
Collapse
Affiliation(s)
- Kimberly N Hong
- University of California-San Diego, San Diego, California, USA
| | | | - Michael Arad
- Leviev Heart Center, Sheba Hospital and Tel Aviv University, Tel Aviv, Israel
| | - Alessia Argirò
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | | | - Quan Bui
- University of California-San Diego, San Diego, California, USA
| | - Oren Caspi
- Rambam Medical Centre and B. Rappaport Faculty of Medicine, Technion Medical School, Haifa, Israel
| | - Fernando de Frutos
- Hospital Universitario Puerta de Hierro Majadahonda, IDIPHISA, CIBERCV, Madrid, Spain
| | - Barry Greenberg
- University of California-San Diego, San Diego, California, USA
| | - Carolyn Y Ho
- Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Juan Pablo Kaski
- Great Ormond Street Hospital and University College London, London, United Kingdom
| | - Iacopo Olivotto
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy; Meyer Children's Hospital IRCCS, Florence, Italy
| | | | - Abigail Yesso
- Division of Cardiology/Department of Pediatrics, Texas Children's Hospital/Baylor College of Medicine, Houston, Texas, USA
| | - Pablo Garcia-Pavia
- Hospital Universitario Puerta de Hierro Majadahonda, IDIPHISA, CIBERCV, Madrid, Spain; Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain; Universidad Francisco de Vitoria, Pozuelo de Alarcon, Spain.
| | - Eric D Adler
- University of California-San Diego, San Diego, California, USA.
| |
Collapse
|
12
|
Kaur S, Desai M. Unmet needs and future directions in hypertrophic cardiomyopathy. Prog Cardiovasc Dis 2023; 80:1-7. [PMID: 37562518 DOI: 10.1016/j.pcad.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
Hypertrophic cardiomyopathy (HCM) is a highly treatable monogenetic disorder affecting nearly 0.2% of the population. The high burden of this disease demands suitable measures for early diagnosis and preventing as well as tackling misdiagnosis. While conventionally available therapies have been efficacious in reducing symptoms, they have not been able to change the natural history of the disease. The landscape of medical treatment is rapidly changing with advent of novel pharmacotherapies such as cardiac myosin inhibitors. Ongoing investigations in gene editing have demonstrated benefits in correcting underlying genetic mutations and this is where the future of treatment lies. Contemporary procedural techniques as alternatives to available septal reduction therapies independent of coronary vascular anatomy are also emerging. This review details the recent developments, unmet needs and future directions in diagnosis, medical and invasive treatment of HCM.
Collapse
Affiliation(s)
- Simrat Kaur
- Department of Cardiology, Heart, Vascular and Thoracic Institution, Cleveland Clinic, USA
| | - Milind Desai
- Department of Cardiology, Heart, Vascular and Thoracic Institution, Cleveland Clinic, USA.
| |
Collapse
|
13
|
Thompson AD, Wagner MJ, Rodriguez J, Malhotra A, Vander Roest S, Lilienthal U, Shao H, Vignesh M, Weber K, Yob JM, Prosser BL, Helms AS, Gestwicki JE, Ginsburg D, Day SM. An Unbiased Screen Identified the Hsp70-BAG3 Complex as a Regulator of Myosin-Binding Protein C3. JACC Basic Transl Sci 2023; 8:1198-1211. [PMID: 37791314 PMCID: PMC10544073 DOI: 10.1016/j.jacbts.2023.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 10/05/2023]
Abstract
Variants in the gene myosin-binding protein C3 (MYBPC3) account for approximately 50% of familial hypertrophic cardiomyopathy (HCM), leading to reduced levels of myosin-binding protein C3 (MyBP-C), the protein product made by gene MYBPC3. Elucidation of the pathways that regulate MyBP-C protein homeostasis could uncover new therapeutic strategies. Toward this goal, we screened a library of 2,426 bioactive compounds and identified JG98, an allosteric modulator of heat shock protein 70 that inhibits interaction with Bcl-2-associated athanogene (BAG) domain co-chaperones. JG98 reduces MyBP-C protein levels. Furthermore, genetic reduction of BAG3 phenocopies treatment with JG-98 by reducing MYBP-C protein levels.. Thus, an unbiased compound screen identified the heat shock protein 70-BAG3 complex as a regulator of MyBP-C stability.
Collapse
Affiliation(s)
- Andrea D. Thompson
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Marcus J. Wagner
- Department of Internal Medicine, Division of Cardiovascular Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Juliani Rodriguez
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Alok Malhotra
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Steve Vander Roest
- Center for Chemical Genomics, Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Ulla Lilienthal
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Hao Shao
- Institute for Neurodegenerative Diseases and Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA
| | - Mathav Vignesh
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Keely Weber
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Jaime M. Yob
- Department of Internal Medicine, Division of Cardiovascular Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Benjamin L. Prosser
- Department of Physiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Adam S. Helms
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Jason E. Gestwicki
- Institute for Neurodegenerative Diseases and Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA
| | - David Ginsburg
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
- The Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Sharlene M. Day
- Department of Internal Medicine, Division of Cardiovascular Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
14
|
Glavaški M, Velicki L, Vučinić N. Hypertrophic Cardiomyopathy: Genetic Foundations, Outcomes, Interconnections, and Their Modifiers. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1424. [PMID: 37629714 PMCID: PMC10456451 DOI: 10.3390/medicina59081424] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/30/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023]
Abstract
Hypertrophic cardiomyopathy (HCM) is the most prevalent heritable cardiomyopathy. HCM is considered to be caused by mutations in cardiac sarcomeric protein genes. Recent research suggests that the genetic foundation of HCM is much more complex than originally postulated. The clinical presentations of HCM are very variable. Some mutation carriers remain asymptomatic, while others develop severe HCM, terminal heart failure, or sudden cardiac death. Heterogeneity regarding both genetic mutations and the clinical course of HCM hinders the establishment of universal genotype-phenotype correlations. However, some trends have been identified. The presence of a mutation in some genes encoding sarcomeric proteins is associated with earlier HCM onset, more severe left ventricular hypertrophy, and worse clinical outcomes. There is a diversity in the mechanisms implicated in the pathogenesis of HCM. They may be classified into groups, but they are interrelated. The lack of known supplementary elements that control the progression of HCM indicates that molecular mechanisms that exist between genotype and clinical presentations may be crucial. Secondary molecular changes in pathways implicated in HCM pathogenesis, post-translational protein modifications, and epigenetic factors affect HCM phenotypes. Cardiac loading conditions, exercise, hypertension, diet, alcohol consumption, microbial infection, obstructive sleep apnea, obesity, and environmental factors are non-molecular aspects that change the HCM phenotype. Many mechanisms are implicated in the course of HCM. They are mostly interconnected and contribute to some extent to final outcomes.
Collapse
Affiliation(s)
- Mila Glavaški
- Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia; (L.V.)
| | - Lazar Velicki
- Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia; (L.V.)
- Institute of Cardiovascular Diseases Vojvodina, Put Doktora Goldmana 4, 21204 Sremska Kamenica, Serbia
| | - Nataša Vučinić
- Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia; (L.V.)
| |
Collapse
|
15
|
Homology-directed repair of an MYBPC3 gene mutation in a rat model of hypertrophic cardiomyopathy. Gene Ther 2023:10.1038/s41434-023-00384-3. [PMID: 36765144 DOI: 10.1038/s41434-023-00384-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 02/12/2023]
Abstract
Variants in myosin-binding protein C3 (MYBPC3) gene are a main cause of hypertrophic cardiomyopathy (HCM), accounting for 30% to 40% of the total number of HCM mutations. Gene editing represents a potential permanent cure for HCM. The aim of this study was to investigate whether genome editing of MYBPC3 using the CRISPR/Cas9 system in vivo could rescue the phenotype of rats with HCM. We generated a rat model of HCM ("1098hom") that carried an Mybpc3 premature termination codon mutation (p.W1098x) discovered in a human HCM pedigree. On postnatal day 3, the CRISPR/Cas9 system was introduced into rat pups by a single dose of AAV9 particles to correct the variant using homology-directed repair (HDR). Analysis was performed 6 months after AAV9 injection. The 1098hom rats didn't express MYBPC3 protein and developed an HCM phenotype with increased ventricular wall thickness and diminished cardiac function. Importantly, CRISPR HDR genome editing corrected 3.56% of total mutations, restored MYBPC3 protein expression by 2.12%, and normalized the HCM phenotype of 1098hom rats. Our work demonstrates that the HDR strategy is a promising approach for treating HCM associated with MYBPC3 mutation, and that CRISPR technology has great potential for treating hereditary heart diseases.
