1
|
Jiang C, Zhan Q, Zeng C. The 5-HT-related gut-brain axis in obesity. Life Sci 2024; 358:123171. [PMID: 39447731 DOI: 10.1016/j.lfs.2024.123171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/22/2024] [Accepted: 10/20/2024] [Indexed: 10/26/2024]
Abstract
AIMS The incidence of obesity increases annually. It is closely related to the occurrence of cardiovascular diseases, malignant tumors, etc., and has become a major global health problem. 5-hydroxytryptamine (5-HT), a multifunctional monoamine neurotransmitter, is dispersed throughout the central nervous system and digestive tract. It is intimately related to the mechanism of obesity. MATERIALS AND METHODS PubMed, Web of Science and Embase were carefully searched. We collected articles that are closely related to 5-HT, the gut-brain axis, and obesity. KEY FINGDINGS The gut microbiota not only influences nutrient metabolism but also centrally meditates appetite and mood regulation. The gut-brain axis, a system connecting the gut and the brain, is known to participate in two-way communication between the gut flora and the central nervous system. SIGNIFICANCE There have been few reports on whether peripheral and central 5-HT interact bidirectionally via the gut-brain axis and jointly play a role in the pathogenesis of obesity. In this review, we summarize the rationale for the contribution of the 5-HT-related gut-brain axis to the development of obesity and explore feasible signaling pathways, which elucidates new targets for preventing and treating obesity.
Collapse
Affiliation(s)
- Chaoyong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Qiong Zhan
- Department of Neurology, the Second Xiangya Hospital, Central South University, Changsha 410011, China; Clinical Medical Research Center for Stroke Prevention and Treatment of Hunan Province, Department of Neurology, the Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Chang Zeng
- Health Management Center, Xiangya Hospital, Central South University, Changsha 410008, China; Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China.
| |
Collapse
|
2
|
Vanslette AM, Toft PB, Lund ML, Moritz T, Arora T. Serotonin receptor 4 agonism prevents high fat diet induced reduction in GLP-1 in mice. Eur J Pharmacol 2023; 960:176181. [PMID: 37926275 DOI: 10.1016/j.ejphar.2023.176181] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/02/2023] [Accepted: 11/02/2023] [Indexed: 11/07/2023]
Abstract
Hormone-producing enteroendocrine cells (EECs) are present throughout the gastrointestinal tract and respond to various nutrient and gut microbiota produced metabolites stimuli. Two important EEC subtypes, Glucagon like peptide-1 (GLP-1) producing L-cells and serotonin (5-HT) producing enterochromaffin (EC) cells interact via paracrine signaling and exhibit bidirectional regulation of expression and secretion of produced hormones. Accordingly, in vitro studies suggest potential to modulate 5-HT secretion by GLP-1 receptor agonism, and L-cell differentiation via serotonin receptor 4 agonism. However, the importance of this cellular signaling on host metabolism is poorly understood. In this study, we found that two weeks of high fat diet (HFD) feeding reduced RNA expression of gut hormones, including proglucagon (Gcg) gene encoding GLP-1 and Tryptophan hydroxylase1 (Tph1) gene encoding rate limiting enzyme in 5-HT synthesis, specifically in the colon and reduced plasma GLP-1 levels. Levels of propionate and butyrate were also reduced following HFD. However, supplementation of sodium propionate did not improve HFD induced reduction in GLP-1. In contrast, chemical induction of serotonin receptor 4 promoted GLP-1 levels, colonic Gcg RNA expression accompanied by improvement in glucose tolerance in HFD-fed mouse. Thus, this study suggests a novel mechanism to improve glucose tolerance via serotonin receptor 4 stimulation in the HFD induced obese mouse model.
