1
|
Fukudome M, Uchiumi T. Regulation of nitric oxide by phytoglobins in Lotus japonicus is involved in mycorrhizal symbiosis with Rhizophagus irregularis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 340:111984. [PMID: 38220094 DOI: 10.1016/j.plantsci.2024.111984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/19/2023] [Accepted: 01/08/2024] [Indexed: 01/16/2024]
Abstract
Various reactive molecular species are generated in plant-microbe interactions, and these species participate in defense and symbiotic responses. Leguminous plants successfully establish symbiosis by maintaining an appropriate level of nitric oxide (NO), which is generated in the roots and nodules during root nodule symbiosis. Phytoglobin (plant hemoglobin) controls NO levels in plants. In this study, we investigated mycorrhizal symbiosis, which occurs in more than 80% of land plants, between Rhizophagus irregularis and Lotus japonicus to clarify the involvement of phytoglobin-mediated NO regulation. The mycorrhizae of L. japonicus exhibited higher NO levels in the presence of R. irregularis than in its absence, especially at the infection site. LjGlb1-1, a phytoglobin that regulates NO level in L. japonicus, was upregulated during symbiosis with R. irregularis. In transformed hairy roots carrying the ProLjGlb1-1:GUS construct, LjGlb1-1 expression was observed at the R. irregularis infection site. We further examined the symbiotic phenotypes of L. japonicus lines with high and low LjGlb1-1 expression with R. irregularis. During mycorrhizal symbiosis, the high LjGlb1-1 expression line exhibited better growth than the wild-type, whereas the low expression line exhibited poor growth. In addition, the expression of LjPT4, a phosphate transporter specific to mycorrhizal symbiosis, was higher in the high LjGlb1-1 expression line, whereas that of the tubulin gene of R. irregularis was lower in the low LjGlb1-1 expression line than in the wild-type. These results confirm that NO regulation by LjGlb1-1 is involved in mycorrhizal symbiosis in L. japonicus, as it is reportedly in nitrogen-fixing symbiosis.
Collapse
Affiliation(s)
- Mitsutaka Fukudome
- Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan.
| | - Toshiki Uchiumi
- Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima 890-0065, Japan.
| |
Collapse
|
2
|
Minguillón S, Román Á, Pérez-Rontomé C, Wang L, Xu P, Murray JD, Duanmu D, Rubio MC, Becana M. Dynamics of hemoglobins during nodule development, nitrate response, and dark stress in Lotus japonicus. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1547-1564. [PMID: 37976184 PMCID: PMC10901204 DOI: 10.1093/jxb/erad455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/15/2023] [Indexed: 11/19/2023]
Abstract
Legume nodules express multiple leghemoglobins (Lbs) and non-symbiotic hemoglobins (Glbs), but how they are regulated is unclear. Here, we study the regulation of all Lbs and Glbs of Lotus japonicus in different physiologically relevant conditions and mutant backgrounds. We quantified hemoglobin expression, localized reactive oxygen species (ROS) and nitric oxide (NO) in nodules, and deployed mutants deficient in Lbs and in the transcription factors NLP4 (associated with nitrate sensitivity) and NAC094 (associated with senescence). Expression of Lbs and class 2 Glbs was suppressed by nitrate, whereas expression of class 1 and 3 Glbs was positively correlated with external nitrate concentrations. Nitrate-responsive elements were found in the promoters of several hemoglobin genes. Mutant nodules without Lbs showed accumulation of ROS and NO and alterations of antioxidants and senescence markers. NO accumulation occurred by a nitrate-independent pathway, probably due to the virtual disappearance of Glb1-1 and the deficiency of Lbs. We conclude that hemoglobins are regulated in a gene-specific manner during nodule development and in response to nitrate and dark stress. Mutant analyses reveal that nodules lacking Lbs experience nitro-oxidative stress and that there is compensation of expression between Lb1 and Lb2. They also show modulation of hemoglobin expression by NLP4 and NAC094.
Collapse
Affiliation(s)
- Samuel Minguillón
- Departamento de Biología Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (CSIC), Avenida Montañana 1005, Zaragoza, and Unidad Asociada GBsC (BIFI-Unizar) al CSIC, Zaragoza, Spain
| | - Ángela Román
- Departamento de Biología Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (CSIC), Avenida Montañana 1005, Zaragoza, and Unidad Asociada GBsC (BIFI-Unizar) al CSIC, Zaragoza, Spain
| | - Carmen Pérez-Rontomé
- Departamento de Biología Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (CSIC), Avenida Montañana 1005, Zaragoza, and Unidad Asociada GBsC (BIFI-Unizar) al CSIC, Zaragoza, Spain
| | - Longlong Wang
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ping Xu
- CAS-JIC Centre of Excellence for Plant and Microbial Science, Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Jeremy D Murray
- CAS-JIC Centre of Excellence for Plant and Microbial Science, Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Deqiang Duanmu
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Maria C Rubio
- Departamento de Biología Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (CSIC), Avenida Montañana 1005, Zaragoza, and Unidad Asociada GBsC (BIFI-Unizar) al CSIC, Zaragoza, Spain
| | - Manuel Becana
- Departamento de Biología Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (CSIC), Avenida Montañana 1005, Zaragoza, and Unidad Asociada GBsC (BIFI-Unizar) al CSIC, Zaragoza, Spain
| |
Collapse
|
3
|
Zhaogao L, Yaxuan W, Mengwei X, Haiyu L, Lin L, Delin X. Molecular mechanism overview of metabolite biosynthesis in medicinal plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 204:108125. [PMID: 37883919 DOI: 10.1016/j.plaphy.2023.108125] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/21/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023]
Abstract
Medicinal plants are essential and rich resources for plant-based medicines and new drugs. Increasing attentions are paid to the secondary metabolites of medicinal plants due to their unique biological activity, pharmacological action, and high utilization value. However, the development of medicinal plants is constrained by limited natural resources and an unclear understanding of the mechanisms underlying active medicinal ingredients, thereby rendering the utilization and exploration of secondary metabolites more challenging. Besides, with the advancement of research on biosynthesis and molecular metabolism of natural products from medicinal plants, the methods for studying the biological activity and pharmacological effects of these products are constantly evolving. In recent years, significant progress has been made in the biosynthetic pathways and related regulatory genes of secondary metabolites in medicinal plants, which has greatly advanced both basic research and the development of clinical applications for medicinal plants. In this review, we discuss the past two decades of international research on the development of medicinal plant resources, mainly focusing on the biosynthetic pathway of secondary metabolites, intracellular signal transduction processes, multi-omics applications, and the application of gene editing technology in related research progress. We also discuss future development trends to promote the deep mining and development of natural products from medicinal plants, providing a useful reference.
Collapse
Affiliation(s)
- Li Zhaogao
- Department of Cell Biology, Zunyi Medical University, No.6 Xuefuxi Road Xinpu District of Zunyi City, Zunyi, 563099, Guizhou, China.
| | - Wang Yaxuan
- Department of Cell Biology, Zunyi Medical University, No.6 Xuefuxi Road Xinpu District of Zunyi City, Zunyi, 563099, Guizhou, China.
| | - Xu Mengwei
- Department of Cell Biology, Zunyi Medical University, No.6 Xuefuxi Road Xinpu District of Zunyi City, Zunyi, 563099, Guizhou, China; Department of Medical Instrumental Analysis, Zunyi Medical University, No.6 Xuefuxi Road Xinpu District of Zunyi City, Zunyi, 563099, Guizhou, China.
| | - Liu Haiyu
- Department of Cell Biology, Zunyi Medical University, No.6 Xuefuxi Road Xinpu District of Zunyi City, Zunyi, 563099, Guizhou, China; Guizhou Provincial Demonstration Center of Basic Medical Experimental Teaching, Zunyi Medical University, No.6 Xuefuxi Road Xinpu District of Zunyi City, Zunyi, 563099, Guizhou, China.
| | - Li Lin
- Department of Cell Biology, Zunyi Medical University, No.6 Xuefuxi Road Xinpu District of Zunyi City, Zunyi, 563099, Guizhou, China.
| | - Xu Delin
- Department of Medical Instrumental Analysis, Zunyi Medical University, No.6 Xuefuxi Road Xinpu District of Zunyi City, Zunyi, 563099, Guizhou, China; Guizhou Provincial Demonstration Center of Basic Medical Experimental Teaching, Zunyi Medical University, No.6 Xuefuxi Road Xinpu District of Zunyi City, Zunyi, 563099, Guizhou, China.
| |
Collapse
|
4
|
Saini S, Sharma P, Singh P, Kumar V, Yadav P, Sharma A. Nitric oxide: An emerging warrior of plant physiology under abiotic stress. Nitric Oxide 2023; 140-141:58-76. [PMID: 37848156 DOI: 10.1016/j.niox.2023.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/05/2023] [Accepted: 10/09/2023] [Indexed: 10/19/2023]
Abstract
The natural environment of plants comprises a complex set of various abiotic stresses and their capability to react and survive under this anticipated changing climate is highly flexible and involves a series of balanced interactions between signaling molecules where nitric oxide becomes a crucial component. In this article, we focussed on the role of nitric oxide (NO) in various signal transduction pathways of plants and its positive impact on maintaining cellular homeostasis under various abiotic stresses. Besides this, the recent data on interactions of NO with various phytohormones to control physiological and biochemical processes to attain abiotic stress tolerance have also been considered. These crosstalks modulate the plant's defense mechanism and help in alleviating the negative impact of stress. While focusing on the diverse functions of NO, an effort has been made to explore the functions of NO-mediated post-translational modifications, such as the N-end rule pathway, tyrosine nitration, and S-nitrosylation which revealed the exact mechanism and characterization of proteins that modify various metabolic processes in stressed conditions. Considering all of these factors, the present review emphasizes the role of NO and its interlinking with various phytohormones in maintaining developmental processes in plants, specifically under unfavorable environments.
Collapse
Affiliation(s)
- Sakshi Saini
- Department of Botany, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Priyanka Sharma
- Department of Botany, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Pooja Singh
- Department of Botany, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Vikram Kumar
- Department of Botany, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Priya Yadav
- Department of Botany, Zakir Husain Delhi College, University of Delhi, New Delhi, India.
| | - Asha Sharma
- Department of Botany, Maharshi Dayanand University, Rohtak, 124001, Haryana, India.
| |
Collapse
|
5
|
Mira MM, Hill RD, Hilo A, Langer M, Robertson S, Igamberdiev AU, Wilkins O, Rolletschek H, Stasolla C. Plant stem cells under low oxygen: metabolic rewiring by phytoglobin underlies stem cell functionality. PLANT PHYSIOLOGY 2023; 193:1416-1432. [PMID: 37311198 DOI: 10.1093/plphys/kiad344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 06/15/2023]
Abstract
Root growth in maize (Zea mays L.) is regulated by the activity of the quiescent center (QC) stem cells located within the root apical meristem. Here, we show that despite being highly hypoxic under normal oxygen tension, QC stem cells are vulnerable to hypoxic stress, which causes their degradation with subsequent inhibition of root growth. Under low oxygen, QC stem cells became depleted of starch and soluble sugars and exhibited reliance on glycolytic fermentation with the impairment of the TCA cycle through the depressed activity of several enzymes, including pyruvate dehydrogenase (PDH). This finding suggests that carbohydrate delivery from the shoot might be insufficient to meet the metabolic demand of QC stem cells during stress. Some metabolic changes characteristic of the hypoxic response in mature root cells were not observed in the QC. Hypoxia-responsive genes, such as PYRUVATE DECARBOXYLASE (PDC) and ALCOHOL DEHYDROGENASE (ADH), were not activated in response to hypoxia, despite an increase in ADH activity. Increases in phosphoenolpyruvate (PEP) with little change in steady-state levels of succinate were also atypical responses to low-oxygen tensions. Overexpression of PHYTOGLOBIN 1 (ZmPgb1.1) preserved the functionality of the QC stem cells during stress. The QC stem cell preservation was underpinned by extensive metabolic rewiring centered around activation of the TCA cycle and retention of carbohydrate storage products, denoting a more efficient energy production and diminished demand for carbohydrates under conditions where nutrient transport may be limiting. Overall, this study provides an overview of metabolic responses occurring in plant stem cells during oxygen deficiency.