Collapse
|
16
|
Junior ADSM, de Oliveira ALV, Maia TA, Botelho SM. A Narrative Review of Emerging Therapies for Hypertrophic Obstructive Cardiomyopathy. Curr Cardiol Rev 2023; 19:e240323214927. [PMID: 36999417 PMCID: PMC10494274 DOI: 10.2174/1573403x19666230324102828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 04/01/2023] Open
Abstract
Hypertrophic obstructive cardiomyopathy is a hereditary condition that affects myocardial contraction. In case of failure of pharmacological treatment, alternative approaches might be used that include surgical myectomy, percutaneous transluminal septal myocardial ablation, and radiofrequency ablation. In respect of long-term advantages, surgical septal myectomy remains the therapy of choice for symptomatic hypertrophic obstructive cardiomyopathy. Alcohol septal ablation has been considered an alternative to surgical myectomy, which confers the benefits of a shorter hospital stay, less discomfort, and fewer complications. However, only expert operators should perform it on carefully chosen patients. Further, radiofrequency septal ablation reduces the left ventricular outflow tract gradient and improves the NYHA functional class of patients with hypertrophic obstructive cardiomyopathy, despite complications like cardiac tamponade and atrioventricular block. Further research with a larger sample size is required to compare the radiofrequency approach with established invasive treatment methods for hypertrophic obstructive cardiomyopathy. Septal myectomy has low morbidity and mortality rates, making it the preferred procedure; however, the efficacy and morbidity remain debatable. Advances in invasive techniques, including percutaneous septal radiofrequency ablation and transcatheter myotomy, have provided alternative approaches for reducing left ventricular outflow tract (LVOT) obstruction in patients who are not candidates for traditional surgical septal myectomy. Candidates for alcohol and radiofrequency septal ablation include patients with symptomatic hypertrophic obstructive cardiomyopathy, older adults, and those with multiple comorbidities.
Collapse
Affiliation(s)
- Antonio da Silva Menezes Junior
- Internal Medicine Department, Medicine School, Federal University of Goiás, Goiânia, Goiás, Brazil
- Medical School, Pontifical Catholic University of Goiás, Goiânia, Goiás, Brazil
| | | | - Thais Aratak Maia
- Medical School, Pontifical Catholic University of Goiás, Goiânia, Goiás, Brazil
| | - Silvia Marçal Botelho
- Internal Medicine Department, Medicine School, Federal University of Goiás, Goiânia, Goiás, Brazil
- Medical School, Pontifical Catholic University of Goiás, Goiânia, Goiás, Brazil
| |
Collapse
|
17
|
Kovács ÁF. Gene Therapy of Extracellular Vesicles in Cardiovascular and Metabolic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1418:207-228. [PMID: 37603282 DOI: 10.1007/978-981-99-1443-2_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
The ultimate and most complex form of treating human diseases is embodied by gene therapy. For an effective gene therapeutic product we need to hack the cellular plasma membrane entry-system, then escaping degradation in the cytosol and in most cases, we need an efficient hacking of the nuclear membrane-system, achieving the delivery of genetic construct into the central stage of the target cells: nucleoplasm or chromosomal DNA found in this highly controlled space. These steps need to be performed in a targeted, ordered, and efficient way. Possessing intrinsic ability of nucleic acid and protein delivery, extracellular vesicles can bypass biological barriers and may be able to deliver a next-generation platform for gene therapy. Fine-tuned genetic constructs included in (synthetic) extracellular vesicles may provide an upgraded approach to the current gene therapeutical technologies by significantly upgrading and improving biosafety, versatility, and delivery, thus evoking the desired therapeutic response. This chapter addresses the main types, vectors, challenges, and safety issues of gene therapy. Afterwards, a brief introduction and beneficial roles of extracellular vesicles are given. The concept of engineering vesicles for gene therapy is also discussed. A snapshot of most relevant clinical trials in the field of cardiovascular and metabolic diseases is shown. Finally, a wrap-up and outlook about gene therapy are presented.
Collapse
Affiliation(s)
- Árpád Ferenc Kovács
- Department of Paediatrics, Semmelweis University, Budapest, Hungary.
- For Human Genome Foundation, Budapest, Hungary.
| |
Collapse
|
18
|
Iavarone M, Monda E, Vritz O, Albert DC, Rubino M, Verrillo F, Caiazza M, Lioncino M, Amodio F, Guarnaccia N, Gragnano F, Lombardi R, Esposito G, Bossone E, Calabrò P, Losi MA, Limongelli G. Medical treatment of patients with hypertrophic cardiomyopathy: An overview of current and emerging therapy. Arch Cardiovasc Dis 2022; 115:529-537. [DOI: 10.1016/j.acvd.2022.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 11/02/2022]
|
19
|
Pasqua T, Tropea T, Granieri MC, De Bartolo A, Spena A, Moccia F, Rocca C, Angelone T. Novel molecular insights and potential approaches for targeting hypertrophic cardiomyopathy: Focus on coronary modulators. Vascul Pharmacol 2022; 145:107003. [DOI: 10.1016/j.vph.2022.107003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/04/2022] [Accepted: 05/30/2022] [Indexed: 11/26/2022]
|
20
|
Lebowitz S, Kowalewski M, Raffa GM, Chu D, Greco M, Gandolfo C, Mignosa C, Lorusso R, Suwalski P, Pilato M. Review of Contemporary Invasive Treatment Approaches and Critical Appraisal of Guidelines on Hypertrophic Obstructive Cardiomyopathy: State-of-the-Art Review. J Clin Med 2022; 11:3405. [PMID: 35743475 PMCID: PMC9225325 DOI: 10.3390/jcm11123405] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Hypertrophic obstructive cardiomyopathy (HOCM) is a heterogeneous disease with different clinical presentations, albeit producing similar dismal long-term outcomes if left untreated. Several approaches are available for the treatment of HOCM; e.g., alcohol septal ablation (ASA) and surgical myectomy (SM). The objectives of the current review were to (1) discuss the place of the standard invasive treatment modalities (ASA and SM) for HOCM; (2) summarize and compare novel techniques for the management of HOCM; (3) analyze current guidelines addressing HOCM management; and (4) offer suggestions for the treatment of complex HOCM presentations. METHODS We searched the literature and attempted to gather the most relevant and impactful available evidence on ASA, SM, and other invasive means of treatment of HOCM. The literature search yielded thousands of results, and 103 significant publications were ultimately included. RESULTS We critically analyzed available guidelines and provided context in the setting of patient selection for standard and novel treatment modalities. This review offers the most comprehensive analysis to-date of available invasive treatments for HOCM. These include the standard treatments, SM and ASA, as well as novel treatments such as dual-chamber pacing and radiofrequency catheter ablation. We also account for complex pathoanatomic presentations and current guidelines to offer suggestions for tailored care of patients with HOCM. Finally, we consider promising future therapies for HOCM. CONCLUSIONS HOCM is a heterogeneous disease associated with poor outcomes if left untreated. Several strategies for treatment of HOCM are available but patient selection for the procedure is crucial.
Collapse
Affiliation(s)
- Steven Lebowitz
- University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA;
| | - Mariusz Kowalewski
- Cardio-Thoracic Surgery Department, Heart and Vascular Centre, Maastricht University Medical Centre (MUMC), 6200 MD Maastricht, The Netherlands;
- Clinical Department of Cardiac Surgery, Central Clinical Hospital of the Ministry of Interior and Administration, Centre of Postgraduate Medical Education, 00-213 Warsaw, Poland;
- Thoracic Research Centre, Collegium Medicum, Nicolaus Copernicus University, Innovative Medical Forum, 87-100 Bydgoszcz, Poland
| | - Giuseppe Maria Raffa
- Department for the Treatment and Study of Cardiothoracic Diseases and Cardiothoracic Transplantation, IRCCS-ISMETT, 90127 Palermo, Italy; (G.M.R.); (M.G.); (C.G.); (C.M.); (M.P.)
| | - Danny Chu
- Department of Cardiothoracic Surgery, Division of Cardiac Surgery, University of Pittsburgh Medical Center Heart & Vascular Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA;
| | - Matteo Greco
- Department for the Treatment and Study of Cardiothoracic Diseases and Cardiothoracic Transplantation, IRCCS-ISMETT, 90127 Palermo, Italy; (G.M.R.); (M.G.); (C.G.); (C.M.); (M.P.)
