1
|
Geng A, Lian W, Wang Y, Liu M, Zhang Y, Wang X, Chen G. Molecular Mechanisms and Regulatory Pathways Underlying Drought Stress Response in Rice. Int J Mol Sci 2024; 25:1185. [PMID: 38256261 PMCID: PMC10817035 DOI: 10.3390/ijms25021185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Rice is a staple food for 350 million people globally. Its yield thus affects global food security. Drought is a serious environmental factor affecting rice growth. Alleviating the inhibition of drought stress is thus an urgent challenge that should be solved to enhance rice growth and yield. This review details the effects of drought on rice morphology, physiology, biochemistry, and the genes associated with drought stress response, their biological functions, and molecular regulatory pathways. The review further highlights the main future research directions to collectively provide theoretical support and reference for improving drought stress adaptation mechanisms and breeding new drought-resistant rice varieties.
Collapse
Affiliation(s)
- Anjing Geng
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Wenli Lian
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Yihan Wang
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Minghao Liu
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Yue Zhang
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Xu Wang
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Guang Chen
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| |
Collapse
|
2
|
Ilyas M, Rahman A, Khan NH, Haroon M, Hussain H, Rehman L, Alam M, Rauf A, Waggas DS, Bawazeer S. Analysis of Germin-like protein genes family in Vitis vinifera (VvGLPs) using various in silico approaches. BRAZ J BIOL 2024; 84:e256732. [DOI: 10.1590/1519-6984.256732] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/28/2021] [Indexed: 12/26/2022] Open
Abstract
Abstract Germin-like proteins (GLPs) play an important role against various stresses. Vitis vinifera L. genome contains 7 GLPs; many of them are functionally unexplored. However, the computational analysis may provide important new insight into their function. Currently, physicochemical properties, subcellular localization, domain architectures, 3D structures, N-glycosylation & phosphorylation sites, and phylogeney of the VvGLPs were investigated using the latest computational tools. Their functions were predicted using the Search tool for the retrieval of interacting genes/proteins (STRING) and Blast2Go servers. Most of the VvGLPs were extracellular (43%) in nature but also showed periplasmic (29%), plasma membrane (14%), and mitochondrial- or chloroplast-specific (14%) expression. The functional analysis predicted unique enzymatic activities for these proteins including terpene synthase, isoprenoid synthase, lipoxygenase, phosphate permease, receptor kinase, and hydrolases generally mediated by Mn+ cation. VvGLPs showed similarity in the overall structure, shape, and position of the cupin domain. Functionally, VvGLPs control and regulate the production of secondary metabolites to cope with various stresses. Phylogenetically VvGLP1, -3, -4, -5, and VvGLP7 showed greater similarity due to duplication while VvGLP2 and VvGLP6 revealed a distant relationship. Promoter analysis revealed the presence of diverse cis-regulatory elements among which CAAT box, MYB, MYC, unnamed-4 were common to all of them. The analysis will help to utilize VvGLPs and their promoters in future food programs by developing resistant cultivars against various biotic (Erysiphe necator and in Powdery Mildew etc.) and abiotic (Salt, drought, heat, dehydration, etc.) stresses.
Collapse
Affiliation(s)
| | | | | | | | | | | | - M. Alam
- University of Swabi, Pakistan
| | - A. Rauf
- University of Swabi, Pakistan
| | - D. S. Waggas
- Fakeeh College of Medical Sciences, Saudi Arabia
| | | |
Collapse
|
3
|
Ilyas M, Ali I, Nasser Binjawhar D, Ullah S, Eldin SM, Ali B, Iqbal R, Bokhari SHA, Mahmood T. Molecular Characterization of Germin-like Protein Genes in Zea mays ( ZmGLPs) Using Various In Silico Approaches. ACS OMEGA 2023; 8:16327-16344. [PMID: 37179620 PMCID: PMC10173433 DOI: 10.1021/acsomega.3c01104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 04/10/2023] [Indexed: 05/15/2023]
Abstract
Germin (GER) and germin-like proteins (GLPs) play an important role in various plant processes. Zea mays contains 26 germin-like protein genes (ZmGLPs) located on chromosomes 2, 4, and 10; most of which are functionally unexplored. The present study aimed to characterize all ZmGLPs using the latest computational tools. All of them were studied at a physicochemical, subcellular, structural, and functional level, and their expression was predicted in plant development, against biotic and abiotic stresses using various in silico approaches. Overall, ZmGLPs showed greater similarity in their physicochemical properties, domain architecture, and structure, mostly localized in the cytoplasmic or extracellular regions. Phylogenetically, they have a narrow genetic background with a recent history of gene duplication events on chromosome 4. Functional analysis revealed novel enzymatic activities of phosphoglycolate phosphatase, adenosylhomocysteinase, phosphoglycolate phosphatase-like, osmotin/thaumatin-like, and acetohydroxy acid isomeroreductase largely mediated by disulfide bonding. Expression analysis revealed their crucial role in the root, root tips, crown root, elongation and maturation zones, radicle, and cortex with the highest expression being observed during germination and at the maturity levels. Further, ZmGLPs showed strong expression against biotic (Aspergillus flavus, Colletotrichum graminicola, Cercospora zeina, Fusarium verticillioides, and Fusarium virguliforme) while limited expression was noted against abiotic stresses. Concisely, our results provide a platform for additional functional exploration of the ZmGLP genes against various environmental stresses.
Collapse
Affiliation(s)
- Muhammad Ilyas
- Department
of Botany, Kohsar University Murree, Murree 19679, Punjab, Pakistan
| | - Iftikhar Ali
- Centre
for Plant Science and Biodiversity, University
of Swat, Charbagh 19120, Pakistan
- Department
of Genetics and Development, Columbia University
Irving Medical Center, New York, New York 10032, United States
| | - Dalal Nasser Binjawhar
- Department
of Chemistry, College of Science, Princess
Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Sami Ullah
- Department
of Forestry & Range Management, Kohsar
University Murree, Murree 19679, Pakistan
| | - Sayed M Eldin
- Center
of
Research, Faculty of Engineering, Future
University in Egypt, New Cairo 11835, Egypt
| | - Baber Ali
- Department
of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Rashid Iqbal
- Department
of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Syed Habib Ali Bokhari
- Department
of Biosciences, CUI, Islamabad, Pakistan; Faculty of Biomedical and
Life Sciences, Kohsar University Murree, Murree 19679, Pakistan
| | - Tariq Mahmood
- Department
of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| |
Collapse
|
4
|
Functional divergence of GLP genes between G. barbadense and G. hirsutum in response to Verticillium dahliae infection. Genomics 2022; 114:110470. [PMID: 36041636 DOI: 10.1016/j.ygeno.2022.110470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 07/25/2022] [Accepted: 08/26/2022] [Indexed: 11/23/2022]
Abstract
Germin-like proteins (GLPs) play important roles in plant disease resistance but are rarely reported in cotton. We compared the expression of GLPs in Verticillium dahliae inoculate G. hirsutum (susceptible) and G. barbadense (resistant) and enriched 11 differentially expressed GLPs. 2741 GLP proteins identified from 53 species determined that GLP probably originated from algae and could be classified into 7 clades according to phylogenetic analysis, among which Clade I is likely the most ancient. Cotton GLP (two allopolyploids and two diploids) genes within a shared clade were highly conserved. Intriguingly, clade VII genes were mainly located in gene clusters that derived from the expansion of LTR transposons. Clade VII members expressed mainly in root which is the first battle against Verticillium dahlia and could be induced more intensely in G. barbadense than G. hirsutum. The GLP genes are resistant to Verticillium dahliae, which can be further investigated against Verticillium wilt.
Collapse
|
5
|
Xu Z, He J, Tehseen Azhar M, Zhang Z, Fan S, Jiang X, Jia T, Shang H, Yuan Y. UDP-glucose pyrophosphorylase: genome-wide identification, expression and functional analyses in Gossypium hirsutum. PeerJ 2022; 10:e13460. [PMID: 35663522 PMCID: PMC9161816 DOI: 10.7717/peerj.13460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/27/2022] [Indexed: 01/14/2023] Open
Abstract
In this study, a total of 66 UDP-glucose pyrophosphorylase (UGP) (EC 2.7.7.9) genes were identified from the genomes of four cotton species, which are the members of Pfam glycosyltransferase family (PF01702) and catalyze the reaction between glucose-1-phosphate and UTP to produce UDPG. The analysis of evolutionary relationship, gene structure, and expression provides the basis for studies on function of UGP genes in cotton. The evolutionary tree and gene structure analysis revealed that the UGP gene family is evolutionarily conserved. Collinearity and Ka/Ks analysis indicated that amplification of UGP genes is due to repetitive crosstalk generating between new family genes, while being under strong selection pressure. The analysis of cis-acting elements exhibited that UGP genes play important role in cotton growth, development, abiotic and hormonal stresses. Six UGP genes that were highly expressed in cotton fiber at 15 DPA were screened by transcriptome data and qRT-PCR analysis. The addition of low concentrations of IAA and GA3 to ovule cultures revealed that energy efficiency promoted the development of ovules and fiber clusters, and qRT-PCR showed that expression of these six UGP genes was differentially increased. These results suggest that the UGP gene may play an important role in fiber development, and provides the opportunity to plant researchers to explore the mechanisms involve in fiber development in cotton.