Collapse
Affiliation(s)
- Mohammed M Mira
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba R3T2N2, Canada
- Department of Botany and Microbiology, Tanta University, Tanta 31527, Egypt
| | - Robert D Hill
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba R3T2N2, Canada
| | - Alexander Hilo
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Matthias Langer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Sean Robertson
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba R3T2N2, Canada
| | - Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John's, NL A1C5S7, Canada
| | - Olivia Wilkins
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba R3T2N2, Canada
| | - Hardy Rolletschek
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Claudio Stasolla
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba R3T2N2, Canada
| |
Collapse
|
6
|
Hill RD, de Castro J, Mira MM, Igamberdiev AU, Hebelstrup KH, Renault S, Xu W, Badea A, Stasolla C. Over-expression of the barley Phytoglobin 1 (HvPgb1) evokes leaf-specific transcriptional responses during root waterlogging. JOURNAL OF PLANT PHYSIOLOGY 2023; 283:153944. [PMID: 36933369 DOI: 10.1016/j.jplph.2023.153944] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Oxygen deprivation (hypoxia) in the root due to waterlogging causes profound metabolic changes in the aerial organs depressing growth and limiting plant productivity in barley (Hordeum vulgare L.). Genome-wide analyses in waterlogged wild type (WT) barley (cv. Golden Promise) plants and plants over-expressing the phytoglobin 1 HvPgb1 [HvPgb1(OE)] were performed to determine leaf specific transcriptional responses during waterlogging. Normoxic WT plants outperformed their HvPgb1(OE) counterparts for dry weight biomass, chlorophyll content, photosynthetic rate, stomatal conductance, and transpiration. Root waterlogging severely depressed all these parameters in WT plants but not in HvPgb1(OE) plants, which exhibited an increase in photosynthetic rate. In leaftissue, root waterlogging repressed genes encoding photosynthetic components and chlorophyll biosynthetic enzymes, while induced those of reactive oxygen species (ROS)-generating enzymes. This repression was alleviated in HvPgb1(OE) leaves which also exhibited an induction of enzymes participating in antioxidant responses. In the same leaves, the transcript levels of several genes participating in nitrogen metabolism were also higher relative to WT leaves. Ethylene levels were diminished by root waterlogging in leaves of WT plants, but not in HvPgb1(OE), which were enriched in transcripts of ethylene biosynthetic enzymes and ethylene response factors. Pharmacological treatments increasing the level or action of ethylene further suggested the requirement of ethylene in plant response to root waterlogging. In natural germplasm an elevation in foliar HvPgb1 between 16h and 24h of waterlogging occurred in tolerant genotypes but not in susceptible ones. By integrating morpho-physiological parameters with transcriptome data, this study provides a framework defining leaf responses to root waterlogging and indicates that the induction of HvPgb1 may be used as a selection tool to enhance resilience to excess moisture.
Collapse
Affiliation(s)
- Robert D Hill
- Department of Plant Science, University of Manitoba, Winnipeg, R3T2N2, MB, Canada
| | - James de Castro
- Department of Plant Science, University of Manitoba, Winnipeg, R3T2N2, MB, Canada
| | - Mohammed M Mira
- Department of Plant Science, University of Manitoba, Winnipeg, R3T2N2, MB, Canada; Department of Botany and Microbiology, Tanta University, Tanta, Egypt.
| | - Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, A1C5S7, Canada
| | - Kim H Hebelstrup
- Department of Molecular Biology and Genetics, University of Aarhus, Forsogsvej 1, 4200, Slagelse, Denmark
| | - Sylvie Renault
- Department of Biological Sciences, University of Manitoba, Winnipeg, R3T2N2, MB, Canada
| | - Wayne Xu
- Brandon Research and Development Center, Agriculture and Agri-Food Canada, 2701 Grand Valley Road, Brandon, MB, R7A 5Y3, Canada
| | - Ana Badea
- Brandon Research and Development Center, Agriculture and Agri-Food Canada, 2701 Grand Valley Road, Brandon, MB, R7A 5Y3, Canada
| | - Claudio Stasolla
- Department of Plant Science, University of Manitoba, Winnipeg, R3T2N2, MB, Canada.
| |
Collapse
|
7
|
Mira MM, Day S, Ibrahim S, Hill RD, Stasolla C. The Arabidopsis Phytoglobin 2 mediates phytochrome B (phyB) light signaling responses during somatic embryogenesis. PLANTA 2023; 257:88. [PMID: 36976396 DOI: 10.1007/s00425-023-04121-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
During the light induction of somatic embryogenesis, phyB-Pfr suppresses Phytoglobin 2, known to elevate nitric oxide (NO). NO depresses Phytochrome Interacting Factor 4 (PIF4) relieving its inhibition on embryogenesis through auxin. An obligatory step of many in vitro embryogenic systems is the somatic-embryogenic transition culminating with the formation of the embryogenic tissue. In Arabidopsis, this transition requires light and is facilitated by high levels of nitric oxide (NO) generated by either suppression of the NO scavenger Phytoglobin 2 (Pgb2), or its removal from the nucleus. Using a previously characterized induction system regulating the cellular localization of Pgb2, we demonstrated the interplay between phytochrome B (phyB) and Pgb2 during the formation of embryogenic tissue. The deactivation of phyB in the dark coincides with the induction of Pgb2 known to reduce the level of NO; consequently, embryogenesis is inhibited. Under light conditions, the active form of phyB depresses the levels of Pgb2 transcripts, thus expecting an increase in cellular NO. Induction of Pgb2 increases Phytochrome Interacting Factor 4 (PIF4) suggesting that high levels of NO repress PIF4. The PIF4 inhibition is sufficient to induce several auxin biosynthetic (CYP79B2, AMI1, and YUCCA 1, 2, and 6) and response (ARF5, 8, and 16) genes, conducive to the formation of the embryonic tissue and production of somatic embryos. Auxin responses mediated by ARF10 and 17 appear to be regulated by Pgb2, possibly through NO, in a PIF4-independent fashion. Overall, this work provides a new and preliminary model integrating Pgb2 (and NO) with phyB in the light regulation of in vitro embryogenesis.
Collapse
Affiliation(s)
- Mohammed M Mira
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
- Department of Botany, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Sam Day
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Shimaa Ibrahim
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Robert D Hill
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Claudio Stasolla
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
| |
Collapse
|
8
|
Basso MF, Lourenço-Tessutti IT, Moreira-Pinto CE, Mendes RAG, Paes-de-Melo B, das Neves MR, Macedo AF, Figueiredo V, Grandis A, Macedo LLP, Arraes FBM, do Carmo Costa MM, Togawa RC, Enrich-Prast A, Marcelino-Guimaraes FC, Gomes ACMM, Silva MCM, Floh EIS, Buckeridge MS, de Almeida Engler J, Grossi-de-Sa MF. Overexpression of a soybean Globin (GmGlb1-1) gene reduces plant susceptibility to Meloidogyne incognita. PLANTA 2022; 256:83. [PMID: 36112244 DOI: 10.1007/s00425-022-03992-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
The overexpression of the GmGlb1-1 gene reduces plant susceptibility to Meloidogyne incognita. Non-symbiotic globin class #1 (Glb1) genes are expressed in different plant organs, have a high affinity for oxygen, and are related to nitric oxide (NO) turnover. Previous studies showed that soybean Glb1 genes are upregulated in soybean plants under flooding conditions. Herein, the GmGlb1-1 gene was identified in soybean as being upregulated in the nematode-resistant genotype PI595099 compared to the nematode-susceptible cultivar BRS133 during plant parasitism by Meloidogyne incognita. The Arabidopsis thaliana and Nicotiana tabacum transgenic lines overexpressing the GmGlb1-1 gene showed reduced susceptibility to M. incognita. Consistently, gall morphology data indicated that pJ2 nematodes that infected the transgenic lines showed developmental alterations and delayed parasitism progress. Although no significant changes in biomass and seed yield were detected, the transgenic lines showed an elongated, etiolation-like growth under well-irrigation, and also developed more axillary roots under flooding conditions. In addition, transgenic lines showed upregulation of some important genes involved in plant defense response to oxidative stress. In agreement, higher hydrogen peroxide accumulation and reduced activity of reactive oxygen species (ROS) detoxification enzymes were also observed in these transgenic lines. Thus, based on our data and previous studies, it was hypothesized that constitutive overexpression of the GmGlb1-1 gene can interfere in the dynamics of ROS production and NO scavenging, enhancing the acquired systemic acclimation to biotic and abiotic stresses, and improving the cellular homeostasis. Therefore, these collective data suggest that ectopic or nematode-induced overexpression, or enhanced expression of the GmGlb1-1 gene using CRISPR/dCas9 offers great potential for application in commercial soybean cultivars aiming to reduce plant susceptibility to M. incognita.
Collapse
Affiliation(s)
- Marcos Fernando Basso
- Embrapa Genetic Resources and Biotechnology, PqEB Final, W5 Norte, PO Box 02372, Brasília, DF, 70770-917, Brazil
- National Institute of Science and Technology, INCT Plant Stress Biotech, EMBRAPA, Brasília, DF, 70770-917, Brazil
| | - Isabela Tristan Lourenço-Tessutti
- Embrapa Genetic Resources and Biotechnology, PqEB Final, W5 Norte, PO Box 02372, Brasília, DF, 70770-917, Brazil
- National Institute of Science and Technology, INCT Plant Stress Biotech, EMBRAPA, Brasília, DF, 70770-917, Brazil
| | - Clidia Eduarda Moreira-Pinto
- Embrapa Genetic Resources and Biotechnology, PqEB Final, W5 Norte, PO Box 02372, Brasília, DF, 70770-917, Brazil
- National Institute of Science and Technology, INCT Plant Stress Biotech, EMBRAPA, Brasília, DF, 70770-917, Brazil
- Federal University of Brasília, Brasília, DF, 70910-900, Brazil
| | - Reneida Aparecida Godinho Mendes
- Embrapa Genetic Resources and Biotechnology, PqEB Final, W5 Norte, PO Box 02372, Brasília, DF, 70770-917, Brazil
- Federal University of Brasília, Brasília, DF, 70910-900, Brazil
| | - Bruno Paes-de-Melo
- Embrapa Genetic Resources and Biotechnology, PqEB Final, W5 Norte, PO Box 02372, Brasília, DF, 70770-917, Brazil
- National Institute of Science and Technology, INCT Plant Stress Biotech, EMBRAPA, Brasília, DF, 70770-917, Brazil
| | - Maysa Rosa das Neves
- Embrapa Genetic Resources and Biotechnology, PqEB Final, W5 Norte, PO Box 02372, Brasília, DF, 70770-917, Brazil
| | - Amanda Ferreira Macedo
- Department of Botany, Biosciences Institute, University of São Paulo, São Paulo, SP, 05508-090, Brazil
| | - Viviane Figueiredo
- Multiuser Unit of Environmental Analysis and Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-971, Brazil
| | - Adriana Grandis
- Department of Botany, Biosciences Institute, University of São Paulo, São Paulo, SP, 05508-090, Brazil
| | - Leonardo Lima Pepino Macedo
- Embrapa Genetic Resources and Biotechnology, PqEB Final, W5 Norte, PO Box 02372, Brasília, DF, 70770-917, Brazil
- National Institute of Science and Technology, INCT Plant Stress Biotech, EMBRAPA, Brasília, DF, 70770-917, Brazil
| | - Fabrício Barbosa Monteiro Arraes
- Embrapa Genetic Resources and Biotechnology, PqEB Final, W5 Norte, PO Box 02372, Brasília, DF, 70770-917, Brazil
- National Institute of Science and Technology, INCT Plant Stress Biotech, EMBRAPA, Brasília, DF, 70770-917, Brazil
| | - Marcos Mota do Carmo Costa
- Embrapa Genetic Resources and Biotechnology, PqEB Final, W5 Norte, PO Box 02372, Brasília, DF, 70770-917, Brazil
| | - Roberto Coiti Togawa
- Embrapa Genetic Resources and Biotechnology, PqEB Final, W5 Norte, PO Box 02372, Brasília, DF, 70770-917, Brazil
- National Institute of Science and Technology, INCT Plant Stress Biotech, EMBRAPA, Brasília, DF, 70770-917, Brazil
| | - Alex Enrich-Prast
- Multiuser Unit of Environmental Analysis and Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-971, Brazil
- Biogas Research Center and Department of Thematic Studies, Environmental Change, Linköping University, Linköping, Sweden
| | - Francismar Corrêa Marcelino-Guimaraes
- National Institute of Science and Technology, INCT Plant Stress Biotech, EMBRAPA, Brasília, DF, 70770-917, Brazil
- Embrapa Soybean, Londrina, PR, 86001-970, Brazil
| | | | - Maria Cristina Mattar Silva
- Embrapa Genetic Resources and Biotechnology, PqEB Final, W5 Norte, PO Box 02372, Brasília, DF, 70770-917, Brazil
- National Institute of Science and Technology, INCT Plant Stress Biotech, EMBRAPA, Brasília, DF, 70770-917, Brazil
| | - Eny Iochevet Segal Floh
- Department of Botany, Biosciences Institute, University of São Paulo, São Paulo, SP, 05508-090, Brazil
| | | | - Janice de Almeida Engler
- National Institute of Science and Technology, INCT Plant Stress Biotech, EMBRAPA, Brasília, DF, 70770-917, Brazil
- INRAE, Université Côte d'Azur, CNRS, ISA, 06903, Sophia Antipolis, France
| | - Maria Fatima Grossi-de-Sa
- Embrapa Genetic Resources and Biotechnology, PqEB Final, W5 Norte, PO Box 02372, Brasília, DF, 70770-917, Brazil.
- National Institute of Science and Technology, INCT Plant Stress Biotech, EMBRAPA, Brasília, DF, 70770-917, Brazil.
