1
|
Puzanskiy RK, Romanyuk DA, Kirpichnikova AA, Yemelyanov VV, Shishova MF. Plant Heterotrophic Cultures: No Food, No Growth. PLANTS (BASEL, SWITZERLAND) 2024; 13:277. [PMID: 38256830 PMCID: PMC10821431 DOI: 10.3390/plants13020277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024]
Abstract
Plant cells are capable of uptaking exogenous organic substances. This inherited trait allows the development of heterotrophic cell cultures in various plants. The most common of them are Nicotiana tabacum and Arabidopsis thaliana. Plant cells are widely used in academic studies and as factories for valuable substance production. The repertoire of compounds supporting the heterotrophic growth of plant cells is limited. The best growth of cultures is ensured by oligosaccharides and their cleavage products. Primarily, these are sucrose, raffinose, glucose and fructose. Other molecules such as glycerol, carbonic acids, starch, and mannitol have the ability to support growth occasionally, or in combination with another substrate. Culture growth is accompanied by processes of specialization, such as elongation growth. This determines the pattern of the carbon budget. Culture ageing is closely linked to substrate depletion, changes in medium composition, and cell physiological rearrangements. A lack of substrate leads to starvation, which results in a decrease in physiological activity and the mobilization of resources, and finally in the loss of viability. The cause of the instability of cultivated cells may be the non-optimal metabolism under cultural conditions or the insufficiency of internal regulation.
Collapse
Affiliation(s)
- Roman K. Puzanskiy
- Laboratory of Analytical Phytochemistry, Komarov Botanical Institute of the Russian Academy of Sciences, 197022 St. Petersburg, Russia;
| | - Daria A. Romanyuk
- Laboratory of Genetics of Plant-Microbe Interactions, All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia;
| | | | - Vladislav V. Yemelyanov
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia; (A.A.K.); (V.V.Y.)
| | - Maria F. Shishova
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia; (A.A.K.); (V.V.Y.)
| |
Collapse
|
2
|
Zhao M, Nakamura T, Nakamura Y, Munemasa S, Mori IC, Murata Y. The effect of exogenous dihydroxyacetone and methylglyoxal on growth, anthocyanin accumulation, and the glyoxalase system in Arabidopsis. Biosci Biotechnol Biochem 2023; 87:1323-1331. [PMID: 37553179 DOI: 10.1093/bbb/zbad109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/01/2023] [Indexed: 08/10/2023]
Abstract
Dihydroxyacetone (DHA) occurs in wide-ranging organisms, including plants, and can undergo spontaneous conversion to methylglyoxal (MG). While the toxicity of MG to plants is well-known, the toxicity of DHA to plants remains to be elucidated. We investigated the effects of DHA and MG on Arabidopsis. Exogenous DHA at up to 10 mm did not affect the radicle emergence, the expansion of green cotyledons, the seedling growth, or the activity of glyoxalase II, while DHA at 10 mm inhibited the root elongation and increased the activity of glyoxalase I. Exogenous MG at 1.0 mm inhibited these physiological responses and increased both activities. Dihydroxyacetone at 10 mm increased the MG content in the roots. These results indicate that DHA is not so toxic as MG in Arabidopsis seeds and seedlings and suggest that the toxic effect of DHA at high concentrations is attributed to MG accumulation by the conversion to MG.
Collapse
Affiliation(s)
- Maoxiang Zhao
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Toshiyuki Nakamura
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Yoshimasa Nakamura
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Shintaro Munemasa
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Izumi C Mori
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, Japan
| | - Yoshiyuki Murata
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| |
Collapse
|
3
|
Parrilla J, Gaillard C, Verbeke J, Maucourt M, Aleksandrov RA, Thibault F, Fleurat-Lessard P, Gibon Y, Rolin D, Atanassova R. Comparative metabolomics and glycolysis enzyme profiling of embryogenic and nonembryogenic grape cells. FEBS Open Bio 2018; 8:784-798. [PMID: 29744293 PMCID: PMC5929931 DOI: 10.1002/2211-5463.12415] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 03/06/2018] [Accepted: 03/07/2018] [Indexed: 11/06/2022] Open
Abstract
A novel biological model was created for the comparison of grapevine embryogenic cells (EC) and nonembryogenic cells (NEC) sharing a common genetic background but distinct phenotypes, when cultured on their respective most appropriate media. Cytological characterization, 1H-NMR analysis of intracellular metabolites, and glycolytic enzyme activities provided evidence for the marked metabolic differences between EC and NEC. The EC were characterized by a moderate and organized cell proliferation, coupled with a low flux through glycolysis, high capacity of phosphoenolpyruvate carboxylase and glucokinase, and high oxygen consumption. The NEC displayed strong anarchic growth, and their high rate of glycolysis due to the low energetic efficiency of the fermentative metabolism is confirmed by increased enolase capacity and low oxygen consumption.