Collapse
Affiliation(s)
- Zhongyang Xu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Jiasen He
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Muhammad Tehseen Azhar
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan
| | - Zhen Zhang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministryof Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Senmiao Fan
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministryof Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Xiao Jiang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministryof Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Tingting Jia
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministryof Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Haihong Shang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Youlu Yuan
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministryof Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| |
Collapse
|
6
|
Yang J, Gao L, Liu X, Zhang X, Wang X, Wang Z. Comparative transcriptome analysis of fiber and nonfiber tissues to identify the genes preferentially expressed in fiber development in Gossypium hirsutum. Sci Rep 2021; 11:22833. [PMID: 34819523 PMCID: PMC8613186 DOI: 10.1038/s41598-021-01829-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 11/02/2021] [Indexed: 02/06/2023] Open
Abstract
Cotton is an important natural fiber crop and economic crop worldwide. The quality of cotton fiber directly determines the quality of cotton textiles. Identifying cotton fiber development-related genes and exploring their biological functions will not only help to better understand the elongation and development mechanisms of cotton fibers but also provide a theoretical basis for the cultivation of new cotton varieties with excellent fiber quality. In this study, RNA sequencing technology was used to construct transcriptome databases for different nonfiber tissues (root, leaf, anther and stigma) and fiber developmental stages (7 days post-anthesis (DPA), 14 DPA, and 26 DPA) of upland cotton Coker 312. The sizes of the seven transcriptome databases constructed ranged from 4.43 to 5.20 Gb, corresponding to approximately twice the genome size of Gossypium hirsutum (2.5 Gb). Among the obtained clean reads, 83.32% to 88.22% could be compared to the upland cotton TM-1 reference genome. By analyzing the differential gene expression profiles of the transcriptome libraries of fiber and nonfiber tissues, we obtained 1205, 1135 and 937 genes with significantly upregulated expression at 7 DPA, 14 DPA and 26 DPA, respectively, and 124, 179 and 213 genes with significantly downregulated expression. Subsequently, Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathway analyses were performed, which revealed that these genes were mainly involved in catalytic activity, carbohydrate metabolism, the cell membrane and organelles, signal transduction and other functions and metabolic pathways. Through gene annotation analysis, many transcription factors and genes related to fiber development were screened. Thirty-six genes were randomly selected from the significantly upregulated genes in fiber, and expression profile analysis was performed using qRT-PCR. The results were highly consistent with the gene expression profile analyzed by RNA-seq, and all of the genes were specifically or predominantly expressed in fiber. Therefore, our RNA sequencing-based comparative transcriptome analysis will lay a foundation for future research to provide new genetic resources for the genetic engineering of improved cotton fiber quality and for cultivating new transgenic cotton germplasms for fiber quality improvement.
Collapse
Affiliation(s)
- Jiangtao Yang
- Biotechnology Research Institute, MOA Key Laboratory on Safety Assessment (Molecular) of Agri-GMO, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lihua Gao
- School of Life Sciences, Langfang Normal University, Langfang, 065000, China
| | - Xiaojing Liu
- Biotechnology Research Institute, MOA Key Laboratory on Safety Assessment (Molecular) of Agri-GMO, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaochun Zhang
- Biotechnology Research Institute, MOA Key Laboratory on Safety Assessment (Molecular) of Agri-GMO, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xujing Wang
- Biotechnology Research Institute, MOA Key Laboratory on Safety Assessment (Molecular) of Agri-GMO, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Zhixing Wang
- Biotechnology Research Institute, MOA Key Laboratory on Safety Assessment (Molecular) of Agri-GMO, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
7
|
Zheng H, Wang R, Jiang Q, Zhang D, Mu R, Xu Y, Nnaemeka VE, Mei J, Zhao Y, Cai F, Yu D, Sun Y, Ke L. Identification and functional analysis of a pollen fertility-associated gene GhGLP4 of Gossypium hirsutum L. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:3237-3247. [PMID: 34272568 DOI: 10.1007/s00122-021-03888-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
KEY MESSAGE Cotton male fertility-associated gene GhGLP4, encoding a germin-like protein, is essential for anthers development by keeping ROS homeostasis through reducing H2O2 level. Utilization of heterosis is an important way to increase cotton yield and improve fiber quality in hybrid cotton development programs. Male sterility is used in the development of cotton hybrids to reduce the cost of hybrid seed production by eliminating the process of emasculation. From the transcriptome analysis of genic male sterile mutant (ms1) and its background C312 of G. hirsutum, a gene encoding germin-like protein (GhGLP4) was found significantly down-regulated in different developmental stages of ms1 anthers. To explore the gene function in cotton fertility, GhGLP4 was further studied and interfered by virus-induced gene silencing. In the GhGLP4 interfered cotton lines, the expression level of GhGLP4 was significantly decreased in the stamens, and the down-regulation of GhGLP4 resulted in pollen sac closure, stigma exertion, filament shortening, decrease in the number of anthers and complete male sterility. The expression levels of respiratory burst oxidase homologs (Rboh, NADPH oxidase) were significantly altered. Further investigation showed that the SOD activity decreased while the H2O2 content increased in the atypical stamens. These results indicated that GhGLP4 gene affected the cotton anther development through maintenance of ROS homeostasis by H2O2 reduction.
Collapse
Affiliation(s)
- Hongli Zheng
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310016, Zhejiang, China
| | - Rongjia Wang
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310016, Zhejiang, China
| | - Qimeng Jiang
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310016, Zhejiang, China
| | - Diandian Zhang
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310016, Zhejiang, China
| | - Rongrong Mu
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310016, Zhejiang, China
| | - Yihan Xu
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310016, Zhejiang, China
| | - Vitalis E Nnaemeka
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310016, Zhejiang, China
| | - Jun Mei
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310016, Zhejiang, China
| | - Yanyan Zhao
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310016, Zhejiang, China
| | - Fangfang Cai
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310016, Zhejiang, China
| | - Dongliang Yu
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310016, Zhejiang, China
| | - Yuqiang Sun
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310016, Zhejiang, China
| | - Liping Ke
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310016, Zhejiang, China.
| |
Collapse
|
8
|
Ye X, Huang HY, Wu FL, Cai LY, Lai NW, Deng CL, Guo JX, Yang LT, Chen LS. Molecular mechanisms for magnesium-deficiency-induced leaf vein lignification, enlargement and cracking in Citrus sinensis revealed by RNA-Seq. TREE PHYSIOLOGY 2021; 41:280-301. [PMID: 33104211 DOI: 10.1093/treephys/tpaa128] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/30/2020] [Indexed: 06/11/2023]
Abstract
Citrus sinensis (L.) Osbeck seedlings were fertigated with nutrient solution containing 2 [magnesium (Mg)-sufficiency] or 0 mM (Mg-deficiency) Mg(NO3)2 for 16 weeks. Thereafter, RNA-Seq was used to investigate Mg-deficiency-responsive genes in the veins of upper and lower leaves in order to understand the molecular mechanisms for Mg-deficiency-induced vein lignification, enlargement and cracking, which appeared only in the lower leaves. In this study, 3065 upregulated and 1220 downregulated, and 1390 upregulated and 375 downregulated genes were identified in Mg-deficiency veins of lower leaves (MDVLL) vs Mg-sufficiency veins of lower leaves (MSVLL) and Mg-deficiency veins of upper leaves (MDVUL) vs Mg-sufficiency veins of upper leaves (MSVUL), respectively. There were 1473 common differentially expressed genes (DEGs) between MDVLL vs MSVLL and MDVUL vs MSVUL, 1463 of which displayed the same expression trend. Magnesium-deficiency-induced lignification, enlargement and cracking in veins of lower leaves might be related to the following factors: (i) numerous transciption factors and genes involved in lignin biosynthesis pathways, regulation of cell cycle and cell wall metabolism were upregulated; and (ii) reactive oxygen species, phytohormone and cell wall integrity signalings were activated. Conjoint analysis of proteome and transcriptome indicated that there were 287 and 56 common elements between DEGs and differentially abundant proteins (DAPs) identified in MDVLL vs MSVLL and MDVUL vs MSVUL, respectively, and that among these common elements, the abundances of 198 and 55 DAPs matched well with the transcript levels of the corresponding DEGs in MDVLL vs MSVLL and MDVUL vs MSVUL, respectively, indicating the existence of concordances between protein and transcript levels.
Collapse
Affiliation(s)
- Xin Ye
- Institute of Plant Nutritional Physiology and Molecular Biology, Department of Resources and Environment, College of Resources and Environment, Fujian Agriculture and Forestry University (FAFU), 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China
| | - Hui-Yu Huang
- Institute of Plant Nutritional Physiology and Molecular Biology, Department of Resources and Environment, College of Resources and Environment, Fujian Agriculture and Forestry University (FAFU), 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China
| | - Feng-Lin Wu
- Institute of Plant Nutritional Physiology and Molecular Biology, Department of Resources and Environment, College of Resources and Environment, Fujian Agriculture and Forestry University (FAFU), 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China
| | - Li-Ya Cai
- Institute of Plant Nutritional Physiology and Molecular Biology, Department of Resources and Environment, College of Resources and Environment, Fujian Agriculture and Forestry University (FAFU), 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China
| | - Ning-Wei Lai
- Institute of Plant Nutritional Physiology and Molecular Biology, Department of Resources and Environment, College of Resources and Environment, Fujian Agriculture and Forestry University (FAFU), 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China
| | - Chong-Ling Deng
- Guangxi Key Laboratory of Citrus Biology, Guangxi Academy of Specialty Crops, 40 Putuo Road, Qixing District, Guilin 541004, China
| | - Jiu-Xin Guo
- Institute of Plant Nutritional Physiology and Molecular Biology, Department of Resources and Environment, College of Resources and Environment, Fujian Agriculture and Forestry University (FAFU), 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China
| | - Lin-Tong Yang
- Institute of Plant Nutritional Physiology and Molecular Biology, Department of Resources and Environment, College of Resources and Environment, Fujian Agriculture and Forestry University (FAFU), 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China
| | - Li-Song Chen
- Institute of Plant Nutritional Physiology and Molecular Biology, Department of Resources and Environment, College of Resources and Environment, Fujian Agriculture and Forestry University (FAFU), 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China
| |
Collapse
|
9
|
Izuno A, Maruyama TE, Ueno S, Ujino-Ihara T, Moriguchi Y. Genotype and transcriptome effects on somatic embryogenesis in Cryptomeria japonica. PLoS One 2020; 15:e0244634. [PMID: 33373415 PMCID: PMC7771663 DOI: 10.1371/journal.pone.0244634] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/14/2020] [Indexed: 12/31/2022] Open
Abstract
Somatic embryogenesis (SE), which is in vitro regeneration of plant bodies from somatic cells, represents a useful means of clonal propagation and genetic engineering of forest trees. While protocols to obtain calluses and induce regeneration in somatic embryos have been reported for many tree species, the knowledge of molecular mechanisms of SE development is still insufficient to achieve an efficient supply of somatic embryos required for the industrial application. Cryptomeria japonica, a conifer species widely used for plantation forestry in Japan, is one of the tree species waiting for a secure SE protocol; the probability of normal embryo development appears to depend on genotype. To discriminate the embryogenic potential of embryonal masses (EMs) and efficiently obtain normal somatic embryos of C. japonica, we investigated the effects of genotype and transcriptome on the variation in embryogenic potential. Using an induction experiment with 12 EMs each from six genotypes, we showed that embryogenic potential differs between/within genotypes. Comparisons of gene expression profiles among EMs with different embryogenic potentials revealed that 742 differently expressed genes were mainly associated with pattern forming and metabolism. Thus, we suggest that not only genotype but also gene expression profiles can determine success in SE development. Consistent with previous findings for other conifer species, genes encoding leafy cotyledon, wuschel, germin-like proteins, and glutathione-S-transferases are likely to be involved in SE development in C. japonica and indeed highly expressed in EMs with high-embryogenic potential; therefore, these proteins represent candidate markers for distinguishing embryogenic potential.