- Catholic University of Brasília, Brasília, DF, 71966-700, Brazil.
| |
Collapse
|
9
|
Pogány M, Dankó T, Hegyi-Kaló J, Kámán-Tóth E, Szám DR, Hamow KÁ, Kalapos B, Kiss L, Fodor J, Gullner G, Váczy KZ, Barna B. Redox and Hormonal Changes in the Transcriptome of Grape (Vitis vinifera) Berries during Natural Noble Rot Development. PLANTS 2022; 11:plants11070864. [PMID: 35406844 PMCID: PMC9003472 DOI: 10.3390/plants11070864] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/10/2022] [Accepted: 03/17/2022] [Indexed: 01/18/2023]
Abstract
Noble rot is a favorable form of the interaction between grape (Vitis spp.) berries and the phytopathogenic fungus Botrytis cinerea. The transcriptome pattern of grapevine cells subject to natural noble rot development in the historic Hungarian Tokaj wine region has not been previously published. Furmint, a traditional white Tokaj variety suited to develop great quality noble rot was used in the experiments. Exploring a subset of the Furmint transcriptome redox and hormonal changes distinguishing between noble rot and bunch rot was revealed. Noble rot is defined by an early spike in abscisic acid (ABA) accumulation and a pronounced remodeling of ABA-related gene expression. Transcription of glutathione S-transferase isoforms is uniquely upregulated, whereas gene expression of some sectors of the antioxidative apparatus (e.g., catalases, carotenoid biosynthesis) is downregulated. These mRNA responses are lacking in berries exposed to bunch rot. Our results help to explain molecular details behind the fine and dynamic balance between noble rot and bunch rot development.
Collapse
Affiliation(s)
- Miklós Pogány
- Centre for Agricultural Research, 2462 Martonvásár, Hungary; (T.D.); (E.K.-T.); (K.Á.H.); (B.K.); or (L.K.); (J.F.); (G.G.); (B.B.)
- Correspondence:
| | - Tamás Dankó
- Centre for Agricultural Research, 2462 Martonvásár, Hungary; (T.D.); (E.K.-T.); (K.Á.H.); (B.K.); or (L.K.); (J.F.); (G.G.); (B.B.)
| | - Júlia Hegyi-Kaló
- Food and Wine Research Institute, Eszterházy Károly Catholic University, 3300 Eger, Hungary; (J.H.-K.); (K.Z.V.)
| | - Evelin Kámán-Tóth
- Centre for Agricultural Research, 2462 Martonvásár, Hungary; (T.D.); (E.K.-T.); (K.Á.H.); (B.K.); or (L.K.); (J.F.); (G.G.); (B.B.)
| | - Dorottya Réka Szám
- Georgikon Campus, Hungarian University of Agriculture and Life Sciences, 8360 Keszthely, Hungary;
| | - Kamirán Áron Hamow
- Centre for Agricultural Research, 2462 Martonvásár, Hungary; (T.D.); (E.K.-T.); (K.Á.H.); (B.K.); or (L.K.); (J.F.); (G.G.); (B.B.)
| | - Balázs Kalapos
- Centre for Agricultural Research, 2462 Martonvásár, Hungary; (T.D.); (E.K.-T.); (K.Á.H.); (B.K.); or (L.K.); (J.F.); (G.G.); (B.B.)
| | - Levente Kiss
- Centre for Agricultural Research, 2462 Martonvásár, Hungary; (T.D.); (E.K.-T.); (K.Á.H.); (B.K.); or (L.K.); (J.F.); (G.G.); (B.B.)
- Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD 4350, Australia
| | - József Fodor
- Centre for Agricultural Research, 2462 Martonvásár, Hungary; (T.D.); (E.K.-T.); (K.Á.H.); (B.K.); or (L.K.); (J.F.); (G.G.); (B.B.)
| | - Gábor Gullner
- Centre for Agricultural Research, 2462 Martonvásár, Hungary; (T.D.); (E.K.-T.); (K.Á.H.); (B.K.); or (L.K.); (J.F.); (G.G.); (B.B.)
| | - Kálmán Zoltán Váczy
- Food and Wine Research Institute, Eszterházy Károly Catholic University, 3300 Eger, Hungary; (J.H.-K.); (K.Z.V.)
| | - Balázs Barna
- Centre for Agricultural Research, 2462 Martonvásár, Hungary; (T.D.); (E.K.-T.); (K.Á.H.); (B.K.); or (L.K.); (J.F.); (G.G.); (B.B.)
| |
Collapse
|
10
|
Koltun A, Fuhrmann-Aoyagi MB, Cardoso Moraes LA, Lima Nepomuceno A, Simões Azeredo Gonçalves L, Mertz-Henning LM. Uncovering the roles of hemoglobins in soybean facing water stress. Gene 2022; 810:146055. [PMID: 34737003 DOI: 10.1016/j.gene.2021.146055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/14/2021] [Accepted: 10/28/2021] [Indexed: 11/22/2022]
Abstract
Water stress drastically hinders crop yield, including soybean - one of the world's most relevant feeding crops - threatening the food security of an ever-growing global population. Hemoglobins (GLBs) are involved in water stress tolerance; however, the role they effectively play in soybean remains underexplored. In this study, in silico and in vivo analyses were performed to identify soybean GLBs, capture their transcriptional profile under water stress, and overexpress promising members to assess how soybean cope with waterlogging. Seven GLBs were found, two GLB1 (non-symbiotic) and five GLB2 (symbiotic or leghemoglobins). Three out of the seven GLBs were differentially expressed in soybean RNA-seq libraries of water stress and were evaluated by real-time PCR. Consistently, GmGLB1-1 and GmGLB1-2 were moderately and highly expressed under waterlogging, respectively. Composite plants with roots overexpressing GmGLB1-1 or GmGLB1-2 (mostly) showed higher transcript abundance of stress-defensive genes involved in anaerobic, nitrogen, carbon, and antioxidant metabolism when subjected to waterlogging. In addition, soybean bearing p35S:GmGLB1-2 had lower H2O2 root content, a reactive oxygen species (ROS), under water excess compared with the control condition. Altogether these results suggest that GmGLB1-2 is a strong candidate for soybean genetic engineering to generate waterlogging-tolerant soybean cultivars.
Collapse
|
11
|
Gámez-Arcas S, Baroja-Fernández E, García-Gómez P, Muñoz FJ, Almagro G, Bahaji A, Sánchez-López ÁM, Pozueta-Romero J. Action mechanisms of small microbial volatile compounds in plants. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:498-510. [PMID: 34687197 DOI: 10.1093/jxb/erab463] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 10/21/2021] [Indexed: 05/22/2023]
Abstract
Microorganisms communicate with plants by exchanging chemical signals throughout the phytosphere. Before direct contact with plants occurs, beneficial microorganisms emit a plethora of volatile compounds that promote plant growth and photosynthesis as well as developmental, metabolic, transcriptional, and proteomic changes in plants. These compounds can also induce systemic drought tolerance and improve water and nutrient acquisition. Recent studies have shown that this capacity is not restricted to beneficial microbes; it also extends to phytopathogens. Plant responses to microbial volatile compounds have frequently been associated with volatile organic compounds with molecular masses ranging between ~ 45Da and 300Da. However, microorganisms also release a limited number of volatile compounds with molecular masses of less than ~45Da that react with proteins and/or act as signaling molecules. Some of these compounds promote photosynthesis and growth when exogenously applied in low concentrations. Recently, evidence has shown that small volatile compounds are important determinants of plant responses to microbial volatile emissions. However, the regulatory mechanisms involved in these responses remain poorly understood. This review summarizes current knowledge of biochemical and molecular mechanisms involved in plant growth, development, and metabolic responses to small microbial volatile compounds.
Collapse
Affiliation(s)
- Samuel Gámez-Arcas
- Instituto de Agrobiotecnología (CSIC/Gobierno de Navarra), Iruñako etorbidea 123, 31192 Mutiloabeti, Nafarroa, Spain
| | - Edurne Baroja-Fernández
- Instituto de Agrobiotecnología (CSIC/Gobierno de Navarra), Iruñako etorbidea 123, 31192 Mutiloabeti, Nafarroa, Spain
| | - Pablo García-Gómez
- Plant Nutrition Department, Centro de Edafología y Biología Aplicada (CEBAS-CSIC), Campus Universitario de Espinardo, Espinardo, 30100 Murcia, Spain
| | - Francisco José Muñoz
- Instituto de Agrobiotecnología (CSIC/Gobierno de Navarra), Iruñako etorbidea 123, 31192 Mutiloabeti, Nafarroa, Spain
| | - Goizeder Almagro
- Instituto de Agrobiotecnología (CSIC/Gobierno de Navarra), Iruñako etorbidea 123, 31192 Mutiloabeti, Nafarroa, Spain
| | - Abdellatif Bahaji
- Instituto de Agrobiotecnología (CSIC/Gobierno de Navarra), Iruñako etorbidea 123, 31192 Mutiloabeti, Nafarroa, Spain
| | - Ángela María Sánchez-López
- Instituto de Agrobiotecnología (CSIC/Gobierno de Navarra), Iruñako etorbidea 123, 31192 Mutiloabeti, Nafarroa, Spain
| | - Javier Pozueta-Romero
- Institute for Mediterranean and Subtropical Horticulture 'La Mayora' (IHSM-UMA-CSIC), Campus de Teatinos, Avda. Louis Pasteur, 49, 29010 Málaga, Spain
| |
Collapse
|
12
|
Villar I, Rubio MC, Calvo-Begueria L, Pérez-Rontomé C, Larrainzar E, Wilson MT, Sandal N, Mur LA, Wang L, Reeder B, Duanmu D, Uchiumi T, Stougaard J, Becana M. Three classes of hemoglobins are required for optimal vegetative and reproductive growth of Lotus japonicus: genetic and biochemical characterization of LjGlb2-1. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:7778-7791. [PMID: 34387337 PMCID: PMC8664582 DOI: 10.1093/jxb/erab376] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
Legumes express two major types of hemoglobins, namely symbiotic (leghemoglobins) and non-symbiotic (phytoglobins), with the latter being categorized into three classes according to phylogeny and biochemistry. Using knockout mutants, we show that all three phytoglobin classes are required for optimal vegetative and reproductive development of Lotus japonicus. The mutants of two class 1 phytoglobins showed different phenotypes: Ljglb1-1 plants were smaller and had relatively more pods, whereas Ljglb1-2 plants had no distinctive vegetative phenotype and produced relatively fewer pods. Non-nodulated plants lacking LjGlb2-1 showed delayed growth and alterations in the leaf metabolome linked to amino acid processing, fermentative and respiratory pathways, and hormonal balance. The leaves of mutant plants accumulated salicylic acid and contained relatively less methyl jasmonic acid, suggesting crosstalk between LjGlb2-1 and the signaling pathways of both hormones. Based on the expression of LjGlb2-1 in leaves, the alterations of flowering and fruiting of nodulated Ljglb2-1 plants, the developmental and biochemical phenotypes of the mutant fed on ammonium nitrate, and the heme coordination and reactivity of the protein toward nitric oxide, we conclude that LjGlb2-1 is not a leghemoglobin but an unusual class 2 phytoglobin. For comparison, we have also characterized a close relative of LjGlb2-1 in Medicago truncatula, MtLb3, and conclude that this is an atypical leghemoglobin.
Collapse
Affiliation(s)
- Irene Villar
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Apartado 13034, 50080 Zaragoza, Spain
| | - Maria C Rubio
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Apartado 13034, 50080 Zaragoza, Spain
| | - Laura Calvo-Begueria
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Apartado 13034, 50080 Zaragoza, Spain
| | - Carmen Pérez-Rontomé
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Apartado 13034, 50080 Zaragoza, Spain
| | - Estibaliz Larrainzar
- Department of Sciences, Institute for Multidisciplinary Research in Applied Biology, Campus Arrosadía, Universidad Pública de Navarra, 31006 Pamplona, Spain
| | - Michael T Wilson
- School of Life Sciences, Essex University, Wivenhoe Park, Colchester CO4 3SQ, UK
| | - Niels Sandal
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus C, Denmark
| | - Luis A Mur
- Aberystwyth University, Institute of Biological, Environmental and Rural Sciences, Aberystwyth, SY23 3DA, Wales, UK
| | - Longlong Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Brandon Reeder
- School of Life Sciences, Essex University, Wivenhoe Park, Colchester CO4 3SQ, UK
| | - Deqiang Duanmu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Toshiki Uchiumi
- Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima 890-0065, Japan
| | - Jens Stougaard
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus C, Denmark
| | - Manuel Becana
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Apartado 13034, 50080 Zaragoza, Spain
| |
Collapse
|
13
|
Sasidharan R, Schippers JHM, Schmidt RR. Redox and low-oxygen stress: signal integration and interplay. PLANT PHYSIOLOGY 2021; 186:66-78. [PMID: 33793937 PMCID: PMC8154046 DOI: 10.1093/plphys/kiaa081] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/26/2020] [Indexed: 05/21/2023]
Abstract
Plants are aerobic organisms relying on oxygen to serve their energy needs. The amount of oxygen available to sustain plant growth can vary significantly due to environmental constraints or developmental programs. In particular, flooding stress, which negatively impacts crop productivity, is characterized by a decline in oxygen availability. Oxygen fluctuations result in an altered redox balance and the formation of reactive oxygen/nitrogen species (ROS/RNS) during the onset of hypoxia and upon re-oxygenation. In this update, we provide an overview of the current understanding of the impact of redox and ROS/RNS on low-oxygen signaling and adaptation. We first focus on the formation of ROS and RNS during low-oxygen conditions. Following this, we examine the impact of hypoxia on cellular and organellar redox systems. Finally, we describe how redox and ROS/RNS participate in signaling events during hypoxia through potential post-translational modifications (PTMs) of hypoxia-relevant proteins. The aim of this update is to define our current understanding of the field and to provide avenues for future research directions.
