1
|
Song L, Yang T, Abubakar YS, Han Y, Zhang R, Li Y, Ye W, Lu GD. OsMbl1 Counteracts OsGdsl1-Mediated Rice Blast Susceptibility by Inhibiting Its Lipase Activity. PLANT, CELL & ENVIRONMENT 2025. [PMID: 40230242 DOI: 10.1111/pce.15552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 04/01/2025] [Accepted: 04/02/2025] [Indexed: 04/16/2025]
Abstract
Plant lectins have a significant impact on the defense against pathogens and insect attacks. The jacalin-related lectin OsMbl1 from rice (Oryza sativa L.) has been reported to play a crucial role in pattern-triggered immunity (PTI). However, the underlying mechanism remains unclear. In this study, we identified a GDSL-like lipase, OsGdsl1, that interacts with OsMbl1 both in vitro and in vivo. The OsGdsl1 protein, which has lipase activity, is localized in the lipid bodies and apoplast. The expression of OsGDSL1 is modulated upon exposure to Magnaporthe oryzae (M. oryzae) or plant hormones. Deletion of the OsGDSL1 gene not only improved the resistance of rice to M. oryzae, but also led to an increased ROS burst after chitin treatments. The expression of some pathogenesis-related (PR) genes was upregulated in the mutants. We also found that OsMbl1 inhibited the lipase activity of OsGdsl1 during infection with M. oryzae. Overall, our results suggest that OsGdsl1 negatively regulates rice immunity to M. oryzae infection by downregulating ROS bursts and PR gene expressions, while its lipase activity, which is inhibited by OsMbl1, contributes to the enhancement of rice innate immunity during M. oryzae infection.
Collapse
Affiliation(s)
- Linlin Song
- State Key Laboratory of Agricultural and Forestry Biosecurity, Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Tao Yang
- China National Engineering Research Center of JUNCAO Technology, College of JunCao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture & Forestry University, Fuzhou, Fujian, China
| | - Yakubu Saddeeq Abubakar
- State Key Laboratory of Agricultural and Forestry Biosecurity, Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Yijuan Han
- Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Ruina Zhang
- State Key Laboratory of Agricultural and Forestry Biosecurity, Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ya Li
- State Key Laboratory of Agricultural and Forestry Biosecurity, Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenyu Ye
- China National Engineering Research Center of JUNCAO Technology, College of JunCao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture & Forestry University, Fuzhou, Fujian, China
| | - Guo-Dong Lu
- State Key Laboratory of Agricultural and Forestry Biosecurity, Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
2
|
Ding LN, Hu YH, Li T, Li M, Li YT, Wu YZ, Cao J, Tan XL. A GDSL motif-containing lipase modulates Sclerotinia sclerotiorum resistance in Brassica napus. PLANT PHYSIOLOGY 2024; 196:2973-2988. [PMID: 39321167 PMCID: PMC11638095 DOI: 10.1093/plphys/kiae500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/02/2024] [Accepted: 08/21/2024] [Indexed: 09/27/2024]
Abstract
Sclerotinia stem rot (SSR) caused by Sclerotinia sclerotiorum (Lib.) De Bary is a devastating disease infecting hundreds of plant species. It also restricts the yield, quality, and safe production of rapeseed (Brassica napus) worldwide. However, the lack of resistance sources and genes to S. sclerotiorum has greatly restricted rapeseed SSR-resistance breeding. In this study, a previously identified GDSL motif-containing lipase gene, B. napus GDSL LIPASE-LIKE 1 (BnaC07.GLIP1), encoding a protein localized to the intercellular space, was characterized as functioning in plant immunity to S. sclerotiorum. The BnaC07.GLIP1 promoter is S. sclerotiorum-inducible and the expression of BnaC07.GLIP1 is substantially enhanced after S. sclerotiorum infection. Arabidopsis (Arabidopsis thaliana) heterologously expressing and rapeseed lines overexpressing BnaC07.GLIP1 showed enhanced resistance to S. sclerotiorum, whereas RNAi suppression and CRISPR/Cas9 knockout B. napus lines were hyper-susceptible to S. sclerotiorum. Moreover, BnaC07.GLIP1 affected the lipid composition and induced the production of phospholipid molecules, such as phosphatidylethanolamine, phosphatidylcholine, and phosphatidic acid, which were correlated with decreased levels of reactive oxygen species (ROS) and enhanced expression of defense-related genes. A B. napus bZIP44 transcription factor specifically binds the CGTCA motif of the BnaC07.GLIP1 promoter to positively regulate its expression. BnbZIP44 responded to S. sclerotiorum infection, and its heterologous expression inhibited ROS accumulation, thereby enhancing S. sclerotiorum resistance in Arabidopsis. Thus, BnaC07.GLIP1 functions downstream of BnbZIP44 and is involved in S. sclerotiorum resistance by modulating the production of phospholipid molecules and ROS homeostasis in B. napus, providing insights into the potential roles and functional mechanisms of BnaC07.GLIP1 in plant immunity and for improving rapeseed SSR disease-resistance breeding.
Collapse
Affiliation(s)
- Li-Na Ding
- College of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Ying-Hui Hu
- College of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Teng Li
- College of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Ming Li
- College of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Yue-Tao Li
- College of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Yuan-Zhen Wu
- College of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Jun Cao
- College of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Xiao-Li Tan
- College of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
3
|
Wang Z, Zhang S, Chen B, Xu X. Functional Characterization of the Gibberellin (GA) Receptor ScGID1 in Sugarcane. Int J Mol Sci 2024; 25:10688. [PMID: 39409017 PMCID: PMC11477236 DOI: 10.3390/ijms251910688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
Sugarcane smut caused by Sporisorium scitamineum represents the most destructive disease in the sugarcane industry, causing host hormone disruption and producing a black whip-like sorus in the apex of the stalk. In this study, the gibberellin metabolic pathway was found to respond to S. scitamineum infection, and the contents of bioactive gibberellins were significantly reduced in the leaves of diseased plants. The gibberellin receptor gene ScGID1 was identified and significantly downregulated. ScGID1 localized in both the nucleus and cytoplasm and had the highest expression level in the leaves. Eight proteins that interact with ScGID1 were screened out using a yeast two-hybrid assay. Novel DELLA proteins named ScGAI1a and ScGA20ox2, key enzymes in GA biosynthesis, were both found to interact with ScGID1 in a gibberellin-independent manner. Transcription factor trapping with a yeast one-hybrid system identified 50 proteins that interacted with the promoter of ScGID1, among which ScS1FA and ScPLATZ inhibited ScGID1 transcription, while ScGDSL promoted transcription. Overexpression of ScGID1 in transgenic Nicotiana benthamiana plants could increase plant height and promote flowering. These results not only contribute to improving our understanding of the metabolic regulatory network of sugarcane gibberellin but also expand our knowledge of the interaction between sugarcane and pathogens.
Collapse
Affiliation(s)
- Zhiyuan Wang
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China; (Z.W.); (S.Z.)
| | - Shujun Zhang
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China; (Z.W.); (S.Z.)
| | - Baoshan Chen
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China; (Z.W.); (S.Z.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
- Province and Ministry Co-Sponsored Collaborative Innovation Center of Canesugar Industry, Guangxi University, Nanning 530004, China
| | - Xiongbiao Xu
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China; (Z.W.); (S.Z.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
- Province and Ministry Co-Sponsored Collaborative Innovation Center of Canesugar Industry, Guangxi University, Nanning 530004, China
| |
Collapse
|
4
|
Shah OU, Peng J, Zhou L, Khan WU, Shanshan Z, Zhuyu P, Liu P, Khan LU. Comparative omics-based characterization, phylogeny and melatonin-mediated expression analyses of GDSL genes in pitaya ( Selenicereus undatus L.) against multifactorial abiotic stresses. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:1493-1515. [PMID: 39310703 PMCID: PMC11413313 DOI: 10.1007/s12298-024-01506-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 09/25/2024]
Abstract
The GDSL gene family plays diverse roles in plant growth and development. Despite its significance, the functions of the GDSL in the pitaya plant are still unknown. Pitaya (Selenicereus undatus L.) also called Hylocereus undatus (Hu), belongs to the family Cactaceae and is an important tropical plant that contains high dietary fibers and antioxidants. In the present investigation, we screened 91 HuGDSL genes in the pitaya genome by conducting a comprehensive computational analysis. The phylogenetic tree categorized HuGDSL genes into 9 distinct clades in combination with four other species. Further, 29 duplicate events were identified of which 12 were tandem, and 17 were segmental. The synteny analysis revealed that segmental duplication was more prominent than tandem duplication among these genes. The majority of duplicated gene pairs (95%) indicate their Ka/Ks ratios ranging from 0.1 to 0.3, which shows that maximum HuGDSL genes were under purifying selection pressure. The cis-acting element in the promotor region contains phytohormones such as auxin, gibberellin, jasmonic acid, and abscisic acid abundantly. Finally, the HuGDSL gene expression pattern under single and multiple stresses was analyzed via; RNA-seq. We select ten stress-responsive HuGDSL genes for RT-qPCR validation. After careful investigation, we identified five HuGDSL candidate genes (HuGDSL-1/3/55/59, and HuGDSL-78) based on RNA-seq, and RT-qPCR data that showed enhanced expression in stress and melatonin-applied seedlings. This study represents valuable insights into maintaining pitaya growth and development by preparing stress-resilient pitaya genotypes through modern biotechnological techniques. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01506-w.
Collapse
Affiliation(s)
- Obaid Ullah Shah
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry Hainan University, Sanya, 572025 Hainan China
| | - Jiantao Peng
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry Hainan University, Sanya, 572025 Hainan China
| | - Lingling Zhou
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry Hainan University, Sanya, 572025 Hainan China
| | - Wasi Ullah Khan
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry Hainan University, Sanya, 572025 Hainan China
| | - Zhang Shanshan
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry Hainan University, Sanya, 572025 Hainan China
| | - Pan Zhuyu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry Hainan University, Sanya, 572025 Hainan China
| | - Pingwu Liu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry Hainan University, Sanya, 572025 Hainan China
| | - Latif Ullah Khan
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry Hainan University, Sanya, 572025 Hainan China
| |
Collapse
|
5
|
de Almeida CP, Barbosa RR, Ferraz CG, de Castro RD, Ribeiro PR. Genome-wide identification of the GDSL-type esterase/lipase protein (GELP) gene family in Ricinus communis and its transcriptional regulation during germination and seedling establishment under different abiotic stresses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108939. [PMID: 39029309 DOI: 10.1016/j.plaphy.2024.108939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 07/10/2024] [Accepted: 07/13/2024] [Indexed: 07/21/2024]
Abstract
GDSL-type esterase/lipase protein (GELP) genes are crucial in the specialized lipid metabolism, in the responses to abiotic stresses, and in the regulation of plant homeostasis. R. communis is an important oilseed crop species that can sustain growth and productivity when exposed to harsh environmental conditions. Herein, we raised the question of whether the GELP gene family could be involved in the acquisition of R. communis tolerance to abiotic stresses during seed germination and seedling establishment. Thus, we used bioinformatics and transcriptomics to characterize the R. communis GELP gene family. R. communis genome possesses 96 GELP genes that were characterized by extensive bioinformatics, including phylogenetic analysis, subcellular localization, exon-intron distribution, the analysis of regulatory cis-elements, tandem duplication, and physicochemical properties. Transcriptomics indicated that numerous RcGELP genes are readily responsive to high-temperature and salt stresses and might be potential candidates for genome editing techniques to develop abiotic stress-tolerant crops.
Collapse
Affiliation(s)
- Catherine P de Almeida
- Metabolomics Research Group, Instituto de Química, Universidade Federal da Bahia, Rua Barão de Jeremoabo s/n, 40170-115, Salvador, Brazil; Programa de Pós-Graduação em Química, Instituto de Química, Universidade Federal da Bahia, Rua Barão de Jeremoabo s/n, 40170-115, Salvador, Brazil
| | - Rhaissa R Barbosa
- Metabolomics Research Group, Instituto de Química, Universidade Federal da Bahia, Rua Barão de Jeremoabo s/n, 40170-115, Salvador, Brazil; Programa de Pós-Graduação em Química, Instituto de Química, Universidade Federal da Bahia, Rua Barão de Jeremoabo s/n, 40170-115, Salvador, Brazil
| | - Caline G Ferraz
- Metabolomics Research Group, Instituto de Química, Universidade Federal da Bahia, Rua Barão de Jeremoabo s/n, 40170-115, Salvador, Brazil; Programa de Pós-Graduação em Química, Instituto de Química, Universidade Federal da Bahia, Rua Barão de Jeremoabo s/n, 40170-115, Salvador, Brazil
| | - Renato D de Castro
- Metabolomics Research Group, Instituto de Química, Universidade Federal da Bahia, Rua Barão de Jeremoabo s/n, 40170-115, Salvador, Brazil
| | - Paulo R Ribeiro
- Metabolomics Research Group, Instituto de Química, Universidade Federal da Bahia, Rua Barão de Jeremoabo s/n, 40170-115, Salvador, Brazil; Programa de Pós-Graduação em Química, Instituto de Química, Universidade Federal da Bahia, Rua Barão de Jeremoabo s/n, 40170-115, Salvador, Brazil.
| |
Collapse
|
6
|
Yan X, Wu X, Sun F, Nie H, Du X, Li X, Fang Y, Zhai Y, Zhao Y, Fan B, Ma Y. Cloning and Functional Study of AmGDSL1 in Agropyron mongolicum. Int J Mol Sci 2024; 25:9467. [PMID: 39273413 PMCID: PMC11395167 DOI: 10.3390/ijms25179467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Agropyron mongolicum Keng is a diploid perennial grass of triticeae in gramineae. It has strong drought resistance and developed roots that can effectively fix the soil and prevent soil erosion. GDSL lipase or esterases/lipase has a variety of functions, mainly focusing on plant abiotic stress response. In this study, a GDSL gene from A. mongolicum, designated as AmGDSL1, was successfully cloned and isolated. The subcellular localization of the AmGDSL1 gene (pCAMBIA1302-AmGDSL1-EGFP) results showed that the AmGDSL1 protein of A. mongolicum was only localized in the cytoplasm. When transferred into tobacco (Nicotiana benthamiana), the heterologous expression of AmGDSL1 led to enhanced drought tolerance. Under drought stress, AmGDSL1 overexpressing plants showed fewer wilting leaves, longer roots, and larger root surface area. These overexpression lines possessed higher superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and proline (PRO) activities. At the same time, the malondialdehyde (MDA) content was lower than that in wild-type (WT) tobacco. These findings shed light on the molecular mechanisms involved in the GDSL gene's role in drought resistance, contributing to the discovery and utilization of drought-resistant genes in A. mongolicum for enhancing crop drought resistance.