| | - Caterina Gandolfo
- Department for the Treatment and Study of Cardiothoracic Diseases and Cardiothoracic Transplantation, IRCCS-ISMETT, 90127 Palermo, Italy; (G.M.R.); (M.G.); (C.G.); (C.M.); (M.P.)
| | - Carmelo Mignosa
- Department for the Treatment and Study of Cardiothoracic Diseases and Cardiothoracic Transplantation, IRCCS-ISMETT, 90127 Palermo, Italy; (G.M.R.); (M.G.); (C.G.); (C.M.); (M.P.)
| | - Roberto Lorusso
- Cardio-Thoracic Surgery Department, Heart and Vascular Centre, Maastricht University Medical Centre (MUMC), 6200 MD Maastricht, The Netherlands;
| | - Piotr Suwalski
- Clinical Department of Cardiac Surgery, Central Clinical Hospital of the Ministry of Interior and Administration, Centre of Postgraduate Medical Education, 00-213 Warsaw, Poland;
| | - Michele Pilato
- Department for the Treatment and Study of Cardiothoracic Diseases and Cardiothoracic Transplantation, IRCCS-ISMETT, 90127 Palermo, Italy; (G.M.R.); (M.G.); (C.G.); (C.M.); (M.P.)
| |
Collapse
|
21
|
Norrish G, Cleary A, Field E, Cervi E, Boleti O, Ziółkowska L, Olivotto I, Khraiche D, Limongelli G, Anastasakis A, Weintraub R, Biagini E, Ragni L, Prendiville T, Duignan S, McLeod K, Ilina M, Fernandez A, Marrone C, Bökenkamp R, Baban A, Kubus P, Daubeney PE, Sarquella-Brugada G, Cesar S, Klaassen S, Ojala TH, Bhole V, Medrano C, Uzun O, Brown E, Gran F, Sinagra G, Castro FJ, Stuart G, Yamazawa H, Barriales-Villa R, Garcia-Guereta L, Adwani S, Linter K, Bharucha T, Gonzales-Lopez E, Siles A, Rasmussen TB, Calcagnino M, Jones CB, De Wilde H, Kubo T, Felice T, Popoiu A, Mogensen J, Mathur S, Centeno F, Reinhardt Z, Schouvey S, Elliott PM, Kaski JP. Clinical Features and Natural History of Preadolescent Nonsyndromic Hypertrophic Cardiomyopathy. J Am Coll Cardiol 2022; 79:1986-1997. [PMID: 35589160 PMCID: PMC9125690 DOI: 10.1016/j.jacc.2022.03.347] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/02/2022] [Accepted: 03/07/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Up to one-half of childhood sarcomeric hypertrophic cardiomyopathy (HCM) presents before the age of 12 years, but this patient group has not been systematically characterized. OBJECTIVES The aim of this study was to describe the clinical presentation and natural history of patients presenting with nonsyndromic HCM before the age of 12 years. METHODS Data from the International Paediatric Hypertrophic Cardiomyopathy Consortium on 639 children diagnosed with HCM younger than 12 years were collected and compared with those from 568 children diagnosed between 12 and 16 years. RESULTS At baseline, 339 patients (53.6%) had family histories of HCM, 132 (20.9%) had heart failure symptoms, and 250 (39.2%) were prescribed cardiac medications. The median maximal left ventricular wall thickness z-score was 8.7 (IQR: 5.3-14.4), and 145 patients (27.2%) had left ventricular outflow tract obstruction. Over a median follow-up period of 5.6 years (IQR: 2.3-10.0 years), 42 patients (6.6%) died, 21 (3.3%) underwent cardiac transplantation, and 69 (10.8%) had life-threatening arrhythmic events. Compared with those presenting after 12 years, a higher proportion of younger patients underwent myectomy (10.5% vs 7.2%; P = 0.045), but fewer received primary prevention implantable cardioverter-defibrillators (18.9% vs 30.1%; P = 0.041). The incidence of mortality or life-threatening arrhythmic events did not differ, but events occurred at a younger age. CONCLUSIONS Early-onset childhood HCM is associated with a comparable symptom burden and cardiac phenotype as in patients presenting later in childhood. Long-term outcomes including mortality did not differ by age of presentation, but patients presenting at younger than 12 years experienced adverse events at younger ages.
Collapse
Affiliation(s)
- Gabrielle Norrish
- Centre for Inherited Cardiovascular Diseases, Great Ormond Street Hospital, London, United Kingdom,Institute of Cardiovascular Sciences, University College London, London, United Kingdom
| | - Aoife Cleary
- Centre for Inherited Cardiovascular Diseases, Great Ormond Street Hospital, London, United Kingdom
| | - Ella Field
- Centre for Inherited Cardiovascular Diseases, Great Ormond Street Hospital, London, United Kingdom
| | - Elena Cervi
- Centre for Inherited Cardiovascular Diseases, Great Ormond Street Hospital, London, United Kingdom
| | - Olga Boleti
- Institute of Cardiovascular Sciences, University College London, London, United Kingdom
| | | | | | | | - Giuseppe Limongelli
- Inherited and Rare Cardiovascular Disease Unit, AO dei Colli Monaldi Hospital, Universita della Campania “Luigi Vanvitelli,” Naples, Italy
| | | | | | - Elena Biagini
- Cardiology Unit, St Orsola Hospital, IRCCS Azienda Ospedalierao–Universitaria di Bologna, Bologna, Italy
| | - Luca Ragni
- Cardiology Unit, St Orsola Hospital, IRCCS Azienda Ospedalierao–Universitaria di Bologna, Bologna, Italy
| | | | | | - Karen McLeod
- Royal Hospital for Children, Glasgow, United Kingdom
| | - Maria Ilina
- Royal Hospital for Children, Glasgow, United Kingdom
| | | | - Chiara Marrone
- Papa Giovanni XXIII Hospital, Bergamo, Italy,Fondazione Toscana G. Monasterio, Massa-Pisa, Italy
| | | | | | - Peter Kubus
- University Hospital Motol, Prague, Czech Republic
| | | | | | | | - Sabine Klaassen
- Department of Pediatric Cardiology, Charite–Universitatsmedizin Berlin, Berlin, Germany,Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrück-Center for Molecular Medicine, Charite–Universitatsmedizin Berlin, Berlin, Germany,DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Tiina H. Ojala
- Department of Pediatric Cardiology, Pediatric Research Center, New Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Vinay Bhole
- Birmingham Children’s Hospital, Birmingham, United Kingdom
| | | | - Orhan Uzun
- University Hospital of Wales, Cardiff, United Kingdom
| | | | - Ferran Gran
- Vall d’Hebron University Hospital, Barcelona, Spain
| | | | | | - Graham Stuart
- Bristol Royal Hospital for Children, Bristol, United Kingdom
| | - Hirokuni Yamazawa
- Department of Pediatrics, Faculty of Medicine and Graduate School of Medicine, Hokkaido University Hospital, Sapporo, Japan
| | | | | | | | | | - Tara Bharucha
- Southampton General Hospital, Southampton, United Kingdom
| | | | - Ana Siles
- Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | | | - Margherita Calcagnino
- Fondazione IRCCS Ca Granda – Ospedale Maggiore Policlinico Milano, Department di Medicina Interna – UOC Cardiologica, Milan, Italy
| | | | | | - Toru Kubo
- Kochi Medical School Hospital, Kochi, Japan
| | | | - Anca Popoiu
- University of Medicine and Pharmacy “Victor Babes” Timisoara, Department of Pediatrics, Children’s Hospital “Louis Turcanu,” Timisoara, Romania
| | | | | | | | | | | | - Perry M. Elliott
- Institute of Cardiovascular Sciences, University College London, London, United Kingdom,St Bartholomew’s Centre for Inherited Cardiovascular Diseases, St Bartholomew’s Hospital, West Smithfield, London, United Kingdom
| | - Juan Pablo Kaski
- Centre for Inherited Cardiovascular Diseases, Great Ormond Street Hospital, London, United Kingdom; Institute of Cardiovascular Sciences, University College London, London, United Kingdom.
| |
Collapse
|
22
|
He M, Qiu J, Bai Y, Wang Y, Hu M, Chen G. Non-pharmaceutical Interventions for Hypertrophic Cardiomyopathy: A Mini Review. Front Cardiovasc Med 2021; 8:695247. [PMID: 34722651 PMCID: PMC8553933 DOI: 10.3389/fcvm.2021.695247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/20/2021] [Indexed: 11/13/2022] Open
Abstract
Hypertrophic cardiomyopathy is an inherited cardiovascular disease, and 70% of patients have left ventricular outflow tract obstruction. Ventricular septal myectomy has been the gold standard treatment for most patients with refractory symptoms. Due to higher mortality associated with medical facilities with less experience, alcohol septal ablation has been accepted as an alternative to conventional surgical myectomy. It offers lower all-cause in-hospital complications and mortality, which could be potentially more preferable for patients with serious comorbidities. In recent years, radiofrequency ablation, providing another option with reproducibility and a low risk of permanent atrioventricular block, has become an effective invasive treatment to relieve left ventricular outflow tract obstruction. Moreover, substantial progress has been made in gene therapy for hypertrophic cardiomyopathy. The principal objective of this review is to present recent advances in non-pharmaceutical interventions in hypertrophic cardiomyopathy.