Collapse
Affiliation(s)
- Ayako Izuno
- Department of Forest Molecular Genetics and Biotechnology, Forestry and Forest Products Research Institute, Tsukuba, Ibaraki, Japan
- * E-mail:
| | - Tsuyoshi E. Maruyama
- Department of Forest Molecular Genetics and Biotechnology, Forestry and Forest Products Research Institute, Tsukuba, Ibaraki, Japan
| | - Saneyoshi Ueno
- Department of Forest Molecular Genetics and Biotechnology, Forestry and Forest Products Research Institute, Tsukuba, Ibaraki, Japan
| | - Tokuko Ujino-Ihara
- Department of Forest Molecular Genetics and Biotechnology, Forestry and Forest Products Research Institute, Tsukuba, Ibaraki, Japan
| | - Yoshinari Moriguchi
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
| |
Collapse
|
10
|
Ilyas M, Irfan M, Mahmood T, Hussain H, Latif-ur-Rehman, Naeem I, Khaliq-ur-Rahman. Analysis of Germin-like Protein Genes (OsGLPs) Family in Rice Using Various In silico Approaches. Curr Bioinform 2020. [DOI: 10.2174/1574893614666190722165130] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Background:
Germin-like Proteins (GLPs) play an important role in various stresses.
Rice contains 43 GLPs, among which many remain functionally unexplored. The computational
analysis will provide significant insight into their function.
Objective:
To find various structural properties, functional importance, phylogeny and expression
pattern of all OsGLPs using various bioinformatics tools.
Methods:
Physiochemical properties, sub-cellular localization, domain composition, Nglycosylation
and Phosphorylation sites, and 3D structural models of the OsGLPs were predicted
using various bioinformatics tools. Functional analysis was carried out with the Search Tool for
the Retrieval of Interacting Genes/Proteins (STRING) and Blast2GO servers. The expression
profile of the OsGLPs was predicted by retrieving the data for expression values from tissuespecific
and hormonal stressed array libraries of RiceXPro. Their phylogenetic relationship was
computed using Molecular and Evolutionary Genetic Analysis (MEGA6) tool.
Results:
Most of the OsGLPs are stable in the cellular environment with a prominent expression in
the extracellular region (57%) and plasma membrane (33%). Besides, 3 basic cupin domains, 7
more were reported, among which NTTNKVGSNVTLINV, FLLAALLALASWQAI, and
MASSSF were common to 99% of the sequences, related to bacterial pathogenicity, peroxidase
activity, and peptide signal activity, respectively. Structurally, OsGLPs are similar but functionally
they are diverse with novel enzymatic activities of oxalate decarboxylase, lyase, peroxidase, and
oxidoreductase. Expression analysis revealed prominent activities in the root, endosperm, and
leaves. OsGLPs were strongly expressed by abscisic acid, auxin, gibberellin, cytokinin, and
brassinosteroid. Phylogenetically they showed polyphyletic origin with a narrow genetic
background of 0.05%. OsGLPs of chromosome 3, 8, and 12 are functionally more important due to
their defensive role against various stresses through co-expression strategy.
Conclusion:
The analysis will help to utilize OsGLPs in future food programs.
Collapse
Affiliation(s)
- Muhammad Ilyas
- Department of Botany, University of Swabi, Swabi-23561, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Irfan
- Department of Botany, University of Swabi, Swabi-23561, Khyber Pakhtunkhwa, Pakistan
| | - Tariq Mahmood
- Department of Botany, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad 45320, Pakistan
| | - Hazrat Hussain
- Department of Biotechnology, University of Swabi, Swabi-23561, Khyber Pakhtunkhwa, Pakistan
| | - Latif-ur-Rehman
- Department of Biotechnology, University of Swabi, Swabi-23561, Khyber Pakhtunkhwa, Pakistan
| | - Ijaz Naeem
- Department of Biotechnology, University of Swabi, Swabi-23561, Khyber Pakhtunkhwa, Pakistan
| | - Khaliq-ur-Rahman
- Department of Chemistry, University of Swabi, Swabi-23561, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
11
|
Genome-Wide Identification and Characterization of the PERK Gene Family in Gossypium hirsutum Reveals Gene Duplication and Functional Divergence. Int J Mol Sci 2019; 20:ijms20071750. [PMID: 30970629 PMCID: PMC6479967 DOI: 10.3390/ijms20071750] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/27/2019] [Accepted: 04/01/2019] [Indexed: 12/20/2022] Open
Abstract
Proline-rich extensin-like receptor kinases (PERKs) are an important class of receptor kinases in plants. Receptor kinases comprise large gene families in many plant species, including the 15 PERK genes in Arabidopsis. At present, there is no comprehensive published study of PERK genes in G. hirsutum. Our study identified 33 PERK genes in G. hirsutum. Phylogenetic analysis of conserved PERK protein sequences from 15 plant species grouped them into four well defined clades. The GhPERK gene family is an evolutionarily advanced gene family that lost its introns over time. Several cis-elements were identified in the promoter regions of the GhPERK genes that are important in regulating growth, development, light responses and the response to several stresses. In addition, we found evidence for gene loss or addition through segmental or whole genome duplication in cotton. Gene duplication and synteny analysis identified 149 orthologous/paralogous gene pairs. Ka/Ks values show that most GhPERK genes experienced strong purifying selection during the rapid evolution of the gene family. GhPERK genes showed high expression levels in leaves and during ovule development. Furthermore, the expression of GhPERK genes can be regulated by abiotic stresses and phytohormone treatments. Additionally, PERK genes could be involved in several molecular, biological and physiological processes that might be the result of functional divergence.
Collapse
|
12
|
Identification of candidate genes for fiber length quantitative trait loci through RNA-Seq and linkage and physical mapping in cotton. BMC Genomics 2017; 18:427. [PMID: 28569138 PMCID: PMC5452627 DOI: 10.1186/s12864-017-3812-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 05/23/2017] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Cotton (Gossypium spp.) fibers are single-celled elongated trichomes, the molecular aspects of genetic variation in fiber length (FL) among genotypes are currently unknown. In this study, two backcross inbred lines (BILs), i.e., NMGA-062 ("Long") and NMGA-105 ("Short") with 32.1 vs. 27.2 mm in FL, respectively, were chosen to perform RNA-Seq on developing fibers at 10 days post anthesis (DPA). The two BILs differed in 4 quantitative trait loci (QTL) for FL and were developed from backcrosses between G. hirsutum as the recurrent parent and G. barbadense. RESULTS In total, 51.7 and 54.3 million reads were obtained and assembled to 49,508 and 49,448 transcripts in the two genotypes, respectively. Of 1551 differentially expressed genes (DEGs) between the two BILs, 678 were up-regulated and 873 down-regulated in "Long"; and 703 SNPs were identified in 339 DEGs. Further physical mapping showed that 8 DEGs were co-localized with the 4 FL QTL identified in the BIL population containing the two BILs. Four SNP markers in 3 DEGs that showed significant correlations with FL were developed. Among the three candidate genes encoding for proline-rich protein, D-cysteine desulfhydrase, and thaumatin-like protein, a SNP of thaumatin-like protein gene showed consistent correlations with FL across all testing environments. CONCLUSIONS This study represents one of the first investigations of positional candidate gene approach of QTL in cotton in integrating transcriptome and SNP identification based on RNA-Seq with linkage and physical mapping of QTL and genes, which will facilitate eventual cloning and identification of genes responsible for FL QTL. The candidate genes may serve as the foundation for further in-depth studies of the molecular mechanism of natural variation in fiber elongation.
Collapse
|
13
|
Xie X, Wang Y. VqDUF642, a gene isolated from the Chinese grape Vitis quinquangularis, is involved in berry development and pathogen resistance. PLANTA 2016; 244:1075-1094. [PMID: 27424038 DOI: 10.1007/s00425-016-2569-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 07/08/2016] [Indexed: 06/06/2023]
Abstract
The DUF642 gene VqDUF642 , isolated from the Chinese grape species V. quinquangularis accession Danfeng-2, participates in berry development and defense responses against Erysiphe necator and Botrytis cinerea. The proteins with domains of unknown function 642 (DUF642) comprise a large protein family according to cell wall proteomic analyses in plants. However, the works about functional characterization of DUF642s in plant development and resistance to pathogens are scarce. In this study, a gene encoding a DUF642 protein was isolated from Chinese grape V. quinquangularis accession Danfeng-2, and designated as VqDUF642. Its full-length cDNA contains a 1107-bp open reading frame corresponding to a deduced 368-amino acid protein. Multiple sequence alignments and phylogenetic analysis showed that VqDUF642 is highly homologous to one of the DUF642 proteins (VvDUF642) in V. vinifera. The VqDUF642 was localized to the cell wall of tobacco epidermal cells. Accumulation of VqDUF642 protein and VqDUF642 transcript abundance increased at the later stage of grape berry development in Danfeng-2. Overexpression of VqDUF642 in transgenic tomato plants accelerated plant growth and reduced susceptibility to Botrytis cinerea. Transgenic Thompson Seedless grapevine plants overexpressing VqDUF642 exhibited enhanced resistance to Erysiphe necator and B. cinerea. Moreover, VqDUF642 overexpression affected the expression of a couple of pathogenesis-related (PR) genes in transgenic tomato and grapevine upon pathogen inoculation. Taken together, these results suggest that VqDUF642 is involved in plant development and defense against pathogenic infections.