Collapse
Affiliation(s)
- Xiuxiu Yan
- Agricultural College, Inner Mongolia Agricultural University, Hohhot 010019, China; (X.Y.); (X.W.); (H.N.); (X.D.); (X.L.); (Y.Z.); (B.F.)
| | - Xiaojuan Wu
- Agricultural College, Inner Mongolia Agricultural University, Hohhot 010019, China; (X.Y.); (X.W.); (H.N.); (X.D.); (X.L.); (Y.Z.); (B.F.)
| | - Fengcheng Sun
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China; (F.S.); (Y.F.)
| | - Hushuai Nie
- Agricultural College, Inner Mongolia Agricultural University, Hohhot 010019, China; (X.Y.); (X.W.); (H.N.); (X.D.); (X.L.); (Y.Z.); (B.F.)
| | - Xiaohong Du
- Agricultural College, Inner Mongolia Agricultural University, Hohhot 010019, China; (X.Y.); (X.W.); (H.N.); (X.D.); (X.L.); (Y.Z.); (B.F.)
| | - Xiaolei Li
- Agricultural College, Inner Mongolia Agricultural University, Hohhot 010019, China; (X.Y.); (X.W.); (H.N.); (X.D.); (X.L.); (Y.Z.); (B.F.)
| | - Yongyu Fang
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China; (F.S.); (Y.F.)
| | - Yongqing Zhai
- Agricultural College, Inner Mongolia Agricultural University, Hohhot 010019, China; (X.Y.); (X.W.); (H.N.); (X.D.); (X.L.); (Y.Z.); (B.F.)
| | - Yan Zhao
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010010, China;
| | - Bobo Fan
- Agricultural College, Inner Mongolia Agricultural University, Hohhot 010019, China; (X.Y.); (X.W.); (H.N.); (X.D.); (X.L.); (Y.Z.); (B.F.)
| | - Yanhong Ma
- Agricultural College, Inner Mongolia Agricultural University, Hohhot 010019, China; (X.Y.); (X.W.); (H.N.); (X.D.); (X.L.); (Y.Z.); (B.F.)
| |
Collapse
|
7
|
Wang Z, Wan W, Shi M, Ji S, Zhang L, Wang X, Zhang L, Cui H, Liu X, Sun H, Yang F, Jin S. GDSL in Lilium pumilum (LpGDSL) Confers Saline-Alkali Resistance to the Plant by Enhancing the Lignin Content and Balancing the ROS. Int J Mol Sci 2024; 25:9319. [PMID: 39273269 PMCID: PMC11395047 DOI: 10.3390/ijms25179319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
In order to explore the response mechanism of Lilium pumilum (L. pumilum) to saline-alkali stress, we successfully cloned LpGDSL (GDSL lipase, Gly-Asp-Ser-Leu) from L. pumilum. The qRT-PCR results indicated that the LpGDSL expression was higher in the leaves of L. pumilum, and the expression of the LpGDSL reached the highest level at 12 h in leaves under 11 mM H2O2, 200 mM NaCl, 25 mM Na2CO3, and 20 mM NaHCO3. The bacteriophage overexpressing LpGDSL was more tolerant than the control under different NaHCO3 contents. Overexpressed and wild-type plants were analyzed for phenotype, chlorophyll content, O2- content, H2O2 content, lignin content, and so on. Overexpressed plants had significantly higher resistance than the wild type and were less susceptible to saline-alkali stress. The yeast two-hybrid and BiFC assays demonstrated the existence of an interaction between LpGDSL and LpBCP. The yeast one-hybrid assay and transcriptional activation assay confirmed that B3 transcription factors could act on LpGDSL promoters. Under saline-alkali stress, L. pumilum will promote the expression of LpGDSL, which will then promotes the accumulation of lignin and the scavenging of reactive oxygen species (ROS) to reduce its damage, thus improving the saline-alkali resistance of the plant.
Collapse
Affiliation(s)
- Zongying Wang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150000, China
| | - Wenhao Wan
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150000, China
| | - Miaoxin Shi
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150000, China
| | - Shangwei Ji
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150000, China
| | - Ling Zhang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150000, China
| | - Xiaolu Wang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150000, China
| | - Lingshu Zhang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150000, China
| | - Huitao Cui
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150000, China
| | - Xingyu Liu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150000, China
| | - Hao Sun
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150000, China
| | - Fengshan Yang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150080, China
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, Heilongjiang University, Harbin 150080, China
- Key Laboratory of Molecular Biology, College of Heilongjiang Province, College of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Shumei Jin
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150000, China
| |
Collapse
|
8
|
Shi L, Fan Y, Yang Y, Yan S, Qiu Z, Liu Z, Cao B. CaWRKY22b Plays a Positive Role in the Regulation of Pepper Resistance to Ralstonia solanacearum in a Manner Associated with Jasmonic Acid Signaling. PLANTS (BASEL, SWITZERLAND) 2024; 13:2081. [PMID: 39124199 PMCID: PMC11314181 DOI: 10.3390/plants13152081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024]
Abstract
As important transcription factors, WRKYs play a vital role in the defense response of plants against the invasion of multiple pathogens. Though some WRKY members have been reported to participate in pepper immunity in response to Ralstonia solanacearum infection, the functions of the majority of WRKY members are still unknown. Herein, CaWRKY22b was cloned from the pepper genome and its function against R. solanacearum was analyzed. The transcript abundance of CaWRKY22b was significantly increased in response to the infection of R. solanacearum and the application of exogenous methyl jasmonate (MeJA). Subcellular localization assay in the leaves of Nicotiana benthamiana showed that CaWRKY22b protein was targeted to the nuclei. Agrobacterium-mediated transient expression in pepper leaves indicated that CaWRKY22b overexpression triggered intensive hypersensitive response-like cell death, H2O2 accumulation, and the up-regulation of defense- and JA-responsive genes, including CaHIR1, CaPO2, CaBPR1, and CaDEF1. Virus-induced gene silencing assay revealed that knock-down of CaWRKY22b attenuated pepper's resistance against R. solanacearum and the up-regulation of the tested defense- and jasmonic acid (JA)-responsive genes. We further assessed the role of CaWRKY22b in modulating the expression of JA-responsive CaDEF1, and the result demonstrated that CaWRKY22b trans-activated CaDEF1 expression by directly binding to its upstream promoter. Collectively, our results suggest that CaWRKY22b positively regulated pepper immunity against R. solanacearum in a manner associated with JA signaling, probably by modulating the expression of JA-responsive CaDEF1.
Collapse
Affiliation(s)
- Lanping Shi
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), College of Horticulture, South China Agricultural University, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China; (L.S.); (S.Y.); (Z.Q.)
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.F.); (Y.Y.)
| | - Yuemin Fan
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.F.); (Y.Y.)
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yingjie Yang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.F.); (Y.Y.)
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuangshuang Yan
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), College of Horticulture, South China Agricultural University, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China; (L.S.); (S.Y.); (Z.Q.)
| | - Zhengkun Qiu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), College of Horticulture, South China Agricultural University, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China; (L.S.); (S.Y.); (Z.Q.)
| | - Zhiqin Liu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.F.); (Y.Y.)
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Bihao Cao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), College of Horticulture, South China Agricultural University, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China; (L.S.); (S.Y.); (Z.Q.)
| |
Collapse
|
9
|
Shi L, Shi W, Qiu Z, Yan S, Liu Z, Cao B. CaMAPK1 Plays a Vital Role in the Regulation of Resistance to Ralstonia solanacearum Infection and Tolerance to Heat Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:1775. [PMID: 38999615 PMCID: PMC11243954 DOI: 10.3390/plants13131775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/06/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024]
Abstract
As an important member of mitogen-activated protein kinase (MAPK) cascades, MAPKs play an important role in plant defense response against biotic and abiotic stresses; however, the involvement of the majority of the MAPK family members against Ralstonia solanacearum and heat stress (HS) remains poorly understood. In the present study, CaMAPK1 was identified from the genome of pepper and its function against R. solanacearum and HS was analyzed. The transcript accumulations of CaMAPK1 and the activities of its native promoter were both significantly induced by R. solanacearum inoculation, HS, and the application of exogenous hormones, including SA, MeJA, and ABA. Transient expression of CaMAPK1 showed that CaMAPK1 can be targeted throughout the whole cells in Nicotiana benthamiana and triggered chlorosis and hypersensitive response-like cell death in pepper leaves, accompanied by the accumulation of H2O2, and the up-regulations of hormones- and H2O2-associated marker genes. The knock-down of CaMAPK1 enhanced the susceptibility to R. solanacearum partially by down-regulating the expression of hormones- and H2O2-related genes and impairing the thermotolerance of pepper probably by attenuating CaHSFA2 and CaHSP70-1 transcripts. Taken together, our results revealed that CaMAPK1 is regulated by SA, JA, and ABA signaling and coordinates responses to R. solanacearum infection and HS in pepper.
Collapse
Affiliation(s)
- Lanping Shi
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (L.S.); (Z.Q.); (S.Y.)
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Wei Shi
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhengkun Qiu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (L.S.); (Z.Q.); (S.Y.)
| | - Shuangshuang Yan
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (L.S.); (Z.Q.); (S.Y.)
| | - Zhiqin Liu
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Bihao Cao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (L.S.); (Z.Q.); (S.Y.)
| |
Collapse
|
10
|
Zhang X, Zhang Z, Chen T, Chen Y, Li B, Tian S. Characterization of two SGNH family cell death-inducing proteins from the horticulturally important fungal pathogen Botrytis cinerea based on the optimized prokaryotic expression system. MOLECULAR HORTICULTURE 2024; 4:9. [PMID: 38449027 PMCID: PMC10919021 DOI: 10.1186/s43897-024-00086-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/07/2024] [Indexed: 03/08/2024]
Abstract
Botrytis cinerea is one of the most destructive phytopathogenic fungi, causing significant losses to horticultural crops. As a necrotrophic fungus, B. cinerea obtains nutrients by killing host cells. Secreted cell death-inducing proteins (CDIPs) play a crucial role in necrotrophic infection; however, only a limited number have been reported. For high-throughput CDIP screening, we optimized the prokaryotic expression system and compared its efficiency with other commonly used protein expression systems. The optimized prokaryotic expression system showed superior effectiveness and efficiency and was selected for subsequent CDIP screening. The screening system verified fifty-five candidate proteins and identified two novel SGNH family CDIPs: BcRAE and BcFAT. BcRAE and BcFAT exhibited high expression levels throughout the infection process. Site-directed mutagenesis targeting conserved Ser residues abolished the cell death-inducing activity of both BcRAE and BcFAT. Moreover, the transient expression of BcRAE and BcFAT in plants enhanced plant resistance against B. cinerea without inducing cell death, independent of their enzymatic activities. Our results suggest a high-efficiency screening system for high-throughput CDIP screening and provide new targets for further study of B. cinerea-plant interactions.
Collapse
Affiliation(s)
- Xiaokang Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhanquan Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tong Chen
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yong Chen
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Boqiang Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Shiping Tian
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
11
|
De-la-Cruz IM, Oyama K, Núñez-Farfán J. The chromosome-scale genome and the genetic resistance machinery against insect herbivores of the Mexican toloache, Datura stramonium. G3 (BETHESDA, MD.) 2024; 14:jkad288. [PMID: 38113048 PMCID: PMC10849327 DOI: 10.1093/g3journal/jkad288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 09/21/2023] [Accepted: 12/11/2023] [Indexed: 12/21/2023]
Abstract
Plant resistance refers to the heritable ability of plants to reduce damage caused by natural enemies, such as herbivores and pathogens, either through constitutive or induced traits like chemical compounds or trichomes. However, the genetic architecture-the number and genome location of genes that affect plant defense and the magnitude of their effects-of plant resistance to arthropod herbivores in natural populations remains poorly understood. In this study, we aimed to unveil the genetic architecture of plant resistance to insect herbivores in the annual herb Datura stramonium (Solanaceae) through quantitative trait loci mapping. We achieved this by assembling the species' genome and constructing a linkage map using an F2 progeny transplanted into natural habitats. Furthermore, we conducted differential gene expression analysis between undamaged and damaged plants caused by the primary folivore, Lema daturaphila larvae. Our genome assembly resulted in 6,109 scaffolds distributed across 12 haploid chromosomes. A single quantitative trait loci region on chromosome 3 was associated with plant resistance, spanning 0 to 5.17 cM. The explained variance by the quantitative trait loci was 8.44%. Our findings imply that the resistance mechanisms of D. stramonium are shaped by the complex interplay of multiple genes with minor effects. Protein-protein interaction networks involving genes within the quantitative trait loci region and overexpressed genes uncovered the key role of receptor-like cytoplasmic kinases in signaling and regulating tropane alkaloids and terpenoids, which serve as powerful chemical defenses against D. stramonium herbivores. The data generated in our study constitute important resources for delving into the evolution and ecology of secondary compounds mediating plant-insect interactions.
Collapse
Affiliation(s)
- Ivan M De-la-Cruz
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Lomma, Alnarp 230 53, Sweden
| | - Ken Oyama
- Escuela Nacional de Estudios Superiores (ENES), Universidad Nacional Autónoma de México (UNAM), Campus Morelia, Morelia, Michoacán 8701, Mexico
| | - Juan Núñez-Farfán
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| |
Collapse
|
12
|
Pahal S, Srivastava H, Saxena S, Tribhuvan KU, Kaila T, Sharma S, Grewal S, Singh NK, Gaikwad K. Comparative transcriptome analysis of two contrasting genotypes provides new insights into the drought response mechanism in pigeon pea (Cajanus cajan L. Millsp.). Genes Genomics 2024; 46:65-94. [PMID: 37985548 DOI: 10.1007/s13258-023-01460-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/01/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Despite plant's ability to adapt and withstand challenging environments, drought poses a severe threat to their growth and development. Although pigeon pea is already quite resistant to drought, the prolonged dehydration induced by the aberrant climate poses a serious threat to their survival and productivity. OBJECTIVE Comparative physiological and transcriptome analyses of drought-tolerant (CO5) and drought-sensitive (CO1) pigeon pea genotypes subjected to drought stress were carried out in order to understand the molecular basis of drought tolerance in pigeon pea. METHODS The transcriptomic analysis allowed us to examine how drought affects the gene expression of C. cajan. Using bioinformatics tools, the unigenes were de novo assembled, annotated, and functionally evaluated. Additionally, a homology-based sequence search against the droughtDB database was performed to identify the orthologs of the DEGs. RESULTS 1102 potential drought-responsive genes were found to be differentially expressed genes (DEGs) between drought-tolerant and drought-sensitive genotypes. These included Abscisic acid insensitive 5 (ABI5), Nuclear transcription factor Y subunit A-7 (NF-YA7), WD40 repeat-containing protein 55 (WDR55), Anthocyanidin reductase (ANR) and Zinc-finger homeodomain protein 6 (ZF-HD6) and were highly expressed in the tolerant genotype. Further, GO analysis revealed that the most enriched classes belonged to biosynthetic and metabolic processes in the biological process category, binding and catalytic activity in the molecular function category and nucleus and protein-containing complex in the cellular component category. Results of KEGG pathway analysis revealed that the DEGs were significantly abundant in signalling pathways such as plant hormone signal transduction and MAPK signalling pathways. Consequently, in our investigation, we have identified and validated by qPCR a group of genes involved in signal reception and propagation, stress-specific TFs, and basal regulatory genes associated with drought response. CONCLUSION In conclusion, our comprehensive transcriptome dataset enabled the discovery of candidate genes connected to pathways involved in pigeon pea drought response. Our research uncovered a number of unidentified genes and transcription factors that could be used to understand and improve susceptibility to drought.
