1
|
Hsu CH, Liu CY, Lo KY. Mutations of ribosomal protein genes induce overexpression of catalase in Saccharomyces cerevisiae. FEMS Yeast Res 2024; 24:foae005. [PMID: 38271612 PMCID: PMC10855018 DOI: 10.1093/femsyr/foae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/31/2023] [Accepted: 01/24/2024] [Indexed: 01/27/2024] Open
Abstract
Ribosome assembly defects result in ribosomopathies, primarily caused by inadequate protein synthesis and induced oxidative stress. This study aimed to investigate the link between deleting one ribosomal protein gene (RPG) paralog and oxidative stress response. Our results indicated that RPG mutants exhibited higher oxidant sensitivity than the wild type (WT). The concentrations of H2O2 were increased in the RPG mutants. Catalase and superoxide dismutase (SOD) activities were generally higher at the stationary phase, with catalase showing particularly elevated activity in the RPG mutants. While both catalase genes, CTT1 and CTA1, consistently exhibited higher transcription in RPG mutants, Ctt1 primarily contributed to the increased catalase activity. Stress-response transcription factors Msn2, Msn4, and Hog1 played a role in regulating these processes. Previous studies have demonstrated that H2O2 can cleave 25S rRNA via the Fenton reaction, enhancing ribosomes' ability to translate mRNAs associated with oxidative stress-related genes. The cleavage of 25S rRNA was consistently more pronounced, and the translation efficiency of CTT1 and CTA1 mRNAs was altered in RPG mutants. Our results provide evidence that the mutations in RPGs increase H2O2 levels in vivo and elevate catalase expression through both transcriptional and translational controls.
Collapse
Affiliation(s)
- Ching-Hsiang Hsu
- Department of Agricultural Chemistry National Taiwan University Agricultural Chemistry Building No. 2, Rm. 233 No. 1, Sec. 4, Roosevelt Rd. Taipei 10617, Taiwan
| | - Ching-Yu Liu
- Department of Agricultural Chemistry National Taiwan University Agricultural Chemistry Building No. 2, Rm. 233 No. 1, Sec. 4, Roosevelt Rd. Taipei 10617, Taiwan
| | - Kai-Yin Lo
- Department of Agricultural Chemistry National Taiwan University Agricultural Chemistry Building No. 2, Rm. 233 No. 1, Sec. 4, Roosevelt Rd. Taipei 10617, Taiwan
| |
Collapse
|
2
|
Ntambiyukuri A, Li X, Xiao D, Wang A, Zhan J, He L. Circadian Rhythm Regulates Reactive Oxygen Species Production and Inhibits Al-Induced Programmed Cell Death in Peanut. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081271. [PMID: 36013450 PMCID: PMC9410085 DOI: 10.3390/life12081271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/17/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022]
Abstract
Peanut is among the most important oil crops in the world. In the southern part of China, peanut is highly produced; however, the arable land is acidic. In acidic soils, aluminum (Al) inhibits plant growth and development by changing the properties of the cell wall and causing the disorder of the intracellular metabolic process. Circadian rhythm is an internal mechanism that occurs about every 24 h and enables plants to maintain internal biological processes with a daily cycle. To investigate the effect of photoperiod and Al stress on the Al-induced programmed cell death (PCD), two peanut varieties were treated with 100 μM AlCl3 under three photoperiodic conditions (8/16, SD; 12/12, ND; 16/8 h, LD). The results show that Al toxicity was higher in ZH2 than in 99-1507 and higher under LD than under SD. Root length decreased by 30, 37.5, and 50% in ZH2 and decreased by 26.08, 34.78, and 47.82% in 99-1507 under SD, ND, and LD, respectively, under Al stress. Photoperiod and Al induced cell death and ROS production. MDA content, PME activity, and LOX activity increased under SD, ND, and LD, respectively, under Al stress both in ZH2 and 99-1507. APX, SOD, CAT, and POD activities were higher under SD, ND, and LD, respectively. Al stress increased the level of AhLHY expression under SD and ND but decreased it under LD in both ZH2 and 99-1507. Contrastingly, AhSTS expression levels increased exponentially and were higher under SD, LD, and ND, respectively, under Al stress. Our results will be a useful platform to research PCD induced by Al and gain new insights into the genetic manipulation of the circadian clock for plant stress response.