Collapse
Affiliation(s)
- Miaomiao He
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Qiu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Bai
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mei Hu
- Health Management Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guangzhi Chen
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
23
|
Pradeep R, Akram A, Proute MC, Kothur NR, Georgiou P, Serhiyenia T, Shi W, Kerolos ME, Mostafa JA. Understanding the Genetic and Molecular Basis of Familial Hypertrophic Cardiomyopathy and the Current Trends in Gene Therapy for Its Management. Cureus 2021; 13:e17548. [PMID: 34646605 PMCID: PMC8481153 DOI: 10.7759/cureus.17548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/28/2021] [Indexed: 01/16/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a genetically acquired disease of cardiac myocytes. Studies show that 70% of this disease is a result of different mutations in various sarcomere genes. This review aims to discuss several genetic mutations, epigenetic factors, and signal transduction pathways leading to the development of HCM. In addition, this article elaborates on recent advances in gene therapies and their implications for managing this condition. We start by discussing the founding mutations in HCM and their effect on power stroke generation. The less explored field of epigenetics including methylation, acetylation, and the role of different micro RNAs in the development of cardiac muscle hypertrophy has been highlighted in this article. The signal transduction pathways that lead to gene transcription, which in turn lead to increased protein synthesis of cardiac muscle fibers are elaborated. Finally, the microscopic events leading to the pathophysiologic macro events of cardiac failure, and the current experimental trials of gene therapy models, and the clustered regularly interspaced short palindromic repeats (CRISPR) type 2 system proteins, are discussed. We have concluded our discussion by emphasizing the need for more studies on epigenomics and experimental designs for gene therapy in HCM patients. This review focuses on the process of HCM from initial mutation to the development of phenotypic expression and various points of intervention in cardiac myocardial hypertrophy development.
Collapse
Affiliation(s)
- Roshini Pradeep
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Aqsa Akram
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Matthew C Proute
- Family Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Nageshwar R Kothur
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Petros Georgiou
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Tatsiana Serhiyenia
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Wangpan Shi
- Pathology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Mina E Kerolos
- Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Jihan A Mostafa
- Psychiatry/Cognitive Behavioural Psychotherapy, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
24
|
Bonaventura J, Polakova E, Vejtasova V, Veselka J. Genetic Testing in Patients with Hypertrophic Cardiomyopathy. Int J Mol Sci 2021; 22:10401. [PMID: 34638741 PMCID: PMC8509044 DOI: 10.3390/ijms221910401] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 12/17/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a common inherited heart disease with an estimated prevalence of up to 1 in 200 individuals. In the majority of cases, HCM is considered a Mendelian disease, with mainly autosomal dominant inheritance. Most pathogenic variants are usually detected in genes for sarcomeric proteins. Nowadays, the genetic basis of HCM is believed to be rather complex. Thousands of mutations in more than 60 genes have been described in association with HCM. Nevertheless, screening large numbers of genes results in the identification of many genetic variants of uncertain significance and makes the interpretation of the results difficult. Patients lacking a pathogenic variant are now believed to have non-Mendelian HCM and probably have a better prognosis than patients with sarcomeric pathogenic mutations. Identifying the genetic basis of HCM creates remarkable opportunities to understand how the disease develops, and by extension, how to disrupt the disease progression in the future. The aim of this review is to discuss the brief history and recent advances in the genetics of HCM and the application of molecular genetic testing into common clinical practice.
Collapse
Affiliation(s)
- Jiri Bonaventura
- Department of Cardiology, Motol University Hospital, 2nd Faculty of Medicine, Charles University, V Uvalu 84, 15006 Prague, Czech Republic; (E.P.); (V.V.); (J.V.)
| | | | | | | |
Collapse
|
25
|
Glavaški M, Velicki L. Shared Molecular Mechanisms of Hypertrophic Cardiomyopathy and Its Clinical Presentations: Automated Molecular Mechanisms Extraction Approach. Life (Basel) 2021; 11:life11080785. [PMID: 34440529 PMCID: PMC8398249 DOI: 10.3390/life11080785] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/23/2021] [Accepted: 07/30/2021] [Indexed: 12/30/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiovascular disease with a prevalence of 1 in 500 people and varying clinical presentations. Although there is much research on HCM, underlying molecular mechanisms are poorly understood, and research on the molecular mechanisms of its specific clinical presentations is scarce. Our aim was to explore the molecular mechanisms shared by HCM and its clinical presentations through the automated extraction of molecular mechanisms. Molecular mechanisms were congregated by a query of the INDRA database, which aggregates knowledge from pathway databases and combines it with molecular mechanisms extracted from abstracts and open-access full articles by multiple machine-reading systems. The molecular mechanisms were extracted from 230,072 articles on HCM and 19 HCM clinical presentations, and their intersections were found. Shared molecular mechanisms of HCM and its clinical presentations were represented as networks; the most important elements in the intersections’ networks were found, centrality scores for each element of each network calculated, networks with reduced level of noise generated, and cooperatively working elements detected in each intersection network. The identified shared molecular mechanisms represent possible mechanisms underlying different HCM clinical presentations. Applied methodology produced results consistent with the information in the scientific literature.
Collapse
Affiliation(s)
- Mila Glavaški
- Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia;
- Correspondence: or
| | - Lazar Velicki
- Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia;
- Institute of Cardiovascular Diseases Vojvodina, Put Doktora Goldmana 4, 21204 Sremska Kamenica, Serbia
| |
Collapse
|
26
|
Tayal U, Ware JS, Lakdawala NK, Heymans S, Prasad SK. Understanding the genetics of adult-onset dilated cardiomyopathy: what a clinician needs to know. Eur Heart J 2021; 42:2384-2396. [PMID: 34153989 DOI: 10.1093/eurheartj/ehab286] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/10/2021] [Accepted: 05/19/2021] [Indexed: 12/28/2022] Open
Abstract
There is increasing understanding of the genetic basis to dilated cardiomyopathy and in this review, we offer a practical primer for the practising clinician. We aim to help all clinicians involved in the care of patients with dilated cardiomyopathy to understand the clinical relevance of the genetic basis of dilated cardiomyopathy, introduce key genetic concepts, explain which patients and families may benefit from genetic testing, which genetic tests are commonly performed, how to interpret genetic results, and the clinical applications of results. We conclude by reviewing areas for future research in this dynamic field.
Collapse
Affiliation(s)
- Upasana Tayal
- National Heart Lung Institute, Imperial College London, UK.,Cardiovascular Research Centre, Royal Brompton & Harefield Hospitals, London, UK
| | - James S Ware
- National Heart Lung Institute, Imperial College London, UK.,Cardiovascular Research Centre, Royal Brompton & Harefield Hospitals, London, UK.,MRC London Institute of Medical Sciences, London, UK
| | - Neal K Lakdawala
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Stephane Heymans
- Department of Cardiology, CARIM School for Cardiovascular Diseases Faculty of Health, Medicine and Life Sciences, Maastricht University, The Netherlands.,Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, Leuven, KU, Belgium.,The Netherlands Heart Institute, Nl-HI, Utrecht, The Netherlands
| | - Sanjay K Prasad
- National Heart Lung Institute, Imperial College London, UK.,Cardiovascular Research Centre, Royal Brompton & Harefield Hospitals, London, UK
| |
Collapse
|
27
|
Stafford F, Thomson K, Butters A, Ingles J. Hypertrophic Cardiomyopathy: Genetic Testing and Risk Stratification. Curr Cardiol Rep 2021; 23:9. [PMID: 33433738 DOI: 10.1007/s11886-020-01437-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/18/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Our knowledge of the genetic basis and molecular pathogenesis of hypertrophic cardiomyopathy (HCM) continues to evolve. We describe the genetic basis of HCM, recent advances in genetic testing and the role of genetics in guiding risk stratification and management, both now and in the future. RECENT FINDINGS While initially thought to be an exclusively Mendelian disease, we now know there are important HCM sub-groups. A proportion will have sarcomere variants as the cause of their disease, while others will have genetic variants in genes that can give rise to conditions that can mimic HCM. The role of genetics is primarily for cascade genetic testing, though there is emerging evidence of a role for prognosis and patient management. Genetic testing is a useful addition to management. Genotype may play a greater role in risk stratification, management, treatment and prognosis in future, offering improved outcomes for patients and their families with HCM.