Collapse
Affiliation(s)
- Suman Pahal
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
- Department of Bio and Nanotechnology, Guru Jambheshwar University of Science and Technology, Hisar, India
| | | | - Swati Saxena
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | | | - Tanvi Kaila
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | - Sandhya Sharma
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | - Sapna Grewal
- Department of Bio and Nanotechnology, Guru Jambheshwar University of Science and Technology, Hisar, India.
| | - Nagendra K Singh
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | - Kishor Gaikwad
- ICAR-National Institute for Plant Biotechnology, New Delhi, India.
| |
Collapse
|
13
|
Duan L, Wang F, Shen H, Xie S, Chen X, Xie Q, Li R, Cao A, Li H. Identification, evolution, and expression of GDSL-type Esterase/Lipase (GELP) gene family in three cotton species: a bioinformatic analysis. BMC Genomics 2023; 24:795. [PMID: 38129780 PMCID: PMC10734139 DOI: 10.1186/s12864-023-09717-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/04/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND GDSL esterase/lipases (GELPs) play important roles in plant growth, development, and response to biotic and abiotic stresses. Presently, an extensive and in-depth analysis of GELP family genes in cotton is still not clear enough, which greatly limits the further understanding of cotton GELP function and regulatory mechanism. RESULTS A total of 389 GELP family genes were identified in three cotton species of Gossypium hirsutum (193), G. arboreum (97), and G. raimondii (99). These GELPs could be classified into three groups and eight subgroups, with the GELPs in same group to have similar gene structures and conserved motifs. Evolutionary event analysis showed that the GELP family genes tend to be diversified at the spatial dimension and certain conservative at the time dimension, with a trend of potential continuous expansion in the future. The orthologous or paralogous GELPs among different genomes/subgenomes indicated the inheritance from genome-wide duplication during polyploidization, and the paralogous GELPs were derived from chromosomal segment duplication or tandem replication. GELP genes in the A/D subgenome underwent at least three large-scale replication events in the evolutionary process during the period of 0.6-3.2 MYA, with two large-scale evolutionary events between 0.6-1.8 MYA that were associated with tetraploidization, and the large-scale duplication between 2.6-9.1 MYA that occurred during diploidization. The cotton GELPs indicated diverse expression patterns in tissue development, ovule and fiber growth, and in response to biotic and abiotic stresses, combining the existing cis-elements in the promoter regions, suggesting the GELPs involvements of functions to be diversification and of the mechanisms to be a hormone-mediated manner. CONCLUSIONS Our results provide a systematic and comprehensive understanding the function and regulatory mechanism of cotton GELP family, and offer an effective reference for in-depth genetic improvement utilization of cotton GELPs.
Collapse
Affiliation(s)
- Lisheng Duan
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Fei Wang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China.
| | - Haitao Shen
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Shuangquan Xie
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Xifeng Chen
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Quanliang Xie
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Rong Li
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Aiping Cao
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Hongbin Li
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China.
| |
Collapse
|
14
|
Xu C, Gui Z, Huang Y, Yang H, Luo J, Zeng X. Integrated Transcriptomics and Metabolomics Analyses Provide Insights into Qingke in Response to Cold Stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18345-18358. [PMID: 37966343 DOI: 10.1021/acs.jafc.3c07005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
The survival and productivity of qingke in high altitude (>4300 m, average yearly temperature <0 °C) of the Tibetan Plateau are significantly impacted by low-temperature stress. Uncovering the mechanisms underlying low-temperature stress response in cold-tolerant qingke varieties is crucial for qingke breeding. Herein, we conducted a comprehensive transcriptomic and metabolomic analysis on cold-sensitive (ZQ) and cold-tolerant (XL) qingke varieties under chilling and freezing treatments and identified lipid metabolism pathways as enriched in response to freezing treatment. Additionally, a significant positive correlation was observed between the expression of C-repeat (CRT) binding factor 10A (HvCBF10A) and Gly-Asp-Ser-Leu-motif lipase (HvGDSL) and the accumulation of multiple lipids. Functional analysis confirmed that HvCBF10A directly binds to HvGDSL, and silencing HvCBF10A resulted in a significant decrease in both HvGDSL and lipid levels, consequently impairing the cold tolerance. Overall, HvCBF10A and HvGDSL are functional units in actively regulating lipid metabolism to enhance freezing stress tolerance in qingke.
Collapse
Affiliation(s)
- Congping Xu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
- Key Laboratory of Barley Biology and Genetic Improvement on QingHai-Tibet Plateau, Ministry of Agriculture, Lhasa 850002, China
- Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850002, China
| | - Zihao Gui
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yuxiao Huang
- Hainan Yazhou Bay grain Laboratory, Sanya 572025, China
| | - Haizhen Yang
- Key Laboratory of Barley Biology and Genetic Improvement on QingHai-Tibet Plateau, Ministry of Agriculture, Lhasa 850002, China
- Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850002, China
| | - Jie Luo
- Hainan Yazhou Bay grain Laboratory, Sanya 572025, China
| | - Xingquan Zeng
- Key Laboratory of Barley Biology and Genetic Improvement on QingHai-Tibet Plateau, Ministry of Agriculture, Lhasa 850002, China
- Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850002, China
| |
Collapse
|
15
|
Abulfaraj AA. Relationships between some transcription factors and concordantly expressed drought stress-related genes in bread wheat. Saudi J Biol Sci 2023; 30:103652. [PMID: 37206446 PMCID: PMC10189290 DOI: 10.1016/j.sjbs.2023.103652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/18/2023] [Accepted: 04/09/2023] [Indexed: 05/21/2023] Open
Abstract
The challenge of climate change makes it mandatory to improve tolerance to drought stress in bread wheat (Triticum aestivum) via biotechnological approaches. Drought stress experiment was conducted followed by RNA-Seq analysis for leaves of two wheat cultivars namely Giza 168 and Gemmiza 10 with contrasting genotypes. Expression patterns of the regulated stress-related genes and concordantly expressed TFs were detected, then, validated via qPCR for two loss-of-function mutants in Arabidopsis background harboring mutated genes analogue to those in wheat. Drought-stress related genes were searched for concordantly expressed TFs and a total of eight TFs were shown to coexpress with 14 stress-related genes. Among these genes, one TF belongs to the zinc finger protein CONSTANS family and proved via qPCR to drive expression of a gene encoding a speculative TF namely zinc transporter 3-like and two other stress related genes encoding tryptophan synthase alpha chain and asparagine synthetase. Known functions of the two TFs under drought stress complement those of the two concordantly expressed stress-related genes, thus, it is likely that they are related. This study highlights the possibility to utilize metabolic engineering approaches to decipher and incorporate existing regulatory frameworks under drought stress in future breeding programs of bread wheat.
Collapse
|
16
|
Sharma A, Li J, Wente R, Minsavage GV, Gill US, Ortega A, Vallejos CE, Hart JP, Staskawicz BJ, Mazourek MR, Stall RE, Jones JB, Hutton SF. Mapping of the bs5 and bs6 non-race-specific recessive resistances against bacterial spot of pepper. FRONTIERS IN PLANT SCIENCE 2023; 14:1061803. [PMID: 37275256 PMCID: PMC10235544 DOI: 10.3389/fpls.2023.1061803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 03/22/2023] [Indexed: 06/07/2023]
Abstract
Bacterial spot caused by Xanthomonas euvesicatoria is a major disease of pepper (Capsicum annuum L.) in warm and humid production environments. Use of genetically resistant cultivars is an effective approach to manage bacterial spot. Two recessive resistance genes, bs5 and bs6, confer non-race-specific resistance against bacterial spot. The objective of our study was to map these two loci in the pepper genome. We used a genotyping-by-sequencing approach to initially map the position of the two resistances. Segregating populations for bs5 and bs6 were developed by crossing susceptible Early CalWonder (ECW) with near-isogenic lines ECW50R (bs5 introgression) or ECW60R (bs6 introgression). Following fine-mapping, bs5 was delimited to a ~535 Kbp interval on chromosome 3, and bs6 to a ~666 Kbp interval in chromosome 6. We identified 14 and 8 candidate resistance genes for bs5 and bs6, respectively, based on predicted protein coding polymorphisms between ECW and the corresponding resistant parent. This research enhances marker-assisted selection of bs5 and bs6 in breeding programs and is a crucial step towards elucidating the molecular mechanisms underlying the resistances.
Collapse
Affiliation(s)
- Anuj Sharma
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
| | - Jian Li
- Gulf Coast Research and Education Center, University of Florida, Wimauma, FL, United States
- Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
| | - Rebecca Wente
- Gulf Coast Research and Education Center, University of Florida, Wimauma, FL, United States
- Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
| | - Gerald V. Minsavage
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
| | - Upinder S. Gill
- Gulf Coast Research and Education Center, University of Florida, Wimauma, FL, United States
- Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
| | - Arturo Ortega
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, United States
| | - C. Eduardo Vallejos
- Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
| | - John P. Hart
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - Brian J. Staskawicz
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, United States
| | - Michael R. Mazourek
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - Robert E. Stall
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
| | - Jeffrey B. Jones
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
| | - Samuel F. Hutton
- Gulf Coast Research and Education Center, University of Florida, Wimauma, FL, United States
- Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
| |
Collapse
|
17
|
Zhang B, Feng H, Ge W, Wang X, Zhang J, Ji R. BrUFO positively regulates the infection of Chinese cabbage by Plasmodiophora brassicae. FRONTIERS IN PLANT SCIENCE 2023; 14:1128515. [PMID: 36968418 PMCID: PMC10034201 DOI: 10.3389/fpls.2023.1128515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Chinese cabbage is one of the most important vegetable crops in China. However, the clubroot disease caused by the infection of Plasmodiophora brassicae (P. brassicae) has seriously affected the yield and quality of Chinese cabbage. In our previous study, BrUFO gene was found to be significantly up-regulated in diseased roots of Chinese cabbage after inoculation with P. brassicae. UFO (UNUSUAL FLORAL ORGANS) have the properties of substrate recognition during ubiquitin-mediated proteolysis. A variety of plant can activate immunity response through the ubiquitination pathway. Therefore, it is very important to study the function of UFO in response to P. brassicae. METHODS In this study, The expression pattern of BrUFO Gene was measured by qRT-PCR and In situ Hybridization (ISH). The expression location of BrUFO in cells was determined by subcellular localization. The function of BrUFO was verified by Virus-induced Gene Silencing (VIGS). proteins interacting with BrUFO protein were screened by yeast two-hybrid. RESULTS Quantitative real-time polymerase chain reactions (qRT-PCR) and in situ hybridization analysis showed that expression of BrUFO gene in the resistant plants was lower than that in susceptible plants. Subcellular localization analysis showed that BrUFO gene was expressed in the nucleus. Virus-induced gene silencing (VIGS) analysis showed that silencing of BrUFO gene reduced the incidence of clubroot disease. Six proteins interacting with BrUFO protein were screened by Y2H assay. Two of them (Bra038955, a B-cell receptor-associated 31-like protein and Bra021273, a GDSL-motif esterase/acyltransferase/lipase Enzyme) were confirmed to strongly interact with BrUFO protein. DISCUSSION BrUFO gene should be a key gene of chinese cabbage against the infection of P. brassicae. BrUFO gene silencing improves the resistance of plants to clubroot disease. BrUFO protein may interact with CUS2 to induce ubiquitination in PRR-mediated PTI reaction through GDSL lipases, so as to achieve the effect of Chinese cabbage against the infection of P. brassicae.
Collapse
|
18
|
Wang J, Zhao H, Qu Y, Yang P, Huang J. The binding pocket properties were fundamental to functional diversification of the GDSL-type esterases/lipases gene family in cotton. FRONTIERS IN PLANT SCIENCE 2023; 13:1099673. [PMID: 36743561 PMCID: PMC9889996 DOI: 10.3389/fpls.2022.1099673] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/23/2022] [Indexed: 06/18/2023]
Abstract
Cotton is one of the most important crops in the world. GDSL-type esterases/lipases (GELPs) are widely present in all kingdoms and play an essential role in regulating plant growth, development, and responses to abiotic and biotic stresses. However, the molecular mechanisms underlying this functional diversity remain unclear. Here, based on the identification of the GELP gene family, we applied genetic evolution and molecular simulation techniques to explore molecular mechanisms in cotton species. A total of 1502 GELP genes were identified in 10 cotton species. Segmental duplication and differences in evolutionary rates are the leading causes of the increase in the number and diversity of GELP genes during evolution for ecological adaptation. Structural analysis revealed that the GELP family has high structural diversity. Moreover, molecular simulation studies have demonstrated significant differences in the properties of the binding pockets among cotton GELPs. In the process of adapting to the environment, GELPs not only have segmental duplication but also have different evolutionary rates, resulting in gene diversity. This diversity leads to significant differences in the 3D structure and binding pocket properties and, finally, to functional diversity. These findings provide a reference for further functional analyses of plant GELPs.
Collapse
Affiliation(s)
- Jianshe Wang
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, Henan, China
| | - Haiyan Zhao
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, Henan, China
| | - Yunfang Qu
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Peng Yang
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Jinling Huang
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China
| |
Collapse
|
19
|
Jiao Y, Long Y, Xu K, Zhao F, Zhao J, Li S, Geng S, Gao W, Sun P, Deng X, Chen Q, Li C, Qu Y. Weighted Gene Co-Expression Network Analysis Reveals Hub Genes for Fuzz Development in Gossypium hirsutum. Genes (Basel) 2023; 14:208. [PMID: 36672949 PMCID: PMC9858766 DOI: 10.3390/genes14010208] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 01/02/2023] [Accepted: 01/11/2023] [Indexed: 01/14/2023] Open
Abstract
Fuzzless Gossypium hirsutum mutants are ideal materials for investigating cotton fiber initiation and development. In this study, we used the fuzzless G. hirsutum mutant Xinluzao 50 FLM as the research material and combined it with other fuzzless materials for verification by RNA sequencing to explore the gene expression patterns and differences between genes in upland cotton during the fuzz period. A gene ontology (GO) enrichment analysis showed that differentially expressed genes (DEGs) were mainly enriched in the metabolic process, microtubule binding, and other pathways. A weighted gene co-expression network analysis (WGCNA) showed that two modules of Xinluzao 50 and Xinluzao 50 FLM and four modules of CSS386 and Sicala V-2 were highly correlated with fuzz. We selected the hub gene with the highest KME value among the six modules and constructed an interaction network. In addition, we selected some genes with high KME values from the six modules that were highly associated with fuzz in the four materials and found 19 common differential genes produced by the four materials. These 19 genes are likely involved in the formation of fuzz in upland cotton. Several hub genes belong to the arabinogalactan protein and GDSL lipase, which play important roles in fiber development. According to the differences in expression level, 4 genes were selected from the 19 genes and tested for their expression level in some fuzzless materials. The modules, hub genes, and common genes identified in this study can provide new insights into the formation of fiber and fuzz, and provide a reference for molecular design breeding for the genetic improvement of cotton fiber.