Collapse
Affiliation(s)
- Aaron Ntambiyukuri
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Xia Li
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Dong Xiao
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning 530004, China
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Nanning 530004, China
- Correspondence: (D.X.); (L.H.)
| | - Aiqin Wang
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning 530004, China
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Nanning 530004, China
| | - Jie Zhan
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning 530004, China
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Nanning 530004, China
| | - Longfei He
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning 530004, China
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Nanning 530004, China
- Correspondence: (D.X.); (L.H.)
| |
Collapse
|
3
|
Reactive Oxygen Species, Antioxidant Responses and Implications from a Microbial Modulation Perspective. BIOLOGY 2022; 11:biology11020155. [PMID: 35205022 PMCID: PMC8869449 DOI: 10.3390/biology11020155] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 12/17/2022]
Abstract
Simple Summary Environmental conditions are subject to unprecedented changes due to recent progressive anthropogenic activities on our planet. Plants, as the frontline of food security, are susceptible to these changes, resulting in the generation of unavoidable byproducts of metabolism (ROS), which eventually affect their productivity. The response of plants to these unfavorable conditions is highly intricate and depends on several factors, among them are the species/genotype tolerance level, intensity, and duration of stress factors. Defensive mechanisms in plant systems, by nature, are concerned primarily with generating enzymatic and non-enzymatic antioxidants. In addition to this, plant-microbe interactions have been found to improve immune systems in plants suffering from drought and salinity stress. Abstract Plants are exposed to various environmental stresses in their lifespan that threaten their survival. Reactive oxygen species (ROS), the byproducts of aerobic metabolism, are essential signalling molecules in regulating multiple plant developmental processes as well as in reinforcing plant tolerance to biotic and abiotic stimuli. However, intensified environmental challenges such as salinity, drought, UV irradiation, and heavy metals usually interfere with natural ROS metabolism and homeostasis, thus aggravating ROS generation excessively and ultimately resulting in oxidative stress. Cellular damage is confined to the degradation of biomolecular structures, including carbohydrates, proteins, lipids, pigments, and DNA. The nature of the double-edged function of ROS as a secondary messenger or harmful oxidant has been attributed to the degree of existing balance between cellular ROS production and ROS removal machinery. The activities of enzyme-based antioxidants, catalase (CAT, EC 1.11.1.6), monodehydroascorbate reductase (MDHAR, E.C.1.6.5.4), dehydroascorbate reductase (DHAR, EC 1.8.5.1), superoxide dismutase (SOD, EC 1.15.1.1), ascorbate peroxidase (APX, EC 1.11.1.11), glutathione reductase (GR, EC 1.6.4.2), and guaiacol peroxidase (GPX, EC 1.11.1.7); and non-enzyme based antioxidant molecules, ascorbate (AA), glutathione (GSH), carotenoids, α-tocopherol, prolines, flavonoids, and phenolics, are indeed parts of the defensive strategies developed by plants to scavenge excess ROS and to maintain cellular redox homeostasis during oxidative stress. This review briefly summarises current knowledge on enzymatic and non-enzymatic antioxidant machinery in plants. Moreover, additional information about the beneficial impact of the microbiome on countering abiotic/biotic stresses in association with roots and plant tissues has also been provided.
Collapse
|
4
|
Jung WS, Chung IM, Hwang MH, Kim SH, Yu CY, Ghimire BK. Application of Light-Emitting Diodes for Improving the Nutritional Quality and Bioactive Compound Levels of Some Crops and Medicinal Plants. Molecules 2021; 26:1477. [PMID: 33803168 PMCID: PMC7963184 DOI: 10.3390/molecules26051477] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 11/16/2022] Open
Abstract
Light is a key factor that affects phytochemical synthesis and accumulation in plants. Due to limitations of the environment or cultivated land, there is an urgent need to develop indoor cultivation systems to obtain higher yields with increased phytochemical concentrations using convenient light sources. Light-emitting diodes (LEDs) have several advantages, including consumption of lesser power, longer half-life, higher efficacy, and wider variation in the spectral wavelength than traditional light sources; therefore, these devices are preferred for in vitro culture and indoor plant growth. Moreover, LED irradiation of seedlings enhances plant biomass, nutrient and secondary metabolite levels, and antioxidant properties. Specifically, red and blue LED irradiation exerts strong effects on photosynthesis, stomatal functioning, phototropism, photomorphogenesis, and photosynthetic pigment levels. Additionally, ex vitro plantlet development and acclimatization can be enhanced by regulating the spectral properties of LEDs. Applying an appropriate LED spectral wavelength significantly increases antioxidant enzyme activity in plants, thereby enhancing the cell defense system and providing protection from oxidative damage. Since different plant species respond differently to lighting in the cultivation environment, it is necessary to evaluate specific wavebands before large-scale LED application for controlled in vitro plant growth. This review focuses on the most recent advances and applications of LEDs for in vitro culture organogenesis. The mechanisms underlying the production of different phytochemicals, including phenolics, flavonoids, carotenoids, anthocyanins, and antioxidant enzymes, have also been discussed.