Collapse
Affiliation(s)
- Rashmi Sasidharan
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Jos H M Schippers
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland 06466, Germany
| | - Romy R Schmidt
- Faculty of Biology, Plant Biotechnology Group, Bielefeld University, Bielefeld 33615, Germany
- Author for communication:
| |
Collapse
|
14
|
Manrique-Gil I, Sánchez-Vicente I, Torres-Quezada I, Lorenzo O. Nitric oxide function during oxygen deprivation in physiological and stress processes. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:904-916. [PMID: 32976588 PMCID: PMC7876777 DOI: 10.1093/jxb/eraa442] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/16/2020] [Indexed: 05/07/2023]
Abstract
Plants are aerobic organisms that have evolved to maintain specific requirements for oxygen (O2), leading to a correct respiratory energy supply during growth and development. There are certain plant developmental cues and biotic or abiotic stress responses where O2 is scarce. This O2 deprivation known as hypoxia may occur in hypoxic niches of plant-specific tissues and during adverse environmental cues such as pathogen attack and flooding. In general, plants respond to hypoxia through a complex reprogramming of their molecular activities with the aim of reducing the impact of stress on their physiological and cellular homeostasis. This review focuses on the fine-tuned regulation of hypoxia triggered by a network of gaseous compounds that includes O2, ethylene, and nitric oxide. In view of recent scientific advances, we summarize the molecular mechanisms mediated by phytoglobins and by the N-degron proteolytic pathway, focusing on embryogenesis, seed imbibition, and germination, and also specific structures, most notably root apical and shoot apical meristems. In addition, those biotic and abiotic stresses that comprise hypoxia are also highlighted.
Collapse
Affiliation(s)
- Isabel Manrique-Gil
- Departamento de Botánica y Fisiología Vegetal, Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Biología, Universidad de Salamanca. C/ Río Duero 12, Salamanca, Spain
| | - Inmaculada Sánchez-Vicente
- Departamento de Botánica y Fisiología Vegetal, Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Biología, Universidad de Salamanca. C/ Río Duero 12, Salamanca, Spain
| | - Isabel Torres-Quezada
- Departamento de Botánica y Fisiología Vegetal, Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Biología, Universidad de Salamanca. C/ Río Duero 12, Salamanca, Spain
| | - Oscar Lorenzo
- Departamento de Botánica y Fisiología Vegetal, Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Biología, Universidad de Salamanca. C/ Río Duero 12, Salamanca, Spain
- Correspondence:
| |
Collapse
|
15
|
Lechón T, Sanz L, Sánchez-Vicente I, Lorenzo O. Nitric Oxide Overproduction by cue1 Mutants Differs on Developmental Stages and Growth Conditions. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1484. [PMID: 33158046 PMCID: PMC7692804 DOI: 10.3390/plants9111484] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/27/2020] [Accepted: 11/02/2020] [Indexed: 01/26/2023]
Abstract
The cue1 nitric oxide (NO) overproducer mutants are impaired in a plastid phosphoenolpyruvate/phosphate translocator, mainly expressed in Arabidopsis thaliana roots. cue1 mutants present an increased content of arginine, a precursor of NO in oxidative synthesis processes. However, the pathways of plant NO biosynthesis and signaling have not yet been fully characterized, and the role of CUE1 in these processes is not clear. Here, in an attempt to advance our knowledge regarding NO homeostasis, we performed a deep characterization of the NO production of four different cue1 alleles (cue1-1, cue1-5, cue1-6 and nox1) during seed germination, primary root elongation, and salt stress resistance. Furthermore, we analyzed the production of NO in different carbon sources to improve our understanding of the interplay between carbon metabolism and NO homeostasis. After in vivo NO imaging and spectrofluorometric quantification of the endogenous NO levels of cue1 mutants, we demonstrate that CUE1 does not directly contribute to the rapid NO synthesis during seed imbibition. Although cue1 mutants do not overproduce NO during germination and early plant development, they are able to accumulate NO after the seedling is completely established. Thus, CUE1 regulates NO homeostasis during post-germinative growth to modulate root development in response to carbon metabolism, as different sugars modify root elongation and meristem organization in cue1 mutants. Therefore, cue1 mutants are a useful tool to study the physiological effects of NO in post-germinative growth.
Collapse
Affiliation(s)
| | | | | | - Oscar Lorenzo
- Department of Botany and Plant Physiology, Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Biología, Universidad de Salamanca, C/Río Duero 12, 37185 Salamanca, Spain; (T.L.); (L.S.); (I.S.-V.)
| |
Collapse
|
16
|
Becana M, Yruela I, Sarath G, Catalán P, Hargrove MS. Plant hemoglobins: a journey from unicellular green algae to vascular plants. THE NEW PHYTOLOGIST 2020; 227:1618-1635. [PMID: 31960995 DOI: 10.1111/nph.16444] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 12/24/2019] [Indexed: 05/17/2023]
Abstract
Globins (Glbs) are widely distributed in archaea, bacteria and eukaryotes. They can be classified into proteins with 2/2 or 3/3 α-helical folding around the heme cavity. Both types of Glbs occur in green algae, bryophytes and vascular plants. The Glbs of angiosperms have been more intensively studied, and several protein structures have been solved. They can be hexacoordinate or pentacoordinate, depending on whether a histidine is coordinating or not at the sixth position of the iron atom. The 3/3 Glbs of class 1 and the 2/2 Glbs (also called class 3 in plants) are present in all angiosperms, whereas the 3/3 Glbs of class 2 have been only found in early angiosperms and eudicots. The three Glb classes are expected to play different roles. Class 1 Glbs are involved in hypoxia responses and modulate NO concentration, which may explain their roles in plant morphogenesis, hormone signaling, cell fate determination, nutrient deficiency, nitrogen metabolism and plant-microorganism symbioses. Symbiotic Glbs derive from class 1 or class 2 Glbs and transport O2 in nodules. The physiological roles of class 2 and class 3 Glbs are poorly defined but could involve O2 and NO transport and/or metabolism, respectively. More research is warranted on these intriguing proteins to determine their non-redundant functions.
Collapse
Affiliation(s)
- Manuel Becana
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (CSIC), Apartado 13034, 50080, Zaragoza, Spain
| | - Inmaculada Yruela
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (CSIC), Apartado 13034, 50080, Zaragoza, Spain
- Group of Biochemistry, Biophysics and Computational Biology (BIFI-Unizar) Joint Unit to CSIC, Edificio I+D Campus Río Ebro, 50018, Zaragoza, Spain
| | - Gautam Sarath
- Wheat, Sorghum, and Forage Research Unit, USDA-ARS, East Campus, University of Nebraska-Lincoln, Lincoln, NE, 86583, USA
| | - Pilar Catalán
- Group of Biochemistry, Biophysics and Computational Biology (BIFI-Unizar) Joint Unit to CSIC, Edificio I+D Campus Río Ebro, 50018, Zaragoza, Spain
- Escuela Politécnica Superior de Huesca, Universidad de Zaragoza, 22071, Huesca, Spain
| | - Mark S Hargrove
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
17
|
The effect of phytoglobin overexpression on the plant proteome during nonhost response of barley (Hordeum vulgare) to wheat powdery mildew (Blumeria graminis f. sp. tritici). Sci Rep 2020; 10:9192. [PMID: 32513937 PMCID: PMC7280273 DOI: 10.1038/s41598-020-65907-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 05/05/2020] [Indexed: 11/08/2022] Open
Abstract
Nonhost resistance, a resistance of plant species against all nonadapted pathogens, is considered the most durable and efficient immune system in plants. To increase our understanding of the response of barley plants to infection by powdery mildew, Blumeria graminis f. sp. tritici, we used quantitative proteomic analysis (LC-MS/MS). We compared the response of two genotypes of barley cultivar Golden Promise, wild type (WT) and plants with overexpression of phytoglobin (previously hemoglobin) class 1 (HO), which has previously been shown to significantly weaken nonhost resistance. A total of 8804 proteins were identified and quantified, out of which the abundance of 1044 proteins changed significantly in at least one of the four comparisons ('i' stands for 'inoculated')- HO/WT and HOi/WTi (giving genotype differences), and WTi/WT and HOi/HO (giving treatment differences). Among these differentially abundant proteins (DAP) were proteins related to structural organization, disease/defense, metabolism, transporters, signal transduction and protein synthesis. We demonstrate that quantitative changes in the proteome can explain physiological changes observed during the infection process such as progression of the mildew infection in HO plants that was correlated with changes in proteins taking part in papillae formation and preinvasion resistance. Overexpression of phytoglobins led to modification in signal transduction prominently by dramatically reducing the number of kinases induced, but also in the turnover of other signaling molecules such as phytohormones, polyamines and Ca2+. Thus, quantitative proteomics broaden our understanding of the role NO and phytoglobins play in barley during nonhost resistance against powdery mildew.
Collapse
|
18
|
Oláh D, Feigl G, Molnár Á, Ördög A, Kolbert Z. Strigolactones Interact With Nitric Oxide in Regulating Root System Architecture of Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2020; 11:1019. [PMID: 32719710 PMCID: PMC7350899 DOI: 10.3389/fpls.2020.01019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 06/22/2020] [Indexed: 05/04/2023]
Abstract
Both nitric oxide (NO) and strigolactone (SL) are growth regulating signal components in plants; however, regarding their possible interplay our knowledge is limited. Therefore, this study aims to provide new evidence for the signal interplay between NO and SL in the formation of root system architecture using complementary pharmacological and molecular biological approaches in the model Arabidopsis thaliana grown under stress-free conditions. Deficiency of SL synthesis or signaling (max1-1 and max2-1) resulted in elevated NO and S-nitrosothiol (SNO) levels due to decreased S-nitrosoglutathione (GSNO) reductase (GSNOR) protein abundance and activity indicating that there is a signal interaction between SLs and GSNOR-regulated levels of NO/SNO. This was further supported by the down-regulation of SL biosynthetic genes (CCD7, CCD8 and MAX1) in GSNOR-deficient gsnor1-3. Based on the more pronounced sensitivity of gsnor1-3 to exogenous SL (rac-GR24, 2 µM), we suspected that functional GSNOR is needed to control NO/SNO levels during SL-induced primary root (PR) elongation. Additionally, SLs may be involved in GSNO-regulated PR shortening as suggested by the relative insensitivity of max1-1 and max2-1 mutants to exogenous GSNO (250 µM). Collectively, our results indicate a connection between SL and GSNOR-regulated NO/SNO signals in roots of A. thaliana grown in stress-free environment. As this work used max2-1 mutant and rac-GR24 exerting unspecific effects to both SL and karrikin signaling, it cannot be ruled out that karrikins are partly responsible for the observed effects, and this issue needs further clarification in the future.
Collapse
|
19
|
Zhang J, Buegger F, Albert A, Ghirardo A, Winkler B, Schnitzler JP, Hebelstrup KH, Durner J, Lindermayr C. Phytoglobin overexpression promotes barley growth in the presence of enhanced level of atmospheric nitric oxide. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4521-4537. [PMID: 31245808 PMCID: PMC6736386 DOI: 10.1093/jxb/erz249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 05/17/2019] [Indexed: 05/03/2023]
Abstract
To investigate the effect of high atmospheric NO concentrations on crop plants and the role of phytoglobins under these conditions, we performed a long-term study on barley 'Golden Promise' wild type (WT), class 1 phytoglobin knockdown (HvPgb1.1-) and class 1 phytoglobin overexpression (HvPgb1.1+) lines. Plants were cultivated with nitrogen-free nutrient solution during the entire growth period and were fumigated with different NO concentration (ambient, 800, 1500, and 3000 ppb). Analysis of fresh weight, stem number, chlorophyll content, and effective quantum yield of PSII showed that NO fumigation promoted plant growth and tillering significantly in the HvPgb1.1+ line. After 80 d of NO fumigation, dry matter weight, spikes number, kernel number, and plant kernel weight were significantly increased in HvPgb1.1+ plants with increasing NO concentration. In contrast, yield decreased in WT and HvPgb1.1- plants the higher the NO level. Application of atmospheric 15NO and 15NO2 demonstrated NO specificity of phytoglobins. 15N from 15NO could be detected in RNA, DNA, and proteins of barley leaves and the 15N levels were significantly higher in HvPgb1.1+ plants in comparison with HvPgb1.1- and WT plants. Our results demonstrate that overexpression of phytoglobins allows plants to more efficiently use atmospheric NO as N source.