Collapse
Affiliation(s)
- Yang Jiao
- College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China
| | - Yilei Long
- Institute of Cash Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Kaixiang Xu
- College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China
| | - Fuxiang Zhao
- Xinjiang Academy of Agricultural Reclamation, Shihezi 832000, China
| | - Jieyin Zhao
- College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China
| | - Shengmei Li
- College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China
| | - Shiwei Geng
- College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China
| | - Wenju Gao
- College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China
| | - Peng Sun
- Xinjiang Kuitun Agricultural and Rural Bureau, KuiTun 833200, China
| | - Xiaojuan Deng
- College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China
| | - Quanjia Chen
- College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China
| | - Chunpin Li
- Institute of Cash Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Yanying Qu
- College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China
| |
Collapse
|
20
|
Sahoo DK, Hegde C, Bhattacharyya MK. Identification of multiple novel genetic mechanisms that regulate chilling tolerance in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2023; 13:1094462. [PMID: 36714785 PMCID: PMC9878698 DOI: 10.3389/fpls.2022.1094462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/28/2022] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Cold stress adversely affects the growth and development of plants and limits the geographical distribution of many plant species. Accumulation of spontaneous mutations shapes the adaptation of plant species to diverse climatic conditions. METHODS The genome-wide association study of the phenotypic variation gathered by a newly designed phenomic platform with the over six millions single nucleotide polymorphic (SNP) loci distributed across the genomes of 417 Arabidopsis natural variants collected from various geographical regions revealed 33 candidate cold responsive genes. RESULTS Investigation of at least two independent insertion mutants for 29 genes identified 16 chilling tolerance genes governing diverse genetic mechanisms. Five of these genes encode novel leucine-rich repeat domain-containing proteins including three nucleotide-binding site-leucine-rich repeat (NBS-LRR) proteins. Among the 16 identified chilling tolerance genes, ADS2 and ACD6 are the only two chilling tolerance genes identified earlier. DISCUSSION The 12.5% overlap between the genes identified in this genome-wide association study (GWAS) of natural variants with those discovered previously through forward and reverse genetic approaches suggests that chilling tolerance is a complex physiological process governed by a large number of genetic mechanisms.
Collapse
Affiliation(s)
- Dipak Kumar Sahoo
- Department of Agronomy, Iowa State University, Ames, IA, United States
| | - Chinmay Hegde
- Department of Electrical and Computer Engineering, Iowa State University, Ames, IA, United States
| | | |
Collapse
|
21
|
Effect of Overexpression of γ-Tocopherol Methyltransferase on α-Tocopherol and Fatty Acid Accumulation and Tolerance to Salt Stress during Seed Germination in Brassica napus L. Int J Mol Sci 2022; 23:ijms232415933. [PMID: 36555573 PMCID: PMC9784450 DOI: 10.3390/ijms232415933] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Rapeseed (Brassica napus L.) is an important oil crop and a major source of tocopherols, also known as vitamin E, in human nutrition. Enhancing the quality and composition of fatty acids (FAs) and tocopherols in seeds has long been a target for rapeseed breeding. The gene γ-Tocopherol methyltransferase (γ-TMT) encodes an enzyme catalysing the conversion of γ-tocopherol to α-tocopherol, which has the highest biological activity. However, the genetic basis of γ-TMT in B. napus seeds remains unclear. In the present study, BnaC02.TMT.a, one paralogue of Brassica napus γ-TMT, was isolated from the B. napus cultivar "Zhongshuang11" by nested PCR, and two homozygous transgenic overexpression lines were further characterised. Our results demonstrated that the overexpression of BnaC02.TMT.a mediated an increase in the α- and total tocopherol content in transgenic B. napus seeds. Interestingly, the FA composition was also altered in the transgenic plants; a reduction in the levels of oleic acid and an increase in the levels of linoleic acid and linolenic acid were observed. Consistently, BnaC02.TMT.a promoted the expression of BnFAD2 and BnFAD3, which are involved in the biosynthesis of polyunsaturated fatty acids during seed development. In addition, BnaC02.TMT.a enhanced the tolerance to salt stress by scavenging reactive oxygen species (ROS) during seed germination in B. napus. Our results suggest that BnaC02.TMT.a could affect the tocopherol content and FA composition and play a positive role in regulating the rapeseed response to salt stress by modulating the ROS scavenging system. This study broadens our understanding of the function of the Bnγ-TMT gene and provides a novel strategy for genetic engineering in rapeseed breeding.
Collapse
|
22
|
Cenci A, Concepción-Hernández M, Guignon V, Angenon G, Rouard M. Genome-Wide Classification and Phylogenetic Analyses of the GDSL-Type Esterase/Lipase (GELP) Family in Flowering Plants. Int J Mol Sci 2022; 23:ijms232012114. [PMID: 36292971 PMCID: PMC9602515 DOI: 10.3390/ijms232012114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022] Open
Abstract
GDSL-type esterase/lipase (GELP) enzymes have key functions in plants, such as developmental processes, anther and pollen development, and responses to biotic and abiotic stresses. Genes that encode GELP belong to a complex and large gene family, ranging from tens to more than hundreds of members per plant species. To facilitate functional transfer between them, we conducted a genome-wide classification of GELP in 46 plant species. First, we applied an iterative phylogenetic method using a selected set of representative angiosperm genomes (three monocots and five dicots) and identified 10 main clusters, subdivided into 44 orthogroups (OGs). An expert curation for gene structures, orthogroup composition, and functional annotation was made based on a literature review. Then, using the HMM profiles as seeds, we expanded the classification to 46 plant species. Our results revealed the variable evolutionary dynamics between OGs in which some expanded, mostly through tandem duplications, while others were maintained as single copies. Among these, dicot-specific clusters and specific amplifications in monocots and wheat were characterized. This approach, by combining manual curation and automatic identification, was effective in characterizing a large gene family, allowing the establishment of a classification framework for gene function transfer and a better understanding of the evolutionary history of GELP.
Collapse
Affiliation(s)
- Alberto Cenci
- Bioversity International, Parc Scientifique Agropolis II, 34397 Montpellier, France
- Correspondence: (A.C.); (M.R.)
| | - Mairenys Concepción-Hernández
- Instituto de Biotecnología de las Plantas, Universidad Central “Marta Abreu” de Las Villas (UCLV), Carretera a Camajuaní km 5.5, Santa Clara C.P. 54830, Villa Clara, Cuba
- Research Group Plant Genetics, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium
| | - Valentin Guignon
- Bioversity International, Parc Scientifique Agropolis II, 34397 Montpellier, France
| | - Geert Angenon
- Research Group Plant Genetics, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium
| | - Mathieu Rouard
- Bioversity International, Parc Scientifique Agropolis II, 34397 Montpellier, France
- Correspondence: (A.C.); (M.R.)
| |
Collapse
|
23
|
Wang Y, Wang X, Sun S, Jin C, Su J, Wei J, Luo X, Wen J, Wei T, Sahu SK, Zou H, Chen H, Mu Z, Zhang G, Liu X, Xu X, Gram L, Yang H, Wang E, Liu H. GWAS, MWAS and mGWAS provide insights into precision agriculture based on genotype-dependent microbial effects in foxtail millet. Nat Commun 2022; 13:5913. [PMID: 36207301 PMCID: PMC9546826 DOI: 10.1038/s41467-022-33238-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 09/09/2022] [Indexed: 11/09/2022] Open
Abstract
Genetic and environmental factors collectively determine plant growth and yield. In the past 20 years, genome-wide association studies (GWAS) have been conducted on crops to decipher genetic loci that contribute to growth and yield, however, plant genotype appears to be insufficient to explain the trait variations. Here, we unravel the associations between genotypic, phenotypic, and rhizoplane microbiota variables of 827 foxtail millet cultivars by an integrated GWAS, microbiome-wide association studies (MWAS) and microbiome genome-wide association studies (mGWAS) method. We identify 257 rhizoplane microbial biomarkers associated with six key agronomic traits and validated the microbial-mediated growth effects on foxtail millet using marker strains isolated from the field. The rhizoplane microbiota composition is mainly driven by variations in plant genes related to immunity, metabolites, hormone signaling and nutrient uptake. Among these, the host immune gene FLS2 and transcription factor bHLH35 are widely associated with the microbial taxa of the rhizoplane. We further uncover a plant genotype-microbiota interaction network that contributes to phenotype plasticity. The microbial-mediated growth effects on foxtail millet are dependent on the host genotype, suggesting that precision microbiome management could be used to engineer high-yielding cultivars in agriculture systems.
Collapse
Grants
- Statens Naturvidenskabelige Forskningsrad (Danish National Science Foundation)
- This research was supported by the Funding of Joint Research on Agricultural Variety Improvement of Henan Province (No. 2022010401, H. Z.), the Major Science and Technology Projects of Yunnan Province (Digitalization, development and application of biotic resource, No. 860 202002AA100007, H. L.), the National Science Foundation (32088102, 31730103, 31825003, E. W.), the Specialty Industry for Key Research and Development Program in Shanxi Academy of Agricultural Sciences (No. YCX2019T01, Z. M.) and Key R&D Program of ShanXi Province (No. 201903D211003, Z. M.). This work was also supported by China National GeneBank (CNGB), Key Laboratory of Genomics, Ministry of Agriculture, BGI-Shenzhen.
Collapse
Affiliation(s)
- Yayu Wang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Xiaolin Wang
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Shuai Sun
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
- BGI-Qingdao, Qingdao, 266555, China
| | - Canzhi Jin
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianmu Su
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Jinpu Wei
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Xinyue Luo
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiawen Wen
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tong Wei
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Sunil Kumar Sahu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Hongfeng Zou
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Hongyun Chen
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Zhixin Mu
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan, 030031, China
| | - Gengyun Zhang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Xin Liu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Xun Xu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen, 518083, China
| | - Lone Gram
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, 2800 Kgs, Lyngby, Denmark
| | - Huanming Yang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Huan Liu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China.
- BGI Life Science Joint Research Center, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
24
|
Lu M, Schneider D, Daniel R. Metagenomic Screening for Lipolytic Genes Reveals an Ecology-Clustered Distribution Pattern. Front Microbiol 2022; 13:851969. [PMID: 35756004 PMCID: PMC9226776 DOI: 10.3389/fmicb.2022.851969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/28/2022] [Indexed: 12/02/2022] Open
Abstract
Lipolytic enzymes are one of the most important enzyme types for application in various industrial processes. Despite the continuously increasing demand, only a small portion of the so far encountered lipolytic enzymes exhibit adequate stability and activities for biotechnological applications. To explore novel and/or extremophilic lipolytic enzymes, microbial consortia in two composts at thermophilic stage were analyzed using function-driven and sequence-based metagenomic approaches. Analysis of community composition by amplicon-based 16S rRNA genes and transcripts, and direct metagenome sequencing revealed that the communities of the compost samples were dominated by members of the phyla Actinobacteria, Proteobacteria, Firmicutes, Bacteroidetes, and Chloroflexi. Function-driven screening of the metagenomic libraries constructed from the two samples yielded 115 unique lipolytic enzymes. The family assignment of these enzymes was conducted by analyzing the phylogenetic relationship and generation of a protein sequence similarity network according to an integrated classification system. The sequence-based screening was performed by using a newly developed database, containing a set of profile Hidden Markov models, highly sensitive and specific for detection of lipolytic enzymes. By comparing the lipolytic enzymes identified through both approaches, we demonstrated that the activity-directed complements sequence-based detection, and vice versa. The sequence-based comparative analysis of lipolytic genes regarding diversity, function and taxonomic origin derived from 175 metagenomes indicated significant differences between habitats. Analysis of the prevalent and distinct microbial groups providing the lipolytic genes revealed characteristic patterns and groups driven by ecological factors. The here presented data suggests that the diversity and distribution of lipolytic genes in metagenomes of various habitats are largely constrained by ecological factors.
Collapse
Affiliation(s)
| | | | - Rolf Daniel
- Department of Genomic and Applied Microbiology, Institute of Microbiology and Genetics, Georg August University of Göttingen, Göttingen, Germany
| |
Collapse
|
25
|
Yang J, Liang B, Zhang Y, Liu Y, Wang S, Yang Q, Geng X, Liu S, Wu Y, Zhu Y, Lin T. Genome-wide association study of eigenvectors provides genetic insights into selective breeding for tomato metabolites. BMC Biol 2022; 20:120. [PMID: 35606872 PMCID: PMC9128223 DOI: 10.1186/s12915-022-01327-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/10/2022] [Indexed: 01/05/2023] Open
Abstract
Background Long-term domestication and intensive breeding of crop plants aim to establish traits desirable for human needs, and characteristics related to yield, disease resistance, and postharvest storage have traditionally received considerable attention. These processes have led also to negative consequences, as is the case of loss of variants controlling fruit quality, for instance in tomato. Tomato fruit quality is directly associated to metabolite content profiles; however, a full understanding of the genetics affecting metabolite content during tomato domestication and improvement has not been reached due to limitations of the single detection methods previously employed. Here, we aim to reach a broad understanding of changes in metabolite content using a genome-wide association study (GWAS) with eigenvector decomposition (EigenGWAS) on tomato accessions. Results An EigenGWAS was performed on 331 tomato accessions using the first eigenvector generated from the genomic data as a “phenotype” to understand the changes in fruit metabolite content during breeding. Two independent gene sets were identified that affected fruit metabolites during domestication and improvement in consumer-preferred tomatoes. Furthermore, 57 candidate genes related to polyphenol and polyamine biosynthesis were discovered, and a major candidate gene chlorogenate: glucarate caffeoyltransferase (SlCGT) was identified, which affected the quality and diseases resistance of tomato fruit, revealing the domestication mechanism of polyphenols. Conclusions We identified gene sets that contributed to consumer liking during domestication and improvement of tomato. Our study reports novel evidence of selective sweeps and key metabolites controlled by multiple genes, increasing our understanding of the mechanisms of metabolites variation during those processes. It also supports a polygenic selection model for the application of tomato breeding. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01327-x.
