1
|
Wang H, Xu M, Kong Q, Sun P, Yan F, Tian W, Wang X. Research and progress on ClC‑2 (Review). Mol Med Rep 2017; 16:11-22. [PMID: 28534947 PMCID: PMC5482133 DOI: 10.3892/mmr.2017.6600] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 02/13/2017] [Indexed: 12/22/2022] Open
Abstract
Chloride channel 2 (ClC-2) is one of the nine mammalian members of the ClC family. The present review discusses the molecular properties of ClC‑2, including CLCN2, ClC‑2 promoter and the structural properties of ClC‑2 protein; physiological properties; functional properties, including the regulation of cell volume. The effects of ClC‑2 on the digestive, respiratory, circulatory, nervous and optical systems are also discussed, in addition to the mechanisms involved in the regulation of ClC‑2. The review then discusses the diseases associated with ClC‑2, including degeneration of the retina, Sjögren's syndrome, age‑related cataracts, degeneration of the testes, azoospermia, lung cancer, constipation, repair of impaired intestinal mucosa barrier, leukemia, cystic fibrosis, leukoencephalopathy, epilepsy and diabetes mellitus. It was concluded that future investigations of ClC‑2 are likely to be focused on developing specific drugs, activators and inhibitors regulating the expression of ClC‑2 to treat diseases associated with ClC‑2. The determination of CLCN2 is required to prevent and treat several diseases associated with ClC‑2.
Collapse
Affiliation(s)
- Hongwei Wang
- Department of Ophthalmology, People's Hospital of Jingjiang, Jingjiang, Jiangsu 214500, P.R. China
| | - Minghui Xu
- Library, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Qingjie Kong
- School of Computer Science and Information Technology, Northeast Normal University, Changchun, Jilin 130024, P.R. China
| | - Peng Sun
- Department of Ophthalmology, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154000, P.R. China
| | - Fengyun Yan
- Assets Division, Harbin University of Science and Technology, Harbin, Heilongjiang 150080, P.R. China
| | - Wenying Tian
- Library, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Xin Wang
- Library, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| |
Collapse
|
2
|
Xie C, Cao X, Chen X, Wang D, Zhang WK, Sun Y, Hu W, Zhou Z, Wang Y, Huang P. Mechanosensitivity of wild-type and G551D cystic fibrosis transmembrane conductance regulator (CFTR) controls regulatory volume decrease in simple epithelia. FASEB J 2016; 30:1579-89. [PMID: 26683699 PMCID: PMC6137689 DOI: 10.1096/fj.15-283002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 12/08/2015] [Indexed: 12/22/2022]
Abstract
Mutations of cystic fibrosis transmembrane conductance regulator (CFTR), an epithelial ligand-gated anion channel, are associated with the lethal genetic disease cystic fibrosis. The CFTR G551D mutation impairs ATP hydrolysis and thereby makes CFTR refractory to cAMP stimulation. Both wild-type (WT) and G551D CFTR have been implicated in regulatory volume decrease (RVD), but the underlying mechanism remains incompletely understood. Here, we show that the channel activity of both WT and G551D CFTR is directly stimulated by mechanical perturbation induced by cell swelling at the single-channel, cellular, and tissue levels. Hypotonicity activated CFTR single channels in cell-attached membrane patches and WT-CFTR-mediated short-circuit current (Isc) in Calu-3 cells, and this was independent of Ca(2+)and cAMP/PKA signaling. Genetic suppression and ablation but not G551D mutation of CFTR suppressed the hypotonicity- and stretch-inducedIscin Calu-3 cells and mouse duodena. Moreover, ablation but not G551D mutation of the CFTR gene inhibited the RVD of crypts isolated from mouse intestine; more importantly, CFTR-specific blockers markedly suppressed RVD in both WT- and G551D CFTR mice, demonstrating for the first time that the channel activity of both WT and G551D CFTR is required for epithelial RVD. Our findings uncover a previously unrecognized mechanism underlying CFTR involvement in epithelial RVD and suggest that the mechanosensitivity of G551D CFTR might underlie the mild phenotypes resulting from this mutation.-Xie, C., Cao, X., Chen, X, Wang, D., Zhang, W. K., Sun, Y., Hu, W., Zhou, Z., Wang, Y., Huang, P. Mechanosensitivity of wild-type and G551D cystic fibrosis transmembrane conductance regulator (CFTR) controls regulatory volume decrease in simple epithelia.