Collapse
Affiliation(s)
- Amanda Marie Vanslette
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Pernille Baumann Toft
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Mari Lilith Lund
- Human Health Research, Scientific Affairs, Chr. Hansen A/S, Bøge Alle 10-12, 2970, Hørsholm, Denmark
| | - Thomas Moritz
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Tulika Arora
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.
| |
Collapse
|
3
|
Hurd M, Haag MM, Kwasnik MJ, Wykosky J, Lavoie B, Mawe GM. Protective actions of a luminally acting 5-HT 4 receptor agonist in mouse models of colitis. Neurogastroenterol Motil 2023; 35:e14673. [PMID: 37831752 PMCID: PMC10840927 DOI: 10.1111/nmo.14673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 10/15/2023]
Abstract
BACKGROUND 5-hydroxytryptamine 4 receptors (5-HT4 Rs) are expressed in the colonic epithelium, and previous studies have demonstrated that luminal administration of agonists enhances motility, suppresses nociception, and is protective in models of inflammation. We investigated whether stimulation with a luminally acting 5-HT4 R agonist is comparable to previously tested absorbable compounds. METHODS The dextran sodium sulfate (DSS), trinitrobenzene sulfonic acid (TNBS), and interleukin 10 knockout (IL-10KO) models of colitis were used to test the protective effects of the luminally acting 5-HT4 R agonist, 5HT4-LA1, in the absence and presence of a 5-HT4 R antagonist. The compounds were delivered by enema to mice either before (prevention) or after (recovery) the onset of active colitis. Outcome measure included disease activity index (DAI) and histological evaluation of colon tissue, and effects on wound healing and fecal water content were also assessed. KEY RESULTS Daily enema of 5HT4-LA1 attenuated the development of, and accelerated recovery from, active colitis. Enema administration of 5HT4-LA1 did not attenuate the development of colitis in 5-HT4 R knockout mice. Stimulation of 5-HT4 Rs with 5HT4-LA1 increased Caco-2 cell migration (accelerated wound healing). Daily administration of 5HT4-LA1 did not increase fecal water content in active colitis. CONCLUSIONS AND INFERENCES Luminally restricted 5-HT4 R agonists are comparable to absorbable compounds in attenuating and accelerating recovery from active colitis. Luminally acting 5-HT4 R agonists may be useful as an adjuvant to current inflammatory bowel disease (IBD) treatments to enhance epithelial healing.
Collapse
Affiliation(s)
- Molly Hurd
- Department of Neurological Sciences, The University of Vermont, Burlington, VT, USA
| | - Melody M. Haag
- Department of Neurological Sciences, The University of Vermont, Burlington, VT, USA
| | - Matthew J. Kwasnik
- Department of Neurological Sciences, The University of Vermont, Burlington, VT, USA
| | - Jill Wykosky
- Takeda Pharmaceuticals Company Limited, Cambridge, MA, USA
| | - Brigitte Lavoie
- Department of Neurological Sciences, The University of Vermont, Burlington, VT, USA
| | - Gary M. Mawe
- Department of Neurological Sciences, The University of Vermont, Burlington, VT, USA
| |
Collapse
|
4
|
Sharkey KA, Mawe GM. The enteric nervous system. Physiol Rev 2023; 103:1487-1564. [PMID: 36521049 PMCID: PMC9970663 DOI: 10.1152/physrev.00018.2022] [Citation(s) in RCA: 138] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Of all the organ systems in the body, the gastrointestinal tract is the most complicated in terms of the numbers of structures involved, each with different functions, and the numbers and types of signaling molecules utilized. The digestion of food and absorption of nutrients, electrolytes, and water occurs in a hostile luminal environment that contains a large and diverse microbiota. At the core of regulatory control of the digestive and defensive functions of the gastrointestinal tract is the enteric nervous system (ENS), a complex system of neurons and glia in the gut wall. In this review, we discuss 1) the intrinsic neural control of gut functions involved in digestion and 2) how the ENS interacts with the immune system, gut microbiota, and epithelium to maintain mucosal defense and barrier function. We highlight developments that have revolutionized our understanding of the physiology and pathophysiology of enteric neural control. These include a new understanding of the molecular architecture of the ENS, the organization and function of enteric motor circuits, and the roles of enteric glia. We explore the transduction of luminal stimuli by enteroendocrine cells, the regulation of intestinal barrier function by enteric neurons and glia, local immune control by the ENS, and the role of the gut microbiota in regulating the structure and function of the ENS. Multifunctional enteric neurons work together with enteric glial cells, macrophages, interstitial cells, and enteroendocrine cells integrating an array of signals to initiate outputs that are precisely regulated in space and time to control digestion and intestinal homeostasis.