Collapse
Affiliation(s)
- Fergus Stafford
- Cardio Genomics Program at Centenary Institute, The University of Sydney, Locked Bag 6, Newtown, NSW, 2042, Australia
| | - Kate Thomson
- Oxford Medical Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Radcliffe Department of Medicine, Division of Cardiovascular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Alexandra Butters
- Cardio Genomics Program at Centenary Institute, The University of Sydney, Locked Bag 6, Newtown, NSW, 2042, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Jodie Ingles
- Cardio Genomics Program at Centenary Institute, The University of Sydney, Locked Bag 6, Newtown, NSW, 2042, Australia.
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia.
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, Australia.
| |
Collapse
|
28
|
Louie W, Shen MW, Tahiry Z, Zhang S, Worstell D, Cassa CA, Sherwood RI, Gifford DK. Machine learning based CRISPR gRNA design for therapeutic exon skipping. PLoS Comput Biol 2021; 17:e1008605. [PMID: 33417623 PMCID: PMC7819613 DOI: 10.1371/journal.pcbi.1008605] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 01/21/2021] [Accepted: 12/03/2020] [Indexed: 12/26/2022] Open
Abstract
Restoring gene function by the induced skipping of deleterious exons has been shown to be effective for treating genetic disorders. However, many of the clinically successful therapies for exon skipping are transient oligonucleotide-based treatments that require frequent dosing. CRISPR-Cas9 based genome editing that causes exon skipping is a promising therapeutic modality that may offer permanent alleviation of genetic disease. We show that machine learning can select Cas9 guide RNAs that disrupt splice acceptors and cause the skipping of targeted exons. We experimentally measured the exon skipping frequencies of a diverse genome-integrated library of 791 splice sequences targeted by 1,063 guide RNAs in mouse embryonic stem cells. We found that our method, SkipGuide, is able to identify effective guide RNAs with a precision of 0.68 (50% threshold predicted exon skipping frequency) and 0.93 (70% threshold predicted exon skipping frequency). We anticipate that SkipGuide will be useful for selecting guide RNA candidates for evaluation of CRISPR-Cas9-mediated exon skipping therapy.
Collapse
Affiliation(s)
- Wilson Louie
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Max W. Shen
- Computational and Systems Biology Program, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Zakir Tahiry
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sophia Zhang
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Daniel Worstell
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Christopher A. Cassa
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Richard I. Sherwood
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Hubrecht Institute for Developmental Biology and Stem Cell Research, Royal Netherlands Academy of Arts and Sciences (KNAW), Utrecht, The Netherlands
| | - David K. Gifford
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| |
Collapse
|
29
|
Abstract
BACKGROUND RNA trans-splicing joins exons from different pre-mRNA transcripts to generate a chimeric product. Trans-splicing can also occur at the protein level, with split inteins mediating the ligation of separate gene products to generate a mature protein. SOURCES OF DATA Comprehensive literature search of published research papers and reviews using Pubmed. AREAS OF AGREEMENT Trans-splicing techniques have been used to target a wide range of diseases in both in vitro and in vivo models, resulting in RNA, protein and functional correction. AREAS OF CONTROVERSY Off-target effects can lead to therapeutically undesirable consequences. In vivo efficacy is typically low, and delivery issues remain a challenge. GROWING POINTS Trans-splicing provides a promising avenue for developing novel therapeutic approaches. However, much more research needs to be done before developing towards preclinical studies. AREAS TIMELY FOR DEVELOPING RESEARCH Increasing trans-splicing efficacy and specificity by rational design, screening and competitive inhibition of endogenous cis-splicing.
Collapse
Affiliation(s)
- Elizabeth M Hong
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 2QQ, UK
| | - Carin K Ingemarsdotter
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 2QQ, UK
| | - Andrew M L Lever
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 2QQ, UK
| |
Collapse
|
30
|
Blagova O, Alieva I, Kogan E, Zaytsev A, Sedov V, Chernyavskiy S, Surikova Y, Kotov I, Zaklyazminskaya EV. Mixed Hypertrophic and Dilated Phenotype of Cardiomyopathy in a Patient With Homozygous In-Frame Deletion in the MyBPC3 Gene Treated as Myocarditis for a Long Time. Front Pharmacol 2020; 11:579450. [PMID: 33101033 PMCID: PMC7546790 DOI: 10.3389/fphar.2020.579450] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/09/2020] [Indexed: 11/13/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common inherited disease, with a prevalence of 1:200 worldwide. The cause of HCM usually presents with an autosomal dominant mutation in the genes encoding one of more than 20 sarcomeric proteins, incomplete penetrance, and variable expressivity. HCM classically manifests as an unexplained thickness of the interventricular septum (IVS) and left ventricular (LV) walls, with or without the obstruction of the LV outflow tract (LVOT), and variable cardiac arrhythmias. Here, we present a rare case of mixed cardiomyopathy (cardiac hypertrophy and dilation) and erythrocytosis in a young patient. A 27-year-old man was admitted to the clinic due to biventricular heart failure (HF) NYHA class III. Personal medical records included a diagnosis of dilated cardiomyopathy (DCM) since the age of 4 years and were, at the time, considered an outcome of myocarditis. Severe respiratory infection led to circulatory decompensation and acute femoral thrombosis. The combination of non-obstructive LV hypertrophy (LV walls up to 15 mm), LV dilatation, decreased contractility (LV EF 24%), and LV apical thrombosis were seen. Cardiac MRI showed a complex pattern of late gadolinium enhancement (LGE). Endomyocardial biopsy (EMB) revealed primary cardiomyopathy with intravascular coagulation and an inflammatory response. No viral genome was detected in the plasma or EMB samples. Whole exome sequencing (WES) revealed a homozygous in-frame deletion p.2711_2737del in the MyBPC3 gene. The clinically unaffected mother was a heterozygous carrier of this deletion, and the father was unavailable for clinical and genetic testing. Essential erythrocytosis remains unexplained. No significant improvement was achieved by conventional treatment, including prednisolone 40 mg therapy. ICD was implanted due to sustained VT and high risk of SCD. Orthotopic heart transplantation (HTx) was considered optimal. Early manifestation combined hypertrophic and dilated phenotype, and progression may reflect a complex genotype with more than one pathogenic allele and/or a combination of genetic diseases in one patient.
Collapse
Affiliation(s)
- Olga Blagova
- Sechenov First Moscow State Medical University, Sechenov University, Moscow, Russia
| | - Indira Alieva
- Sechenov First Moscow State Medical University, Sechenov University, Moscow, Russia
| | - Eugenia Kogan
- Sechenov First Moscow State Medical University, Sechenov University, Moscow, Russia
| | - Alexander Zaytsev
- Sechenov First Moscow State Medical University, Sechenov University, Moscow, Russia
| | - Vsevolod Sedov
- Sechenov First Moscow State Medical University, Sechenov University, Moscow, Russia
| | - S Chernyavskiy
- Sechenov First Moscow State Medical University, Sechenov University, Moscow, Russia
| | - Yulia Surikova
- Medical Genetics Laboratory, Petrovsky National Research Centre of Surgery, Moscow, Russia
| | - Ilya Kotov
- Department of Bioinformatics, Centre of Genetics and Reproductive Medicine "Genetico", Moscow, Russia
| | | |
Collapse
|
31
|
Carrier L. Targeting the population for gene therapy with MYBPC3. J Mol Cell Cardiol 2020; 150:101-108. [PMID: 33049255 DOI: 10.1016/j.yjmcc.2020.10.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/02/2020] [Accepted: 10/05/2020] [Indexed: 12/14/2022]
Abstract
Hypertrophic cardiomyopathy (HCM) is the most prevalent inherited myocardial disease characterized by unexplained left ventricular hypertrophy, diastolic dysfunction and myocardial disarray. Clinical heterogeneity is wide, ranging from asymptomatic individuals to heart failure, arrhythmias and sudden death. HCM is often caused by mutations in genes encoding components of the sarcomere. Among them, MYBPC3, encoding cardiac myosin-myosin binding protein C is the most frequently mutated gene. Three quarter of pathogenic or likely pathogenic mutations in MYBPC3 are truncating and the resulting protein was not detected in HCM myectomy samples. The overall prognosis of the patients is excellent if managed with contemporary therapy, but still remains a significant disease-related health burden, and carriers with double heterozygous, compound heterozygous and homozygous mutations often display a more severe clinical phenotype than single heterozygotes. We propose these individuals as a good target population for MYBPC3 gene therapy.