Collapse
|
26
|
Xu Y, Yan F, Zong Y, Li J, Gao H, Liu Y, Wang Y, Zhu Y, Wang Q. Proteomic and lipidomics analyses of high fatty acid AhDGAT3 transgenic soybean reveals the key lipase gene associated with the lipid internal mechanism. Genome 2022; 65:153-164. [PMID: 34995159 DOI: 10.1139/gen-2021-0043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Vegetable oil is one of the most important components of human nutrition. Soybean (Glycine max) is an important oil crop worldwide and contains rich unsaturated fatty acids. Diacylglycerol acyltransferase (DGAT) is a key rate-limiting enzyme in the Kennedy pathway from diacylglycerol (DAG) to triacylglycerol (TAG). In this study, we conducted further research using T3 AhDGAT3 transgenic soybean. A high-performance gas chromatography flame ionization detector showed that oleic acid (18:1) content and total fatty acid content of transgenic soybean were significantly higher than those of the wild type (WT). However, linoleic acid (18:2) was much lower than that in the WT. For further mechanistic studies, 20 differentially expressed proteins (DEPs) and 119 differentially expressed metabolites (DEMs) were identified between WT (JACK) and AhDGAT3 transgenic soybean mature seeds using proteomic and lipidomics analyses. Combined proteomic and lipidomics analyses showed that the upregulation of the key DEP (lipase GDSL domain-containing protein) in lipid transport and metabolic process induced an increase in the total fatty acid and 18:1 composition, but a decrease in the 18:2 composition of fatty acids. Our study provides new insights into the deep study of molecular mechanism underlying the enhancement of fatty acids in transgenic soybeans, especially oleic acid and total fatty acid, which are enhanced by over-expression of AhDGAT3.
Collapse
Affiliation(s)
- Yang Xu
- College of Plant Science, Jilin University, No.5333 Xi'an Road, Changchun City, 130062, China
- College of Plant Science, Jilin University, No.5333 Xi'an Road, Changchun City, 130062, China
| | - Fan Yan
- College of Plant Science, Jilin University, No.5333 Xi'an Road, Changchun City, 130062, China
- College of Plant Science, Jilin University, No.5333 Xi'an Road, Changchun City, 130062, China
| | - Yu Zong
- College of Plant Science, Jilin University, No.5333 Xi'an Road, Changchun City, 130062, China
- College of Plant Science, Jilin University, No.5333 Xi'an Road, Changchun City, 130062, China
| | - Jingwen Li
- College of Plant Science, Jilin University, No.5333 Xi'an Road, Changchun City, 130062, China
- College of Plant Science, Jilin University, No.5333 Xi'an Road, Changchun City, 130062, China
| | - Han Gao
- College of Plant Science, Jilin University, No.5333 Xi'an Road, Changchun City, 130062, China
- College of Plant Science, Jilin University, No.5333 Xi'an Road, Changchun City, 130062, China
| | - Yajing Liu
- College of Plant Science, Jilin University, No.5333 Xi'an Road, Changchun City, 130062, China
- College of Plant Science, Jilin University, No.5333 Xi'an Road, Changchun City, 130062, China
| | - Ying Wang
- College of Plant Science, Jilin University, No.5333 Xi'an Road, Changchun City, 130062, China
- College of Plant Science, Jilin University, No.5333 Xi'an Road, Changchun City, 130062, China
| | - Youcheng Zhu
- College of Plant Science, Jilin University, No.5333 Xi'an Road, Changchun City, 130062, China
- College of Plant Science, Jilin University, No.5333 Xi'an Road, Changchun City, 130062, China
| | - Qingyu Wang
- College of Plant Science, Jilin University, No.5333 Xi'an Road, Changchun City, 130062, China
- College of Plant Science, Jilin University, No.5333 Xi'an Road, Changchun City, 130062, China
| |
Collapse
|
27
|
Agre PA, Darkwa K, Olasanmi B, Kolade O, Mournet P, Bhattacharjee R, Lopez-Montes A, De Koeyer D, Adebola P, Kumar L, Asiedu R, Asfaw A. Identification of QTLs Controlling Resistance to Anthracnose Disease in Water Yam ( Dioscorea alata). Genes (Basel) 2022; 13:347. [PMID: 35205389 PMCID: PMC8872494 DOI: 10.3390/genes13020347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/08/2022] [Accepted: 02/11/2022] [Indexed: 02/04/2023] Open
Abstract
Anthracnose disease caused by a fungus Colletotrichum gloeosporioides is the primary cause of yield loss in water yam (Dioscorea alata), the widely cultivated species of yam. Resistance to yam anthracnose disease (YAD) is a prime target in breeding initiatives to develop durable-resistant cultivars for sustainable management of the disease in water yam cultivation. This study aimed at tagging quantitative trait loci (QTL) for anthracnose disease resistance in a bi-parental mapping population of D. alata. Parent genotypes and their recombinant progenies were genotyped using the Genotyping by Sequencing (GBS) platform and phenotyped in two crop cycles for two years. A high-density genetic linkage map was built with 3184 polymorphic Single Nucleotide Polymorphism (NSP) markers well distributed across the genome, covering 1460.94 cM total length. On average, 163 SNP markers were mapped per chromosome with 0.58 genetic distances between SNPs. Four QTL regions related to yam anthracnose disease resistance were identified on three chromosomes. The proportion of phenotypic variance explained by these QTLs ranged from 29.54 to 39.40%. The QTL regions identified showed genes that code for known plant defense responses such as GDSL-like Lipase/Acylhydrolase, Protein kinase domain, and F-box protein. The results from the present study provide valuable insight into the genetic architecture of anthracnose resistance in water yam. The candidate markers identified herewith form a relevant resource to apply marker-assisted selection as an alternative to a conventional labor-intensive screening for anthracnose resistance in water yam.
Collapse
Affiliation(s)
- Paterne Angelot Agre
- International Institute of Tropical Agriculture (IITA), Ibadan 5320, Nigeria; (P.A.A.); (O.K.); (R.B.); (P.A.); (L.K.); (R.A.)
| | - Kwabena Darkwa
- Savanna Agricultural Research Institute, Tamale P.O. Box TL 52, Ghana;
| | - Bunmi Olasanmi
- Department of Agronomy, University of Ibadan, Ibadan 200284, Nigeria;
| | - Olufisayo Kolade
- International Institute of Tropical Agriculture (IITA), Ibadan 5320, Nigeria; (P.A.A.); (O.K.); (R.B.); (P.A.); (L.K.); (R.A.)
| | - Pierre Mournet
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement, 34398 Montpellier, France;
- Amelioration Génétic et Adoption des Plants Méditerranéennes et Tropical AGAP, Universisté de Montpellier, 34398 Montpellier, France
| | - Ranjana Bhattacharjee
- International Institute of Tropical Agriculture (IITA), Ibadan 5320, Nigeria; (P.A.A.); (O.K.); (R.B.); (P.A.); (L.K.); (R.A.)
| | - Antonio Lopez-Montes
- International Trade Centre (ITC), Addison House International Trade Fair Center, FAGE, Accra GA145, Ghana;
| | - David De Koeyer
- Agriculture and Agri-Food Canada, Fredericton, NB 20280, Canada;
| | - Patrick Adebola
- International Institute of Tropical Agriculture (IITA), Ibadan 5320, Nigeria; (P.A.A.); (O.K.); (R.B.); (P.A.); (L.K.); (R.A.)
| | - Lava Kumar
- International Institute of Tropical Agriculture (IITA), Ibadan 5320, Nigeria; (P.A.A.); (O.K.); (R.B.); (P.A.); (L.K.); (R.A.)
| | - Robert Asiedu
- International Institute of Tropical Agriculture (IITA), Ibadan 5320, Nigeria; (P.A.A.); (O.K.); (R.B.); (P.A.); (L.K.); (R.A.)
| | - Asrat Asfaw
- International Institute of Tropical Agriculture (IITA), Ibadan 5320, Nigeria; (P.A.A.); (O.K.); (R.B.); (P.A.); (L.K.); (R.A.)
| |
Collapse
|
28
|
Shen G, Sun W, Chen Z, Shi L, Hong J, Shi J. Plant GDSL Esterases/Lipases: Evolutionary, Physiological and Molecular Functions in Plant Development. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11040468. [PMID: 35214802 PMCID: PMC8880598 DOI: 10.3390/plants11040468] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/02/2022] [Accepted: 02/04/2022] [Indexed: 05/14/2023]
Abstract
GDSL esterases/lipases (GELPs), present throughout all living organisms, have been a very attractive research subject in plant science due mainly to constantly emerging properties and functions in plant growth and development under both normal and stressful conditions. This review summarizes the advances in research on plant GELPs in several model plants and crops, including Arabidopsis, rice, maize and tomato, while focusing on the roles of GELPs in regulating plant development and plant-environment interactions. In addition, the possible regulatory network and mechanisms of GELPs have been discussed.
Collapse
|
29
|
Zhang H, Zhang X, Zhao J, Sun L, Wang H, Zhu Y, Xiao J, Wang X. Genome-Wide Identification of GDSL-Type Esterase/Lipase Gene Family in Dasypyrum villosum L. Reveals That DvGELP53 Is Related to BSMV Infection. Int J Mol Sci 2021; 22:ijms222212317. [PMID: 34830200 PMCID: PMC8624868 DOI: 10.3390/ijms222212317] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 12/21/2022] Open
Abstract
GDSL-type esterase/lipase proteins (GELPs) characterized by a conserved GDSL motif at their N-terminus belong to the lipid hydrolysis enzyme superfamily. In plants, GELPs play an important role in plant growth, development and stress response. The studies of the identification and characterization of the GELP gene family in Triticeae have not been reported. In this study, 193 DvGELPs were identified in Dasypyrum villosum and classified into 11 groups (clade A–K) by means of phylogenetic analysis. Most DvGELPs contain only one GDSL domain, only four DvGELPs contain other domains besides the GDSL domain. Gene structure analysis indicated 35.2% DvGELP genes have four introns and five exons. In the promoter regions of the identified DvGELPs, we detected 4502 putative cis-elements, which were associated with plant hormones, plant growth, environmental stress and light responsiveness. Expression profiling revealed 36, 44 and 17 DvGELPs were highly expressed in the spike, the root and the grain, respectively. Further investigation of a root-specific expressing GELP, DvGELP53, indicated it was induced by a variety of biotic and abiotic stresses. The knockdown of DvGELP53 inhibited long-distance movement of BSMV in the tissue of D. villosum. This research provides a genome-wide glimpse of the D. villosum GELP genes and hints at the participation of DvGELP53 in the interaction between virus and plants.
Collapse
Affiliation(s)
- Heng Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to The Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (H.Z.); (Y.Z.)
- State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China; (X.Z.); (L.S.); (H.W.); (J.X.)
| | - Xu Zhang
- State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China; (X.Z.); (L.S.); (H.W.); (J.X.)
| | - Jia Zhao
- College of Agriculture, South China Agriculture University, Guangzhou 510642, China;
| | - Li Sun
- State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China; (X.Z.); (L.S.); (H.W.); (J.X.)
| | - Haiyan Wang
- State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China; (X.Z.); (L.S.); (H.W.); (J.X.)
| | - Ying Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to The Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (H.Z.); (Y.Z.)
| | - Jin Xiao
- State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China; (X.Z.); (L.S.); (H.W.); (J.X.)
| | - Xiue Wang
- State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China; (X.Z.); (L.S.); (H.W.); (J.X.)
- Correspondence: ; Tel.: +86-25-84395308
| |
Collapse
|
30
|
Zhu Y, Hu X, Wang P, Gao L, Pei Y, Ge Z, Ge X, Li F, Hou Y. GhPLP2 Positively Regulates Cotton Resistance to Verticillium Wilt by Modulating Fatty Acid Accumulation and Jasmonic Acid Signaling Pathway. FRONTIERS IN PLANT SCIENCE 2021; 12:749630. [PMID: 34795685 PMCID: PMC8593000 DOI: 10.3389/fpls.2021.749630] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/08/2021] [Indexed: 05/24/2023]
Abstract
Patatin-like proteins (PLPs) have non-specific lipid acyl hydrolysis (LAH) activity, which can hydrolyze membrane lipids into fatty acids and lysophospholipids. The vital role of PLPs in plant growth and abiotic stress has been well documented. However, the function of PLPs in plant defense responses against pathogens is still poorly understood. Here, we isolated and identified a novel cotton (Gossypium hirsutum) PLP gene GhPLP2. The expression of GhPLP2 was induced upon treatment with Verticillium dahliae, the signaling molecules jasmonic acid (JA) and ethylene (ETH) in cotton plants. Subcellular localization revealed that GhPLP2 was localized to the plasma membrane. GhPLP2-silenced cotton plants were more susceptible to infection by V. dahliae, while the overexpression of GhPLP2 in Arabidopsis enhanced its resistance to V. dahliae, which was apparent as mild symptoms, and a decrease in the disease index and fungal biomass. The hypersensitive response, deposition of callose, and H2O2 accumulation triggered by V. dahliae elicitor were reduced in GhPLP2-silenced cotton plants. The overexpression of GhPLP2 in Arabidopsis resulted in the accumulation of linoleic acid (LA, 18:2) and α-linolenic acid (ALA, 18:3) and facilitated the biosynthesis of JA and JA-mediated defensive responses. GhPLP2 silencing in cotton plants consistently reduced the accumulation of linoleic acid (LA, 18:2) and α-linolenic acid (ALA, 18:3) and suppressed the biosynthesis of JA and the defensive responses mediated by JA. These results indicate that GhPLP2 is involved in the resistance of cotton to V. dahliae by maintaining fatty acid metabolism pools for JA biosynthesis and activating the JA signaling pathway.
Collapse
Affiliation(s)
- Yutao Zhu
- College of Science, China Agricultural University, Beijing, China
| | - Xiaoqian Hu
- College of Science, China Agricultural University, Beijing, China
| | - Ping Wang
- College of Science, China Agricultural University, Beijing, China
| | - Linying Gao
- College of Science, China Agricultural University, Beijing, China
| | - Yakun Pei
- College of Science, China Agricultural University, Beijing, China
| | - Zhaoyue Ge
- College of Science, China Agricultural University, Beijing, China
| | - Xiaoyang Ge
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Fuguang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yuxia Hou
- College of Science, China Agricultural University, Beijing, China
| |
Collapse
|
31
|
Zhu Y, Hu X, Wang P, Gao L, Pei Y, Ge Z, Ge X, Li F, Hou Y. GhPLP2 Positively Regulates Cotton Resistance to Verticillium Wilt by Modulating Fatty Acid Accumulation and Jasmonic Acid Signaling Pathway. FRONTIERS IN PLANT SCIENCE 2021; 12:749630. [PMID: 34795685 DOI: 10.21203/rs.3.rs-388437/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/08/2021] [Indexed: 05/25/2023]
Abstract
Patatin-like proteins (PLPs) have non-specific lipid acyl hydrolysis (LAH) activity, which can hydrolyze membrane lipids into fatty acids and lysophospholipids. The vital role of PLPs in plant growth and abiotic stress has been well documented. However, the function of PLPs in plant defense responses against pathogens is still poorly understood. Here, we isolated and identified a novel cotton (Gossypium hirsutum) PLP gene GhPLP2. The expression of GhPLP2 was induced upon treatment with Verticillium dahliae, the signaling molecules jasmonic acid (JA) and ethylene (ETH) in cotton plants. Subcellular localization revealed that GhPLP2 was localized to the plasma membrane. GhPLP2-silenced cotton plants were more susceptible to infection by V. dahliae, while the overexpression of GhPLP2 in Arabidopsis enhanced its resistance to V. dahliae, which was apparent as mild symptoms, and a decrease in the disease index and fungal biomass. The hypersensitive response, deposition of callose, and H2O2 accumulation triggered by V. dahliae elicitor were reduced in GhPLP2-silenced cotton plants. The overexpression of GhPLP2 in Arabidopsis resulted in the accumulation of linoleic acid (LA, 18:2) and α-linolenic acid (ALA, 18:3) and facilitated the biosynthesis of JA and JA-mediated defensive responses. GhPLP2 silencing in cotton plants consistently reduced the accumulation of linoleic acid (LA, 18:2) and α-linolenic acid (ALA, 18:3) and suppressed the biosynthesis of JA and the defensive responses mediated by JA. These results indicate that GhPLP2 is involved in the resistance of cotton to V. dahliae by maintaining fatty acid metabolism pools for JA biosynthesis and activating the JA signaling pathway.