Collapse
Affiliation(s)
- Xiaoqing Xie
- College of Horticulture, Northwest A & F University, No. 3, Taicheng Road, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, College of Horticulture, Northwest A & F University, No. 3, Taicheng Road, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, No. 3, Taicheng Road, Yangling, Shaanxi, 712100, China
| | - Yuejin Wang
- College of Horticulture, Northwest A & F University, No. 3, Taicheng Road, Yangling, Shaanxi, 712100, China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, College of Horticulture, Northwest A & F University, No. 3, Taicheng Road, Yangling, Shaanxi, 712100, China.
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, No. 3, Taicheng Road, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
14
|
Genome-wide analysis of superoxide dismutase gene family in Gossypium raimondii and G. arboreum. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.plgene.2016.02.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
Versatility of germin-like proteins in their sequences, expressions, and functions. Funct Integr Genomics 2015; 15:533-48. [DOI: 10.1007/s10142-015-0454-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 06/28/2015] [Accepted: 07/02/2015] [Indexed: 12/19/2022]
|
16
|
Chen J, Burke JJ. Developing fiber specific promoter-reporter transgenic lines to study the effect of abiotic stresses on fiber development in cotton. PLoS One 2015; 10:e0129870. [PMID: 26030401 PMCID: PMC4451078 DOI: 10.1371/journal.pone.0129870] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 05/12/2015] [Indexed: 12/30/2022] Open
Abstract
Cotton is one of the most important cash crops in US agricultural industry. Environmental stresses, such as drought, high temperature and combination of both, not only reduce the overall growth of cotton plants, but also greatly decrease cotton lint yield and fiber quality. The impact of environmental stresses on fiber development is poorly understood due to technical difficulties associated with the study of developing fiber tissues and lack of genetic materials to study fiber development. To address this important question and provide the need for scientific community, we have generated transgenic cotton lines harboring cotton fiber specific promoter (CFSP)-reporter constructs from six cotton fiber specific genes (Expansin, E6, Rac13, CelA1, LTP, and Fb late), representing genes that are expressed at different stages of fiber development. Individual CFSP::GUS or CFSP::GFP construct was introduced into Coker 312 via Agrobacterium mediated transformation. Transgenic cotton lines were evaluated phenotypically and screened for the presence of selectable marker, reporter gene expression, and insertion numbers. Quantitative analysis showed that the patterns of GUS reporter gene activity during fiber development in transgenic cotton lines were similar to those of the native genes. Greenhouse drought and heat stress study showed a correlation between the decrease in promoter activities and decrease in fiber length, increase in micronaire and changes in other fiber quality traits in transgenic lines grown under stressed condition. These newly developed materials provide new molecular tools for studying the effects of abiotic stresses on fiber development and may be used in study of cotton fiber development genes and eventually in the genetic manipulation of fiber quality.
Collapse
Affiliation(s)
- Junping Chen
- Plant Stress and Germplasm Development Unit, Cropping Systems Research Laboratory, Agricultural Research Service, United State Department of Agriculture, Lubbock, Texas, United States of America
- * E-mail:
| | - John J. Burke
- Plant Stress and Germplasm Development Unit, Cropping Systems Research Laboratory, Agricultural Research Service, United State Department of Agriculture, Lubbock, Texas, United States of America
| |
Collapse
|
17
|
Kishi-Kaboshi M, Muto H, Takeda A, Murata T, Hasebe M, Watanabe Y. Localization of tobacco germin-like protein 1 in leaf intercellular space. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 85:1-8. [PMID: 25394794 DOI: 10.1016/j.plaphy.2014.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 10/05/2014] [Indexed: 06/04/2023]
Abstract
To characterize leaf cell wall proteins relating the architectural changes of leaves, we analyzed Nicotiana tabacum leaf cell wall proteins that were extracted by the treatment with lithium chloride. Some of these proteins showed amino acid sequence homology to some germin-like proteins (GLP). Based of those sequences, we isolated the cDNA encoding the GLPs (NtGLP1-1, NtGLP2-1). Phylogenetic analysis including de novo assembled tobacco GLPs using EST clones, revealed that tobacco GLPs belong to at least 5 different subgroups of GLP and both NtGLP1 and NtGLP2 belong to GLP subfamily 3. We showed that the NtGLP1 actually localizes to cell wall and revealed that it predominantly localized at specific sites on the leaf cell wall where intercellular attachment was just bifurcated. Expression of the NtGLP1 mRNA was mainly detected in leaves especially at elongating stage. NtGLP1 is possibly relevant to development of leaf intercellular space.
Collapse
|
18
|
Morel A, Teyssier C, Trontin JF, Eliášová K, Pešek B, Beaufour M, Morabito D, Boizot N, Le Metté C, Belal-Bessai L, Reymond I, Harvengt L, Cadene M, Corbineau F, Vágner M, Label P, Lelu-Walter MA. Early molecular events involved in Pinus pinaster Ait. somatic embryo development under reduced water availability: transcriptomic and proteomic analyses. PHYSIOLOGIA PLANTARUM 2014; 152:184-201. [PMID: 24460664 DOI: 10.1111/ppl.12158] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 12/19/2013] [Accepted: 12/20/2013] [Indexed: 05/22/2023]
Abstract
Maritime pine somatic embryos (SEs) require a reduction in water availability (high gellan gum concentration in the maturation medium) to reach the cotyledonary stage. This key switch, reported specifically for pine species, is not yet well understood. To facilitate the use of somatic embryogenesis for mass propagation of conifers, we need a better understanding of embryo development. Comparison of both transcriptome (Illumina RNA sequencing) and proteome [two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis with mass spectrometry (MS) identification] of immature SEs, cultured on either high (9G) or low (4G) gellan gum concentration, was performed, together with analysis of water content, fresh and dry mass, endogenous abscisic acid (ABA; gas chromatography-MS), soluble sugars (high-pressure liquid chromatography), starch and confocal laser microscope observations. This multiscale, integrated analysis was used to unravel early molecular and physiological events involved in SE development. Under unfavorable conditions (4G), the glycolytic pathway was enhanced, possibly in relation to cell proliferation that may be antagonistic to SE development. Under favorable conditions (9G), SEs adapted to culture constraint by activating specific protective pathways, and ABA-mediated molecular and physiological responses promoting embryo development. Our results suggest that on 9G, germin-like protein and ubiquitin-protein ligase could be used as predictive markers of SE development, whereas protein phosphatase 2C could be a biomarker for culture adaptive responses. This is the first characterization of early molecular mechanisms involved in the development of pine SEs following an increase in gellan gum concentration in the maturation medium, and it is also the first report on somatic embryogenesis in conifers combining transcriptomic and proteomic datasets.
Collapse
Affiliation(s)
- Alexandre Morel
- INRA, UR 0588 Unité Amélioration, Génétique et Physiologie Forestières, 2163 Avenue de la Pomme de Pin, CS 4001, Ardon, F-45075 Orléans Cedex 2, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature 2013; 492:423-7. [PMID: 23257886 DOI: 10.1038/nature11798] [Citation(s) in RCA: 844] [Impact Index Per Article: 70.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 11/21/2012] [Indexed: 12/28/2022]
Abstract
Polyploidy often confers emergent properties, such as the higher fibre productivity and quality of tetraploid cottons than diploid cottons bred for the same environments. Here we show that an abrupt five- to sixfold ploidy increase approximately 60 million years (Myr) ago, and allopolyploidy reuniting divergent Gossypium genomes approximately 1-2 Myr ago, conferred about 30-36-fold duplication of ancestral angiosperm (flowering plant) genes in elite cottons (Gossypium hirsutum and Gossypium barbadense), genetic complexity equalled only by Brassica among sequenced angiosperms. Nascent fibre evolution, before allopolyploidy, is elucidated by comparison of spinnable-fibred Gossypium herbaceum A and non-spinnable Gossypium longicalyx F genomes to one another and the outgroup D genome of non-spinnable Gossypium raimondii. The sequence of a G. hirsutum A(t)D(t) (in which 't' indicates tetraploid) cultivar reveals many non-reciprocal DNA exchanges between subgenomes that may have contributed to phenotypic innovation and/or other emergent properties such as ecological adaptation by polyploids. Most DNA-level novelty in G. hirsutum recombines alleles from the D-genome progenitor native to its New World habitat and the Old World A-genome progenitor in which spinnable fibre evolved. Coordinated expression changes in proximal groups of functionally distinct genes, including a nuclear mitochondrial DNA block, may account for clusters of cotton-fibre quantitative trait loci affecting diverse traits. Opportunities abound for dissecting emergent properties of other polyploids, particularly angiosperms, by comparison to diploid progenitors and outgroups.
Collapse
|
20
|
Boopathi NM, Thiyagu K, Urbi B, Santhoshkumar M, Gopikrishnan A, Aravind S, Swapnashri G, Ravikesavan R. Marker-assisted breeding as next-generation strategy for genetic improvement of productivity and quality: can it be realized in cotton? INTERNATIONAL JOURNAL OF PLANT GENOMICS 2011; 2011:670104. [PMID: 21577317 PMCID: PMC3092514 DOI: 10.1155/2011/670104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 01/22/2011] [Indexed: 05/29/2023]
Abstract
The dawdling development in genetic improvement of cotton with conventional breeding program is chiefly due to lack of complete knowledge on and precise manipulation of fiber productivity and quality. Naturally available cotton continues to be a resource for the upcoming breeding program, and contemporary technologies to exploit the available natural variation are outlined in this paper for further improvement of fiber. Particularly emphasis is given to application, obstacles, and perspectives of marker-assisted breeding since it appears to be more promising in manipulating novel genes that are available in the cotton germplasm. Deployment of system quantitative genetics in marker-assisted breeding program would be essential to realize its role in cotton. At the same time, role of genetic engineering and in vitro mutagenesis cannot be ruled out in genetic improvement of cotton.