Collapse
Affiliation(s)
- Jonathan Parrilla
- Laboratoire EBI- Ecologie et Biologie des Interactions Équipe SEVE-Sucres et Échanges Végétaux-Environnement UMR 7267 Centre National de la Recherche Scientifique Université de Poitiers France
| | - Cécile Gaillard
- Laboratoire EBI- Ecologie et Biologie des Interactions Équipe SEVE-Sucres et Échanges Végétaux-Environnement UMR 7267 Centre National de la Recherche Scientifique Université de Poitiers France
| | - Jérémy Verbeke
- Laboratoire EBI- Ecologie et Biologie des Interactions Équipe SEVE-Sucres et Échanges Végétaux-Environnement UMR 7267 Centre National de la Recherche Scientifique Université de Poitiers France.,GReD. UMR CNRS 6293 - INSERM U1103 Université Clermont-Auvergne CRBC Faculté de médecine Clermont-Ferrand France
| | - Mickaël Maucourt
- Laboratoire Biologie du Fruit et Pathologie UMR 1332 Institut National de la Recherche Agronomique Université de Bordeaux Villenave d'Ornon France.,Plateforme Métabolome du Centre de Génomique Fonctionnelle Bordeaux MetaboHUB Institut National de la Recherche Agronomique Villenave d'Ornon France
| | - Radoslav A Aleksandrov
- Laboratoire EBI- Ecologie et Biologie des Interactions Équipe SEVE-Sucres et Échanges Végétaux-Environnement UMR 7267 Centre National de la Recherche Scientifique Université de Poitiers France.,Institute of Molecular Biology Bulgarian Academy of Sciences Acad Sofia Bulgaria
| | - Florence Thibault
- Laboratoire EBI- Ecologie et Biologie des Interactions Équipe SEVE-Sucres et Échanges Végétaux-Environnement UMR 7267 Centre National de la Recherche Scientifique Université de Poitiers France
| | - Pierrette Fleurat-Lessard
- Laboratoire EBI- Ecologie et Biologie des Interactions Équipe SEVE-Sucres et Échanges Végétaux-Environnement UMR 7267 Centre National de la Recherche Scientifique Université de Poitiers France
| | - Yves Gibon
- Laboratoire Biologie du Fruit et Pathologie UMR 1332 Institut National de la Recherche Agronomique Université de Bordeaux Villenave d'Ornon France.,Plateforme Métabolome du Centre de Génomique Fonctionnelle Bordeaux MetaboHUB Institut National de la Recherche Agronomique Villenave d'Ornon France
| | - Dominique Rolin
- Laboratoire Biologie du Fruit et Pathologie UMR 1332 Institut National de la Recherche Agronomique Université de Bordeaux Villenave d'Ornon France.,Plateforme Métabolome du Centre de Génomique Fonctionnelle Bordeaux MetaboHUB Institut National de la Recherche Agronomique Villenave d'Ornon France
| | - Rossitza Atanassova
- Laboratoire EBI- Ecologie et Biologie des Interactions Équipe SEVE-Sucres et Échanges Végétaux-Environnement UMR 7267 Centre National de la Recherche Scientifique Université de Poitiers France
| |
Collapse
|
4
|
Radchuk V, Riewe D, Peukert M, Matros A, Strickert M, Radchuk R, Weier D, Steinbiß HH, Sreenivasulu N, Weschke W, Weber H. Down-regulation of the sucrose transporters HvSUT1 and HvSUT2 affects sucrose homeostasis along its delivery path in barley grains. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4595-4612. [PMID: 28981782 PMCID: PMC5853522 DOI: 10.1093/jxb/erx266] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 07/03/2017] [Indexed: 05/05/2023]
Abstract
Sucrose transport and partitioning are crucial for seed filling. While many plasma-membrane-localised sucrose transporters (SUT1 family members) have been analysed in seeds, the functions of vacuolar SUT2 members are still obscure. In barley grains, expression of HvSUT1 and HvSUT2 overlap temporally and spatially, suggesting concerted functions to regulate sucrose homeostasis. Using HvSUT2-RNAi plants, we found that grains were also deficient in HvSUT1 expression and seemingly sucrose-limited during mid-to-late grain filling. Transgenic endosperms accumulated less starch and dry weight, although overall sucrose and hexose contents were higher. Comprehensive transcript and metabolite profiling revealed