Collapse
Affiliation(s)
- Lucie Carrier
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg, Kiel, Lübeck, Germany.
| |
Collapse
|
32
|
Santini L, Palandri C, Nediani C, Cerbai E, Coppini R. Modelling genetic diseases for drug development: Hypertrophic cardiomyopathy. Pharmacol Res 2020; 160:105176. [DOI: 10.1016/j.phrs.2020.105176] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/16/2020] [Accepted: 08/22/2020] [Indexed: 12/13/2022]
|
33
|
Arif M, Nabavizadeh P, Song T, Desai D, Singh R, Bazrafshan S, Kumar M, Wang Y, Gilbert RJ, Dhandapany PS, Becker RC, Kranias EG, Sadayappan S. Genetic, clinical, molecular, and pathogenic aspects of the South Asian-specific polymorphic MYBPC3 Δ25bp variant. Biophys Rev 2020; 12:1065-1084. [PMID: 32656747 PMCID: PMC7429610 DOI: 10.1007/s12551-020-00725-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 07/03/2020] [Indexed: 02/06/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a cardiac genetic disease characterized by ventricular enlargement, diastolic dysfunction, and increased risk for sudden cardiac death. Sarcomeric genetic defects are the predominant known cause of HCM. In particular, mutations in the myosin-binding protein C gene (MYBPC3) are associated with ~ 40% of all HCM cases in which a genetic basis has been established. A decade ago, our group reported a 25-base pair deletion in intron 32 of MYBPC3 (MYBPC3Δ25bp) that is uniquely prevalent in South Asians and is associated with autosomal dominant cardiomyopathy. Although our studies suggest that this deletion results in left ventricular dysfunction, cardiomyopathies, and heart failure, the precise mechanism by which this variant predisposes to heart disease remains unclear. Increasingly appreciated, however, is the contribution of secondary risk factors, additional mutations, and lifestyle choices in augmenting or modifying the HCM phenotype in MYBPC3Δ25bp carriers. Therefore, the goal of this review article is to summarize the current research dedicated to understanding the molecular pathophysiology of HCM in South Asians with the MYBPC3Δ25bp variant. An emphasis is to review the latest techniques currently applied to explore the MYBPC3Δ25bp pathogenesis and to provide a foundation for developing new diagnostic strategies and advances in therapeutics.
Collapse
Affiliation(s)
- Mohammed Arif
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, Heart, Lung and Vascular Institute, University of Cincinnati, College of Medicine, 231 Albert Sabin Way, Cincinnati, OH, 45267-0575, USA.
| | - Pooneh Nabavizadeh
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, Heart, Lung and Vascular Institute, University of Cincinnati, College of Medicine, 231 Albert Sabin Way, Cincinnati, OH, 45267-0575, USA
| | - Taejeong Song
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, Heart, Lung and Vascular Institute, University of Cincinnati, College of Medicine, 231 Albert Sabin Way, Cincinnati, OH, 45267-0575, USA
| | - Darshini Desai
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, Heart, Lung and Vascular Institute, University of Cincinnati, College of Medicine, 231 Albert Sabin Way, Cincinnati, OH, 45267-0575, USA
| | - Rohit Singh
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, Heart, Lung and Vascular Institute, University of Cincinnati, College of Medicine, 231 Albert Sabin Way, Cincinnati, OH, 45267-0575, USA
| | - Sholeh Bazrafshan
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, Heart, Lung and Vascular Institute, University of Cincinnati, College of Medicine, 231 Albert Sabin Way, Cincinnati, OH, 45267-0575, USA
| | - Mohit Kumar
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, Heart, Lung and Vascular Institute, University of Cincinnati, College of Medicine, 231 Albert Sabin Way, Cincinnati, OH, 45267-0575, USA
| | - Yigang Wang
- Department of Pathology and Laboratory Medicine, University of Cincinnati, College of Medicine, Cincinnati, OH, 45267, USA
| | - Richard J Gilbert
- Research Service, Providence VA Medical Center, Providence, RI, 02908, USA
| | - Perundurai S Dhandapany
- Centre for Cardiovascular Biology and Disease, Institute for Stem Cell Biology and Regenerative Medicine (inStem), Bangalore, India
- The Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
- Department of Medicine, Oregon Health and Science University, Portland, OR, USA
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA
| | - Richard C Becker
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, Heart, Lung and Vascular Institute, University of Cincinnati, College of Medicine, 231 Albert Sabin Way, Cincinnati, OH, 45267-0575, USA
| | - Evangelia G Kranias
- Department of Pharmacology and Systems Physiology, University of Cincinnati, College of Medicine, Cincinnati, OH, 45267, USA
| | - Sakthivel Sadayappan
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, Heart, Lung and Vascular Institute, University of Cincinnati, College of Medicine, 231 Albert Sabin Way, Cincinnati, OH, 45267-0575, USA
| |
Collapse
|
34
|
Bezzerides VJ, Prondzynski M, Carrier L, Pu WT. Gene therapy for inherited arrhythmias. Cardiovasc Res 2020; 116:1635-1650. [PMID: 32321160 PMCID: PMC7341167 DOI: 10.1093/cvr/cvaa107] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/13/2020] [Accepted: 04/15/2020] [Indexed: 01/16/2023] Open
Abstract
Inherited arrhythmias are disorders caused by one or more genetic mutations that increase the risk of arrhythmia, which result in life-long risk of sudden death. These mutations either primarily perturb electrophysiological homeostasis (e.g. long QT syndrome and catecholaminergic polymorphic ventricular tachycardia), cause structural disease that is closely associated with severe arrhythmias (e.g. hypertrophic cardiomyopathy), or cause a high propensity for arrhythmia in combination with altered myocardial structure and function (e.g. arrhythmogenic cardiomyopathy). Currently available therapies offer incomplete protection from arrhythmia and fail to alter disease progression. Recent studies suggest that gene therapies may provide potent, molecularly targeted options for at least a subset of inherited arrhythmias. Here, we provide an overview of gene therapy strategies, and review recent studies on gene therapies for catecholaminergic polymorphic ventricular tachycardia and hypertrophic cardiomyopathy caused by MYBPC3 mutations.
Collapse
Affiliation(s)
- Vassilios J Bezzerides
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - Maksymilian Prondzynski
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - Lucie Carrier
- Institute of Experimental and Clinical Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site, Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - William T Pu
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115, USA
- Harvard Stem Cell Institute, 7 Divinity Avenue, Cambridge, MA 02138, USA
| |
Collapse
|
35
|
Armstrong SM, Seidman MA. Do These Genes Make My Heart Look Fat? Why Molecular Changes Matter in Congenital Heart Disease. Can J Cardiol 2020; 36:997-999. [DOI: 10.1016/j.cjca.2020.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 05/10/2020] [Indexed: 11/30/2022] Open
|
36
|
Maltês S, Lopes LR. New perspectives in the pharmacological treatment of hypertrophic cardiomyopathy. Rev Port Cardiol 2020; 39:99-109. [PMID: 32245685 DOI: 10.1016/j.repc.2019.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 02/17/2019] [Accepted: 03/10/2019] [Indexed: 10/24/2022] Open
Abstract
Hypertrophic cardiomyopathy is an inherited cardiac disease and a major cause of heart failure and sudden death. Even though it was described more than 50 years ago, sarcomeric hypertrophic cardiomyopathy still lacks a disease-specific treatment. The drugs routinely used alleviate symptoms but do not prevent or revert the phenotype. With recent advances in the knowledge about the genetics and pathophysiology of hypertrophic cardiomyopathy, new genetic and pharmacological approaches have been recently discovered and studied that, by influencing different pathways involved in this disease, have the potential to function as disease-modifying therapies. These promising new pharmacological and genetic therapies will be the focus of this review.