Collapse
Affiliation(s)
- Yutao Zhu
- College of Science, China Agricultural University, Beijing, China
| | - Xiaoqian Hu
- College of Science, China Agricultural University, Beijing, China
| | - Ping Wang
- College of Science, China Agricultural University, Beijing, China
| | - Linying Gao
- College of Science, China Agricultural University, Beijing, China
| | - Yakun Pei
- College of Science, China Agricultural University, Beijing, China
| | - Zhaoyue Ge
- College of Science, China Agricultural University, Beijing, China
| | - Xiaoyang Ge
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Fuguang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yuxia Hou
- College of Science, China Agricultural University, Beijing, China
| |
Collapse
|
32
|
Lv J, Dai CB, Wang WF, Sun YH. Genome-wide identification of the tobacco GDSL family and apical meristem-specific expression conferred by the GDSL promoter. BMC PLANT BIOLOGY 2021; 21:501. [PMID: 34717531 PMCID: PMC8556911 DOI: 10.1186/s12870-021-03278-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND GDSL esterases/lipases are a large protein subfamily defined by the distinct GDSL motif, and play important roles in plant development and stress responses. However, few studies have reported on the role of GDSLs in the growth and development of axillary buds. This work aims to identify the GDSL family members in tobacco and explore whether the NtGDSL gene contributes to development of the axillary bud in tobacco. RESULTS One hundred fifty-nine GDSL esterase/lipase genes from cultivated tobacco (Nicotiana tabacum) were identified, and the dynamic changes in the expression levels of 93 of these genes in response to topping, as assessed using transcriptome data of topping-induced axillary shoots, were analysed. In total, 13 GDSL esterase/lipase genes responded with changes in expression level. To identify genes and promoters that drive the tissue-specific expression in tobacco apical and axillary buds, the expression patterns of these 13 genes were verified using qRT-PCR. GUS activity and a lethal gene expression pattern driven by the NtGDSL127 promoter in transgenic tobacco demonstrated that NtGDSL127 is specifically expressed in apical buds, axillary buds, and flowers. Three separate deletions in the NtGDSL127 promoter demonstrated that a minimum upstream segment of 235 bp from the translation start site can drive the tissue-specific expression in the apical meristem. Additionally, NtGDSL127 responded to phytohormones, providing strategies for improving tobacco breeding and growth. CONCLUSION We propose that in tobacco, the NtGDSL127 promoter directs expression specifically in the apical meristem and that expression is closely correlated with axillary bud development.
Collapse
Affiliation(s)
- Jing Lv
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao, 266101, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chang-Bo Dai
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao, 266101, China.
| | - Wei-Feng Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao, 266101, China
| | - Yu-He Sun
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao, 266101, China.
| |
Collapse
|
33
|
Transcriptome Profiling of Maize ( Zea mays L.) Leaves Reveals Key Cold-Responsive Genes, Transcription Factors, and Metabolic Pathways Regulating Cold Stress Tolerance at the Seedling Stage. Genes (Basel) 2021; 12:genes12101638. [PMID: 34681032 PMCID: PMC8535276 DOI: 10.3390/genes12101638] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/27/2021] [Accepted: 10/11/2021] [Indexed: 01/22/2023] Open
Abstract
Cold tolerance is a complex trait that requires a critical perspective to understand its underpinning mechanism. To unravel the molecular framework underlying maize (Zea mays L.) cold stress tolerance, we conducted a comparative transcriptome profiling of 24 cold-tolerant and 22 cold-sensitive inbred lines affected by cold stress at the seedling stage. Using the RNA-seq method, we identified 2237 differentially expressed genes (DEGs), namely 1656 and 581 annotated and unannotated DEGs, respectively. Further analysis of the 1656 annotated DEGs mined out two critical sets of cold-responsive DEGs, namely 779 and 877 DEGs, which were significantly enhanced in the tolerant and sensitive lines, respectively. Functional analysis of the 1656 DEGs highlighted the enrichment of signaling, carotenoid, lipid metabolism, transcription factors (TFs), peroxisome, and amino acid metabolism. A total of 147 TFs belonging to 32 families, including MYB, ERF, NAC, WRKY, bHLH, MIKC MADS, and C2H2, were strongly altered by cold stress. Moreover, the tolerant lines’ 779 enhanced DEGs were predominantly associated with carotenoid, ABC transporter, glutathione, lipid metabolism, and amino acid metabolism. In comparison, the cold-sensitive lines’ 877 enhanced DEGs were significantly enriched for MAPK signaling, peroxisome, ribosome, and carbon metabolism pathways. The biggest proportion of the unannotated DEGs was implicated in the roles of long non-coding RNAs (lncRNAs). Taken together, this study provides valuable insights that offer a deeper understanding of the molecular mechanisms underlying maize response to cold stress at the seedling stage, thus opening up possibilities for a breeding program of maize tolerance to cold stress.
Collapse
|
34
|
Xiao C, Guo H, Tang J, Li J, Yao X, Hu H. Expression Pattern and Functional Analyses of Arabidopsis Guard Cell-Enriched GDSL Lipases. FRONTIERS IN PLANT SCIENCE 2021; 12:748543. [PMID: 34621289 PMCID: PMC8490726 DOI: 10.3389/fpls.2021.748543] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 08/18/2021] [Indexed: 05/27/2023]
Abstract
There are more than 100 GDSL lipases in Arabidopsis, but only a few members have been functionally investigated. Moreover, no reports have ever given a comprehensive analysis of GDSLs in stomatal biology. Here, we systematically investigated the expression patterns of 19 putative Guard-cell-enriched GDSL Lipases (GGLs) at various developmental stages and in response to hormone and abiotic stress treatments. Gene expression analyses showed that these GGLs had diverse expression patterns. Fifteen GGLs were highly expressed in guard cells, with seven preferentially in guard cells. Most GGLs were localized in endoplasmic reticulum, and some were also localized in lipid droplets and nucleus. Some closely homologous GGLs exhibited similar expression patterns at various tissues and in response to hormone and abiotic stresses, or similar subcellular localization, suggesting the correlation of expression pattern and biological function, and the functional redundancy of GGLs in plant development and environmental adaptations. Further phenotypic identification of ggl mutants revealed that GGL7, GGL14, GGL22, and GGL26 played unique and redundant roles in stomatal dynamics, stomatal density and morphology, and plant water relation. The present study provides unique resources for functional insights into these GGLs to control stomatal dynamics and development, plant growth, and adaptation to the environment.
Collapse
Affiliation(s)
- Chuanlei Xiao
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Huimin Guo
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jing Tang
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiaying Li
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xuan Yao
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Honghong Hu
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
35
|
Comparative Analysis of Universal Protein Extraction Methodologies for Screening of Lipase Activity from Agricultural Products. Catalysts 2021. [DOI: 10.3390/catal11070816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Protein extraction techniques are absolutely required for the research of biological catalysts. The present study compared four universal protein extraction methodologies (ammonium sulfate precipitation, TCA/acetone precipitation, and two commercial kits) to provide practical information on protein extraction in order to discover a novel lipase in agricultural products. Yields of protein extraction from 24 domestic agricultural products and their specific activities were evaluated and compared with each other. TCA/acetone precipitation showed a relatively higher extraction yield (on average, 3.41 ± 1.08 mg protein/0.1 g sample) in crude protein extraction, whereas the Pierce™ Plant Total Protein Extraction Kit showed the highest specific lipase activity on average in both spectrophotometric (266.61 ± 235.78 μU/mg protein) and fluorometric (41.52 ± 32.63 μU/mg protein) assays. Our results suggest that commercial kits for the rapid extraction of soluble functional proteins would be a better choice than conventional precipitation techniques to perform the high-throughput screening of enzyme activity from plant sources. Finally, several agricultural products such as cordyceps, pepper, bracken, and hemp, all of which exhibited an excellent specific lipase activity, were proposed as promising candidates for a source of novel lipases.
Collapse
|
36
|
Li Y, Wang Y, Wu X, Wang J, Wu X, Wang B, Lu Z, Li G. Novel Genomic Regions of Fusarium Wilt Resistance in Bottle Gourd [ Lagenaria siceraria (Mol.) Standl.] Discovered in Genome-Wide Association Study. FRONTIERS IN PLANT SCIENCE 2021; 12:650157. [PMID: 34025697 PMCID: PMC8137845 DOI: 10.3389/fpls.2021.650157] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
Fusarium wilt (FW) is a typical soil-borne disease that seriously affects the yield and fruit quality of bottle gourd. Thus, to improve resistance to FW in bottle gourd, the genetic mechanism underlying FW resistance needs to be explored. In this study, we performed a genome-wide association study (GWAS) based on 5,330 single-nucleotide polymorphisms (SNPs) and 89 bottle gourd accessions. The GWAS results revealed a total of 10 SNPs (P ≤ 0.01, -log10 P ≥ 2.0) significantly associated with FW resistance that were detected in at least two environments (2019DI, 2020DI, and the average across the 2 years); these SNPs were located on chromosomes 1, 2, 3, 4, 8, and 9. Linkage disequilibrium (LD) block structure analysis predicted three potential candidate genes for FW resistance. Genes HG_GLEAN_10001030 and HG_GLEAN_10001042 were within the range of the mean LD block of the marker BGReSe_14202; gene HG_GLEAN_10011803 was 280 kb upstream of the marker BGReSe_00818. Real-time quantitative PCR (qRT-PCR) analysis showed that HG_GLEAN_10011803 was significantly up-regulated in FW-infected plants of YD-4, Yin-10, and Hanbi; HG_GLEAN_10001030 and HG_GLEAN_10001042 were specifically up-regulated in FW-infected plants of YD-4. Therefore, gene HG_GLEAN_10011803 is likely the major effect candidate gene for resistance against FW in bottle gourd. This work provides scientific evidence for the exploration of candidate gene and development of functional markers in FW-resistant bottle gourd breeding programs.
Collapse
|
37
|
Chiconato DA, de Santana Costa MG, Balbuena TS, Munns R, Dos Santos DMM. Proteomic analysis of young sugarcane plants with contrasting salt tolerance. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:588-596. [PMID: 33581744 DOI: 10.1071/fp20314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 01/19/2021] [Indexed: 05/20/2023]
Abstract
Soil salinity affects sugarcane (Saccharum officinale L.) production in arid and semiarid climates, severely reducing productivity. This study aimed to identify differentially regulated proteins in two cultivars that differ markedly in tolerance of saline soil. Plants were grown for 30 days and then subjected to treatments of 0 and 160 mM NaCl for 15 days. The tolerant cultivar showed a 3-fold upregulation of lipid metabolising enzymes, GDSL-motif lipases, which are associated with defence to abiotic stress, and which were not upregulated in the sensitive cultivar. Lipoxygenase was 2-fold upregulated in the tolerant cultivar but not in the sensitive cultivar, as were Type III chlorophyll a/b binding proteins. Other differences were that in the sensitive cultivar, the key enzyme of C4 photosynthesis, phosphoenolpyruvate carboxylase was downregulated, along with other chloroplast enzymes. Na+ concentrations had not reached toxic concentrations in either cultivar by this time of exposure to salt, so these changes would be in response to the osmotic effect of the soil salinity, and likely be in common with plants undergoing drought stress.
Collapse
Affiliation(s)
- Denise A Chiconato
- Department of Biologia Aplicada à Agropecuária, Universidade Estadual Paulista 'Julio de Mesquita Filho', 14884-900 Jaboticabal, SP, Brasil; and CSIRO Agriculture and Food, GPO Box 1700, Canberra, ACT 2601, Australia
| | - Marília G de Santana Costa
- Department of Tecnologia, Universidade Estadual Paulista 'Julio de Mesquita Filho', 14884-900 Jaboticabal, SP, Brasil
| | - Tiago S Balbuena
- Department of Tecnologia, Universidade Estadual Paulista 'Julio de Mesquita Filho', 14884-900 Jaboticabal, SP, Brasil
| | - Rana Munns
- CSIRO Agriculture and Food, GPO Box 1700, Canberra, ACT 2601, Australia; and School of Agriculture and Environment, and ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, WA 6009, Australia; and Corresponding author.
| | - Durvalina M M Dos Santos
- Department of Biologia Aplicada à Agropecuária, Universidade Estadual Paulista 'Julio de Mesquita Filho', 14884-900 Jaboticabal, SP, Brasil
| |
Collapse
|
38
|
Jo E, Kim J, Lee A, Moon K, Cha J. Identification and Characterization of a Novel Thermostable GDSL-Type Lipase from Geobacillus thermocatenulatus. J Microbiol Biotechnol 2021; 31:483-491. [PMID: 33622993 PMCID: PMC9706006 DOI: 10.4014/jmb.2012.12036] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/21/2021] [Accepted: 02/10/2021] [Indexed: 12/15/2022]
Abstract
Two putative genes, lip29 and est29, encoding lipolytic enzymes from the thermophilic bacterium Geobacillus thermocatenulatus KCTC 3921 were cloned and overexpressed in Escherichia coli. The recombinant Lip29 and Est29 were purified 67.3-fold to homogeneity with specific activity of 2.27 U/mg and recovery of 5.8% and 14.4-fold with specific activity of 0.92 U/mg and recovery of 1.3%, respectively. The molecular mass of each purified enzyme was estimated to be 29 kDa by SDSPAGE. The alignment analysis of amino acid sequences revealed that both enzymes belonged to GDSL lipase/esterase family including conserved blocks with SGNH catalytic residues which was mainly identified in plants before. While Est29 showed high specificity toward short-chain fatty acids (C4-C8), Lip29 showed strong lipolytic activity to long-chain fatty acids (C12-C16). The optimal activity of Lip29 toward p-nitrophenyl palmitate as a substrate was observed at 50°C and pH 9.5, respectively, and its activity was maintained more than 24 h at optimal temperatures, indicating that Lip29 was thermostable. Lip29 exhibited high tolerance against detergents and metal ions. The homology modeling and substrate docking revealed that the long-chain substrates showed the greatest binding affinity toward enzyme. Based on the biochemical and in silico analyses, we present for the first time a GDSL-type lipase in the thermophilic bacteria group.