Collapse
Affiliation(s)
- Jiangli Zhang
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Franz Buegger
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Andreas Albert
- Research Unit Environmental Simulation, Helmholtz Zentrum München, Neuherberg, Germany
| | - Andrea Ghirardo
- Research Unit Environmental Simulation, Helmholtz Zentrum München, Neuherberg, Germany
| | - Barbro Winkler
- Research Unit Environmental Simulation, Helmholtz Zentrum München, Neuherberg, Germany
| | - Jörg-Peter Schnitzler
- Research Unit Environmental Simulation, Helmholtz Zentrum München, Neuherberg, Germany
| | | | - Jörg Durner
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biochemical Plant Pathology, Technische Universität München, Freising, Germany
| | - Christian Lindermayr
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany
- Correspondence:
| |
Collapse
|
20
|
García-Gómez P, Almagro G, Sánchez-López ÁM, Bahaji A, Ameztoy K, Ricarte-Bermejo A, Baslam M, Antolín MC, Urdiain A, López-Belchi MD, López-Gómez P, Morán JF, Garrido J, Muñoz FJ, Baroja-Fernández E, Pozueta-Romero J. Volatile compounds other than CO 2 emitted by different microorganisms promote distinct posttranscriptionally regulated responses in plants. PLANT, CELL & ENVIRONMENT 2019; 42:1729-1746. [PMID: 30480826 DOI: 10.1111/pce.13490] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 11/16/2018] [Accepted: 11/20/2018] [Indexed: 05/23/2023]
Abstract
A "box-in-box" cocultivation system was used to investigate plant responses to microbial volatile compounds (VCs) and to evaluate the contributions of organic and inorganic VCs (VOCs and VICs, respectively) to these responses. Arabidopsis plants were exposed to VCs emitted by adjacent Alternaria alternata and Penicillium aurantiogriseum cultures, with and without charcoal filtration. No VOCs were detected in the headspace of growth chambers containing fungal cultures with charcoal filters. However, these growth chambers exhibited elevated CO2 and bioactive CO and NO headspace concentrations. Independently of charcoal filtration, VCs from both fungal phytopathogens promoted growth and distinct developmental changes. Plants cultured at CO2 levels observed in growth boxes containing fungal cultures were identical to those cultured at ambient CO2 . Plants exposed to charcoal-filtered fungal VCs, nonfiltered VCs, or superelevated CO2 levels exhibited transcriptional changes resembling those induced by increased irradiance. Thus, in the "box-in-box" system, (a) fungal VICs other than CO2 and/or VOCs not detected by our analytical systems strongly influence the plants' responses to fungal VCs, (b) different microorganisms release VCs with distinct action potentials, (c) transcriptional changes in VC-exposed plants are mainly due to enhanced photosynthesis signaling, and (d) regulation of some plant responses to fungal VCs is primarily posttranscriptional.
Collapse
Affiliation(s)
- Pablo García-Gómez
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), 31192, Mutiloabeti, Spain
| | - Goizeder Almagro
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), 31192, Mutiloabeti, Spain
| | | | - Abdellatif Bahaji
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), 31192, Mutiloabeti, Spain
| | - Kinia Ameztoy
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), 31192, Mutiloabeti, Spain
| | | | - Marouane Baslam
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), 31192, Mutiloabeti, Spain
- Graduate School of Science and Technology and Department of Applied Biological Chemistry, Niigata University, Niigata, 950-2181, Japan
| | - María Carmen Antolín
- Facultades de Ciencias y Farmacia y Nutrición, Grupo de Fisiología del Estrés en Plantas (Departamento de Biología Ambiental), Unidad Asociada al CSIC (EEAD, Zaragoza, ICVV, Logroño), Universidad de Navarra, 31008, Pamplona, Spain
| | - Amadeo Urdiain
- Facultades de Ciencias y Farmacia y Nutrición, Grupo de Fisiología del Estrés en Plantas (Departamento de Biología Ambiental), Unidad Asociada al CSIC (EEAD, Zaragoza, ICVV, Logroño), Universidad de Navarra, 31008, Pamplona, Spain
| | - María Dolores López-Belchi
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), 31192, Mutiloabeti, Spain
- Departamento de Producción Vegetal, Universidad de Concepción, Avenue Vicente Méndez 595, Chillán, Chile
| | - Pedro López-Gómez
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), 31192, Mutiloabeti, Spain
| | - José Fernando Morán
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), 31192, Mutiloabeti, Spain
| | - Julián Garrido
- Departamento de Ciencias, Universidad Pública de Navarra Campus Arrosadía, 31006, Pamplona, Spain
- Institute for Advanced Materials, Universidad Pública de Navarra Campus Arrosadía, 31006, Pamplona, Spain
| | - Francisco José Muñoz
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), 31192, Mutiloabeti, Spain
| | | | - Javier Pozueta-Romero
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), 31192, Mutiloabeti, Spain
| |
Collapse
|
21
|
Fukudome M, Watanabe E, Osuki KI, Imaizumi R, Aoki T, Becana M, Uchiumi T. Stably Transformed Lotus japonicus Plants Overexpressing Phytoglobin LjGlb1-1 Show Decreased Nitric Oxide Levels in Roots and Nodules as Well as Delayed Nodule Senescence. PLANT & CELL PHYSIOLOGY 2019; 60:816-825. [PMID: 30597068 DOI: 10.1093/pcp/pcy245] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 12/20/2018] [Indexed: 05/16/2023]
Abstract
The class 1 phytoglobin, LjGlb1-1, is expressed in various tissues of the model legume Lotus japonicus, where it may play multiple functions by interacting with nitric oxide (NO). One of such functions is the onset of a proper symbiosis with Mesorhizobium loti resulting in the formation of actively N2-fixing nodules. Stable overexpression lines (Ox1 and Ox2) of LjGlb1-1 were generated and phenotyped. Both Ox lines showed reduced NO levels in roots and enhanced nitrogenase activity in mature and senescent nodules relative to the wild-type (WT). Physiological and cytological observations indicated that overexpression of LjGlb1-1 delayed nodule senescence. The application to WT nodules of the NO donor S-nitroso-N-acetyl-dl-penicillamine (SNAP) or the phytohormones abscisic acid (ABA) and the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) repressed nitrogenase activity, induced the expression of three senescence-associated genes and caused cytological changes evidencing nodule senescence. These effects were almost completely reverted by the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide. Our results reveal that overexpression of LjGlb1-1 improves the activity of mature nodules and delays nodule senescence in the L.japonicus-M.loti symbiosis. These beneficial effects are probably mediated by the participation of LjGlb1-1 in controlling the concentration of NO that may be produced downstream in the phytohormone signaling pathway in nodules.
Collapse
Affiliation(s)
- Mitsutaka Fukudome
- Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima, Japan
| | - Eri Watanabe
- Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima, Japan
| | - Ken-Ichi Osuki
- Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima, Japan
| | - Ryujiro Imaizumi
- Department of Applied Biological Sciences, Nihon University, 1866 Kameino, Fujisawa, Japan
| | - Toshio Aoki
- Department of Applied Biological Sciences, Nihon University, 1866 Kameino, Fujisawa, Japan
| | - Manuel Becana
- Departamento de Nutrici�n Vegetal, Estaci�n Experimental de Aula Dei, Consejo Superior de Investigaciones Cient�ficas, Apartado 13034, Zaragoza, Spain
| | - Toshiki Uchiumi
- Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima, Japan
| |
Collapse
|
22
|
Bahmani R, Kim D, Na J, Hwang S. Expression of the Tobacco Non-symbiotic Class 1 Hemoglobin Gene Hb1 Reduces Cadmium Levels by Modulating Cd Transporter Expression Through Decreasing Nitric Oxide and ROS Level in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2019; 10:201. [PMID: 30853969 PMCID: PMC6396062 DOI: 10.3389/fpls.2019.00201] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 02/06/2019] [Indexed: 05/03/2023]
Abstract
Hemoglobin (Hb) proteins are ubiquitous in plants, and non-symbiotic class 1 hemoglobin (Hb1) is involved in various biotic and abiotic stress responses. Here, the expression of the tobacco (Nicotiana tabacum) hemoglobin gene NtHb1 in Arabidopsis (Arabidopsis thaliana) showed higher cadmium (Cd) tolerance and lower accumulations of Cd, nitric oxide (NO), and reactive oxygen species (ROS) like hydrogen peroxide (H2O2). NtHb1-expressing Arabidopsis exhibited a reduced induction of NO levels in response to Cd, suggesting scavenging of NO by Hb1. In addition, transgenic plants had reduced accumulation of ROS and increased activities of antioxidative enzymes (catalase, superoxide dismutase, and glutathione reductase) in response to Cd. While the expression of the Cd exporters ABC transporter (PDR8) and Ca2+/H+ exchangers (CAXs) was increased, that of the Cd importers iron responsive transporter 1 (IRT1) and P-type 2B Ca2+ ATPase (ACA10) was reduced in response to Cd. When Col-0 plants were treated with the NO donor sodium nitroprusside (SNP) and H2O2, the expression pattern of Cd transporters (PDR8, CAX3, IRT1, and ACA10) was reversed, suggesting that NtHb1 expression decreased the Cd level by regulating the expression of Cd transporters via decreased NO and ROS. Correspondingly, NtHb1-expressing Arabidopsis showed increased Cd export. In summary, the expression of NtHb1 reduces Cd levels by regulating Cd transporter expression via decreased NO and ROS levels in Arabidopsis.
Collapse
Affiliation(s)
- Ramin Bahmani
- Department of Molecular Biology, Sejong University, Seoul, South Korea
- Department of Bioindustry and Bioresource Engineering, Sejong University, Seoul, South Korea
- Plant Engineering Research Institute, Sejong University, Seoul, South Korea
| | - DongGwan Kim
- Department of Molecular Biology, Sejong University, Seoul, South Korea
- Department of Bioindustry and Bioresource Engineering, Sejong University, Seoul, South Korea
- Plant Engineering Research Institute, Sejong University, Seoul, South Korea
| | - JongDuk Na
- Department of Molecular Biology, Sejong University, Seoul, South Korea
| | - Seongbin Hwang
- Department of Molecular Biology, Sejong University, Seoul, South Korea
- Department of Bioindustry and Bioresource Engineering, Sejong University, Seoul, South Korea
- Plant Engineering Research Institute, Sejong University, Seoul, South Korea
- *Correspondence: Seongbin Hwang,
| |
Collapse
|
23
|
Kapoor K, Mira MM, Ayele BT, Nguyen TN, Hill RD, Stasolla C. Phytoglobins regulate nitric oxide-dependent abscisic acid synthesis and ethylene-induced program cell death in developing maize somatic embryos. PLANTA 2018; 247:1277-1291. [PMID: 29455261 DOI: 10.1007/s00425-018-2862-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 01/23/2018] [Indexed: 05/04/2023]
Abstract
During maize somatic embryogenesis, suppression of phytoglobins (Pgbs) reduced ABA levels leading to ethylene-induced programmed cell death in the developing embryos. These effects modulate embryonic yield depending on the cellular localization of specific phytoglobin gene expression. Suppression of Zea mays phytoglobins (ZmPgb1.1 or ZmPgb1.2) during somatic embryogenesis induces programmed cell death (PCD) by elevating nitric oxide (NO). While ZmPgb1.1 is expressed in many embryonic domains and its suppression results in embryo abortion, ZmPgb1.2 is expressed in the basal cells anchoring the embryos to the embryogenic tissue. Down-regulation of ZmPgb1.2 is required to induce PCD in these anchor cells allowing the embryos to develop further. Exogenous applications of ABA could reverse the effects caused by the suppression of either of the two ZmPgbs. A depletion of ABA, ascribed to a down-regulation of biosynthetic genes, was observed in those embryonic domains where the respective ZmPgbs were repressed. These effects were mediated by NO. Depletion in ABA content increased the transcription of genes participating in the synthesis and response of ethylene, as well as the accumulation of ethylene, which influenced embryogenesis. Somatic embryo number was reduced by high ethylene levels and increased with pharmacological treatments suppressing ethylene synthesis. The ethylene inhibition of embryogenesis was linked to the production of reactive oxygen species (ROS) and the execution of PCD. Integration of ABA and ethylene in the ZmPgb regulation of embryogenesis is proposed in a model where NO accumulates in ZmPgb-suppressing cells, decreasing the level of ABA. Abscisic acid inhibits ethylene biosynthesis and the NO-mediated depletion of ABA relieves this inhibition causing ethylene to accumulate. Elevated ethylene levels trigger production of ROS and induce PCD. Ethylene-induced PCD in the ZmPgb1.1-suppressing line [ZmPgb1.1 (A)] leads to embryo abortion, while PCD in the ZmPgb1.2-suppressing line [ZmPgb1.2 (A)] results in the elimination of the anchor cells and the successful development of the embryos.