Collapse
Affiliation(s)
- Sérgio Maltês
- Clínica Universitária de Cardiologia, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal.
| | - Luis Rocha Lopes
- Centre for Heart Muscle Disease, Institute of Cardiovascular Science, University College London, Inglaterra; St. Bartholomew's Hospital, Barts Heart Centre, London, Inglaterra; Centro Cardiovascular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
37
|
Gil-Ortuño C, Sebastián-Marcos P, Sabater-Molina M, Nicolas-Rocamora E, Gimeno-Blanes JR, Fernández Del Palacio MJ. Genetics of feline hypertrophic cardiomyopathy. Clin Genet 2020; 98:203-214. [PMID: 32215921 DOI: 10.1111/cge.13743] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 12/29/2022]
Abstract
Hypertrophic cardiomyopathy (HCM) is characterized by an abnormal increase in myocardial mass that affects cardiac structure and function. HCM is the most common inherited cardiovascular disease in humans (0.2%) and the most common cardiovascular disease in cats (14.7%). Feline HCM phenotype is very similar to the phenotype found in humans, but the time frame for the development of the disease is significantly shorter. Similar therapeutic agents are used in its treatment and it has the same complications, such as heart failure, thromboembolism and sudden cardiac death. In contrast to humans, in whom thousands of genetic variants have been identified, genetic studies in cats have been limited to fragment analysis of two sarcomeric genes identifying two variants in MYBPC3 and one in MYH7. Two of these variants have also been associated with human disease. The high prevalence of the reported variants in non-affected cats hinders the assumption of their pathogenicity in heterozygotes. An in-depth review of the literature about genetic studies on feline HCM in comparison with the same disease in humans is presented here. The close similarity in the phenotype and genotype between cats and humans makes the cat an excellent model for the pathophysiological study of the disease and future therapeutic agents.
Collapse
Affiliation(s)
- Cristina Gil-Ortuño
- Cardiogenetic Laboratory, Inherited Cardiac Disease Unit, IMIB University Hospital Virgen de la Arrixaca-IMIB, Murcia, Spain
| | | | - María Sabater-Molina
- Cardiogenetic Laboratory, Inherited Cardiac Disease Unit, IMIB University Hospital Virgen de la Arrixaca-IMIB, Murcia, Spain.,Internal Medicine Department, University of Murcia, Murcia, Spain
| | - Elisa Nicolas-Rocamora
- Cardiogenetic Laboratory, Inherited Cardiac Disease Unit, IMIB University Hospital Virgen de la Arrixaca-IMIB, Murcia, Spain
| | - Juan R Gimeno-Blanes
- Internal Medicine Department, University of Murcia, Murcia, Spain.,Department of Cardiology, Inherited Cardiac Disease Unit, University Hospital Virgen de la Arrixaca, Murcia, Spain
| | | |
Collapse
|
38
|
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common cardiovascular disease with genetic transmission, characterized by the hypertrophy of any segment of the left ventricle (LV), not totally explained by improper loading conditions, with LV systolic function preserved, increased, or reduced. The histopathological mechanism involved in HCM refers to the primary injury of the myocardium, as follows: disorganized array of myocytes, extracellular matrix modification, microvascular dysfunction, with subsequent appearance of myocardial fibrosis. Multiple sarcomere proteins mutations are responsible for HCM, but two of them are involved in 70% of the cases of HCM: β-myosin heavy chain (MYH7) and myosin-binding protein C (MYBPC3). The development of new genetic techniques involving genome editing is promising to discover a gene therapy for patients with HCM. Clinical presentation may differ from asymptomatic to sudden cardiac death (SCD), the last one targeting younger adults. In this case, the diagnosis and evaluation of SCD risk factors is extremely important. The common method of diagnosis is transthoracic echocardiography, but cardiac magnetic resonance (CMR) imaging represents "gold standard" in the evaluation of HCM patients. Treatment includes pharmacological therapy, surgery, alcohol ablation, and not least SCD prevention.
Collapse
Affiliation(s)
- Ioana Danuta Muresan
- 2nd Department of Internal Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 2-4 Clinicilor, 400006, Cluj-Napoca, Romania
| | - Lucia Agoston-Coldea
- 2nd Department of Internal Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 2-4 Clinicilor, 400006, Cluj-Napoca, Romania.
| |
Collapse
|
39
|
Maltês S, Lopes LR. New perspectives in the pharmacological treatment of hypertrophic cardiomyopathy. REVISTA PORTUGUESA DE CARDIOLOGIA (ENGLISH EDITION) 2020. [DOI: 10.1016/j.repce.2019.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
40
|
Cardiac amyloidosis and hypertrophic cardiomyopathy: “You always have time to make an accurate diagnosis!”. Int J Cardiol 2020; 300:205-206. [DOI: 10.1016/j.ijcard.2019.09.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 09/19/2019] [Accepted: 09/23/2019] [Indexed: 11/20/2022]
|
41
|
Abstract
BACKGROUND Hypertrophic cardiomyopathy is an autosomal dominant hereditary disease characterised by left ventricular asymmetry hypertrophy. However, our knowledge of the genetic background in hypertrophic cardiomyopathy cases is limited. Here, we aimed to evaluate pathogenic gene mutations in a family with high-risk hypertrophic cardiomyopathy and analyse the genotype/phenotype relationships in this family. METHODS The proband, her parents, and her niece underwent whole-exome sequencing, and the genotypes of family members were identified using Sanger sequencing. mRNA expression was detected using reverse transcription sequencing. Structural impairments were predicted by homologous modelling. A family survey was conducted for patients with positive results to obtain information on general clinical symptoms, electrocardiography, ambulatory electrocardiography, echocardiography, and 3.0T cardiac magnetic resonance findings. Regular follow-up was performed for up to 6 months. RESULTS Five family members, including the proband, carried a cleavage site mutation in the MYBPC3 gene (c.2737+1 (IVS26) G>T), causing exon 26 of the MYBPC3 gene transcript to be skipped and leading to truncation of cardiac myosin-binding protein C. Family survey showed that the earliest onset age was 13 years old, and three people had died suddenly at less than 40 years old. Three pathogenic gene carriers were diagnosed with hypertrophic cardiomyopathy, and all showed severe ventricular septal hypertrophy. CONCLUSION The c.2737+1 (IVS26) G>T mutation in the MYBPC3 gene led to exon 26 skipping, thereby affecting the structure and function of cardiac myosin-binding protein C and leading to severe ventricular hypertrophy and sudden death.
Collapse
|
42
|
Liu L, Fei F, Zhang R, Wu F, Yang Q, Wang F, Sun S, Zhao H, Li Q, Wang L, Wang Y, Gui Y, Wang X. Combinatorial genetic replenishments in myocardial and outflow tract tissues restore heart function in tnnt2 mutant zebrafish. Biol Open 2019; 8:bio.046474. [PMID: 31796423 PMCID: PMC6918781 DOI: 10.1242/bio.046474] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Cardiac muscle troponin T (Tnnt2) mediates muscle contraction in response to calcium ion dynamics, and Tnnt2 mutations are associated with multiple types of cardiomyopathy. Here, we employed a zebrafish model to investigate the genetic replenishment strategies of using conditional and inducible promoters to rescue the deficiencies in the heart. tnnt2a mutations were induced in zebrafish via the CRISPR/Cas9 technique, and the mutants displayed heart arrest and dilated cardiomyopathy-like phenotypes. We first utilized the classic myocardial promoter of the myl7 and TetOn inducible system to restore tnnt2a expression in myocardial tissue in tnnt2a mutant zebrafish. However, this attempt failed to recover normal heart function and circulation, although heart pumping was partially restored. Further analyses via both RNA-seq and immunofluorescence indicated that Tnnt2a, which was also expressed in a novel group of myl7-negative smooth muscle cells on the outflow tract (OFT), was indispensably responsible for the normal mechanical dynamics of OFT. Lastly, tnnt2 expression induced by OFT cells in addition to the myocardial cells successfully rescued heart function and circulation in tnnt2a mutant zebrafish. Together, our results reveal the significance of OFT expression of Tnnt2 for cardiac function and demonstrate zebrafish larva as a powerful and convenient in vivo platform for studying cardiomyopathy and the relevant therapeutic strategies.