Collapse
Affiliation(s)
- N. Manikanda Boopathi
- Department of Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - K. Thiyagu
- Department of Cotton, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - B. Urbi
- Department of Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - M. Santhoshkumar
- Department of Cotton, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - A. Gopikrishnan
- Department of Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - S. Aravind
- Department of Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - Gat Swapnashri
- Department of Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - R. Ravikesavan
- Department of Cotton, Tamil Nadu Agricultural University, Coimbatore 641003, India
| |
Collapse
|
21
|
Xu Z, Yu JZ, Cho J, Yu J, Kohel RJ, Percy RG. Polyploidization altered gene functions in cotton (Gossypium spp.). PLoS One 2010; 5:e14351. [PMID: 21179551 PMCID: PMC3002935 DOI: 10.1371/journal.pone.0014351] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2010] [Accepted: 11/04/2010] [Indexed: 11/19/2022] Open
Abstract
Cotton (Gossypium spp.) is an important crop plant that is widely grown to produce both natural textile fibers and cottonseed oil. Cotton fibers, the economically more important product of the cotton plant, are seed trichomes derived from individual cells of the epidermal layer of the seed coat. It has been known for a long time that large numbers of genes determine the development of cotton fiber, and more recently it has been determined that these genes are distributed across At and Dt subgenomes of tetraploid AD cottons. In the present study, the organization and evolution of the fiber development genes were investigated through the construction of an integrated genetic and physical map of fiber development genes whose functions have been verified and confirmed. A total of 535 cotton fiber development genes, including 103 fiber transcription factors, 259 fiber development genes, and 173 SSR-contained fiber ESTs, were analyzed at the subgenome level. A total of 499 fiber related contigs were selected and assembled. Together these contigs covered about 151 Mb in physical length, or about 6.7% of the tetraploid cotton genome. Among the 499 contigs, 397 were anchored onto individual chromosomes. Results from our studies on the distribution patterns of the fiber development genes and transcription factors between the At and Dt subgenomes showed that more transcription factors were from Dt subgenome than At, whereas more fiber development genes were from At subgenome than Dt. Combining our mapping results with previous reports that more fiber QTLs were mapped in Dt subgenome than At subgenome, the results suggested a new functional hypothesis for tetraploid cotton. After the merging of the two diploid Gossypium genomes, the At subgenome has provided most of the genes for fiber development, because it continues to function similar to its fiber producing diploid A genome ancestor. On the other hand, the Dt subgenome, with its non-fiber producing D genome ancestor, provides more transcription factors that regulate the expression of the fiber genes in the At subgenome. This hypothesis would explain previously published mapping results. At the same time, this integrated map of fiber development genes would provide a framework to clone individual full-length fiber genes, to elucidate the physiological mechanisms of the fiber differentiation, elongation, and maturation, and to systematically study the functional network of these genes that interact during the process of fiber development in the tetraploid cottons.
Collapse
Affiliation(s)
- Zhanyou Xu
- Crop Germplasm Research Unit, Southern Plains Agricultural Research Center, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), College Station, Texas, United States of America
| | - John Z. Yu
- Crop Germplasm Research Unit, Southern Plains Agricultural Research Center, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), College Station, Texas, United States of America
- * E-mail:
| | - Jaemin Cho
- Crop Germplasm Research Unit, Southern Plains Agricultural Research Center, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), College Station, Texas, United States of America
| | - Jing Yu
- Crop Germplasm Research Unit, Southern Plains Agricultural Research Center, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), College Station, Texas, United States of America
| | - Russell J. Kohel
- Crop Germplasm Research Unit, Southern Plains Agricultural Research Center, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), College Station, Texas, United States of America
| | - Richard G. Percy
- Crop Germplasm Research Unit, Southern Plains Agricultural Research Center, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), College Station, Texas, United States of America
| |
Collapse
|
22
|
El-Sharkawy I, Mila I, Bouzayen M, Jayasankar S. Regulation of two germin-like protein genes during plum fruit development. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:1761-70. [PMID: 20202999 PMCID: PMC2852666 DOI: 10.1093/jxb/erq043] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Germin-like proteins (GLPs) have several proposed roles in plant development and defence. Two novel genes (Ps-GLP1 and 2) encoding germin-like protein were isolated from plum (Prunus salicina). Their regulation was studied throughout fruit development and during ripening of early and late cultivars. These two genes exhibited similar expression patterns throughout the various stages of fruit development excluding two important stages, pit hardening (S2) and fruit ripening (S4). During fruit development until the ripening phase, the accumulation of both Ps-GLPs is related to the evolution of auxin. However, during the S2 stage only Ps-GLP1 is induced and this could putatively be in a H(2)O(2)-dependent manner. On the other hand, the diversity in the Ps-GLPs accumulation profile during the ripening process seems to be putatively due to the variability of endogenous auxin levels among the two plum cultivars, which consequently change the levels of autocatalytic ethylene available for the fruit to co-ordinate ripening. The effect of auxin on stimulating ethylene production and in regulating Ps-GLPs transcripts was also investigated. These data, supported by their localization in the extracellular matrix, suggest that auxin is somehow involved in the regulation of both transcripts throughout fruit development and ripening.
Collapse
Affiliation(s)
- I. El-Sharkawy
- Vineland Research and Innovation Centre, 4890 Victoria Av. N, PO Box 4000, Vineland Station, ON, L0R 2E0 Canada
| | - I. Mila
- UMR 990 INRA/INPT-ENSAT ‘Génomique et Biotechnologie des Fruits’, Av. de l'Agrobiopole, BP 32607, F-31326 Castanet-Tolosan Cedex, France
| | - M. Bouzayen
- UMR 990 INRA/INPT-ENSAT ‘Génomique et Biotechnologie des Fruits’, Av. de l'Agrobiopole, BP 32607, F-31326 Castanet-Tolosan Cedex, France
| | - S. Jayasankar
- University of Guelph, Department of Plant Agriculture, 4890 Victoria Av. N, PO Box 7000, Vineland Station, ON, L0R 2E0 Canada
- To whom correspondence should be addressed: E-mail:
| |
Collapse
|
23
|
Hinchliffe DJ, Meredith WR, Yeater KM, Kim HJ, Woodward AW, Chen ZJ, Triplett BA. Near-isogenic cotton germplasm lines that differ in fiber-bundle strength have temporal differences in fiber gene expression patterns as revealed by comparative high-throughput profiling. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2010; 120:1347-66. [PMID: 20087569 DOI: 10.1007/s00122-010-1260-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Accepted: 12/27/2009] [Indexed: 05/10/2023]
Abstract
Gene expression profiles of developing cotton (Gossypium hirsutum L.) fibers from two near-isogenic lines (NILs) that differ in fiber-bundle strength, short-fiber content, and in fewer than two genetic loci were compared using an oligonucleotide microarray. Fiber gene expression was compared at five time points spanning fiber elongation and secondary cell wall (SCW) biosynthesis. Fiber samples were collected from field plots in a randomized, complete block design, with three spatially distinct biological replications for each NIL at each time point. Microarray hybridizations were performed in a loop experimental design that allowed comparisons of fiber gene expression profiles as a function of time between the two NILs. Overall, developmental expression patterns revealed by the microarray experiment agreed with previously reported cotton fiber gene expression patterns for specific genes. Additionally, genes expressed coordinately with the onset of SCW biosynthesis in cotton fiber correlated with gene expression patterns of other SCW-producing plant tissues. Functional classification and enrichment analysis of differentially expressed genes between the two NILs revealed that genes associated with SCW biosynthesis were significantly up-regulated in fibers of the high-fiber quality line at the transition stage of cotton fiber development. For independent corroboration of the microarray results, 15 genes were selected for quantitative reverse transcription PCR analysis of fiber gene expression. These analyses, conducted over multiple field years, confirmed the temporal difference in fiber gene expression between the two NILs. We hypothesize that the loci conferring temporal differences in fiber gene expression between the NILs are important regulatory sequences that offer the potential for more targeted manipulation of cotton fiber quality.
Collapse
Affiliation(s)
- Doug J Hinchliffe
- USDA-ARS-SRRC, 1100 Robert E. Lee Blvd., New Orleans, LA, 70124, USA.
| | | | | | | | | | | | | |
Collapse
|
24
|
Karami O, Saidi A. The molecular basis for stress-induced acquisition of somatic embryogenesis. Mol Biol Rep 2009; 37:2493-507. [PMID: 19705297 DOI: 10.1007/s11033-009-9764-3] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Accepted: 08/14/2009] [Indexed: 11/24/2022]
Abstract
Somatic embryogenesis (SE) has been studied as a model system for understanding of molecular events in the physiology, biochemistry, and biology areas occurring during plant embryo development. Stresses are also the factors that have been increasingly recognized as having important role in the induction of SE. Plant growth regulators such as 2,4-dichlorophenoxyacetic acid (2,4-D), ABA, ethylene, and high concentrations of 2,4-D are known as stress-related substances for acquisition of embryogenic competence by plant cells. Gene expression analysis in both the proteome and transcriptome levels have led to the identification and characterization of some stress-related genes and proteins associated with SE. This review focuses on the molecular basis for stress-induced acquisition of SE.