Collapse
Affiliation(s)
- Changyan Xie
- *Division of Life Science, Division of Biomedical Engineering, and State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Xu Cao
- *Division of Life Science, Division of Biomedical Engineering, and State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Xibing Chen
- *Division of Life Science, Division of Biomedical Engineering, and State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Dong Wang
- *Division of Life Science, Division of Biomedical Engineering, and State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Wei Kevin Zhang
- *Division of Life Science, Division of Biomedical Engineering, and State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Ying Sun
- *Division of Life Science, Division of Biomedical Engineering, and State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Wenbao Hu
- *Division of Life Science, Division of Biomedical Engineering, and State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Zijing Zhou
- *Division of Life Science, Division of Biomedical Engineering, and State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Yan Wang
- *Division of Life Science, Division of Biomedical Engineering, and State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Pingbo Huang
- *Division of Life Science, Division of Biomedical Engineering, and State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
3
|
Lim CH, Bot AGM, de Jonge HR, Tilly BC. Osmosignaling and volume regulation in intestinal epithelial cells. Methods Enzymol 2007; 428:325-42. [PMID: 17875427 DOI: 10.1016/s0076-6879(07)28019-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Most cells have to perform their physiological functions under a variable osmotic stress, which, because of the relatively high permeability of the plasma membrane for water, may result in frequent alterations in cell size. Intestinal epithelial cells are especially prone to changes in cell volume because of their high capacity of salt and water transport and the high membrane expression of various nutrient transporters. Therefore, to avoid excessive shrinkage or swelling, enterocytes, like most cell types, have developed efficient mechanisms to maintain osmotic balance. This chapter reviews selected model systems that can be used to investigate cell volume regulation in intestinal epithelial cells, with emphasis on the regulatory volume decrease, and the methods available to study the compensatory redistribution of (organic) osmolytes. In addition, a brief summary is presented of the pathways involved in osmosensing and osmosignaling in the intestine.
Collapse
Affiliation(s)
- Christina H Lim
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | | | | |
Collapse
|
4
|
Baglole CJ, Sigalet DL, Martin GR, Yao S, Meddings JB. Acute denervation alters the epithelial response to adrenoceptor activation through an increase in alpha1-adrenoceptor expression on villus enterocytes. Br J Pharmacol 2006; 147:101-8. [PMID: 16258526 PMCID: PMC1615844 DOI: 10.1038/sj.bjp.0706424] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Loss of sympathetic input due to intestinal denervation results in hypersensitivity and increased intestinal secretion. It is unknown whether denervation-induced alterations in intestinal epithelial physiology are the result of changes in adrenoceptors on enterocytes (ENTs). The purpose of this study was to examine adrenoceptor distribution and pharmacology on small intestinal ENTs following acute intestinal denervation. Lewis rats underwent small bowel transplantation (SBT) or sham operation and proximal small intestinal segments were harvested 1, 2 and 4 weeks postoperatively. Intestinal electrolyte movement was assessed using short-circuit current (Isc) measurements of stripped epithelial sheets following stimulation with phenylephrine (PE), an alpha(1)-adrenoceptor agonist. The presence of adrenoceptor subtypes on separated villus and crypt ENTs was assessed using flow cytometry. Alpha(1)-adrenoceptors were found on approximately 27% of jejunal villus ENTs, but not crypt ENTs, following acute extrinsic denervation. ENTs from the Lewis rat have few beta-adrenoceptors. Alpha(1)-adrenoceptor stimulation of acutely denervated intestinal epithelial sheets decreased Isc by -13.45%. This effect was mediated by a reduction in chloride (Cl(-)) secretion; the absence of Cl(-) reversed the Isc to +13.79%. In conclusion, loss of sympathetic innervation to the gastrointestinal epithelium causes acute upregulation of alpha(1)-adrenoceptors on villus ENTs, leading to inhibition of Cl(-) secretion at the villus tip. The increase in adrenoceptors may reflect a compensatory mechanism to combat the increased secretory state of the bowel due to the loss of the sympathetic innervation and tonic control over intestinal secretion.