Collapse
Affiliation(s)
- Lian Liu
- Department of Cardiology, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Fei Fei
- Cancer Metabolism Laboratory, Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 230002, China
| | - Ranran Zhang
- Department of Pediatrics, the Affiliated Hospital of Qingdao University, Qingdao, Shangdong 266003, China
| | - Fang Wu
- Department of Cardiology, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Qian Yang
- Department of Cardiology, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Feng Wang
- Department of Cardiology, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Shaoyang Sun
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 230002, China
| | - Hui Zhao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Qiang Li
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect, Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Lei Wang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 230002, China
| | - Youhua Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yonghao Gui
- Department of Cardiology, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Xu Wang
- Cancer Metabolism Laboratory, Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai 200032, China .,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 230002, China
| |
Collapse
|
43
|
Dutton LC, Dudhia J, Guest DJ, Connolly DJ. Inducing Pluripotency in the Domestic Cat ( Felis catus). Stem Cells Dev 2019; 28:1299-1309. [PMID: 31389301 DOI: 10.1089/scd.2019.0142] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Domestic cats suffer from a range of inherited genetic diseases, many of which display similarities with equivalent human conditions. Developing cellular models for these inherited diseases would enable drug discovery, benefiting feline health and welfare as well as enhancing the potential of cats as relevant animal models for translation to human medicine. Advances in our understanding of these diseases at the cellular level have come from the use of induced pluripotent stem cells (iPSCs). iPSCs can differentiate into virtually any cell type and can be derived from adult somatic cells, therefore overcoming the ethical implications of destroying embryos to obtain embryonic stem cells. No studies, however, report the generation of iPSCs from domestic cats [feline iPSCs (fiPSCs)]. Feline adipose-derived fibroblasts were infected with amphotropic retrovirus containing the coding sequences for human Oct4, Sox2, Klf4, cMyc, and Nanog. Isolated iPSC clones were expanded on inactivated mouse embryonic fibroblasts in the presence of feline leukemia inhibitory factor (fLIF). Retroviral delivery of human pluripotent genes gave rise to putative fiPSC colonies within 5-7 days. These iPS-like cells required fetal bovine serum and fLIF for maintenance. Colonies were domed with refractile edges, similar to mouse iPSCs. Immunocytochemistry demonstrated positive staining for stem cell markers: alkaline phosphatase, Oct4, Sox2, Nanog, and SSEA1. Cells were negative for SSEA4. Expression of endogenous feline Nanog was confirmed by quantitative polymerase chain reaction. The cells were able to differentiate in vitro into cells representative of the three germ layers. These results confirm the first generation of induced pluripotent stem cells from domestic cats. These cells will provide valuable models to study genetic diseases and explore novel therapeutic strategies.
Collapse
Affiliation(s)
- Luke C Dutton
- Department of Clinical Science and Services, Royal Veterinary College, University of London, Hatfield, United Kingdom
| | - Jayesh Dudhia
- Department of Clinical Science and Services, Royal Veterinary College, University of London, Hatfield, United Kingdom
| | - Deborah J Guest
- Centre for Preventative Medicine, Animal Health Trust, Newmarket, United Kingdom
| | - David J Connolly
- Department of Clinical Science and Services, Royal Veterinary College, University of London, Hatfield, United Kingdom
| |
Collapse
|
44
|
Garcia-Canadilla P, Cook AC, Mohun TJ, Oji O, Schlossarek S, Carrier L, McKenna WJ, Moon JC, Captur G. Myoarchitectural disarray of hypertrophic cardiomyopathy begins pre-birth. J Anat 2019; 235:962-976. [PMID: 31347708 PMCID: PMC6794206 DOI: 10.1111/joa.13058] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2019] [Indexed: 01/24/2023] Open
Abstract
Myoarchitectural disarray – the multiscalar disorganisation of myocytes, is a recognised histopathological hallmark of adult human hypertrophic cardiomyopathy (HCM). It occurs before the establishment of left ventricular hypertrophy (LVH) but its early origins and evolution around the time of birth are unknown. Our aim is to investigate whether myoarchitectural abnormalities in HCM are present in the fetal heart. We used wild‐type, heterozygous and homozygous hearts (n = 56) from a Mybpc3‐targeted knock‐out HCM mouse model and imaged the 3D micro‐structure by high‐resolution episcopic microscopy. We developed a novel structure tensor approach to extract, display and quantify myocyte orientation and its local angular uniformity by helical angle, angle of intrusion and myoarchitectural disarray index, respectively, immediately before and after birth. In wild‐type, we demonstrate uniformity of orientation of cardiomyocytes with smooth transitions of helical angle transmurally both before and after birth but with traces of disarray at the septal insertion points of the right ventricle. In comparison, heterozygous mice free of LVH, and homozygous mice showed not only loss of the normal linear helical angulation transmural profiles observed in wild‐type but also fewer circumferentially arranged myocytes at birth. Heterozygous and homozygous showed more disarray with a wider distribution than in wild‐type before birth. In heterozygous mice, disarray was seen in the anterior, septal and inferior walls irrespective of stage, whereas in homozygous mice it extended to the whole LV circumference including the lateral wall. In conclusion, myoarchitectural disarray is detectable in the fetal heart of an HCM mouse model before the development of LVH.
Collapse
Affiliation(s)
| | - Andrew C Cook
- Institute of Cardiovascular Science, University College London, London, UK
| | | | - Onyedikachi Oji
- Institute of Cardiovascular Science, University College London, London, UK
| | - Saskia Schlossarek
- Cardiovascular Research Centre, Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Lucie Carrier
- Cardiovascular Research Centre, Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - William J McKenna
- Institute of Cardiovascular Science, University College London, London, UK
| | - James C Moon
- Institute of Cardiovascular Science, University College London, London, UK.,The Cardiovascular Magnetic Resonance Imaging Unit, Barts Heart Centre, St Bartholomew's Hospital, London, UK
| | - Gabriella Captur
- Institute of Cardiovascular Science, University College London, London, UK
| |
Collapse
|
45
|
Goswami R, Subramanian G, Silayeva L, Newkirk I, Doctor D, Chawla K, Chattopadhyay S, Chandra D, Chilukuri N, Betapudi V. Gene Therapy Leaves a Vicious Cycle. Front Oncol 2019; 9:297. [PMID: 31069169 PMCID: PMC6491712 DOI: 10.3389/fonc.2019.00297] [Citation(s) in RCA: 231] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/01/2019] [Indexed: 12/14/2022] Open
Abstract
The human genetic code encrypted in thousands of genes holds the secret for synthesis of proteins that drive all biological processes necessary for normal life and death. Though the genetic ciphering remains unchanged through generations, some genes get disrupted, deleted and or mutated, manifesting diseases, and or disorders. Current treatment options—chemotherapy, protein therapy, radiotherapy, and surgery available for no more than 500 diseases—neither cure nor prevent genetic errors but often cause many side effects. However, gene therapy, colloquially called “living drug,” provides a one-time treatment option by rewriting or fixing errors in the natural genetic ciphering. Since gene therapy is predominantly a viral vector-based medicine, it has met with a fair bit of skepticism from both the science fraternity and patients. Now, thanks to advancements in gene editing and recombinant viral vector development, the interest of clinicians and pharmaceutical industries has been rekindled. With the advent of more than 12 different gene therapy drugs for curing cancer, blindness, immune, and neuronal disorders, this emerging experimental medicine has yet again come in the limelight. The present review article delves into the popular viral vectors used in gene therapy, advances, challenges, and perspectives.
Collapse
Affiliation(s)
- Reena Goswami
- Neuroscience Branch, Research Division, United States Army Medical Research Institute of Chemical Defense, Aberdeen, MD, United States
| | - Gayatri Subramanian
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Liliya Silayeva
- Neuroscience Branch, Research Division, United States Army Medical Research Institute of Chemical Defense, Aberdeen, MD, United States
| | - Isabelle Newkirk
- Neuroscience Branch, Research Division, United States Army Medical Research Institute of Chemical Defense, Aberdeen, MD, United States
| | - Deborah Doctor
- Neuroscience Branch, Research Division, United States Army Medical Research Institute of Chemical Defense, Aberdeen, MD, United States
| | - Karan Chawla
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Saurabh Chattopadhyay
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Dhyan Chandra
- Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Nageswararao Chilukuri
- Neuroscience Branch, Research Division, United States Army Medical Research Institute of Chemical Defense, Aberdeen, MD, United States
| | - Venkaiah Betapudi
- Neuroscience Branch, Research Division, United States Army Medical Research Institute of Chemical Defense, Aberdeen, MD, United States.,Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|