Collapse
Affiliation(s)
- Omid Karami
- Department of Biotechnology, Bu-Ali Sina University, Hamadan, Iran.
| | | |
Collapse
|
25
|
Minic Z, Jamet E, San-Clemente H, Pelletier S, Renou JP, Rihouey C, Okinyo DPO, Proux C, Lerouge P, Jouanin L. Transcriptomic analysis of Arabidopsis developing stems: a close-up on cell wall genes. BMC PLANT BIOLOGY 2009; 9:6. [PMID: 19149885 PMCID: PMC2649120 DOI: 10.1186/1471-2229-9-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2008] [Accepted: 01/16/2009] [Indexed: 05/17/2023]
Abstract
BACKGROUND Different strategies (genetics, biochemistry, and proteomics) can be used to study proteins involved in cell biogenesis. The availability of the complete sequences of several plant genomes allowed the development of transcriptomic studies. Although the expression patterns of some Arabidopsis thaliana genes involved in cell wall biogenesis were identified at different physiological stages, detailed microarray analysis of plant cell wall genes has not been performed on any plant tissues. Using transcriptomic and bioinformatic tools, we studied the regulation of cell wall genes in Arabidopsis stems, i.e. genes encoding proteins involved in cell wall biogenesis and genes encoding secreted proteins. RESULTS Transcriptomic analyses of stems were performed at three different developmental stages, i.e., young stems, intermediate stage, and mature stems. Many genes involved in the synthesis of cell wall components such as polysaccharides and monolignols were identified. A total of 345 genes encoding predicted secreted proteins with moderate or high level of transcripts were analyzed in details. The encoded proteins were distributed into 8 classes, based on the presence of predicted functional domains. Proteins acting on carbohydrates and proteins of unknown function constituted the two most abundant classes. Other proteins were proteases, oxido-reductases, proteins with interacting domains, proteins involved in signalling, and structural proteins. Particularly high levels of expression were established for genes encoding pectin methylesterases, germin-like proteins, arabinogalactan proteins, fasciclin-like arabinogalactan proteins, and structural proteins. Finally, the results of this transcriptomic analyses were compared with those obtained through a cell wall proteomic analysis from the same material. Only a small proportion of genes identified by previous proteomic analyses were identified by transcriptomics. Conversely, only a few proteins encoded by genes having moderate or high level of transcripts were identified by proteomics. CONCLUSION Analysis of the genes predicted to encode cell wall proteins revealed that about 345 genes had moderate or high levels of transcripts. Among them, we identified many new genes possibly involved in cell wall biogenesis. The discrepancies observed between results of this transcriptomic study and a previous proteomic study on the same material revealed post-transcriptional mechanisms of regulation of expression of genes encoding cell wall proteins.
Collapse
Affiliation(s)
- Zoran Minic
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada
- Laboratoire de Biologie Cellulaire, Institut National de la Recherche Agronomique (INRA), Route de St-Cyr, 78026 Versailles Cedex, France
| | - Elisabeth Jamet
- Surfaces Cellulaires et Signalisation chez les Végétaux, UMR 5546 CNRS-UPS, Université de Toulouse, 24 Chemin de Borde Rouge, BP42617, 31326-Castanet-Tolosan, France
| | - Hélène San-Clemente
- Surfaces Cellulaires et Signalisation chez les Végétaux, UMR 5546 CNRS-UPS, Université de Toulouse, 24 Chemin de Borde Rouge, BP42617, 31326-Castanet-Tolosan, France
| | - Sandra Pelletier
- Unité de Recherche en Génomique Végétale, UMR INRA 1165-CNRS 8114, UEVE, 91057 Evry cedex, France
| | - Jean-Pierre Renou
- Unité de Recherche en Génomique Végétale, UMR INRA 1165-CNRS 8114, UEVE, 91057 Evry cedex, France
| | - Christophe Rihouey
- Faculté des Sciences, FRE CNRS 3090, IFRMP23, Université de Rouen, F-76821 Mont Saint Aignan Cedex, France
| | - Denis PO Okinyo
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada
| | - Caroline Proux
- Unité de Recherche en Génomique Végétale, UMR INRA 1165-CNRS 8114, UEVE, 91057 Evry cedex, France
| | - Patrice Lerouge
- Faculté des Sciences, FRE CNRS 3090, IFRMP23, Université de Rouen, F-76821 Mont Saint Aignan Cedex, France
| | - Lise Jouanin
- Laboratoire de Biologie Cellulaire, Institut National de la Recherche Agronomique (INRA), Route de St-Cyr, 78026 Versailles Cedex, France
| |
Collapse
|
26
|
Ke Y, Han G, He H, Li J. Differential regulation of proteins and phosphoproteins in rice under drought stress. Biochem Biophys Res Commun 2008; 379:133-8. [PMID: 19103168 DOI: 10.1016/j.bbrc.2008.12.067] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2008] [Accepted: 12/07/2008] [Indexed: 10/21/2022]
Abstract
Drought is the largest constraint on rice production in Asia. Protein phosphorylation has been recognized as an important mechanism for environmental stress signaling. However, the differential expression of proteins and phosphoproteins induced by drought in rice is still largely unknown. In this paper, we report the identification of differentially expressed proteins and phosphoproteins induced by drought in rice using proteomic approaches. Three drought-responsive proteins were identified. Late embryogenesis abundant (LEA)-like protein and chloroplast Cu-Zn superoxide dismutase (SOD) were up-regulated by drought whereas Rieske Fe-S precursor protein was down-regulated. Ten drought-responsive phosphoproteins were identified: NAD-malate dehydrogenase, OSJNBa0084K20.14 protein, abscisic acid- and stress-inducible protein, ribosomal protein, drought-induced S-like ribonuclease, ethylene-inducible protein, guanine nucleotide-binding protein beta subunit-like protein, r40c1 protein, OSJNBb0039L24.13 protein and germin-like protein 1. Seven of these phosphoproteins have not previously been reported to be involved in rice drought stress. These results provide new insight into the regulatory mechanism of drought-induced proteins and implicate several previously unrecognized proteins in response to drought stress.
Collapse
Affiliation(s)
- Yuqin Ke
- Key Laboratory of Ministry of Education for Genetic, Breeding and Multiple Utilization of Crops, Fuzhou, China
| | | | | | | |
Collapse
|
27
|
Yajun H, Wangzhen G, Xinlian S, Tianzhen Z. Molecular cloning and characterization of a cytosolic glutamine synthetase gene, a fiber strength-associated gene in cotton. PLANTA 2008; 228:473-83. [PMID: 18560885 DOI: 10.1007/s00425-008-0751-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Accepted: 05/08/2008] [Indexed: 05/12/2023]
Abstract
An expressed sequence tag encoding glutamine synthetase (GS) was identified by microarray-based hybridization using fiber mRNAs of allotetraploid Gossypium hirsutum, 7235, a super quality property germplasm line, and TM-1, a genetic standard in G. hirsutum. Northern-blot analysis verified transcript accumulation differences in 8 DPA fibers (including ovules) in the two varieties. The full-length cDNA encoding GS in 7235 was isolated and named GhGS. Sequence analysis revealed that the GhGS was similar to cytosolic GS. Southern-blot analysis showed that tetraploid cotton contained at least one copy of the A sub-genome and the D sub-genome. Genomic GhGS sequences were subsequently isolated from different varieties, TM-1, 7235 and two diploid progenitor cottons, G. herbaceum (A-genome) and G. raimondii (D-genome). Molecular mapping and single-marker analysis revealed that the GhGS was significantly correlated with fiber strength and was mapped to chromosome D7. Additionally, GS activities and total protein of the ovules and the fibers were assayed. The results showed a significantly higher GS activity in 7235 seeds compared to TM-1 seeds at 5 and 8 DPA. Also significant differences were found in total protein content and seed weight at 11 DPA. This suggested that GS promoted the seed-forming process by providing N. On the other hand, in fibers, GS activity and total protein assay indicated a lower total GS activity and longer fiber elongation period in 7235. These results suggest that the respective roles of the GS in ovules and fibers do not completely overlap.
Collapse
Affiliation(s)
- He Yajun
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Research Institute, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | | | | | | |
Collapse
|
28
|
Xu Z, Kohel RJ, Song G, Cho J, Alabady M, Yu J, Koo P, Chu J, Yu S, Wilkins TA, Zhu Y, Yu JZ. Gene-rich islands for fiber development in the cotton genome. Genomics 2008; 92:173-83. [PMID: 18619771 DOI: 10.1016/j.ygeno.2008.05.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Revised: 03/31/2008] [Accepted: 05/16/2008] [Indexed: 10/21/2022]
Abstract
Cotton fiber is an economically important seed trichome and the world's leading natural fiber used in the manufacture of textiles. As a step toward elucidating the genomic organization and distribution of gene networks responsible for cotton fiber development, we investigated the distribution of fiber genes in the cotton genome. Results revealed the presence of gene-rich islands for fiber genes with a biased distribution in the tetraploid cotton (Gossypium hirsutum L.) genome that was also linked to discrete fiber developmental stages based on expression profiles. There were 3 fiber gene-rich islands associated with fiber initiation on chromosome 5, 3 islands for the early to middle elongation stage on chromosome 10, 3 islands for the middle to late elongation stage on chromosome 14, and 1 island on chromosome 15 for secondary cell wall deposition, for a total of 10 fiber gene-rich islands. Clustering of functionally related gene clusters in the cotton genome displaying similar transcriptional regulation indicates an organizational hierarchy with significant implications for the genetic enhancement of particular fiber quality traits. The relationship between gene-island distribution and functional expression profiling suggests for the first time the existence of functional coupling gene clusters in the cotton genome.