that genes related to glycolysis, the tricarboxylic acid cycle, starch and amino acid synthesis, grain maturation, and abscisic acid signalling were down-regulated together with most glycolytic intermediates and amino acids. Sucrose was increased along the sucrose delivery route in the nucellar projection, the endosperm transfer cells, and the starchy endosperm, indicating that suppressed transporter activity diminished sucrose efflux from vacuoles, which generated sugar deficiency in the cytoplasm. Thus, endosperm vacuoles may buffer sucrose concentrations to regulate homeostasis at grain filling. Transcriptional changes revealed that limited endosperm sucrose initiated sugar starvation responses, such as sugar recycling from starch, hemicelluloses and celluloses together with vacuolar protein degradation, thereby supporting formation of nucleotide sugars. Barley endosperm cells can thus suppress certain pathways to retrieve resources to maintain essential cell functions.
Collapse
Affiliation(s)
- Volodymyr Radchuk
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung, Stadt Seeland OT Gatersleben, Germany
| | - David Riewe
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung, Stadt Seeland OT Gatersleben, Germany
| | - Manuela Peukert
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung, Stadt Seeland OT Gatersleben, Germany
| | - Andrea Matros
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung, Stadt Seeland OT Gatersleben, Germany
| | - Marc Strickert
- Computational Intelligence—FB12 Informatik, Philipps University, Marburg, Germany
| | - Ruslana Radchuk
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung, Stadt Seeland OT Gatersleben, Germany
| | - Diana Weier
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung, Stadt Seeland OT Gatersleben, Germany
| | | | - Nese Sreenivasulu
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung, Stadt Seeland OT Gatersleben, Germany
| | - Winfriede Weschke
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung, Stadt Seeland OT Gatersleben, Germany
| | - Hans Weber
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung, Stadt Seeland OT Gatersleben, Germany
| |
Collapse
|
5
|
Fanello DD, Bartoli CG, Guiamet JJ. Qualitative and quantitative modifications of root mitochondria during senescence of above-ground parts of Arabidopis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 258:112-121. [PMID: 28330554 DOI: 10.1016/j.plantsci.2017.01.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 01/18/2017] [Accepted: 01/21/2017] [Indexed: 05/09/2023]
Abstract
This work studied modifications experienced by root mitochondria during whole plant senescence or under light deprivation, using Arabidopsis thaliana plants with YFP tagged to mitochondria. During post-bolting development, root respiratory activity started to decline after aboveground organs (i.e., rosette leaves) had senesced. This suggests that carbohydrate starvation may induce root senescence. Similarly, darkening the whole plant induced a decrease in respiration of roots. This was partially due to a decrease in the number of total mitochondria (YFP-labelled mitochondria) and most probably to a decrease in the quantity of mitochondria with a developed inner membrane potential (ΔΨm, i.e., Mitotracker red- labelled mitochondria). Also, the lower amount of mitochondria with ΔΨm compared to YFP-labelled mitochondria at 10d of whole darkened plant, suggests the presence of mitochondria in a "standby state". The experiments also suggest that small mitochondria made the main contribution to the respiratory activity that was lost during root senescence. Sugar supplementation partially restored the respiration of mitochondria after 10d of whole plant dark treatment. These results suggest that root senescence is triggered by carbohydrate starvation, with loss of ΔΨm mitochondria and changes in mitochondrial size distribution.