Collapse
Affiliation(s)
- Woo-Suk Jung
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Korea; (W.-S.J.); (I.-M.C.); (S.-H.K.)
| | - Ill-Min Chung
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Korea; (W.-S.J.); (I.-M.C.); (S.-H.K.)
| | - Myeong Ha Hwang
- Interdisciplinary Program in Smart Science, Kangwon National University, Chuncheon 200-701, Korea; (M.H.H.); (C.Y.Y.)
| | - Seung-Hyun Kim
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Korea; (W.-S.J.); (I.-M.C.); (S.-H.K.)
| | - Chang Yeon Yu
- Interdisciplinary Program in Smart Science, Kangwon National University, Chuncheon 200-701, Korea; (M.H.H.); (C.Y.Y.)
| | - Bimal Kumar Ghimire
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Korea; (W.-S.J.); (I.-M.C.); (S.-H.K.)
| |
Collapse
|
5
|
Mirzahosseini Z, Shabani L, Sabzalian MR. LED lights increase an antioxidant capacity of Arabidopsis thaliana under wound-induced stresses. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 47:853-864. [PMID: 32553085 DOI: 10.1071/fp19343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 04/13/2020] [Indexed: 05/24/2023]
Abstract
A comparison among four light emitting diode (LED) lights including red LED (R), blue LED (B), red (70%) + blue (30%) LED (RB) and white LED (W) as well as fluorescent (F) light was made on antioxidative capacity of Arabidopsis thaliana (L.) Heynh. in response to wounding. Under wound-stress condition, LED-exposed plants, especially RB-irradiated plants, maintained significantly higher shoot dry weight and antioxidant enzymes activities compared with those irradiated with fluorescent lights. The highest amounts of both chlorophyll a and b were observed in the leaves treated with B light. Also, the concentration of H2O2 was higher under the condition of RB and B lights compared with the other light environments. The highest amount of malondialdehyde was measured in plants exposed to F and B lights. Similarly, wounded leaves under F and B light conditions showed the maximum lipoxygenase activity, whereas R-exposed leaves had the lowest lipoxygenase activity. In contrast, the highest level of phenolic compounds was found in R and RB exposed leaves in response to wounding. Among the five light treatments, RB and B lights were more effective in stimulating anthocyanin synthesis; however, RB-exposed plants were more efficient in the late-induction of the PAL gene (phenylalanine ammonia lyase catalyses the first step of the general phenylpropanoid pathway). Collectively, we reasoned that RB light condition gives a superior capacity to Arabidopsis thaliana to tolerate wound-stress. Also, we propose the probable signalling role of ROS in light-stimulated wound responses in Arabidopsis.
Collapse
Affiliation(s)
- Zahra Mirzahosseini
- Department of Biology, Faculty of Sciences, Shahrekord University, Shahrekord, Iran
| | - Leila Shabani
- Department of Biology, Faculty of Sciences, Shahrekord University, Shahrekord, Iran; and Research Institute of Biotechnology, Shahrekord University, Shahrekord, Iran; and Corresponding author. ;
| | - Mohammad R Sabzalian
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran
| |
Collapse
|
6
|
Corpas FJ, Del Río LA, Palma JM. Plant peroxisomes at the crossroad of NO and H 2 O 2 metabolism. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:803-816. [PMID: 30609289 DOI: 10.1111/jipb.12772] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 12/26/2018] [Indexed: 06/09/2023]
Abstract
Plant peroxisomes are subcellular compartments involved in many biochemical pathways during the life cycle of a plant but also in the mechanism of response against adverse environmental conditions. These organelles have an active nitro-oxidative metabolism under physiological conditions but this could be exacerbated under stress situations. Furthermore, peroxisomes have the capacity to proliferate and also undergo biochemical adaptations depending on the surrounding cellular status. An important characteristic of peroxisomes is that they have a dynamic metabolism of reactive nitrogen and oxygen species (RNS and ROS) which generates two key molecules, nitric oxide (NO) and hydrogen peroxide (H2 O2 ). These molecules can exert signaling functions by means of post-translational modifications that affect the functionality of target molecules like proteins, peptides or fatty acids. This review provides an overview of the endogenous metabolism of ROS and RNS in peroxisomes with special emphasis on polyamine and uric acid metabolism as well as the possibility that these organelles could be a source of signal molecules involved in the functional interconnection with other subcellular compartments.