Collapse
Affiliation(s)
- Zhanyou Xu
- USDA-ARS, Crop Germplasm Research Unit, College Station, TX 77845, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Kim HJ, Kato N, Kim S, Triplett B. Cu/Zn superoxide dismutases in developing cotton fibers: evidence for an extracellular form. PLANTA 2008; 228:281-92. [PMID: 18425534 PMCID: PMC2440947 DOI: 10.1007/s00425-008-0734-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Accepted: 03/31/2008] [Indexed: 05/20/2023]
Abstract
Hydrogen peroxide and other reactive oxygen species are important signaling molecules in diverse physiological processes. Previously, we discovered superoxide dismutase (SOD) activity in extracellular protein preparations from fiber-bearing cotton (Gossypium hirsutum L.) seeds. We show here, based on immunoreactivity, that the enzyme is a Cu/Zn-SOD (CSD). Immunogold localization shows that CSD localizes to secondary cell walls of developing cotton fibers. Five cotton CSD cDNAs were cloned from cotton fiber and classified into three subfamilies (Group 1: GhCSD1; Group 2: GhCSD2a and GhCSD2b; Group 3: GhCSD3 and GhCSD3s). Members of Group 1 and 2 are expressed throughout fiber development, but predominant during the elongation stage. Group 3 CSDs are also expressed throughout fiber development, but transiently increase in abundance at the transition period between cell elongation and secondary cell wall synthesis. Each of the three GhCSDs also has distinct patterns of expression in tissues other than fiber. Overexpression of cotton CSDs fused to green fluorescent protein in transgenic Arabidopsis demonstrated that GhCSD1 localizes to the cytosol, GhCSD2a localizes to plastids, and GhCSD3 is translocated to the cell wall. Subcellular fractionation of proteins from transgenic Arabidopsis seedlings confirmed that only c-myc epitope-tagged GhCSD3 co-purifies with cell wall proteins. Extracellular CSDs have been suggested to be involved in lignin formation in secondary cell walls of other plants. Since cotton fibers are not lignified, we suggest that extracellular CSDs may be involved in other plant cell wall growth and development processes.
Collapse
Affiliation(s)
- Hee Jin Kim
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148 USA
| | - Naohiro Kato
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803 USA
| | - Sunran Kim
- USDA-ARS, Southern Regional Research Center, 1100 Robert E. Lee Blvd, New Orleans, LA 70124 USA
- Present Address: Department of Biochemistry, University of Missouri, Columbia, MO 65211 USA
| | - Barbara Triplett
- USDA-ARS, Southern Regional Research Center, 1100 Robert E. Lee Blvd, New Orleans, LA 70124 USA
| |
Collapse
|
30
|
Kim HJ, Kato N, Kim S, Triplett B. Cu/Zn superoxide dismutases in developing cotton fibers: evidence for an extracellular form. PLANTA 2008. [PMID: 18425534 DOI: 10.1007/s00425008-0734-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Hydrogen peroxide and other reactive oxygen species are important signaling molecules in diverse physiological processes. Previously, we discovered superoxide dismutase (SOD) activity in extracellular protein preparations from fiber-bearing cotton (Gossypium hirsutum L.) seeds. We show here, based on immunoreactivity, that the enzyme is a Cu/Zn-SOD (CSD). Immunogold localization shows that CSD localizes to secondary cell walls of developing cotton fibers. Five cotton CSD cDNAs were cloned from cotton fiber and classified into three subfamilies (Group 1: GhCSD1; Group 2: GhCSD2a and GhCSD2b; Group 3: GhCSD3 and GhCSD3s). Members of Group 1 and 2 are expressed throughout fiber development, but predominant during the elongation stage. Group 3 CSDs are also expressed throughout fiber development, but transiently increase in abundance at the transition period between cell elongation and secondary cell wall synthesis. Each of the three GhCSDs also has distinct patterns of expression in tissues other than fiber. Overexpression of cotton CSDs fused to green fluorescent protein in transgenic Arabidopsis demonstrated that GhCSD1 localizes to the cytosol, GhCSD2a localizes to plastids, and GhCSD3 is translocated to the cell wall. Subcellular fractionation of proteins from transgenic Arabidopsis seedlings confirmed that only c-myc epitope-tagged GhCSD3 co-purifies with cell wall proteins. Extracellular CSDs have been suggested to be involved in lignin formation in secondary cell walls of other plants. Since cotton fibers are not lignified, we suggest that extracellular CSDs may be involved in other plant cell wall growth and development processes.
Collapse
Affiliation(s)
- Hee Jin Kim
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA
| | | | | | | |
Collapse
|
31
|
|
32
|
Wu Y, Llewellyn DJ, White R, Ruggiero K, Al-Ghazi Y, Dennis ES. Laser capture microdissection and cDNA microarrays used to generate gene expression profiles of the rapidly expanding fibre initial cells on the surface of cotton ovules. PLANTA 2007; 226:1475-90. [PMID: 17636323 DOI: 10.1007/s00425-007-0580-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2006] [Accepted: 06/25/2007] [Indexed: 05/12/2023]
Abstract
Cotton (Gossypium hirsutum L.) fibre initial cells undergo a rapid cellular re-programming around anthesis to form the long cellulose fibres prized for textile manufacture. On the day of anthesis the cotton fibre initial cells balloon out from the ovule surface and so are clearly distinguished from adjacent epidermal pavement cells. To enhance our understanding of the molecular processes that determine which cells become fibres and why adjacent epidermal cells remain in a different developmental state we studied the expression profiles of the two respective cell types. Using laser-capture microdissection, coupled with an in vitro RNA amplification system, we used cDNA microarray slides to profile the gene expression in expanding fibre initials compared to the non-expanding epidermal cells at an early stage just after the fibre initials are discernable. Except for a few regulatory genes, the genes that are up-regulated in the cotton fibre initials relative to epidermal cells predominantly encode proteins involved in generating the components for the extra cell membrane and primary cell wall needed for the rapid cell expansion of the initials. This includes synthesis of enzymes and cell wall proteins, carbohydrates, and lipids. An analysis of single channel fluorescence levels confirmed that these classes of genes were also the most highly expressed genes in fibre initials. Genes involved in DNA metabolism were also well represented in the expanding fibre cell, consistent with the limited endoreduplication we previously reported to occur in fibre initial cells.
Collapse
Affiliation(s)
- Yingru Wu
- CSIRO Plant Industry, P.O. Box 1600, Canberra, ACT 2601, Australia
| | | | | | | | | | | |
Collapse
|
33
|
Godfrey D, Able AJ, Dry IB. Induction of a grapevine germin-like protein (VvGLP3) gene is closely linked to the site of Erysiphe necator infection: a possible role in defense? MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2007; 20:1112-25. [PMID: 17849714 DOI: 10.1094/mpmi-20-9-1112] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Germin-like proteins (GLP) have various proposed roles in plant development and defense. Seven novel GLP cDNA clones were isolated from grapevine (Vitis vinifera cv. Chardonnay). Reverse transcriptase-polymerase chain reaction expression analysis revealed that the VvGLP genes exhibit diverse and highly specific patterns of expression in response to a variety of abiotic and biotic treatments, including challenge by Erysiphe necator, Plasmopara viticola, and Botrytis cinerea, suggesting a diversity of roles for each of the GLP family members. Significantly, one of the grapevine GLP genes, VvGLP3, is induced specifically by E. necator infection and expression is closely linked to the site of infection. Subcellular localization of VvGLP3 determined by transient expression of a VvGLP3:GFP fusion construct in onion cells indicated that the recombinant protein was targeted to the cell wall. Recombinant VvGLP3 was successfully expressed in Arabidopsis thaliana and the partially purified recombinant protein was demonstrated to have superoxide dismutase activity. This data has provided an insight into the diverse nature of the GLP family in grapevine and suggests that VvGLP3 may be involved in the defense response against E. necator.
Collapse
Affiliation(s)
- Dale Godfrey
- CSIRO Plant Industry, PO Box 350, Glen Osmond, SA 5064, Australia
| | | | | |
Collapse
|
34
|
Tu LL, Zhang XL, Liang SG, Liu DQ, Zhu LF, Zeng FC, Nie YC, Guo XP, Deng FL, Tan JF, Xu L. Genes expression analyses of sea-island cotton (Gossypium barbadense L.) during fiber development. PLANT CELL REPORTS 2007; 26:1309-20. [PMID: 17377794 DOI: 10.1007/s00299-007-0337-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2006] [Revised: 01/26/2007] [Accepted: 02/27/2007] [Indexed: 05/14/2023]
Abstract
Sea-island cotton (Gossypium barbadense L.) is one of the most valuable cotton species due to its silkiness, luster, long staples, and high strength, but its fiber development mechanism has not been surveyed comprehensively. We constructed a normalized fiber cDNA library (from -2 to 25 dpa) of G. barbadense cv. Pima 3-79 (the genetic standard line) by saturation hybridization with genomic DNA. We screened Pima 3-79 fiber RNA from five developmental stages using a cDNA array including 9,126 plasmids randomly selected from the library, and we selected and sequenced 929 clones that had different signal intensities between any two stages. The 887 high-quality expressed sequence tags obtained were assembled into 645 consensus sequences (582 singletons and 63 contigs), of which 455 were assigned to functional categories using gene ontology. Almost 50% of binned genes belonged to metabolism functional categories. Based on subarray analysis of the 887 high-quality expressed sequence tags with 0-, 5-, 10-, 15-, and 20-dpa RNA of Pima 3-79 fibers and a mixture of RNA of nonfiber tissues, seven types of expression profiles were elucidated. Furthermore our results showed that phytohormones may play an important role in the fiber development.