Collapse
Affiliation(s)
- Carolyn J Baglole
- Gastrointestinal Research Group, University of Calgary, 3330 Hospital Drive, Calgary, Alberta, Canada T2N 4N1
| | - David L Sigalet
- Gastrointestinal Research Group, University of Calgary, 3330 Hospital Drive, Calgary, Alberta, Canada T2N 4N1
| | - Gary R Martin
- Gastrointestinal Research Group, University of Calgary, 3330 Hospital Drive, Calgary, Alberta, Canada T2N 4N1
| | - Shengtao Yao
- Gastrointestinal Research Group, University of Calgary, 3330 Hospital Drive, Calgary, Alberta, Canada T2N 4N1
| | - Jon B Meddings
- Gastrointestinal Research Group, University of Calgary, 3330 Hospital Drive, Calgary, Alberta, Canada T2N 4N1
- Author for correspondence:
| |
Collapse
|
5
|
Lionetto MG, Giordano ME, De Nuccio F, Nicolardi G, Hoffmann EK, Schettino T. Hypotonicity induced K+ and anion conductive pathways activation in eel intestinal epithelium. ACTA ACUST UNITED AC 2005; 208:749-60. [PMID: 15695766 DOI: 10.1242/jeb.01440] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Control of cell volume is a fundamental and highly conserved physiological mechanism, essential for survival under varying environmental and metabolic conditions. Epithelia (such as intestine, renal tubule, gallbladder and gills) are tissues physiologically exposed to osmotic stress. Therefore, the activation of 'emergency' systems of rapid cell volume regulation is fundamental in their physiology. The aim of the present work was to study the physiological response to hypotonic stress in a salt-transporting epithelium, the intestine of the euryhaline teleost Anguilla anguilla. Eel intestinal epithelium, when symmetrically bathed with Ringer solution, develops a net Cl- current giving rise to a negative transepithelial potential at the basolateral side of the epithelium. The eel intestinal epithelium responded to a hypotonic challenge with a biphasic decrease in the transepithelial voltage (V(te)) and the short circuit current (I(sc)). This electrophysiological response correlated with a regulatory volume decrease (RVD) response, recorded by morphometrical measurement of the epithelium height. Changes in the transepithelial resistance were also observed following the hypotonicity exposure. The electrogenic V(te) and I(sc) responses to hypotonicity resulted from the activation of different K+ and anion conductive pathways on the apical and basolateral membranes of the epithelium: (a) iberiotoxin-sensitive K+ channels on the apical and basolateral membrane, (b) apamin-sensitive K+ channels mainly on the basolateral membrane, (c) DIDS-sensitive anion channels on the apical membrane. The functional integrity of the basal Cl- conductive pathway on the basolateral membrane is also required. The electrophysiological response to hypotonic stress was completely abolished by Ca2+ removal from the Ringer perfusing solution, but was not affected by depletion of intracellular Ca2+ stores by thapsigargin.
Collapse
Affiliation(s)
- M G Lionetto
- Department of Biological and Environmental Sciences and Technologies, University of Lecce, Italy
| | | | | | | | | | | |
Collapse
|
6
|
Mohammad-Panah R, Gyomorey K, Rommens J, Choudhury M, Li C, Wang Y, Bear CE. ClC-2 contributes to native chloride secretion by a human intestinal cell line, Caco-2. J Biol Chem 2001; 276:8306-13. [PMID: 11096079 DOI: 10.1074/jbc.m006764200] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It has been previously determined that ClC-2, a member of the ClC chloride channel superfamily, is expressed in certain epithelial tissues. These findings fueled speculation that ClC-2 can compensate for impaired chloride transport in epithelial tissues affected by cystic fibrosis and lacking the cystic fibrosis transmembrane conductance regulator. However, direct evidence linking ClC-2 channel expression to epithelial chloride secretion was lacking. In the present studies, we show that ClC-2 transcripts and protein are present endogenously in the Caco-2 cell line, a cell line that models the human small intestine. Using an antisense strategy we show that ClC-2 contributes to native chloride currents in Caco-2 cells measured by patch clamp electrophysiology. Antisense ClC-2-transfected monolayers of Caco-2 cells exhibited less chloride secretion (monitored as iodide efflux) than did mock transfected monolayers, providing the first direct molecular evidence that ClC-2 can contribute to chloride secretion by the human intestinal epithelium. Further, examination of ClC-2 localization by confocal microscopy revealed that ClC-2 contributes to secretion from a unique location in this epithelium, from the apical aspect of the tight junction complex. Hence, these studies provide the necessary rationale for considering ClC-2 as a possible therapeutic target for diseases affecting intestinal chloride secretion such as cystic fibrosis.
Collapse
Affiliation(s)
- R Mohammad-Panah
- Programme in Cell Biology and Genetics at the Hospital for Sick Children and the Departments of Physiology and Molecular Genetics at the University of Toronto, Toronto, M5G 1X8 Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
7
|
Gyömörey K, Yeger H, Ackerley C, Garami E, Bear CE. Expression of the chloride channel ClC-2 in the murine small intestine epithelium. Am J Physiol Cell Physiol 2000; 279:C1787-94. [PMID: 11078693 DOI: 10.1152/ajpcell.2000.279.6.c1787] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The chloride channel ClC-2 has been implicated in neonatal airway chloride secretion. To assess its role in secretion by the small intestine, we assessed its subcellular expression in ileal segments obtained from mice and studied the chloride transport properties of this tissue. Chloride secretion across the mucosa of murine ileal segments was assessed in Ussing chambers as negative short-circuit current (I(sc)). If ClC-2 contributed to chloride secretion, we predicted on the basis of previous studies that negative I(sc) would be stimulated by dilution of the mucosal bath and that this response would depend on chloride ion and would be blocked by the chloride channel blocker 5-nitro-2-(3-phenylpropylamino) benzoic acid but not by DIDS. In fact, mucosal hypotonicity did stimulate a chloride-dependent change in I(sc) that exhibited pharmacological properties consistent with those of ClC-2. This secretory response is unlikely to be mediated by the cystic fibrosis transmembrane conductance regulator (CFTR) channel because it was also observed in CFTR knockout animals. Assessment of the native expression pattern of ClC-2 protein in the murine intestinal epithelium by confocal and electron microscopy showed that ClC-2 exhibits a novel distribution, a distribution pattern somewhat unexpected for a channel involved in chloride secretion. Immunolabeled ClC-2 was detected predominantly at the tight junction complex between adjacent intestinal epithelial cells.