Collapse
Affiliation(s)
- Karuna Kapoor
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Mohamed M Mira
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
- Department of Botany, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Belay T Ayele
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Tran-Nguyen Nguyen
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Robert D Hill
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Claudio Stasolla
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
| |
Collapse
|
24
|
Mira MM, Huang S, Hill RD, Stasolla C. Protection of root apex meristem during stress responses. PLANT SIGNALING & BEHAVIOR 2018; 13:e1428517. [PMID: 29341848 PMCID: PMC5846546 DOI: 10.1080/15592324.2018.1428517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 01/02/2018] [Accepted: 01/06/2018] [Indexed: 05/26/2023]
Abstract
By regulating the levels of nitric oxide (NO) in a cell and tissue specific fashion, Phytoglobins (Pgbs), plant hemoglobin-like proteins, interfere with many NO-mediated pathways participating in developmental and stress-related responses. Recent evidence reveals that one of the functions of Pgbs is to protect the root apical meristem (RAM) from stress conditions by retaining the viability and function of the quiescent center (QC), required to maintain the stem cells in an undifferentiated state and ensure proper tissue patterning and root viability. Based on this and other evidence, it is suggested that Pgbs regulate cell fate by modulating NO homeostasis.
Collapse
Affiliation(s)
- Mohamed M. Mira
- Permanent address: Department of Botany, Faculty of Science, Tanta University, Tanta, Egypt
| | - Shuanglong Huang
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Robert D. Hill
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Claudio Stasolla
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
25
|
Shankar A, Fernandes JL, Kaur K, Sharma M, Kundu S, Pandey GK. Rice phytoglobins regulate responses under low mineral nutrients and abiotic stresses in Arabidopsis thaliana. PLANT, CELL & ENVIRONMENT 2018; 41:215-230. [PMID: 29044557 DOI: 10.1111/pce.13081] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 09/25/2017] [Accepted: 09/27/2017] [Indexed: 06/07/2023]
Abstract
Just like animals, plants also contain haemoglobins (known as phytoglobins in plants). Plant phytoglobins (Pgbs) have been categorized into 6 different classes, namely, Phytogb0 (Pgb0), Phytogb1 (Pgb1), Phytogb2 (Pgb2), SymPhytogb (sPgb), Leghaemoglobin (Lb), and Phytogb3 (Pgb3). Among the 6 Phytogbs, sPgb and Lb have been functionally characterized, whereas understanding of the roles of other Pgbs is still evolving. In our present study, we have explored the function of 2 rice Pgbs (OsPgb1.1 and OsPgb1.2). OsPgb1.1, OsPgb1.2, OsPgb1.3, and OsPgb1.4 displayed increased level of transcript upon salt, drought, cold, and ABA treatment. The overexpression (OX) lines of OsPgb1.2 in Arabidopsis showed a tolerant phenotype in terms of better root growth in low potassium (K+ ) conditions. The expression of the known K+ gene markers such as LOX2, HAK5, and CAX3 was much higher in the OsPgb1.2 OX as compared to wild type. Furthermore, the OsPgb1.2 OX lines showed a decrease in reactive oxygen species (ROS) production and conversely an increase in the K+ content, both in root and shoot, as compared to wild type in K+ limiting condition. Our results indicated the potential involvement of OsPgb1.2 in signalling networks triggered by the nutrient deficiency stresses.
Collapse
Affiliation(s)
- Alka Shankar
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Joel Lars Fernandes
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Kanwaljeet Kaur
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Manisha Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Suman Kundu
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Girdhar K Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| |
Collapse
|
26
|
Cochrane DW, Shah JK, Hebelstrup KH, Igamberdiev AU. Expression of phytoglobin affects nitric oxide metabolism and energy state of barley plants exposed to anoxia. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 265:124-130. [PMID: 29223334 DOI: 10.1016/j.plantsci.2017.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/26/2017] [Accepted: 10/03/2017] [Indexed: 05/19/2023]
Abstract
Class 1 plant hemoglobins (phytoglobins) are upregulated during low-oxygen stress and participate in metabolism and cell signaling via modulation of the levels of nitric oxide (NO). We studied the effects of overexpression and knockdown of the class 1 phytoglobin gene in barley (Hordeum vulgare L.) under low-oxygen stress. The overexpression of phytoglobin reduced the amount of NO released, while knockdown significantly stimulated NO emission. It has previously been shown that NO inhibits aconitase activity, so decreased aconitase activity in knockdown plants acts as a biomarker for high internal NO levels. The overexpression of phytoglobin corresponded to higher ATP/ADP ratios, pyrophosphate levels and aconitase activity under anoxia, while knockdown of phytoglobin resulted in the increased level of protein nitrosylation, elevation of alcohol dehydrogenase and nitrosoglutathione reductase activities. The overexpressing plants showed various signs of stunted growth under normoxia, but were the only type to germinate and survive under hypoxia. The results show that overexpression of phytoglobin protects plant cells via NO scavenging and improves their low-oxygen stress survival. However, it may not be useful for cereal crop improvement since it comes with a significant interference with normoxic NO signalling pathways.
Collapse
Affiliation(s)
- Devin W Cochrane
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada
| | - Jay K Shah
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada
| | - Kim H Hebelstrup
- Department of Molecular Biology and Genetics, Aarhus University, Flakkebjerg, Slagelse, DK-4200, Denmark
| | - Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada.
| |
Collapse
|
27
|
Montilla-Bascón G, Rubiales D, Hebelstrup KH, Mandon J, Harren FJM, Cristescu SM, Mur LAJ, Prats E. Reduced nitric oxide levels during drought stress promote drought tolerance in barley and is associated with elevated polyamine biosynthesis. Sci Rep 2017; 7:13311. [PMID: 29042616 PMCID: PMC5645388 DOI: 10.1038/s41598-017-13458-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 09/25/2017] [Indexed: 11/17/2022] Open
Abstract
Nitric oxide (NO) is a key messenger in plant stress responses but its exact role in drought response remains unclear. To investigate the role of NO in drought response we employed transgenic barley plants (UHb) overexpressing the barley non-symbiotic hemoglobin gene HvHb1 that oxidizes NO to NO3-. Reduced NO production under drought conditions in UHb plants was associated with increased drought tolerance. Since NO biosynthesis has been related to polyamine metabolism, we investigated whether the observed drought-related NO changes could involve polyamine pathway. UHb plants showed increases in total polyamines and in particular polyamines such as spermidine. These increases correlated with the accumulation of the amino acid precursors of polyamines and with the expression of specific polyamine biosynthesis genes. This suggests a potential interplay between NO and polyamine biosynthesis during drought response. Since ethylene has been linked to NO signaling and it is also related to polyamine metabolism, we explored this connection. In vivo ethylene measurement showed that UHb plants significantly decrease ethylene production and expression of aminocyclopropane-1-carboxylic acid synthase gene, the first committed step in ethylene biosynthesis compared with wild type. These data suggest a NO-ethylene influenced regulatory node in polyamine biosynthesis linked to drought tolerance/susceptibility in barley.
Collapse
Affiliation(s)
| | - Diego Rubiales
- CSIC, Institute for Sustainable Agriculture, Córdoba, Spain
| | - Kim H Hebelstrup
- Section of Crop Genetics and Biotechnology, Department of Molecular Biology and Genetics Aarhus University, Slagelse, Denmark
| | - Julien Mandon
- Radboud University, Department of Molecular and Laser Physics, Nijmegen, The Netherlands
| | - Frans J M Harren
- Radboud University, Department of Molecular and Laser Physics, Nijmegen, The Netherlands
| | - Simona M Cristescu
- Radboud University, Department of Molecular and Laser Physics, Nijmegen, The Netherlands
| | - Luis A J Mur
- Institute of Biological, Environmental and Rural Sciences, University of Aberystwyth, Aberystwyth, UK
| | - Elena Prats
- CSIC, Institute for Sustainable Agriculture, Córdoba, Spain.
| |
Collapse
|
28
|
Calvo-Begueria L, Cuypers B, Van Doorslaer S, Abbruzzetti S, Bruno S, Berghmans H, Dewilde S, Ramos J, Viappiani C, Becana M. Characterization of the Heme Pocket Structure and Ligand Binding Kinetics of Non-symbiotic Hemoglobins from the Model Legume Lotus japonicus. FRONTIERS IN PLANT SCIENCE 2017; 8:407. [PMID: 28421084 PMCID: PMC5378813 DOI: 10.3389/fpls.2017.00407] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/09/2017] [Indexed: 05/04/2023]
Abstract
Plant hemoglobins (Hbs) are found in nodules of legumes and actinorhizal plants but also in non-symbiotic organs of monocots and dicots. Non-symbiotic Hbs (nsHbs) have been classified into two phylogenetic groups. Class 1 nsHbs show an extremely high O2 affinity and are induced by hypoxia and nitric oxide (NO), whereas class 2 nsHbs have moderate O2 affinity and are induced by cold and cytokinins. The functions of nsHbs are still unclear, but some of them rely on the capacity of hemes to bind diatomic ligands and catalyze the NO dioxygenase (NOD) reaction (oxyferrous Hb + NO → ferric Hb + nitrate). Moreover, NO may nitrosylate Cys residues of proteins. It is therefore important to determine the ligand binding properties of the hemes and the role of Cys residues. Here, we have addressed these issues with the two class 1 nsHbs (LjGlb1-1 and LjGlb1-2) and the single class 2 nsHb (LjGlb2) of Lotus japonicus, which is a model legume used to facilitate the transfer of genetic and biochemical information into crops. We have employed carbon monoxide (CO) as a model ligand and resonance Raman, laser flash photolysis, and stopped-flow spectroscopies to unveil major differences in the heme environments and ligand binding kinetics of the three proteins, which suggest non-redundant functions. In the deoxyferrous state, LjGlb1-1 is partially hexacoordinate, whereas LjGlb1-2 shows complete hexacoordination (behaving like class 2 nsHbs) and LjGlb2 is mostly pentacoordinate (unlike other class 2 nsHbs). LjGlb1-1 binds CO very strongly by stabilizing it through hydrogen bonding, but LjGlb1-2 and LjGlb2 show lower CO stabilization. The changes in CO stabilization would explain the different affinities of the three proteins for gaseous ligands. These affinities are determined by the dissociation rates and follow the order LjGlb1-1 > LjGlb1-2 > LjGlb2. Mutations LjGlb1-1 C78S and LjGlb1-2 C79S caused important alterations in protein dynamics and stability, indicating a structural role of those Cys residues, whereas mutation LjGlb1-1 C8S had a smaller effect. The three proteins and their mutant derivatives exhibited similarly high rates of NO consumption, which were due to NOD activity of the hemes and not to nitrosylation of Cys residues.
Collapse
Affiliation(s)
- Laura Calvo-Begueria
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones CientíficasZaragoza, Spain
| | - Bert Cuypers
- Department of Physics, University of AntwerpAntwerp, Belgium
| | | | - Stefania Abbruzzetti
- Dipartimento di Bioscienze, Università degli Studi di ParmaParma, Italy
- NEST, Istituto Nanoscienze, Consiglio Nazionale delle RicerchePisa, Italy
| | - Stefano Bruno
- Dipartimento di Farmacia, Università degli Studi di ParmaParma, Italy
| | - Herald Berghmans
- Department of Biomedical Sciences, University of AntwerpAntwerp, Belgium
| | - Sylvia Dewilde
- Department of Biomedical Sciences, University of AntwerpAntwerp, Belgium
| | - Javier Ramos
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones CientíficasZaragoza, Spain
| | - Cristiano Viappiani
- NEST, Istituto Nanoscienze, Consiglio Nazionale delle RicerchePisa, Italy
- Dipartimento di Fisica e Scienze della Terra, Università degli Studi di ParmaParma, Italy
| | - Manuel Becana
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones CientíficasZaragoza, Spain
| |
Collapse
|
29
|
Mukhi N, Kundu S, Kaur J. NO dioxygenase- and peroxidase-like activity of Arabidopsis phytoglobin 3 and its role in Sclerotinia sclerotiorum defense. Nitric Oxide 2017; 68:150-162. [PMID: 28315469 DOI: 10.1016/j.niox.2017.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 02/17/2017] [Accepted: 03/13/2017] [Indexed: 01/05/2023]
Abstract
Phytoglobin 3 appears to be ubiquitous in plants, yet there has been dearth of evidence for their potent physiological functions. Previous crystallographic studies suggest a potential NO dioxygenase like activity of Arabidopsis phytoglobin 3 (AHb3). The present work examined the in vivo function of AHb3 in plant physiology and its role in biotic stress using Arabidopsis- Sclerotinia sclerotorium pathosystem. The gene was found to be ubiquitously expressed in all plant tissues, with moderately increased expression in roots. Its expression was induced upon NO, H2O2 and biotic stress. A C-terminal tagged GFP version of the wild type protein revealed its enhanced accumulation in the guard cells. AHb3-GFP was found to be partitioned majorly into the nucleus while residual amounts were present in the cytoplasm. The loss of function AHb3 mutant exhibited reduced root length and fresh weight. AHb3 knockout lines also displayed enhanced susceptibility towards the S. sclerotiorum. Interestingly, these lines displayed enhanced ROS accumulation upon pathogen challenge as suggested by DAB staining. Furthermore, enhanced/decreased NO accumulation in AHb3 knockout/overexpression lines upon treatment with multiple NO donors suggests a potent NO dioxygenase like activity for the protein. Taken together, our data indicate that AHb3 play a crucial role in regulating root length as well as in mediating defense response against S. sclerotiorum, possibly by modulating NO and ROS levels.