Collapse
Affiliation(s)
- Diego Darío Fanello
- Instituto de Fisiología Vegetal (INFIVE), Facultades de Ciencias Agrarias y Forestales y de Ciencias Naturales y Museo, Universidad Nacional de La Plata, CCT-CONICET La Plata, cc 327, 1900, La Plata, Argentina.
| | - Carlos Guillermo Bartoli
- Instituto de Fisiología Vegetal (INFIVE), Facultades de Ciencias Agrarias y Forestales y de Ciencias Naturales y Museo, Universidad Nacional de La Plata, CCT-CONICET La Plata, cc 327, 1900, La Plata, Argentina
| | - Juan José Guiamet
- Instituto de Fisiología Vegetal (INFIVE), Facultades de Ciencias Agrarias y Forestales y de Ciencias Naturales y Museo, Universidad Nacional de La Plata, CCT-CONICET La Plata, cc 327, 1900, La Plata, Argentina
| |
Collapse
|
6
|
Sulieman S, Tran LSP. Asparagine: an amide of particular distinction in the regulation of symbiotic nitrogen fixation of legumes. Crit Rev Biotechnol 2012; 33:309-27. [DOI: 10.3109/07388551.2012.695770] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Kohli A, Narciso JO, Miro B, Raorane M. Root proteases: reinforced links between nitrogen uptake and mobilization and drought tolerance. PHYSIOLOGIA PLANTARUM 2012; 145:165-79. [PMID: 22242864 DOI: 10.1111/j.1399-3054.2012.01573.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Integral subcellular and cellular functions ranging from gene expression, protein targeting and nutrient supply to cell differentiation and cell death require proteases. Plants have unique organelles such as chloroplasts composed of unique proteins that carry out the unique process of photosynthesis. Hence, along with proteases common across kingdoms, plants contain unique proteases. Improved knowledge on proteases can lead to a better understanding of plant development, differentiation and death. Because of their importance in multiple processes, plant proteases are actively studied. However, root proteases specifically are not as well studied. The associated rhizosphere, organic matter and/or inorganic matter make roots a difficult system. Yet recent research conclusively demonstrated the occurrence of endocytosis of proteins, peptides and even microbes by root cells, which, hitherto known for specialized pathogenesis or symbiosis, was unsuspected for nutrient uptake. These results reinforced the importance of root proteases in endocytosis or root exudate-mediated nutrient uptake. Rhizoplane, rhizosphere or in planta protease action on proteins, peptides and microbes generates sources of nitrogen, especially during abiotic stresses such as drought. This article highlights the recent research on root proteases for nitrogen uptake and the connection of the two to drought-tolerance mechanisms. Drought-induced proteases in rice roots, as known from rice expression databases, are discussed for future research on certain M50, Deg, FtsH, AMSH and deubiquitination proteases. The recent emphasis on linking drought and plant hydraulics to nutrient metabolism is illustrated and connected to the value of a systematic study of root proteases in crop improvement.
Collapse
Affiliation(s)
- Ajay Kohli
- Plant Breeding, Genetics, and Biotechnology Division, International Rice Research Institute, DAPO, Metro Manila, Philippines.
| | | | | | | |
Collapse
|
8
|
Bathellier C, Tcherkez G, Bligny R, Gout E, Cornic G, Ghashghaie J. Metabolic origin of the delta13C of respired CO2 in roots of Phaseolus vulgaris. THE NEW PHYTOLOGIST 2009; 181:387-399. [PMID: 19021866 DOI: 10.1111/j.1469-8137.2008.02679.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Root respiration is a major contributor to soil CO2 efflux, and thus an important component of ecosystem respiration. But its metabolic origin, in relation to the carbon isotope composition (delta13C), remains poorly understood. Here, 13C analysis was conducted on CO2 and metabolites under typical conditions or under continuous darkness in French bean (Phaseolus vulgaris) roots. 13C contents were measured either under natural abundance or following pulse-chase labeling with 13C-enriched glucose or pyruvate, using isotope ratio mass spectrometer (IRMS) and nuclear magnetic resonance (NMR) techniques. In contrast to leaves, no relationship was found between the respiratory quotient and the delta13C of respired CO2, which stayed constant at a low value (c. -27.5 per thousand) under continuous darkness. With labeling experiments, it is shown that such a pattern is explained by the 13C-depleting effect of the pentose phosphate pathway; and the involvement of the Krebs cycle fueled by either the glycolytic input or the lipid/protein recycling. The anaplerotic phosphoenolpyruvate carboxylase (PEPc) activity sustained glutamic acid (Glu) synthesis, with no net effect on respired CO2. These results indicate that the root delta13C signal does not depend on the availability of root respiratory substrates and it is thus plausible that, unless the 13C photosynthetic fractionation varies at the leaf level, the root delta13C signal hardly changes under a range of natural environmental conditions.