Collapse
Affiliation(s)
- K Gyömörey
- Programme in Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8
| | | | | | | | | |
Collapse
|
8
|
Gyömörey K, Rozmahel R, Bear CE. Amelioration of intestinal disease severity in cystic fibrosis mice is associated with improved chloride secretory capacity. Pediatr Res 2000; 48:731-4. [PMID: 11102538 DOI: 10.1203/00006450-200012000-00005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The variability in intestinal disease severity in patients with cystic fibrosis (CF) has been associated with the expression of secondary modifier genes. The locus containing these modifier genes in CF patients is syntenic with a modifier locus previously associated with survival in CF transmembrane conductance regulator-knockout mice. These previous studies showed that the proportion of CF mice that survive weaning (mildly affected mice) versus those that succumb to obstruction of the small intestine (severely affected) is related to their genetic background and the expression of modifier genes. In the present work, we show that the basal transepithelial chloride transport measured across jejuna obtained from mice of mixed genetic backgrounds segregates into two groups, some mice having low and others having high, near normal chloride transport. Further, we report that the segregation of mice with respect to intestinal chloride transport correlates with their predicted segregation on the basis of genotype at the "modifier locus." These findings support the hypothesis that intestinal disease modification in CF mice correlates with improved chloride transport through non-CF transmembrane conductance regulator chloride channels.
Collapse
Affiliation(s)
- K Gyömörey
- Programme in Cell Biology, Research Institute, Hospital for Sick Toronto, Ontario M5G 1X8, Canada
| | | | | |
Collapse
|
9
|
Espinosa F, López-González I, Serrano CJ, Gasque G, de la Vega-Beltrán JL, Treviño CL, Darszon A. Anion channel blockers differentially affect T-type Ca(2+) currents of mouse spermatogenic cells, alpha1E currents expressed in Xenopus oocytes and the sperm acrosome reaction. DEVELOPMENTAL GENETICS 1999; 25:103-14. [PMID: 10440844 DOI: 10.1002/(sici)1520-6408(1999)25:2<103::aid-dvg4>3.0.co;2-b] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The direct electrophysiological characterization of sperm Ca(2+) channels has been precluded by their small size and flat shape. An alternative to study these channels is to use spermatogenic cells, the progenitors of sperm, which are larger and easier to patch-clamp. In mouse and rat, the only voltage-dependent Ca(2+) currents displayed by these cells are of the T type. Because compounds that block these currents inhibit the zona pellucida-induced Ca(2+) uptake and the sperm acrosome reaction (AR) at similar concentrations, it is likely that they are fundamental for this process. Recent single channel recordings in mouse sperm demonstrated the presence of a Cl(-) channel. This channel and the zona pellucida (ZP)-induced AR were inhibited by niflumic acid (NA), an anion channel blocker [Espinosa et al. (1998): FEBS Lett 426:47-51]. Because NA and other anion channel blockers modulate cationic channels as well, it became important to determine whether they affect the T-type Ca(2+) currents of spermatogenic cells. These currents were blocked in a voltage-dependent manner by NA, 1, 9-dideoxyforskolin (DDF), and 5-nitro-2-(3-phenylpropylamine)benzoic acid (NPPB). The IC(50) values at -20 mV were 43 microM for NA, 28 microM for DDF, and 15 microM for NPPB. Moreover, DDF partially inhibited the ZP-induced AR (40% at 1 microM) and NPPB displayed an IC(50) value of 6 microM for this reaction. These results suggest that NA and DDF do not inhibit the ZP-induced AR by blocking T-type Ca(2+) currents, while NPPB may do so. Interestingly 200 microM NA was basically unable to inhibit alpha1E Ca(2+) channels expressed in Xenopus oocytes, questioning that this alpha subunit codes for the T-type Ca(2+) channels present in spermatogenic cells. Evidence for the presence of alpha1C, alpha1G, and alpha1H in mouse pachytene spematocytes and in round and condensing spermatids is presented.
Collapse
Affiliation(s)
- F Espinosa
- Departamento de Genética y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | | | | | | | | | | | | |
Collapse
|