Collapse
Affiliation(s)
- Nitika Mukhi
- Department of Genetics, University of Delhi South Campus, New Delhi 110021, India
| | - Suman Kundu
- Department of Biochemistry, University of Delhi South Campus, New Delhi 110021, India
| | - Jagreet Kaur
- Department of Genetics, University of Delhi South Campus, New Delhi 110021, India.
| |
Collapse
|
30
|
Godee C, Mira MM, Wally O, Hill RD, Stasolla C. Cellular localization of the Arabidopsis class 2 phytoglobin influences somatic embryogenesis. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1013-1023. [PMID: 28199692 PMCID: PMC5441859 DOI: 10.1093/jxb/erx003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Mutation of phytoglobin 2 (Pgb2) increases the number of somatic embryos in Arabidopsis. To assess the effects of the cellular localization of Pgb2 on embryo formation, an inducible system expressing a fusion protein consisting of Pgb2 linked to the steroid-binding domain of the rat glucocorticoid receptor (GR) was introduced in a pgb2 mutant line lacking the ability to express Pgb2. In this transgenic system, Pgb2 remains in the cytoplasm but migrates into the nucleus upon exposure to dexamethasone (DEX). Pgb2 retention in the cytoplasm, in the absence of DEX, increased the number of somatic embryos and reduced the expression of MYC2 - an inhibitor of the synthesis of auxin, which is the inductive signal for embryogenesis. Removal of DEX also induced the expression of several genes involved in the biosynthesis of tryptophan and the auxin, indole-3-acetic acid (IAA). These genes included: tryptophan synthase-α subunit (TSA1) and tryptophan synthase-β subunit (TSB1), which are involved in the synthesis of tryptophan, cytochrome P450 CYP79B2 (CYP79B2) and amidase 1 (AMI1), which participate in the formation of IAA via indole-3-acetaldoxime, and several members of the YUCCA family, including YUC1 and 4, which are also required for IAA synthesis. Retention of Pgb2 in the cytoplasm by removal of DEX increased the staining pattern of IAA along the cotyledons of the explants generating embryogenic tissue. Staining for IAA decreased when Pgb2 translocated into the nucleus in response to the application of DEX. Collectively, these results suggest that the presence of Pgb2 in the cytoplasm, but not in the nucleus, phenocopies the effects of Pgb2 mutation in inducing somatic embryogenesis.
Collapse
Affiliation(s)
- Cara Godee
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Mohamed M Mira
- Permanent address: Department of Botany, Faculty of Science, Tanta University, Tanta, Egypt 31527
| | - Owen Wally
- Agriculture and Agri-Food Canada/Government of Canada, Harrow Research and Development Centre, RR #2, 2585 County Rd. 20, Harrow, ON N0R 1G0, Canada
| | - Robert D Hill
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Claudio Stasolla
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| |
Collapse
|
31
|
Considine MJ, Diaz-Vivancos P, Kerchev P, Signorelli S, Agudelo-Romero P, Gibbs DJ, Foyer CH. Learning To Breathe: Developmental Phase Transitions in Oxygen Status. TRENDS IN PLANT SCIENCE 2017; 22:140-153. [PMID: 27986423 DOI: 10.1016/j.tplants.2016.11.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 11/01/2016] [Accepted: 11/20/2016] [Indexed: 05/04/2023]
Abstract
Plants are developmentally disposed to significant changes in oxygen availability, but our understanding of the importance of hypoxia is almost entirely limited to stress biology. Differential patterns of the abundance of oxygen, nitric oxide (•NO), and reactive oxygen species (ROS), as well as of redox potential, occur in organs and meristems, and examples are emerging in the literature of mechanistic relationships of these to development. We describe here the convergence of these cues in meristematic and reproductive tissues, and discuss the evidence for regulated hypoxic niches within which oxygen-, ROS-, •NO-, and redox-dependent signalling curate developmental transitions in plants.
Collapse
Affiliation(s)
- Michael J Considine
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia; Department of Agriculture and Food Western Australia, South Perth, WA 6151, Australia; Centre for Plant Sciences, School of Biology, University of Leeds, Leeds LS2 9JT, UK.
| | - Pedro Diaz-Vivancos
- Group of Fruit Biotechnology, Department of Plant Breeding, Centro de Edafología y Biología Aplicada del Segura (CEBAS)-Consejo Superior de Investigaciones Científicas (CSIC), Campus Universitario de Espinardo, Murcia 30100, Spain
| | - Pavel Kerchev
- Vlaams Instituut voor Biotechnologie (VIB) Department of Plant Systems Biology, University of Gent Technologiepark 927, Gent, 9052 Belgium
| | - Santiago Signorelli
- School of Plant Biology, The University of Western Australia, Perth, WA 6009, Australia
| | - Patricia Agudelo-Romero
- Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, WA 6009, Australia
| | - Daniel J Gibbs
- School of Biosciences, University of Birmingham, Edgbaston B15 2TT, UK
| | - Christine H Foyer
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia; Centre for Plant Sciences, School of Biology, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
32
|
Zuccarelli R, Coelho ACP, Peres LEP, Freschi L. Shedding light on NO homeostasis: Light as a key regulator of glutathione and nitric oxide metabolisms during seedling deetiolation. Nitric Oxide 2017; 68:77-90. [PMID: 28109803 DOI: 10.1016/j.niox.2017.01.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 01/11/2017] [Accepted: 01/14/2017] [Indexed: 10/20/2022]
Abstract
Despite the significant impacts of light on nitric oxide (NO) levels in plants, the mechanism underlying the influence of this environmental factor on NO metabolism remains poorly understood. A critical mechanism controlling NO levels in plant cells relies on the S-nitrosylation of glutathione (GSH), giving rise to S-nitrosoglutathione (GSNO), which can be either stored or degraded depending on the cellular context. Here, we demonstrate that a strict balance is maintained between NO generation and scavenging during tomato (Solanum lycopersicum) seedling deetiolation. Given the absence of accurate methods in the literature to estimate NO scavenging in planta, we first developed a simple, robust system to continuously monitor the global in vivo NO scavenging by plant tissues. Then, using photomorphogenic tomato mutants, we demonstrated that the light-evoked de-etiolation is associated with a dramatic rise in NO content followed by a progressive increment in NO scavenging capacity of the tissues. Light-driven increments in NO scavenging rates coincided with pronounced rises in S-nitrosothiol content and GSNO reductase (GSNOR) activity, thereby suggesting that GSNO formation and subsequent removal via GSNOR might be key for controlling NO levels during seedling deetiolation. Accordingly, treatments with thiol-blocking compounds further indicated that thiol nitrosylation might be critically involved in the NO scavenging mechanism responsible for maintaining NO homeostasis during deetiolation. The impacts of both light and NO on the transcriptional profile of glutathione metabolic genes also revealed an independent but coordinated action of these signals on the regulation of key components of glutathione and GSNO metabolisms. Altogether, these data indicated that GSNO formation and subsequent removal might facilitate maintaining NO homeostasis during light-driven seedling deetiolation.
Collapse
Affiliation(s)
- Rafael Zuccarelli
- Department of Botany, Institute of Biosciences, University of São Paulo (USP), São Paulo, 05508-090, Brazil
| | - Aline C P Coelho
- Department of Botany, Institute of Biosciences, University of São Paulo (USP), São Paulo, 05508-090, Brazil
| | - Lazaro E P Peres
- Department of Biological Sciences, Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), University of São Paulo (USP), Piracicaba, 13418-900, Brazil
| | - Luciano Freschi
- Department of Botany, Institute of Biosciences, University of São Paulo (USP), São Paulo, 05508-090, Brazil.
| |
Collapse
|
33
|
Kuruthukulangarakoola GT, Zhang J, Albert A, Winkler B, Lang H, Buegger F, Gaupels F, Heller W, Michalke B, Sarioglu H, Schnitzler JP, Hebelstrup KH, Durner J, Lindermayr C. Nitric oxide-fixation by non-symbiotic haemoglobin proteins in Arabidopsis thaliana under N-limited conditions. PLANT, CELL & ENVIRONMENT 2017; 40:36-50. [PMID: 27245884 DOI: 10.1111/pce.12773] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 05/03/2016] [Accepted: 05/24/2016] [Indexed: 05/18/2023]
Abstract
Nitric oxide (NO) is an important signalling molecule that is involved in many different physiological processes in plants. Here, we report about a NO-fixing mechanism in Arabidopsis, which allows the fixation of atmospheric NO into nitrogen metabolism. We fumigated Arabidopsis plants cultivated in soil or as hydroponic cultures during the whole growing period with up to 3 ppmv of NO gas. Transcriptomic, proteomic and metabolomic analyses were used to identify non-symbiotic haemoglobin proteins as key components of the NO-fixing process. Overexpressing non-symbiotic haemoglobin 1 or 2 genes resulted in fourfold higher nitrate levels in these plants compared with NO-treated wild-type. Correspondingly, rosettes size and weight, vegetative shoot thickness and seed yield were 25, 40, 30, and 50% higher, respectively, than in wild-type plants. Fumigation with 250 ppbv 15 NO confirmed the importance of non-symbiotic haemoglobin 1 and 2 for the NO-fixation pathway, and we calculated a daily uptake for non-symbiotic haemoglobin 2 overexpressing plants of 250 mg N/kg dry weight. This mechanism is probably important under conditions with limited N supply via the soil. Moreover, the plant-based NO uptake lowers the concentration of insanitary atmospheric NOx, and in this context, NO-fixation can be beneficial to air quality.
Collapse
Affiliation(s)
| | - Jiangli Zhang
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Germany
| | - Andreas Albert
- Research Unit Environmental Simulation, Helmholtz Zentrum München, Germany
| | - Barbro Winkler
- Research Unit Environmental Simulation, Helmholtz Zentrum München, Germany
| | - Hans Lang
- Research Unit Environmental Simulation, Helmholtz Zentrum München, Germany
| | - Franz Buegger
- Institute of Soil Ecology, Helmholtz Zentrum München, Germany
| | - Frank Gaupels
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Germany
| | - Werner Heller
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Germany
| | - Bernhard Michalke
- Research Unit Analytical Biogeochemistry, Helmholtz Zentrum München, Germany
| | - Hakan Sarioglu
- Research Unit Protein Sciences, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764, Neuherberg/Munich, Germany
| | | | - Kim Henrik Hebelstrup
- Department of Molecular Biology and Genetics, Aarhus University, Forsøgsvej 1, DK-4200, Slagelse, Denmark
| | - Jörg Durner
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Germany
- Chair of Biochemical Plant Pathology, Technische Universität München, 85354, Freising, Germany
| | | |
Collapse
|
34
|
Sánchez-López ÁM, Baslam M, De Diego N, Muñoz FJ, Bahaji A, Almagro G, Ricarte-Bermejo A, García-Gómez P, Li J, Humplík JF, Novák O, Spíchal L, Doležal K, Baroja-Fernández E, Pozueta-Romero J. Volatile compounds emitted by diverse phytopathogenic microorganisms promote plant growth and flowering through cytokinin action. PLANT, CELL & ENVIRONMENT 2016; 39:2592-2608. [PMID: 27092473 DOI: 10.1111/pce.12759] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 04/04/2016] [Accepted: 04/06/2016] [Indexed: 05/21/2023]
Abstract
It is known that volatile emissions from some beneficial rhizosphere microorganisms promote plant growth. Here we show that volatile compounds (VCs) emitted by phylogenetically diverse rhizosphere and non-rhizhosphere bacteria and fungi (including plant pathogens and microbes that do not normally interact mutualistically with plants) promote growth and flowering of various plant species, including crops. In Arabidopsis plants exposed to VCs emitted by the phytopathogen Alternaria alternata, changes included enhancement of photosynthesis and accumulation of high levels of cytokinins (CKs) and sugars. Evidence obtained using transgenic Arabidopsis plants with altered CK status show that CKs play essential roles in this phenomenon, because growth and flowering responses to the VCs were reduced in mutants with CK-deficiency (35S:AtCKX1) or low receptor sensitivity (ahk2/3). Further, we demonstrate that the plant responses to fungal VCs are light-dependent. Transcriptomic analyses of Arabidopsis leaves exposed to A. alternata VCs revealed changes in the expression of light- and CK-responsive genes involved in photosynthesis, growth and flowering. Notably, many genes differentially expressed in plants treated with fungal VCs were also differentially expressed in plants exposed to VCs emitted by the plant growth promoting rhizobacterium Bacillus subtilis GB03, suggesting that plants react to microbial VCs through highly conserved regulatory mechanisms.