Collapse
Affiliation(s)
- Eunhye Jo
- Department of Microbiology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Jihye Kim
- Department of Microbiology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Areum Lee
- Department of Microbiology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Keumok Moon
- Department of Microbiology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Jaeho Cha
- Department of Microbiology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea,Microbiological Resource Research Institute, Pusan National University, Busan 46241, Republic of Korea,Corresponding author Phone: +82-51-510-2196 Fax: +82-51-514-1778 E-mail:
| |
Collapse
|
39
|
Cook R, Lupette J, Benning C. The Role of Chloroplast Membrane Lipid Metabolism in Plant Environmental Responses. Cells 2021; 10:cells10030706. [PMID: 33806748 PMCID: PMC8005216 DOI: 10.3390/cells10030706] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/16/2021] [Accepted: 03/19/2021] [Indexed: 12/30/2022] Open
Abstract
Plants are nonmotile life forms that are constantly exposed to changing environmental conditions during the course of their life cycle. Fluctuations in environmental conditions can be drastic during both day–night and seasonal cycles, as well as in the long term as the climate changes. Plants are naturally adapted to face these environmental challenges, and it has become increasingly apparent that membranes and their lipid composition are an important component of this adaptive response. Plants can remodel their membranes to change the abundance of different lipid classes, and they can release fatty acids that give rise to signaling compounds in response to environmental cues. Chloroplasts harbor the photosynthetic apparatus of plants embedded into one of the most extensive membrane systems found in nature. In part one of this review, we focus on changes in chloroplast membrane lipid class composition in response to environmental changes, and in part two, we will detail chloroplast lipid-derived signals.
Collapse
Affiliation(s)
- Ron Cook
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824-1319, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824-1319, USA
| | - Josselin Lupette
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824-1319, USA
| | - Christoph Benning
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824-1319, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824-1319, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824-1319, USA
| |
Collapse
|
40
|
Pidon H, Wendler N, Habekuβ A, Maasberg A, Ruge-Wehling B, Perovic D, Ordon F, Stein N. High-resolution mapping of Rym14 Hb, a wild relative resistance gene to barley yellow mosaic disease. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:823-833. [PMID: 33263784 PMCID: PMC7925471 DOI: 10.1007/s00122-020-03733-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/18/2020] [Indexed: 05/11/2023]
Abstract
We mapped the Rym14Hb resistance locus to barley yellow mosaic disease in a 2Mbp interval. The co-segregating markers will be instrumental for marker-assisted selection in barley breeding. Barley yellow mosaic disease is caused by Barley yellow mosaic virus and Barley mild mosaic virus and leads to severe yield losses in barley (Hordeum vulgare) in Central Europe and East-Asia. Several resistance loci are used in barley breeding. However, cases of resistance-breaking viral strains are known, raising concerns about the durability of those genes. Rym14Hb is a dominant major resistance gene on chromosome 6HS, originating from barley's secondary genepool wild relative Hordeum bulbosum. As such, the resistance mechanism may represent a case of non-host resistance, which could enhance its durability. A susceptible barley variety and a resistant H. bulbosum introgression line were crossed to produce a large F2 mapping population (n = 7500), to compensate for a ten-fold reduction in recombination rate compared to intraspecific barley crosses. After high-throughput genotyping, the Rym14Hb locus was assigned to a 2Mbp telomeric interval on chromosome 6HS. The co-segregating markers developed in this study can be used for marker-assisted introgression of this locus into barley elite germplasm with a minimum of linkage drag.
Collapse
Affiliation(s)
- Hélène Pidon
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstr. 3, 06466, Seeland, Germany.
| | - Neele Wendler
- KWS SAAT SE & Co. KGaA, Grimsehlstr. 31, 37574, Einbeck, Germany
| | - Antje Habekuβ
- Institute for Resistance Research and Stress Tolerance, Julius Kühn Institute (JKI), Erwin-Baur-Straße 27, 06484, Quedlinburg, Germany
| | - Anja Maasberg
- KWS LOCHOW GMBH, Ferdinand-von-Lochow-Straße 5, 29303, Bergen, Germany
| | - Brigitte Ruge-Wehling
- Institute for Breeding Research On Agricultural Crops, Julius Kühn Institute (JKI), Groß Lüsewitz, Rudolf-Schick-Platz 3a, 18190, Sanitz, Germany
| | - Dragan Perovic
- Institute for Resistance Research and Stress Tolerance, Julius Kühn Institute (JKI), Erwin-Baur-Straße 27, 06484, Quedlinburg, Germany
| | - Frank Ordon
- Institute for Resistance Research and Stress Tolerance, Julius Kühn Institute (JKI), Erwin-Baur-Straße 27, 06484, Quedlinburg, Germany
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstr. 3, 06466, Seeland, Germany.
- Center for Integrated Breeding Research (CiBreed), Georg-August University, Von Siebold Straße 8, 37075, Göttingen, Germany.
| |
Collapse
|
41
|
Feyissa BA, Amyot L, Nasrollahi V, Papadopoulos Y, Kohalmi SE, Hannoufa A. Involvement of the miR156/SPL module in flooding response in Medicago sativa. Sci Rep 2021; 11:3243. [PMID: 33547346 PMCID: PMC7864954 DOI: 10.1038/s41598-021-82450-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 01/20/2021] [Indexed: 01/30/2023] Open
Abstract
The highly conserved plant microRNA, miR156, affects plant development, metabolite composition, and stress response. Our previous research revealed the role of miR156 in abiotic stress response in Medicago sativa exerted by downregulating SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE transcription factors. Here we investigated the involvement and possible mechanism of action of the miR156/SPL module in flooding tolerance in alfalfa. For that, we used miR156 overexpressing, SPL13RNAi, flood-tolerant (AAC-Trueman) and -sensitive (AC-Caribou) alfalfa cultivars exposed to flooding. We also used Arabidopsis ABA insensitive (abi1-2, abi5-8) mutants and transgenic lines with either overexpressed (KIN10-OX1, KIN10-OX2) or silenced (KIN10RNAi-1, KIN10RNAi-2) catalytic subunit of SnRK1 to investigate a possible role of ABA and SnRK1 in regulating miR156 expression under flooding. Physiological analysis, hormone profiling and global transcriptome changes revealed a role for miR156/SPL module in flooding tolerance. We also identified nine novel alfalfa SPLs (SPL1, SPL1a, SPL2a, SPL7, SPL7a, SPL8, SPL13a, SPL14, SPL16) responsive to flooding. Our results also showed a possible ABA-dependent SnRK1 upregulation to enhance miR156 expression, resulting in downregulation of SPL4, SPL7a, SPL8, SPL9, SPL13, and SPL13a. We conclude that these effects induce flooding adaptive responses in alfalfa and modulate stress physiology by affecting the transcriptome, ABA metabolites and secondary metabolism.
Collapse
Affiliation(s)
- Biruk A. Feyissa
- grid.55614.330000 0001 1302 4958Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3 Canada ,grid.39381.300000 0004 1936 8884Department of Biology, University of Western Ontario, 1151 Richmond Street, London, ON N6A5B7 Canada
| | - Lisa Amyot
- grid.55614.330000 0001 1302 4958Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3 Canada
| | - Vida Nasrollahi
- grid.55614.330000 0001 1302 4958Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3 Canada ,grid.39381.300000 0004 1936 8884Department of Biology, University of Western Ontario, 1151 Richmond Street, London, ON N6A5B7 Canada
| | | | - Susanne E. Kohalmi
- grid.39381.300000 0004 1936 8884Department of Biology, University of Western Ontario, 1151 Richmond Street, London, ON N6A5B7 Canada
| | - Abdelali Hannoufa
- grid.55614.330000 0001 1302 4958Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3 Canada ,grid.39381.300000 0004 1936 8884Department of Biology, University of Western Ontario, 1151 Richmond Street, London, ON N6A5B7 Canada
| |
Collapse
|
42
|
Wang Y, Sang Z, Xu S, Xu Q, Zeng X, Jabu D, Yuan H. Comparative proteomics analysis of Tibetan hull-less barley under osmotic stress via data-independent acquisition mass spectrometry. Gigascience 2021; 9:5775614. [PMID: 32126136 PMCID: PMC7053489 DOI: 10.1093/gigascience/giaa019] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/18/2020] [Accepted: 02/12/2020] [Indexed: 12/25/2022] Open
Abstract
Background Tibetan hull-less barley (Hordeum vulgare L. var. nudum) is one of the primary crops cultivated in the mountains of Tibet and encounters low temperature, high salinity, and drought. Specifically, drought is one of the major abiotic stresses that affect and limit Tibetan barley growth. Osmotic stress is often simultaneously accompanied by drought conditions. Thus, to improve crop yield, it is critical to explore the molecular mechanism governing the responses of hull-less barley to osmotic/drought stress conditions. Findings In this study, we used quantitative proteomics by data-independent acquisition mass spectrometry to investigate protein abundance changes in tolerant (XL) and sensitive (DQ) cultivars. A total of 6,921 proteins were identified and quantified in all samples. Two distinct strategies based on pairwise and time-course comparisons were utilized in the comprehensive analysis of differentially abundant proteins. Further functional analysis of differentially abundant proteins revealed that some hormone metabolism–associated and phytohormone abscisic acid–induced genes are primarily affected by osmotic stress. Enhanced regulation of reactive oxygen species (may promote the tolerance of hull-less barley under osmotic stress. Moreover, we found that some regulators, such as GRF, PR10, MAPK, and AMPK, were centrally positioned in the gene regulatory network, suggesting that they may have a dominant role in the osmotic stress response of Tibetan barley. Conclusions Our findings highlight a subset of proteins and processes that are involved in the alleviation of osmotic stress. In addition, this study provides a large-scale and multidimensional proteomic data resource for the further investigation and improvement of osmotic/drought stress tolerance in hull-less barley or other plant species.
Collapse
Affiliation(s)
- Yulin Wang
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, No.130 Jinzhu West Road, Chengguan District, Lhasa 850002, Tibet, China.,Institute of Agricultural Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, No.130 Jinzhu West Road, Chengguan District, Lhasa 850002, Tibet, China
| | - Zha Sang
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, No.130 Jinzhu West Road, Chengguan District, Lhasa 850002, Tibet, China.,Institute of Agricultural Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, No.130 Jinzhu West Road, Chengguan District, Lhasa 850002, Tibet, China
| | - Shaohang Xu
- Deepxomics Co., Ltd, No.2082 Shenyan Road, Yantian District., Shenzhen 518000, Guangdong, China
| | - Qijun Xu
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, No.130 Jinzhu West Road, Chengguan District, Lhasa 850002, Tibet, China.,Institute of Agricultural Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, No.130 Jinzhu West Road, Chengguan District, Lhasa 850002, Tibet, China
| | - Xingquan Zeng
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, No.130 Jinzhu West Road, Chengguan District, Lhasa 850002, Tibet, China.,Institute of Agricultural Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, No.130 Jinzhu West Road, Chengguan District, Lhasa 850002, Tibet, China
| | - Dunzhu Jabu
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, No.130 Jinzhu West Road, Chengguan District, Lhasa 850002, Tibet, China.,Institute of Agricultural Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, No.130 Jinzhu West Road, Chengguan District, Lhasa 850002, Tibet, China
| | - Hongjun Yuan
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, No.130 Jinzhu West Road, Chengguan District, Lhasa 850002, Tibet, China.,Institute of Agricultural Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, No.130 Jinzhu West Road, Chengguan District, Lhasa 850002, Tibet, China
| |
Collapse
|
43
|
Zhang H, Wang M, Li Y, Yan W, Chang Z, Ni H, Chen Z, Wu J, Xu C, Deng XW, Tang X. GDSL esterase/lipases OsGELP34 and OsGELP110/OsGELP115 are essential for rice pollen development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:1574-1593. [PMID: 32068333 DOI: 10.1111/jipb.12919] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/17/2020] [Indexed: 05/27/2023]
Abstract
Pollen exine contains complex biopolymers of aliphatic lipids and phenolics. Abnormal development of pollen exine often leads to plant sterility. Molecular mechanisms regulating exine formation have been studied extensively but remain ambiguous. Here we report the analyses of three GDSL esterase/lipase protein genes, OsGELP34, OsGELP110, and OsGELP115, for rice exine formation. OsGELP34 was identified by cloning of a male sterile mutant gene. OsGELP34 encodes an endoplasmic reticulum protein and was mainly expressed in anthers during pollen exine formation. osgelp34 mutant displayed abnormal exine and altered expression of a number of key genes required for pollen development. OsGELP110 was previously identified as a gene differentially expressed in meiotic anthers. OsGELP110 was most homologous to OsGELP115, and the two genes showed similar gene expression patterns. Both OsGELP110 and OsGELP115 proteins were localized in peroxisomes. Individual knockout of OsGELP110 and OsGELP115 did not affect the plant fertility, but double knockout of both genes altered the exine structure and rendered the plant male sterile. OsGELP34 is distant from OsGELP110 and OsGELP115 in sequence, and osgelp34 and osgelp110/osgelp115 mutants were different in anther morphology despite both were male sterile. These results suggested that OsGELP34 and OsGELP110/OsGELP115 catalyze different compounds for pollen exine development.
Collapse
Affiliation(s)
- Huihui Zhang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107, China
- School of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Menglong Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107, China
| | - Yiqi Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107, China
| | - Wei Yan
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107, China
| | - Zhenyi Chang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107, China
| | - Haoling Ni
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Zhufeng Chen
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107, China
| | - Jianxin Wu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Chunjue Xu
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107, China
| | - Xing Wang Deng
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107, China
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xiaoyan Tang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107, China
| |
Collapse
|
44
|
Tiwari B, Habermann K, Arif MA, Weil HL, Garcia-Molina A, Kleine T, Mühlhaus T, Frank W. Identification of small RNAs during cold acclimation in Arabidopsis thaliana. BMC PLANT BIOLOGY 2020; 20:298. [PMID: 32600430 PMCID: PMC7325139 DOI: 10.1186/s12870-020-02511-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/22/2020] [Indexed: 05/21/2023]
Abstract
BACKGROUND Cold stress causes dynamic changes in gene expression that are partially caused by small non-coding RNAs since they regulate protein coding transcripts and act in epigenetic gene silencing pathways. Thus, a detailed analysis of transcriptional changes of small RNAs (sRNAs) belonging to all known sRNA classes such as microRNAs (miRNA) and small interfering RNA (siRNAs) in response to cold contributes to an understanding of cold-related transcriptome changes. RESULT We subjected A. thaliana plants to cold acclimation conditions (4 °C) and analyzed the sRNA transcriptomes after 3 h, 6 h and 2 d. We found 93 cold responsive differentially expressed miRNAs and only 14 of these were previously shown to be cold responsive. We performed miRNA target prediction for all differentially expressed miRNAs and a GO analysis revealed the overrepresentation of miRNA-targeted transcripts that code for proteins acting in transcriptional regulation. We also identified a large number of differentially expressed cis- and trans-nat-siRNAs, as well as sRNAs that are derived from long non-coding RNAs. By combining the results of sRNA and mRNA profiling with miRNA target predictions and publicly available information on transcription factors, we reconstructed a cold-specific, miRNA and transcription factor dependent gene regulatory network. We verified the validity of links in the network by testing its ability to predict target gene expression under cold acclimation. CONCLUSION In A. thaliana, miRNAs and sRNAs derived from cis- and trans-NAT gene pairs and sRNAs derived from lncRNAs play an important role in regulating gene expression in cold acclimation conditions. This study provides a fundamental database to deepen our knowledge and understanding of regulatory networks in cold acclimation.