Collapse
Affiliation(s)
- Li-Li Tu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Yang SS, Cheung F, Lee JJ, Ha M, Wei NE, Sze SH, Stelly DM, Thaxton P, Triplett B, Town CD, Chen ZJ. Accumulation of genome-specific transcripts, transcription factors and phytohormonal regulators during early stages of fiber cell development in allotetraploid cotton. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 47:761-75. [PMID: 16889650 PMCID: PMC4367961 DOI: 10.1111/j.1365-313x.2006.02829.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Gene expression during the early stages of fiber cell development and in allopolyploid crops is poorly understood. Here we report computational and expression analyses of 32 789 high-quality ESTs derived from Gossypium hirsutum L. Texas Marker-1 (TM-1) immature ovules (GH_TMO). The ESTs were assembled into 8540 unique sequences including 4036 tentative consensus sequences (TCs) and 4504 singletons, representing approximately 15% of the unique sequences in the cotton EST collection. Compared with approximately 178 000 existing ESTs derived from elongating fibers and non-fiber tissues, GH_TMO ESTs showed a significant increase in the percentage of genes encoding putative transcription factors such as MYB and WRKY and genes encoding predicted proteins involved in auxin, brassinosteroid (BR), gibberellic acid (GA), abscisic acid (ABA) and ethylene signaling pathways. Cotton homologs related to MIXTA, MYB5, GL2 and eight genes in the auxin, BR, GA and ethylene pathways were induced during fiber cell initiation but repressed in the naked seed mutant (N1N1) that is impaired in fiber formation. The data agree with the known roles of MYB and WRKY transcription factors in Arabidopsis leaf trichome development and the well-documented phytohormonal effects on fiber cell development in immature cotton ovules cultured in vitro. Moreover, the phytohormonal pathway-related genes were induced prior to the activation of MYB-like genes, suggesting an important role of phytohormones in cell fate determination. Significantly, AA sub-genome ESTs of all functional classifications including cell-cycle control and transcription factor activity were selectively enriched in G. hirsutum L., an allotetraploid derived from polyploidization between AA and DD genome species, a result consistent with the production of long lint fibers in AA genome species. These results suggest general roles for genome-specific, phytohormonal and transcriptional gene regulation during the early stages of fiber cell development in cotton allopolyploids.
Collapse
Affiliation(s)
- S. Samuel Yang
- Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas 77843, USA
| | - Foo Cheung
- The Institute for Genomic Research, Rockville, Maryland 20850, USA
| | - Jinsuk J. Lee
- Section of Molecular Cell and Developmental Biology, The University of Texas, Austin, Texas 78712, USA
| | - Misook Ha
- Section of Molecular Cell and Developmental Biology, The University of Texas, Austin, Texas 78712, USA
| | - Ning E. Wei
- Department of Computer Science, Texas A&M University, College Station, Texas 77843, USA
| | - Sing-Hoi Sze
- Department of Computer Science, Texas A&M University, College Station, Texas 77843, USA
| | - David M. Stelly
- Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas 77843, USA
| | - Peggy Thaxton
- Delta Research and Extension Center, Mississippi State University, Stoneville, Mississippi 38776, USA
| | - Barbara Triplett
- USDA-ARS Southern Regional Research Center, New Orleans, Louisiana 70179, USA
| | | | - Z. Jeffrey Chen
- Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas 77843, USA
- Section of Molecular Cell and Developmental Biology, The University of Texas, Austin, Texas 78712, USA
- Author for correspondence: Institute for Cellular and Molecular Biology, The University of Texas, Austin, Texas 78712-0159, USA, Phone: 512-475-9327; Fax: 512-232-3432;
| |
Collapse
|
36
|
Mathieu M, Lelu-Walter MA, Blervacq AS, David H, Hawkins S, Neutelings G. Germin-like genes are expressed during somatic embryogenesis and early development of conifers. PLANT MOLECULAR BIOLOGY 2006; 61:615-27. [PMID: 16897479 DOI: 10.1007/s11103-006-0036-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2006] [Accepted: 03/01/2006] [Indexed: 05/11/2023]
Abstract
Germins and germin-like proteins (GLPs) are members of a superfamily of proteins widely distributed in plants. Their localization within the extracellular matrix and in some cases their hydrogen peroxide-producing activity suggests that these proteins are involved in cell wall metabolism during stress responses and developmental processes. Several very highly conserved conifer GLPs have been identified in somatic embryo tissues. In order to gain more knowledge on their potential involvement in the development of this particular tissue, we have characterized a new GLP gene, LmGER1 in hybrid larch. Anti-GLP immunserum and in-gel activity analyses suggested the presence of superoxide dismutase activity in apoplastic proteins from larch somatic embryos. These results could indicate a possible role for LmGER1 in this physiological process. The expression of LmGER1 has been followed during the maturation of somatic embryos and in different organs of young plantlets by homologous transformation with a promoter-gus construct. This promoter was activated in the root cap of young embryos and, later on, in the cotyledons and in the vascular procambium and xylem. Furthermore, the importance of this gene in embryo development was evaluated by transforming embryonal masses with a gene construct encoding a hairpin RNA leading to gene silencing. The potential role of LmGER1 in cross-linking of cell wall components is discussed.
Collapse
Affiliation(s)
- M Mathieu
- Laboratoire de Physiologie des Parois Végétales UPRES EA3568-USC INRA, Université des Sciences et Technologies de Lille, Bât SN2, 59655, Villeneuve d'Ascq Cedex, France
| | | | | | | | | | | |
Collapse
|
37
|
Gion JM, Lalanne C, Le Provost G, Ferry-Dumazet H, Paiva J, Chaumeil P, Frigerio JM, Brach J, Barré A, de Daruvar A, Claverol S, Bonneu M, Sommerer N, Negroni L, Plomion C. The proteome of maritime pine wood forming tissue. Proteomics 2006; 5:3731-51. [PMID: 16127725 DOI: 10.1002/pmic.200401197] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Wood is one of our most important natural resources. Surprisingly, we know hardly anything about the details of the process of wood formation. The aim of this work was to describe the main proteins expressed in wood forming tissue of a conifer species (Pinus pinaster Ait.). Using high resolution 2-DE with linear pH gradient ranging from 4 to 7, a total of 1039 spots were detected. Out of the 240 spots analyzed by MS/MS, 67.9% were identified, 16.7% presented no homology in the databases, and 15.4% corresponded to protein mixtures. Out of the 57 spots analyzed by MALDI-MS, only 15.8% were identified. Most of the 175 identified proteins play a role in either defense (19.4%), carbohydrates (16.6%) and amino acid (14.9%) metabolisms, genes and proteins expression (13.1%), cytoskeleton (8%), cell wall biosynthesis (5.7%), secondary (5.1%) and primary (4%) metabolisms. A summary of the identified proteins, their putative functions, and behavior in different types of wood are presented. This information was introduced into the PROTICdb database and is accessible at http://cbib1.cbib.u-bordeaux2.fr/Protic/Protic/home/index.php. Finally, the average protein amount was compared with their respective transcript abundance as quantified through EST counting in a cDNA-library constructed with mRNA extracted from wood forming tissue.
Collapse
Affiliation(s)
- Jean-Marc Gion
- UMR 1202 BIOGECO, INRA, Equipe de Génétique, Cestas, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Kim HJ, Triplett BA. Characterization of GhRac1 GTPase expressed in developing cotton (Gossypium hirsutum L.) fibers. ACTA ACUST UNITED AC 2004; 1679:214-21. [PMID: 15358513 DOI: 10.1016/j.bbaexp.2004.06.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2004] [Revised: 06/03/2004] [Accepted: 06/24/2004] [Indexed: 10/26/2022]
Abstract
Cytoskeleton assembly plays an important role in determining cotton fiber cell length and morphology and is developmentally regulated. As in other plant cells, it is not clear how cytoskeletal assembly in fibers is regulated. Recently, several Rac/Rop GTPases in Arabidopsis were shown to regulate isotropic and polar cell growth of root hairs and pollen tubes by controlling assembly of the cytoskeleton. GhRac1, isolated from cottonseeds, is a member of the Rac/Rop GTPase family and is abundantly expressed in rapidly growing cotton tissues. GhRac1 shows the greatest sequence similarity to the group IV subfamily of Arabidopsis Rac/Rop genes. Overexpression of GhRac1 in E. coli led to the production of a functional GTPase as shown by in vitro enzyme activity assay. In contrast to other Rac/Rop GTPases found in cotton fiber, GhRac1 is highly expressed during the elongation stage of fiber development with expression decreasing dramatically when the rate of fiber elongation declines. The association of highest GhRac1 expression during stages of maximal cotton fiber elongation suggests that GhRac1 GTPase may be a potential regulator of fiber elongation by controlling cytoskeletal assembly.
Collapse
Affiliation(s)
- Hee Jin Kim
- USDA-ARS, Southern Regional Research Center, New Orleans, LA 70124, USA
| | | |
Collapse
|
39
|
Nakata M, Watanabe Y, Sakurai Y, Hashimoto Y, Matsuzaki M, Takahashi Y, Satoh T. Germin-like protein gene family of a moss, Physcomitrella patens, phylogenetically falls into two characteristic new clades. PLANT MOLECULAR BIOLOGY 2004; 56:381-395. [PMID: 15604751 DOI: 10.1007/s11103-004-3475-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We identified 77 EST clones encoding germin-like proteins (GLPs) from a moss, Physcomitrella patens in a database search. These Physcomitrella GLPs ( PpGLP s) were separated into seven groups based on DNA sequence homology. Phylogenetic analysis showed that these groups were divided into two novel clades clearly distinguishable from higher plant germins and GLPs, named bryophyte subfamilies 1 and 2. PpGLPs belonging to bryophyte subfamilies 1 lacked two cysteines at the conserved positions observed in higher plant germins or GLPs. PpGLPs belonging to bryophyte subfamily 2 contained two cysteines as observed in higher plant germins and GLPs. In bryophyte subfamily 1, 12 amino acids, in which one of two cysteines is included, were deleted between boxes A and B. Further, we determined the genomic structure of all of seven PpGLP genes. The sequences of PpGLP s of bryophyte subfamily 1 contained one or two introns, whereas those of bryophyte subfamily 2 contained no introns. Other GLPs from bryophytes, a liverwort GLP from Marchantia polymorpha , and two moss GLPs from Barbula unguiculata and Ceratodon purpureus also fell into bryophyte subfamily 1 and bryophyte subfamily 2, respectively. No higher plant germins and GLPs were grouped into the bryophyte subfamilies 1 and 2 by our analysis. Moreover, we revealed that PpGLP6 had manganese-containing extracellular superoxide dismutase activity. These results indicated that bryophyte possess characteristic GLPs, which phylogenetically are clearly distinguishable from higher plant GLPs.
Collapse
Affiliation(s)
- Masaru Nakata
- Department of Biological Science, Graduate School of Science, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima, 739-8526, Japan.
| | | | | | | | | | | | | |
Collapse
|