Collapse
Affiliation(s)
- Camille Bathellier
- Laboratoire d'Ecologie, Systématique et Evolution (ESE), CNRS-UMR 8079 - IFR 87, Bâtiment 362, Université Paris-Sud, 91405-Orsay Cedex, France;Plateforme Métabolisme-Métabolome, IFR87 La Plante et son Environnement, Institut de Biotechnologie des Plantes, Bâtiment 630, Université Paris-Sud, 91405-Orsay Cedex, France;Laboratoire de Physiologie Cellulaire Végétale CEA-Grenoble 17, rue des Martyrs, 38054 Grenoble Cedex 9, France
| | - Guillaume Tcherkez
- Laboratoire d'Ecologie, Systématique et Evolution (ESE), CNRS-UMR 8079 - IFR 87, Bâtiment 362, Université Paris-Sud, 91405-Orsay Cedex, France;Plateforme Métabolisme-Métabolome, IFR87 La Plante et son Environnement, Institut de Biotechnologie des Plantes, Bâtiment 630, Université Paris-Sud, 91405-Orsay Cedex, France;Laboratoire de Physiologie Cellulaire Végétale CEA-Grenoble 17, rue des Martyrs, 38054 Grenoble Cedex 9, France
| | - Richard Bligny
- Laboratoire d'Ecologie, Systématique et Evolution (ESE), CNRS-UMR 8079 - IFR 87, Bâtiment 362, Université Paris-Sud, 91405-Orsay Cedex, France;Plateforme Métabolisme-Métabolome, IFR87 La Plante et son Environnement, Institut de Biotechnologie des Plantes, Bâtiment 630, Université Paris-Sud, 91405-Orsay Cedex, France;Laboratoire de Physiologie Cellulaire Végétale CEA-Grenoble 17, rue des Martyrs, 38054 Grenoble Cedex 9, France
| | - Elizabeth Gout
- Laboratoire d'Ecologie, Systématique et Evolution (ESE), CNRS-UMR 8079 - IFR 87, Bâtiment 362, Université Paris-Sud, 91405-Orsay Cedex, France;Plateforme Métabolisme-Métabolome, IFR87 La Plante et son Environnement, Institut de Biotechnologie des Plantes, Bâtiment 630, Université Paris-Sud, 91405-Orsay Cedex, France;Laboratoire de Physiologie Cellulaire Végétale CEA-Grenoble 17, rue des Martyrs, 38054 Grenoble Cedex 9, France
| | - Gabriel Cornic
- Laboratoire d'Ecologie, Systématique et Evolution (ESE), CNRS-UMR 8079 - IFR 87, Bâtiment 362, Université Paris-Sud, 91405-Orsay Cedex, France;Plateforme Métabolisme-Métabolome, IFR87 La Plante et son Environnement, Institut de Biotechnologie des Plantes, Bâtiment 630, Université Paris-Sud, 91405-Orsay Cedex, France;Laboratoire de Physiologie Cellulaire Végétale CEA-Grenoble 17, rue des Martyrs, 38054 Grenoble Cedex 9, France
| | - Jaleh Ghashghaie
- Laboratoire d'Ecologie, Systématique et Evolution (ESE), CNRS-UMR 8079 - IFR 87, Bâtiment 362, Université Paris-Sud, 91405-Orsay Cedex, France;Plateforme Métabolisme-Métabolome, IFR87 La Plante et son Environnement, Institut de Biotechnologie des Plantes, Bâtiment 630, Université Paris-Sud, 91405-Orsay Cedex, France;Laboratoire de Physiologie Cellulaire Végétale CEA-Grenoble 17, rue des Martyrs, 38054 Grenoble Cedex 9, France
| |
Collapse
|
9
|
Maruta T, Yonemitsu M, Yabuta Y, Tamoi M, Ishikawa T, Shigeoka S. Arabidopsis phosphomannose isomerase 1, but not phosphomannose isomerase 2, is essential for ascorbic acid biosynthesis. J Biol Chem 2008; 283:28842-51. [PMID: 18755683 PMCID: PMC2661998 DOI: 10.1074/jbc.m805538200] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Revised: 08/25/2008] [Indexed: 11/06/2022] Open
Abstract
We studied molecular and functional properties of Arabidopsis phosphomannose isomerase isoenzymes (PMI1 and PMI2) that catalyze reversible isomerization between D-fructose 6-phosphate and D-mannose 6-phosphate (Man-6P). The apparent K(m) and V(max) values for Man-6P of purified recombinant PMI1 were 41.3+/-4.2 microm and 1.89 micromol/min/mg protein, respectively, whereas those of purified recombinant PMI2 were 372+/-13 microm and 22.5 micromol/min/mg protein, respectively. Both PMI1 and PMI2 were inhibited by incubation with EDTA, Zn(2+), Cd(2+), and L-ascorbic acid (AsA). Arabidopsis PMI1 protein was constitutively expressed in both vegetative and reproductive organs under normal growth conditions, whereas the PMI2 protein was not expressed in any organs under light. The induction of PMI1 expression and an increase in the AsA level were observed in leaves under continuous light, whereas the induction of PMI2 expression and a decrease in the AsA level were observed under long term darkness. PMI1 showed a diurnal expression pattern in parallel with the total PMI activity and the total AsA content in leaves. Moreover, a reduction of PMI1 expression through RNA interference resulted in a substantial decrease in the total AsA content of leaves of knockdown PMI1 plants, whereas the complete inhibition of PMI2 expression did not affect the total AsA levels in leaves of knock-out PMI2 plants. Consequently, this study improves our understanding of the molecular and functional properties of Arabidopsis PMI isoenzymes and provides genetic evidence of the involvement of PMI1, but not PMI2, in the biosynthesis of AsA in Arabidopsis plants.
Collapse
Affiliation(s)
- Takanori Maruta
- Department of Advanced Bioscience, Faculty of Agriculture, Kinki University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | | | | | | | | | | |
Collapse
|
10
|
Lejay L, Wirth J, Pervent M, Cross JMF, Tillard P, Gojon A. Oxidative pentose phosphate pathway-dependent sugar sensing as a mechanism for regulation of root ion transporters by photosynthesis. PLANT PHYSIOLOGY 2008; 146:2036-53. [PMID: 18305209 PMCID: PMC2287369 DOI: 10.1104/pp.107.114710] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Accepted: 02/20/2008] [Indexed: 05/18/2023]
Abstract
Root ion transport systems are regulated by light and/or sugars, but the signaling mechanisms are unknown. We showed previously that induction of the NRT2.1 NO(3)(-) transporter gene by sugars was dependent on carbon metabolism downstream hexokinase (HXK) in glycolysis. To gain further insights on this signaling pathway and to explore more systematically the mechanisms coordinating root nutrient uptake with photosynthesis, we studied the regulation of 19 light-/sugar-induced ion transporter genes. A combination of sugar, sugar analogs, light, and CO(2) treatments provided evidence that these genes are not regulated by a common mechanism and unraveled at least four different signaling pathways involved: regulation by light per se, by HXK-dependent sugar sensing, and by sugar sensing upstream or downstream HXK, respectively. More specific investigation of sugar-sensing downstream HXK, using NRT2.1 and NRT1.1 NO(3)(-) transporter genes as models, highlighted a correlation between expression of these genes and the concentration of glucose-6-P in the roots. Furthermore, the phosphogluconate dehydrogenase inhibitor 6-aminonicotinamide almost completely prevented induction of NRT2.1 and NRT1.1 by sucrose, indicating that glucose-6-P metabolization within the oxidative pentose phosphate pathway is required for generating the sugar signal. Out of the 19 genes investigated, most of those belonging to the NO(3)(-), NH(4)(+), and SO(4)(2-) transporter families were regulated like NRT2.1 and NRT1.1. These data suggest that a yet-unidentified oxidative pentose phosphate pathway-dependent sugar-sensing pathway governs the regulation of root nitrogen and sulfur acquisition by the carbon status of the plant to coordinate the availability of these three elements for amino acid synthesis.
Collapse
Affiliation(s)
- Laurence Lejay
- Institut de Biologie Intégrative des Plantes, UMR 5004, Biochimie et Physiologie Moléculaire des Plantes, Agro-M/CNRS/INRA/SupAgro/UM2, F-34060 Montpellier, France.
| | | | | | | | | | | |
Collapse
|