Collapse
Affiliation(s)
- Keith A Sharkey
- Hotchkiss Brain Institute and Snyder Institute for Chronic Diseases, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Gary M Mawe
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington, Vermont
| |
Collapse
|
5
|
SEKI M, MIWA A, OHSAKA F, KARATSU Y, TSURUTA T, HINO S, MORITA T, SONOYAMA K. Local free fatty acids trigger the expression of lipopolysaccharide-binding protein in murine white adipose tissue. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2022; 41:54-65. [PMID: 35433160 PMCID: PMC8970656 DOI: 10.12938/bmfh.2021-061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/26/2021] [Indexed: 11/05/2022]
Abstract
Although lipopolysaccharide (LPS)-binding protein (LBP) is an acute-phase protein mainly
produced by hepatocytes, it has also been proposed to be a pro-inflammatory adipokine.
Obesity and the consumption of a high-fat diet (HFD) are reportedly associated with
elevated levels of LPS in plasma and free fatty acids (FFAs) in white adipose tissue
(WAT). We examined whether circulating LPS or local FFAs are responsible for the
HFD-induced increase of LBP in WAT. Male C57BL/6J mice were fed either a normal-fat diet
(NFD) or an HFD. The mRNA levels in the liver and mesenteric WAT (mWAT), total FFA content
in mWAT, and LBP and LPS concentrations in plasma were determined. The
Lbp mRNA level in mWAT was higher in mice fed the HFD than in those fed
the NFD for 3, 7, or 28 days or 14 weeks, whereas the hepatic Lbp mRNA
level did not differ between the groups. The Lbp mRNA level in mWAT was
also increased by the HFD in germ-free mice, which do not have gut microbiota, the source
of LPS. The plasma LPS level did not show a significant correlation with the mWAT
Lbp mRNA level. The total FFA content in mWAT was higher in mice fed
the HFD than in those fed the NFD and positively correlated with the Lbp
mRNA level. Supplementation with palmitic acid increased the Lbp mRNA
level in 3T3-L1 adipocytes. We propose that local FFAs, but not circulating LPS, are the
trigger for increased Lbp expression in mWAT of mice fed the HFD.
Collapse
Affiliation(s)
- Manami SEKI
- Graduate School of Life Science, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo 060-8589, Japan
| | - Akiho MIWA
- Graduate School of Life Science, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo 060-8589, Japan
| | - Fumina OHSAKA
- Graduate School of Agriculture, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo 060-8589, Japan
| | - Yugo KARATSU
- Graduate School of Agriculture, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo 060-8589, Japan
| | - Takeshi TSURUTA
- Graduate School of Environmental and Life Science, Okayama University, 2-1-1 Tsushima-Naka, Kita-ku, Okayama-shi, Okayama 700-8530, Japan
| | - Shingo HINO
- College of Agriculture, Academic Institute, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka-shi, Shizuoka 422-8529, Japan
| | - Tatsuya MORITA
- College of Agriculture, Academic Institute, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka-shi, Shizuoka 422-8529, Japan
| | - Kei SONOYAMA
- Research Faculty of Agriculture, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo 060-8589, Japan
| |
Collapse
|
6
|
Nakamori H, Iida K, Hashitani H. Mechanisms underlying the prokinetic effects of endogenous glucagon-like peptide-1 in the rat proximal colon. Am J Physiol Gastrointest Liver Physiol 2021; 321:G617-G627. [PMID: 34643099 DOI: 10.1152/ajpgi.00175.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/24/2021] [Accepted: 10/06/2021] [Indexed: 01/31/2023]
Abstract