Collapse
Affiliation(s)
- Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, E-18008 Granada, Spain
| | - Luis A Del Río
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, E-18008 Granada, Spain
| | - José M Palma
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, E-18008 Granada, Spain
| |
Collapse
|
7
|
Corpas FJ, Barroso JB. Calmodulin antagonist affects peroxisomal functionality by disrupting both peroxisomal Ca 2+ and protein import. J Cell Sci 2018; 131:jcs.201467. [PMID: 28183730 DOI: 10.1242/jcs.201467] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 02/03/2017] [Indexed: 12/21/2022] Open
Abstract
Ca2+ is a second messenger in many physiological and phytopathological processes. Peroxisomes are subcellular compartments with an active oxidative and nitrosative metabolism. Previous studies have demonstrated that peroxisomal nitric oxide (NO) generation is dependent on Ca2+ and calmodulin (CaM). Here, we used Arabidopsis thaliana transgenic seedlings expressing cyan fluorescent protein (CFP) containing a type 1 peroxisomal-targeting signal motif (PTS1; CFP-PTS1), which enables peroxisomes to be visualized in vivo, and also used a cell-permeable fluorescent probe for Ca2+ Analysis by confocal laser-scanning microscopy (CLSM) enabled us to visualize the presence of endogenous Ca2+ in the peroxisomes of both roots and guard cells. The presence of Ca2+ in peroxisomes and the import of CFP-PTS1 are drastically disrupted by both CaM antagonist and glutathione (GSH). Furthermore, the activity of three peroxisomal enzymes (catalase, glycolate oxidase and hydroxypyruvate reductase) containing PTS1 was clearly affected in these conditions, with a decrease of between 41 and 51%. In summary, data show that Ca2+ and CaM are strictly necessary for protein import and normal functionality of peroxisomal enzymes, including antioxidant and photorespiratory enzymes, as well as for NO production.
Collapse
Affiliation(s)
- Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, C/Profesor Albareda 1, Granada E-18008, Spain
| | - Juan B Barroso
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Biochemistry and Molecular Biology, Campus 'Las Lagunillas', University of Jaén, Jaén E-23071, Spain
| |
Collapse
|
8
|
Corpas FJ. What is the role of hydrogen peroxide in plant peroxisomes? PLANT BIOLOGY (STUTTGART, GERMANY) 2015; 17:1099-103. [PMID: 26242708 DOI: 10.1111/plb.12376] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 07/27/2015] [Indexed: 05/21/2023]
Abstract
Plant peroxisomes are unusual subcellular compartments with an apparent simple morphology but with complex metabolic activity. The presence of signal molecules, such as hydrogen peroxide (H(2)O(2)) and nitric oxide inside plant peroxisomes have added new functions in the cross-talk events among organelles and cells under physiological and stress conditions. Moreover, recent advances in proteomic analyses of plant peroxisomes have identified new protein candidates involved in several novel metabolic pathways. With all these new data, the present concise manuscript will focus on the relevance of the peroxisomal H(2)O(2) and its two main antioxidant enzymes, catalase and membrane-bound ascorbate peroxidase, which regulate its level and consequently its potential functions.
Collapse
Affiliation(s)
- Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| |
Collapse
|
9
|
Roy B, von Arnim AG. Translational Regulation of Cytoplasmic mRNAs. THE ARABIDOPSIS BOOK 2013; 11:e0165. [PMID: 23908601 PMCID: PMC3727577 DOI: 10.1199/tab.0165] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Translation of the coding potential of a messenger RNA into a protein molecule is a fundamental process in all living cells and consumes a large fraction of metabolites and energy resources in growing cells. Moreover, translation has emerged as an important control point in the regulation of gene expression. At the level of gene regulation, translational control is utilized to support the specific life histories of plants, in particular their responses to the abiotic environment and to metabolites. This review summarizes the diversity of translational control mechanisms in the plant cytoplasm, focusing on specific cases where mechanisms of translational control have evolved to complement or eclipse other levels of gene regulation. We begin by introducing essential features of the translation apparatus. We summarize early evidence for translational control from the pre-Arabidopsis era. Next, we review evidence for translation control in response to stress, to metabolites, and in development. The following section emphasizes RNA sequence elements and biochemical processes that regulate translation. We close with a chapter on the role of signaling pathways that impinge on translation.