Collapse
Affiliation(s)
- Bhavika Tiwari
- Department of Biology I, Plant Molecular Cell Biology, Ludwig-Maximilians-Universität München, LMU Biocenter, Großhaderner Str. 2-4, 82152 Planegg-Martinsried, Germany
| | - Kristin Habermann
- Department of Biology I, Plant Molecular Cell Biology, Ludwig-Maximilians-Universität München, LMU Biocenter, Großhaderner Str. 2-4, 82152 Planegg-Martinsried, Germany
| | - M. Asif Arif
- Department of Biology I, Plant Molecular Cell Biology, Ludwig-Maximilians-Universität München, LMU Biocenter, Großhaderner Str. 2-4, 82152 Planegg-Martinsried, Germany
| | - Heinrich Lukas Weil
- Computational Systems Biology, Technische Universität Kaiserslautern, Paul-Ehrlich-Straße 23, 67663 Kaiserslautern, Germany
| | - Antoni Garcia-Molina
- Department of Biology I, Plant Molecular Biology, Ludwig-Maximilians-Universität München, LMU Biocenter, Großhaderner Str. 2-4, 82152 Planegg-Martinsried, Germany
| | - Tatjana Kleine
- Department of Biology I, Plant Molecular Biology, Ludwig-Maximilians-Universität München, LMU Biocenter, Großhaderner Str. 2-4, 82152 Planegg-Martinsried, Germany
| | - Timo Mühlhaus
- Computational Systems Biology, Technische Universität Kaiserslautern, Paul-Ehrlich-Straße 23, 67663 Kaiserslautern, Germany
| | - Wolfgang Frank
- Department of Biology I, Plant Molecular Cell Biology, Ludwig-Maximilians-Universität München, LMU Biocenter, Großhaderner Str. 2-4, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
45
|
Transcriptome Analysis of High-NUE (T29) and Low-NUE (T13) Genotypes Identified Different Responsive Patterns Involved in Nitrogen Stress in Ramie ( Boehmeria nivea (L.) Gaudich). PLANTS 2020; 9:plants9060767. [PMID: 32575463 PMCID: PMC7356044 DOI: 10.3390/plants9060767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/16/2020] [Accepted: 06/16/2020] [Indexed: 11/22/2022]
Abstract
Nitrogen-use efficiency (NUE) has significant impacts on plant growth and development. NUE in plants differs substantially in physiological resilience to nitrogen stress; however, the molecular mechanisms underlying enhanced resilience of high-NUE plants to nitrogen deficiency remains unclear. We compared transcriptome-wide gene expression between high-NUE and low-NUE ramie (Boehmeria nivea (L.) Gaudich) genotypes under nitrogen (N)-deficient and normal conditions to identify the transcriptomic expression patterns that contribute to ramie resilience to nitrogen deficiency. Two ramie genotypes with contrasting NUE were used in the study, including T29 (NUE = 46.01%) and T13 (NUE = 15.81%). Our results showed that high-NUE genotypes had higher gene expression under the control condition across 94 genes, including frontloaded genes such as GDSL esterase and lipase, gibberellin, UDP-glycosyltransferase, and omega-6 fatty acid desaturase. Seventeen stress-tolerance genes showed lower expression levels and varied little in response to N-deficiency stress in high-NUE genotypes. In contrast, 170 genes were upregulated under N deficiency in high-NUE genotypes but downregulated in low-NUE genotypes compared with the controls. Furthermore, we identified the potential key genes that enable ramie to maintain physiological resilience under N-deficiency stress, and categorized these genes into three groups based on the transcriptome and their expression patterns. The transcriptomic and clustering analysis of these nitrogen-utilization-related genes could provide insight to better understand the mechanism of linking among the three gene classes that enhance resilience in high-NUE ramie genotypes.
Collapse
|
46
|
Ding L, Li M, Guo X, Tang M, Cao J, Wang Z, Liu R, Zhu K, Guo L, Liu S, Tan X. Arabidopsis GDSL1 overexpression enhances rapeseed Sclerotinia sclerotiorum resistance and the functional identification of its homolog in Brassica napus. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:1255-1270. [PMID: 31693306 PMCID: PMC7152613 DOI: 10.1111/pbi.13289] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 10/17/2019] [Accepted: 10/27/2019] [Indexed: 05/18/2023]
Abstract
Sclerotinia stem rot (SSR) caused by Sclerotinia sclerotiorum is a devastating disease of rapeseed (Brassica napus L.). To date, the genetic mechanisms of rapeseed' interactions with S. sclerotiorum are not fully understood, and molecular-based breeding is still the most effective control strategy for this disease. Here, Arabidopsis thaliana GDSL1 was characterized as an extracellular GDSL lipase gene functioning in Sclerotinia resistance. Loss of AtGDSL1 function resulted in enhanced susceptibility to S. sclerotiorum. Conversely, overexpression of AtGDSL1 in B. napus enhanced resistance, which was associated with increased reactive oxygen species (ROS) and salicylic acid (SA) levels, and reduced jasmonic acid levels. In addition, AtGDSL1 can cause an increase in lipid precursor phosphatidic acid levels, which may lead to the activation of downstream ROS/SA defence-related pathways. However, the rapeseed BnGDSL1 with highest sequence similarity to AtGDSL1 had no effect on SSR resistance. A candidate gene association study revealed that only one AtGDSL1 homolog from rapeseed, BnaC07g35650D (BnGLIP1), significantly contributed to resistance traits in a natural B. napus population, and the resistance function was also confirmed by a transient expression assay in tobacco leaves. Moreover, genomic analyses revealed that BnGLIP1 locus was embedded in a selected region associated with SSR resistance during the breeding process, and its elite allele type belonged to a minor allele in the population. Thus, BnGLIP1 is the functional equivalent of AtGDSL1 and has a broad application in rapeseed S. sclerotiorum-resistance breeding.
Collapse
Affiliation(s)
- Li‐Na Ding
- Institute of Life SciencesJiangsu UniversityZhenjiangChina
| | - Ming Li
- Institute of Life SciencesJiangsu UniversityZhenjiangChina
| | - Xiao‐Juan Guo
- Institute of Life SciencesJiangsu UniversityZhenjiangChina
| | - Min‐Qiang Tang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Jun Cao
- Institute of Life SciencesJiangsu UniversityZhenjiangChina
| | - Zheng Wang
- Institute of Life SciencesJiangsu UniversityZhenjiangChina
| | - Rui Liu
- Institute of Life SciencesJiangsu UniversityZhenjiangChina
| | - Ke‐Ming Zhu
- Institute of Life SciencesJiangsu UniversityZhenjiangChina
| | - Liang Guo
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Sheng‐Yi Liu
- The Oil Crops Research Institute (OCRI) of the Chinese Academy of Agricultural Sciences (CAAS)WuhanChina
| | - Xiao‐Li Tan
- Institute of Life SciencesJiangsu UniversityZhenjiangChina
| |
Collapse
|
47
|
Gupta A, Sinha R, Fernandes JL, Abdelrahman M, Burritt DJ, Tran LSP. Phytohormones regulate convergent and divergent responses between individual and combined drought and pathogen infection. Crit Rev Biotechnol 2020; 40:320-340. [DOI: 10.1080/07388551.2019.1710459] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Aarti Gupta
- Institute of Plant Genetics, Polish Academy of Sciences, Poznan, Poland
| | | | - Joel Lars Fernandes
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Mostafa Abdelrahman
- Arid Land Research Center, Tottori University, Tottori, Japan
- Botany Department, Faculty of Science, Aswan University, Aswan, Egypt
| | | | - Lam-Son Phan Tran
- Plant Stress Research Group, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| |
Collapse
|
48
|
Su HG, Zhang XH, Wang TT, Wei WL, Wang YX, Chen J, Zhou YB, Chen M, Ma YZ, Xu ZS, Min DH. Genome-Wide Identification, Evolution, and Expression of GDSL-Type Esterase/Lipase Gene Family in Soybean. FRONTIERS IN PLANT SCIENCE 2020; 11:726. [PMID: 32670311 PMCID: PMC7332888 DOI: 10.3389/fpls.2020.00726] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 05/06/2020] [Indexed: 05/03/2023]
Abstract
GDSL-type esterase/lipase proteins (GELPs) belong to the SGNH hydrolase superfamily and contain a conserved GDSL motif at their N-terminus. GELPs are widely distributed in nature, from microbes to plants, and play crucial roles in growth and development, stress responses and pathogen defense. However, the identification and functional analysis of GELP genes are hardly explored in soybean. This study describes the identification of 194 GELP genes in the soybean genome and their phylogenetic classification into 11 subfamilies (A-K). GmGELP genes are disproportionally distributed on 20 soybean chromosomes. Large-scale WGD/segmental duplication events contribute greatly to the expansion of the soybean GDSL gene family. The Ka/Ks ratios of more than 70% of duplicated gene pairs ranged from 0.1-0.3, indicating that most GmGELP genes were under purifying selection pressure. Gene structure analysis indicate that more than 74% of GmGELP genes are interrupted by 4 introns and composed of 5 exons in their coding regions, and closer homologous genes in the phylogenetic tree often have similar exon-intron organization. Further statistics revealed that approximately 56% of subfamily K members contain more than 4 introns, and about 28% of subfamily I members consist of less than 4 introns. For this reason, the two subfamilies were used to simulate intron gain and loss events, respectively. Furthermore, a new model of intron position distribution was established in current study to explore whether the evolution of multi-gene families resulted from the diversity of gene structure. Finally, RNA-seq data were used to investigate the expression profiles of GmGELP gene under different tissues and multiple abiotic stress treatments. Subsequently, 7 stress-responsive GmGELP genes were selected to verify their expression levels by RT-qPCR, the results were consistent with RNA-seq data. Among 7 GmGELP genes, GmGELP28 was selected for further study owing to clear responses to drought, salt and ABA treatments. Transgenic Arabidopsis thaliana and soybean plants showed drought and salt tolerant phenotype. Overexpression of GmGELP28 resulted in the changes of several physiological indicators, which allowed plants to adapt adverse conditions. In all, GmGELP28 is a potential candidate gene for improving the salinity and drought tolerance of soybean.
Collapse
Affiliation(s)
- Hong-Gang Su
- College of Life Sciences, College of Agronomy, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Xiao-Hong Zhang
- College of Life Sciences, College of Agronomy, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
| | - Ting-Ting Wang
- College of Agriculture, Yangtze University, Hubei Collaborative Innovation Center for Grain Industry, Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Jingzhou, China
| | - Wen-Liang Wei
- College of Agriculture, Yangtze University, Hubei Collaborative Innovation Center for Grain Industry, Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Jingzhou, China
| | - Yan-Xia Wang
- Shijiazhuang Academy of Agricultural and Forestry Sciences, Research Center of Wheat Engineering Technology of Hebei, Shijiazhuang, China
| | - Jun Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Yong-Bin Zhou
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Ming Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - You-Zhi Ma
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Zhao-Shi Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
- Zhao-Shi Xu,
| | - Dong-Hong Min
- College of Life Sciences, College of Agronomy, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
- *Correspondence: Dong-Hong Min,
| |
Collapse
|
49
|
Li Z, Li L, Huo Y, Chen Z, Zhao Y, Huang J, Jian S, Rong Z, Wu D, Gan J, Hu X, Li J, Xu XW. Structure-guided protein engineering increases enzymatic activities of the SGNH family esterases. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:107. [PMID: 32549911 PMCID: PMC7294632 DOI: 10.1186/s13068-020-01742-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 05/30/2020] [Indexed: 05/03/2023]
Abstract
BACKGROUND Esterases and lipases hydrolyze short-chain esters and long-chain triglycerides, respectively, and therefore play essential roles in the synthesis and decomposition of ester bonds in the pharmaceutical and food industries. Many SGNH family esterases share high similarity in sequences. However, they have distinct enzymatic activities toward the same substrates. Due to a lack of structural information, the detailed catalytic mechanisms of these esterases remain barely investigated. RESULTS In this study, we identified two SGNH family esterases, CrmE10 and AlinE4, from marine bacteria with significantly different preferences for pH, temperature, metal ion, and organic solvent tolerance despite high sequence similarity. The crystal structures of these two esterases, including wild type and mutants, were determined to high resolutions ranging from 1.18 Å to 2.24 Å. Both CrmE10 and AlinE4 were composed of five β-strands and nine α-helices, which formed one compact N-terminal α/β globular domain and one extended C-terminal domain. The aspartic residues (D178 in CrmE10/D162 in AlinE4) destabilized the conformations of the catalytic triad (Ser-Asp-His) in both esterases, and the metal ion Cd2+ might reduce enzymatic activity by blocking proton transfer or substrate binding. CrmE10 and AlinE4 showed distinctly different electrostatic surface potentials, despite the similar atomic architectures and a similar swap catalytic mechanism. When five negatively charged residues (Asp or Glu) were mutated to residue Lys, CrmE10 obtained elevated alkaline adaptability and significantly increased the enzymatic activity from 0 to 20% at pH 10.5. Also, CrmE10 mutants exhibited dramatic change for enzymatic properties when compared with the wide-type enzyme. CONCLUSIONS These findings offer a perspective for understanding the catalytic mechanism of different esterases and might facilitate the industrial biocatalytic applications.
Collapse
Affiliation(s)
- Zhengyang Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, 200438 China
| | - Long Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, 200438 China
| | - Yingyi Huo
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources, Ministry of Natural Resources & Second Institute of Oceanography, Hangzhou, 310012 China
| | - Zijun Chen
- State Key Laboratory of Genetic Engineering, School of Life Sciences, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, 200438 China
| | - Yu Zhao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, 200438 China
| | - Jing Huang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, 200438 China
| | - Shuling Jian
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources, Ministry of Natural Resources & Second Institute of Oceanography, Hangzhou, 310012 China
| | - Zhen Rong
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources, Ministry of Natural Resources & Second Institute of Oceanography, Hangzhou, 310012 China
| | - Di Wu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, 200438 China
| | - Jianhua Gan
- State Key Laboratory of Genetic Engineering, School of Life Sciences, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, 200438 China
| | - Xiaojian Hu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, 200438 China
| | - Jixi Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, 200438 China
| | - Xue-Wei Xu
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources, Ministry of Natural Resources & Second Institute of Oceanography, Hangzhou, 310012 China
| |
Collapse
|
50
|
Hussain A, Noman A, Khan MI, Zaynab M, Aqeel M, Anwar M, Ashraf MF, Liu Z, Raza A, Mahpara S, Bakhsh A, He S. Molecular regulation of pepper innate immunity and stress tolerance: An overview of WRKY TFs. Microb Pathog 2019; 135:103610. [DOI: 10.1016/j.micpath.2019.103610] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 04/22/2019] [Accepted: 06/21/2019] [Indexed: 01/20/2023]
|