Glucagon-like peptide-1 (GLP-1), a well-known insulin secretagogue, is released from enteroendocrine L cells both luminally and basolaterally to exert different effects. Basolaterally released GLP-1 increases epithelial ion transport by activating CGRP-containing enteric afferent neurons. Although bath-applied GLP-1 reduced the contractility of colonic segments, GLP-1-induced stimulation of afferent neurons could also accelerate peristaltic contractions. Here, the roles of endogenous GLP-1 in regulating colonic peristalsis were investigated using isolated colonic segments. Isolated segments of rat proximal colon were placed in an organ bath, serosally perfused with oxygenated physiological salt solution, and luminally perfused with degassed 0.9% saline. Colonic wall motion was recorded using a video camera and converted into spatiotemporal maps. Intraluminal administration of GLP-1 (100 nM) stimulating the secretion of GLP-1 from L cells increased the frequency of oro-aboral propagating peristaltic contractions. The acceleratory effect of GLP-1 was blocked by luminally applied exendin-3 (9-39) (100 nM), a GLP-1 receptor antagonist. GLP-1-induced acceleration of peristaltic contractions was also prevented by bath-applied BIBN4069 (1 μM), a CGRP receptor antagonist. In colonic segments that had been exposed to bath-applied capsaicin (100 nM) that desensitizes extrinsic afferents, GLP-1 was still capable of exerting its prokinetic effect. Stimulation of endogenous GLP-1 secretion with a luminally applied cocktail of short-chain fatty acids (1 mM) increased the frequency of peristaltic waves in an exendin-3 (9-39)-sensitive manner. Thus, GLP-1 activates CGRP-expressing intrinsic afferents to accelerate peristalsis in the proximal colon. Short-chain fatty acids appear to stimulate endogenous GLP-1 secretion from L cells resulting in the acceleration of colonic peristalsis.NEW & NOTEWORTHY Glucagon-like peptide-1 (GLP-1) activates CGRP-containing intrinsic afferent neurons resulting in the acceleration of colonic peristalsis. Short-chain fatty acids stimulate the secretion of endogenous GLP-1 from L cells that accelerates colonic peristalsis. Thus, besides the well-known humoral insulinotropic action, GLP-1 exerts a local action via the activation of the enteric nervous system to accelerate colonic motility. Such a prokinetic action of GLP-1 could underlie the mechanisms causing diarrhea in patients with type-2 diabetes treated with GLP-1 analogs.
Collapse
Affiliation(s)
- Hiroyuki Nakamori
- Department of Cell Physiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Koji Iida
- Department of Cell Physiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hikaru Hashitani
- Department of Cell Physiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
7
|
Consumption of indigestible saccharides and administration of Bifidobacterium pseudolongum reduce mucosal serotonin in murine colonic mucosa. Br J Nutr 2021; 127:513-525. [PMID: 33849681 DOI: 10.1017/s0007114521001306] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SCFA increase serotonin (5-hydroxytryptamine, 5-HT) synthesis and content in the colon in vitro and ex vivo, but little is known in vivo. We tested whether dietary indigestible saccharides, utilised as a substrate to produce SCFA by gut microbiota, would increase colonic 5-HT content in mice. Male C57BL/6J mice were fed a purified diet and water supplemented with 4 % (w/v) 1-kestose (KES) for 2 weeks. Colonic 5-HT content and enterochromaffin (EC) cell numbers were lower in mice supplemented with KES than those without supplementation, while monoamine oxidase A activity and mRNA levels of tryptophan hydroxylase 1 (Tph1), chromogranin A (Chga), Slc6a4 and monoamine oxidase A (Maoa) genes in the colonic mucosa, serum 5-HT concentration and total 5-HT content in the colonic contents did not differ between groups. Caecal acetate concentration and Bifidobacterium pseudolongum population were higher in KES-supplemented mice. Similar trends were observed in mice supplemented with other indigestible saccharides, that is, fructo-oligosaccharides, inulin and raffinose. Intragastric administration of live B. pseudolongum (108 colony-forming units/d) for 2 weeks reduced colonic 5-HT content and EC cell numbers. These results suggest that changes in synthesis, reuptake, catabolism and overflow of 5-HT in the colonic mucosa are not involved in the reduction of colonic 5-HT content by dietary indigestible saccharides in mice. We propose that gut microbes including B. pseudolongum could contribute to the reduction of 5-HT content in the colonic mucosa via diminishing EC cells.
Collapse
|