Collapse
Affiliation(s)
- Bijoyita Roy
- Department of Biochemistry, Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN 37996-0840
- Current address: University of Massachussetts Medical School, Worcester, MA 01655-0122, USA
| | - Albrecht G. von Arnim
- Department of Biochemistry, Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN 37996-0840
- Graduate School of Genome Science and Technology, The University of Tennessee, Knoxville, TN 37996-0840
| |
Collapse
|
10
|
Mhamdi A, Noctor G, Baker A. Plant catalases: Peroxisomal redox guardians. Arch Biochem Biophys 2012; 525:181-94. [DOI: 10.1016/j.abb.2012.04.015] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 04/12/2012] [Accepted: 04/14/2012] [Indexed: 12/17/2022]
|
11
|
Kangasjärvi S, Neukermans J, Li S, Aro EM, Noctor G. Photosynthesis, photorespiration, and light signalling in defence responses. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:1619-36. [PMID: 22282535 DOI: 10.1093/jxb/err402] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Visible light is the basic energetic driver of plant biomass production through photosynthesis. The constantly fluctuating availability of light and other environmental factors means that the photosynthetic apparatus must be able to operate in a dynamic fashion appropriate to the prevailing conditions. Dynamic regulation is achieved through an array of homeostatic control mechanisms that both respond to and influence cellular energy and reductant status. In addition, light availability and quality are continuously monitored by plants through photoreceptors. Outside the laboratory growth room, it is within the context of complex changes in energy and signalling status that plants must regulate pathways to deal with biotic challenges, and this can be influenced by changes in the highly energetic photosynthetic pathways and in the turnover of the photosynthetic machinery. Because of this, defence responses are neither simple nor easily predictable, but rather conditioned by the nutritional and signalling status of the plant cell. This review discusses recent data and emerging concepts of how recognized defence pathways interact with and are influenced by light-dependent processes. Particular emphasis is placed on the potential roles of the chloroplast, photorespiration, and photoreceptor-associated pathways in regulating the outcome of interactions between plants and pathogenic organisms.
Collapse
Affiliation(s)
- Saijaliisa Kangasjärvi
- Department of Biochemistry and Food Chemistry, University of Turku, FI-20014 Turku, Finland.
| | | | | | | | | |
Collapse
|
12
|
Mhamdi A, Queval G, Chaouch S, Vanderauwera S, Van Breusegem F, Noctor G. Catalase function in plants: a focus on Arabidopsis mutants as stress-mimic models. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:4197-220. [PMID: 20876333 DOI: 10.1093/jxb/erq282] [Citation(s) in RCA: 493] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Hydrogen peroxide (H(2)O(2)) is an important signal molecule involved in plant development and environmental responses. Changes in H(2)O(2) availability can result from increased production or decreased metabolism. While plants contain several types of H(2)O(2)-metabolizing proteins, catalases are highly active enzymes that do not require cellular reductants as they primarily catalyse a dismutase reaction. This review provides an update on plant catalase genes, function, and subcellular localization, with a focus on recent information generated from studies on Arabidopsis. Original data are presented on Arabidopsis catalase single and double mutants, and the use of some of these lines as model systems to investigate the outcome of increases in intracellular H(2)O(2) are discussed. Particular attention is paid to interactions with cell thiol-disulphide status; the use of catalase-deficient plants to probe the apparent redundancy of reductive H(2)O(2)-metabolizing pathways; the importance of irradiance and growth daylength in determining the outcomes of catalase deficiency; and the induction of pathogenesis-related responses in catalase-deficient lines. Within the context of strategies aimed at understanding and engineering plant stress responses, the review also considers whether changes in catalase activities in wild-type plants are likely to be a significant part of plant responses to changes in environmental conditions or biotic challenge.
Collapse
Affiliation(s)
- Amna Mhamdi
- Institut de Biologie des Plantes, UMR CNRS 8618, Université de Paris sud, F-91405 Orsay cedex, France
| | | | | | | | | | | |
Collapse
|
13
|
Hu YQ, Liu S, Yuan HM, Li J, Yan DW, Zhang JF, Lu YT. Functional comparison of catalase genes in the elimination of photorespiratory H2O2 using promoter- and 3'-untranslated region exchange experiments in the Arabidopsis cat2 photorespiratory mutant. PLANT, CELL & ENVIRONMENT 2010; 33:1656-1670. [PMID: 20492555 DOI: 10.1111/j.1365-3040.2010.02171.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Photorespiration-associated production of H(2) O(2) accounts for the majority of total H(2) O(2) in leaves of C(3) plants and is mainly eliminated by catalases. In Arabidopsis, lack of CAT2, but not CAT1 or CAT3, results in growth suppression and a marked accumulation of H(2) O(2) in leaves. To evaluate the contribution of individual catalase genes and their promoters to catalase function, we investigated the growth suppression and H(2) O(2) accumulation phenotypes of Arabidopsis derivatives expressing catalase genes from heterologous CAT promoters in a cat2 mutant background. The expression of CAT2 from the CAT2 promoter restored the wild-type phenotype in a cat2-1 mutant, while CAT1 and CAT3 promoter-driven expression of CAT2 did not. Ectopic expression of CAT3 from the CAT2 promoter also restored the normal phenotype, unlike that of CAT1 which required replacement of the CAT1 3'-untranslated region (UTR) with that of CAT2. These results demonstrated that the photorespiratory role of CAT2 is determined mainly by the regulation of its promoter activity. The 3'-UTR of CAT2 was vital for controlling CAT2 protein levels under photorespiratory conditions. Identification of component of heterotetramers catalase isoforms suggested that there is some functional redundancy between CAT2 and CAT1 and CAT3.
Collapse
Affiliation(s)
- Ye-Qin Hu
- Key Lab of MOE for Plant Developmental Biology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | | | | | | | | | | | | |
Collapse
|
14
|
Maresca V, Flori E, Bellei B, Aspite N, Kovacs D, Picardo M. MC1R stimulation by alpha-MSH induces catalase and promotes its re-distribution to the cell periphery and dendrites. Pigment Cell Melanoma Res 2010; 23:263-75. [PMID: 20067588 DOI: 10.1111/j.1755-148x.2010.00673.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We demonstrated a direct correlation between melanogenic and catalase activities on in vitro and ex vivo models. Here, we investigated whether the stimulation of Melanocortin-1 Receptor (MC1R) could influence catalase expression, activity and cellular localization. For this purpose, we treated B16-F0 melanoma cells with alpha-Melanocyte Stimulating Hormone (alpha-MSH) and we showed a rapid induction of catalase through a cAMP/PKA-dependent, microphthalmia-associated transcription factor (MITF) independent mechanism, acting at post-transcriptional level. Moreover, alpha-MSH promoted a partial re-distribution of catalase to the cell periphery and dendrites. This work strengthens the correlation between melanogenesis and anti-oxidants, demonstrating the induction of catalase in response to a melanogenic stimulation, such as alpha-MSH-dependent MC1R activation. Moreover, this study highlights catalase regulatory mechanisms poorly known, and attributes to alpha-MSH a protective role in defending melanocytes, and possibly keratinocytes, not only on the basis of its pigmentary action, but also for its capacity to stimulate a quick anti-oxidant defence.
Collapse
Affiliation(s)
- Vittoria Maresca
- Laboratorio di Fisiopatologia Cutanea e Biologia Molecolare-Centro di Metabolomica, San Gallicano Dermatologic Institute IRCCS, Rome, Italy
| | | | | | | | | | | |
Collapse
|
15
|
Foyer CH, Noctor G. Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxid Redox Signal 2009; 11:861-905. [PMID: 19239350 DOI: 10.1089/ars.2008.2177] [Citation(s) in RCA: 764] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Reactive oxygen species (ROS) have multifaceted roles in the orchestration of plant gene expression and gene-product regulation. Cellular redox homeostasis is considered to be an "integrator" of information from metabolism and the environment controlling plant growth and acclimation responses, as well as cell suicide events. The different ROS forms influence gene expression in specific and sometimes antagonistic ways. Low molecular antioxidants (e.g., ascorbate, glutathione) serve not only to limit the lifetime of the ROS signals but also to participate in an extensive range of other redox signaling and regulatory functions. In contrast to the low molecular weight antioxidants, the "redox" states of components involved in photosynthesis such as plastoquinone show rapid and often transient shifts in response to changes in light and other environmental signals. Whereas both types of "redox regulation" are intimately linked through the thioredoxin, peroxiredoxin, and pyridine nucleotide pools, they also act independently of each other to achieve overall energy balance between energy-producing and energy-utilizing pathways. This review focuses on current knowledge of the pathways of redox regulation, with discussion of the somewhat juxtaposed hypotheses of "oxidative damage" versus "oxidative signaling," within the wider context of physiological function, from plant cell biology to potential applications.
Collapse
Affiliation(s)
- Christine H Foyer
- School of Agriculture, Food and Rural Development, Agriculture Building, University of Newcastle upon Tyne, Newcastle upon Tyne, United Kingdom.
| | | |
Collapse
|
16
|
Foyer CH, Bloom AJ, Queval G, Noctor G. Photorespiratory metabolism: genes, mutants, energetics, and redox signaling. ANNUAL REVIEW OF PLANT BIOLOGY 2009; 60:455-84. [PMID: 19575589 DOI: 10.1146/annurev.arplant.043008.091948] [Citation(s) in RCA: 371] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Photorespiration is a high-flux pathway that operates alongside carbon assimilation in C(3) plants. Because most higher plant species photosynthesize using only the C(3) pathway, photorespiration has a major impact on cellular metabolism, particularly under high light, high temperatures, and CO(2) or water deficits. Although the functions of photorespiration remain controversial, it is widely accepted that this pathway influences a wide range of processes from bioenergetics, photosystem II function, and carbon metabolism to nitrogen assimilation and respiration. Crucially, the photorespiratory pathway is a major source of H(2)O(2) in photosynthetic cells. Through H(2)O(2) production and pyridine nucleotide interactions, photorespiration makes a key contribution to cellular redox homeostasis. In so doing, it influences multiple signaling pathways, particularly those that govern plant hormonal responses controlling growth, environmental and defense responses, and programmed cell death. The potential influence of photorespiration on cell physiology and fate is thus complex and wide ranging. The genes, pathways, and signaling functions of photorespiration are considered here in the context of whole plant biology, with reference to future challenges and human interventions to diminish photorespiratory flux.
Collapse
Affiliation(s)
- Christine H Foyer
- School of Agriculture, Food, and Rural Development, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom.
| | | | | | | |
Collapse
|
17
|
Queval G, Issakidis-Bourguet E, Hoeberichts FA, Vandorpe M, Gakière B, Vanacker H, Miginiac-Maslow M, Van Breusegem F, Noctor G. Conditional oxidative stress responses in the Arabidopsis photorespiratory mutant cat2 demonstrate that redox state is a key modulator of daylength-dependent gene expression, and define photoperiod as a crucial factor in the regulation of H2O2-induced cell death. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 52:640-57. [PMID: 17877712 DOI: 10.1111/j.1365-313x.2007.03263.x] [Citation(s) in RCA: 285] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Photorespiration is a light-dependent source of H(2)O(2) in the peroxisomes, where concentrations of this signalling molecule are regulated by catalase. Growth of Arabidopsis knock-out mutants for CATALASE2 (cat2) in ambient air caused severely decreased rosette biomass, intracellular redox perturbation and activation of oxidative signalling pathways. These effects were absent when cat2 was grown at high CO(2) levels to inhibit photorespiration, but were re-established following a subsequent transfer to air. Growth of cat2 in air at different daylengths revealed that photoperiod is a critical determinant of the oxidative stress response. Decreased growth was observed in 8-h, 12-h and 16-h photoperiods, but lesion development was dependent on long days. Experiments at different light fluence rates showed that cell death in cat2 was linked to long days and not to total light exposure or the severity of oxidative stress. Perturbed intracellular redox state and oxidative signalling pathway induction were more prominent in short days than in long days, as evidenced by glutathione status and induction of defence genes and oxidative stress-responsive transcripts. Similar daylength-dependent effects were observed in the response of mature plants transferred from short days in high CO(2) conditions to ambient air conditions. Prior growth of plants with short days in air alleviated the cat2 cell-death phenotype in long days. Together, the data reveal the influence of photoperiodic events on redox signalling, and define distinct photoperiod-dependent strategies in the acclimation versus cell-death decision in stress conditions.
Collapse
Affiliation(s)
- Guillaume Queval
- Institut de Biotechnologie des Plantes, Université de Paris Sud XI, 91405 Orsay cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|