Collapse
Affiliation(s)
- Ángela María Sánchez-López
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), Iruñako etorbidea 123, 31192, Mutiloabeti, Nafarroa, Spain
| | - Marouane Baslam
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), Iruñako etorbidea 123, 31192, Mutiloabeti, Nafarroa, Spain
| | - Nuria De Diego
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, CZ-78371, Czech Republic
| | - Francisco José Muñoz
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), Iruñako etorbidea 123, 31192, Mutiloabeti, Nafarroa, Spain
| | - Abdellatif Bahaji
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), Iruñako etorbidea 123, 31192, Mutiloabeti, Nafarroa, Spain
| | - Goizeder Almagro
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), Iruñako etorbidea 123, 31192, Mutiloabeti, Nafarroa, Spain
| | - Adriana Ricarte-Bermejo
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), Iruñako etorbidea 123, 31192, Mutiloabeti, Nafarroa, Spain
| | - Pablo García-Gómez
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), Iruñako etorbidea 123, 31192, Mutiloabeti, Nafarroa, Spain
| | - Jun Li
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), Iruñako etorbidea 123, 31192, Mutiloabeti, Nafarroa, Spain
- College of Agronomy and Plant Protection, Qingdao Agricultural University, 266109, Qingdao, China
| | - Jan F Humplík
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, CZ-78371, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University and Institute of Experimental Botany ASCR, Olomouc, CZ-78371, Czech Republic
| | - Lukáš Spíchal
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, CZ-78371, Czech Republic
| | - Karel Doležal
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, CZ-78371, Czech Republic
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University and Institute of Experimental Botany ASCR, Olomouc, CZ-78371, Czech Republic
| | - Edurne Baroja-Fernández
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), Iruñako etorbidea 123, 31192, Mutiloabeti, Nafarroa, Spain
| | - Javier Pozueta-Romero
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), Iruñako etorbidea 123, 31192, Mutiloabeti, Nafarroa, Spain
| |
Collapse
|
35
|
Fukudome M, Calvo-Begueria L, Kado T, Osuki KI, Rubio MC, Murakami EI, Nagata M, Kucho KI, Sandal N, Stougaard J, Becana M, Uchiumi T. Hemoglobin LjGlb1-1 is involved in nodulation and regulates the level of nitric oxide in the Lotus japonicus-Mesorhizobium loti symbiosis. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5275-83. [PMID: 27443280 PMCID: PMC5014168 DOI: 10.1093/jxb/erw290] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Leghemoglobins transport and deliver O2 to the symbiosomes inside legume nodules and are essential for nitrogen fixation. However, the roles of other hemoglobins (Hbs) in the rhizobia-legume symbiosis are unclear. Several Lotus japonicus mutants affecting LjGlb1-1, a non-symbiotic class 1 Hb, have been used to study the function of this protein in symbiosis. Two TILLING alleles with single amino acid substitutions (A102V and E127K) and a LORE1 null allele with a retrotransposon insertion in the 5'-untranslated region (96642) were selected for phenotyping nodulation. Plants of all three mutant lines showed a decrease in long infection threads and nodules, and an increase in incipient infection threads. About 4h after inoculation, the roots of mutant plants exhibited a greater transient accumulation of nitric oxide (NO) than did the wild-type roots; nevertheless, in vitro NO dioxygenase activities of the wild-type, A102V, and E127K proteins were similar, suggesting that the mutated proteins are not fully functional in vivo The expression of LjGlb1-1, but not of the other class 1 Hb of L. japonicus (LjGlb1-2), was affected during infection of wild-type roots, further supporting a specific role for LjGlb1-1. In conclusion, the LjGlb1-1 mutants reveal that this protein is required during rhizobial infection and regulates NO levels.
Collapse
Affiliation(s)
- Mitsutaka Fukudome
- Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima 890-0065, Japan
| | - Laura Calvo-Begueria
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Apartado 13034, 50080 Zaragoza, Spain
| | - Tomohiro Kado
- Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima 890-0065, Japan
| | - Ken-Ichi Osuki
- Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima 890-0065, Japan
| | - Maria Carmen Rubio
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Apartado 13034, 50080 Zaragoza, Spain
| | - Ei-Ichi Murakami
- Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima 890-0065, Japan Centre for Carbohydrate Recognition and Signalling, Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus C, Denmark
| | - Maki Nagata
- Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima 890-0065, Japan
| | - Ken-Ichi Kucho
- Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima 890-0065, Japan
| | - Niels Sandal
- Centre for Carbohydrate Recognition and Signalling, Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus C, Denmark
| | - Jens Stougaard
- Centre for Carbohydrate Recognition and Signalling, Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus C, Denmark
| | - Manuel Becana
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Apartado 13034, 50080 Zaragoza, Spain
| | - Toshiki Uchiumi
- Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima 890-0065, Japan
| |
Collapse
|
36
|
Overexpression of spinach non-symbiotic hemoglobin in Arabidopsis resulted in decreased NO content and lowered nitrate and other abiotic stresses tolerance. Sci Rep 2016; 6:26400. [PMID: 27211528 PMCID: PMC4876387 DOI: 10.1038/srep26400] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 05/03/2016] [Indexed: 11/29/2022] Open
Abstract
A class 1 non-symbiotic hemoglobin family gene, SoHb, was isolated from spinach. qRT-PCR showed that SoHb was induced by excess nitrate, polyethylene glycol, NaCl, H2O2, and salicylic acid. Besides, SoHb was strongly induced by application of nitric oxide (NO) donor, while was suppressed by NO scavenger, nitrate reductase inhibitor, and nitric oxide synthase inhibitor. Overexpression of SoHb in Arabidopsis resulted in decreased NO level and sensitivity to nitrate stress, as shown by reduced root length, fresh weight, the maximum photosystem II quantum ratio of variable to maximum fluorescence (Fv/Fm), and higher malondialdehyde contents. The activities and gene transcription of superoxide dioxidase, and catalase decreased under nitrate stress. Expression levels of RD22, RD29A, DREB2A, and P5CS1 decreased after nitrate treatment in SoHb-overexpressing plants, while increased in the WT plants. Moreover, SoHb-overexpressing plants showed decreased tolerance to NaCl and osmotic stress. In addition, the SoHb-overexpression lines showed earlier flower by regulating the expression of SOC, GI and FLC genes. Our results indicated that the decreasing NO content in Arabidopsis by overexpressing SoHb might be responsible for lowered tolerance to nitrate and other abiotic stresses.
Collapse
|
37
|
Mira MM, Wally OSD, Elhiti M, El-Shanshory A, Reddy DS, Hill RD, Stasolla C. Jasmonic acid is a downstream component in the modulation of somatic embryogenesis by Arabidopsis Class 2 phytoglobin. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2231-46. [PMID: 26962208 PMCID: PMC4809281 DOI: 10.1093/jxb/erw022] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Previous studies have shown that the beneficial effect of suppression of the Arabidopsis phytoglobin 2 gene, PGB2, on somatic embryogenesis occurs through the accumulation of nitric oxide (NO) within the embryogenic cells originating from the cultured explant. NO activates the expression of Allene oxide synthase (AOS) and Lipoxygenase 2 (LOX2), genes encoding two key enzymes of the jasmonic acid (JA) biosynthetic pathway, elevating JA content within the embryogenic tissue. The number of embryos in the single aos1-1 mutant and pgb2-aos1-1 double mutant declined, and was not rescued by increasing levels of NO stimulating embryogenesis in wild-type tissue. NO also influenced JA responses by up-regulating PLANT DEFENSIN 1 (PDF1) and JASMONATE-ZIM-PROTEIN (JAZ1), as well as down-regulating MYC2. The NO and JA modulation of MYC2 and JAZ1 controlled embryogenesis. Ectopic expression of JAZ1 or suppression of MYC2 promoted the formation of somatic embryos, while repression of JAZ1 and up-regulation of MYC2 reduced the embryogenic performance. Sustained expression of JAZ1 induced the transcription of several indole acetic acid (IAA) biosynthetic genes, resulting in higher IAA levels in the embryogenic cells. Collectively these data fit a model integrating JA in the PGB2 regulation of Arabidopsis embryogenesis. Suppression of PGB2 increases JA through NO. Elevated levels of JA repress MYC2 and induce JAZ1, favoring the accumulation of IAA in the explants and the subsequent production of somatic embryos.
Collapse
Affiliation(s)
- Mohamed M. Mira
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Owen S. D. Wally
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Mohamed Elhiti
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Adel El-Shanshory
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Dhadi S. Reddy
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Robert D. Hill
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Claudio Stasolla
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| |
Collapse
|
38
|
Mukhi N, Dhindwal S, Uppal S, Kapoor A, Arya R, Kumar P, Kaur J, Kundu S. Structural and Functional Significance of the N- and C-Terminal Appendages in Arabidopsis Truncated Hemoglobin. Biochemistry 2016; 55:1724-40. [PMID: 26913482 DOI: 10.1021/acs.biochem.5b01013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Plant hemoglobins constitute three distinct groups: symbiotic, nonsymbiotic, and truncated hemoglobins. Structural investigation of symbiotic and nonsymbiotic (class I) hemoglobins revealed the presence of a vertebrate-like 3/3 globin fold in these proteins. In contrast, plant truncated hemoglobins are similar to bacterial truncated hemoglobins with a putative 2/2 α-helical globin fold. While multiple structures have been reported for plant hemoglobins of the first two categories, for plant truncated globins only one structure has been reported of late. Here, we report yet another crystal structure of the truncated hemoglobin from Arabidopsis thaliana (AHb3) with two water molecules in the heme pocket, of which one is distinctly coordinated to the heme iron, unlike the only available crystal structure of AHb3 with a hydroxyl ligand. AHb3 was monomeric in its crystallographic asymmetric unit; however, dimer was evident in the crystallographic symmetry, and the globin indeed existed as a stable dimer in solution. The tertiary structure of the protein exhibited a bacterial-like 2/2 α-helical globin fold with an additional N-terminal α-helical extension and disordered C-termini. To address the role of these extended termini in AHb3, which is yet unknown, N- and C-terminal deletion mutants were created and characterized and molecular dynamics simulations performed. The C-terminal deletion had an insignificant effect on most properties but perturbed the dimeric equilibrium of AHb3 and significantly influenced azide binding kinetics in the ferric state. These results along with the disordered nature of the C-terminus indicated its putative role in intramolecular or intermolecular interactions probably regulating protein-ligand and protein-protein interactions. While the N-terminal deletion did not change the overall globin fold, stability, or ligand binding kinetics, it seemed to have influenced coordination at the heme iron, the hydration status of the active site, and the quaternary structure of AHb3. Evidence indicated that the N-terminus is the predominant factor regulating the quaternary interaction appropriate to physiological requirements, dynamics of the side chains in the heme pocket, and tunnel organization in the protein matrix.
Collapse
Affiliation(s)
- Nitika Mukhi
- Department of Genetics, University of Delhi South Campus , New Delhi 110021, India
| | - Sonali Dhindwal
- Department of Biotechnology, Indian Institute of Technology , Roorkee, Uttarakhand 247667, India
| | - Sheetal Uppal
- Department of Biochemistry, University of Delhi South Campus , New Delhi 110021, India
| | - Abhijeet Kapoor
- Department of Biochemistry, University of Delhi South Campus , New Delhi 110021, India
| | - Richa Arya
- Department of Biochemistry, University of Delhi South Campus , New Delhi 110021, India
| | - Pravindra Kumar
- Department of Biotechnology, Indian Institute of Technology , Roorkee, Uttarakhand 247667, India
| | - Jagreet Kaur
- Department of Genetics, University of Delhi South Campus , New Delhi 110021, India
| | - Suman Kundu
- Department of Biochemistry, University of Delhi South Campus , New Delhi 110021, India
| |
Collapse
|
39
|
Mira MM, Adel ES, Stasolla C. Ethylene is integrated into the nitric oxide regulation of Arabidopsis somatic embryogenesis. J Genet Eng Biotechnol 2015; 13:7-17. [PMID: 30647561 PMCID: PMC6299816 DOI: 10.1016/j.jgeb.2015.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/18/2014] [Accepted: 01/10/2015] [Indexed: 01/07/2023]
Abstract
The study confirms the role of the two Arabidopsis hemoglobin genes (Glb1 and Glb2) during somatic embryogenesis and proposes the involvement of ethylene in the regulation of embryo development. Suppression of both Glb1 and Glb2 results in accumulation of nitric oxide (NO) and a different embryogenic response. Compared to WT tissue, down-regulation of Glb1 (Glb1 RNAi line) compromises the embryogenic process, while repression of Glb2 (Glb2-/- line) increases the number of embryos. These differences were ascribed to the differential accumulation of NO in the two lines, as Glb1 is a more effective NO scavenger compared to Glb2. A high elevation of NO level [achieved pharmacologically using the NO donor sodium nitroprusside (SNP), or genetically using the Glb1 suppressing line], activated the two ethylene biosynthetic genes 1-aminocyclopropane-1-carboxylate synthase (ACC synthase) and 1-aminocyclopropane-1-carboxylate oxidase (ACC oxidase). Ethylene accumulation repressed embryogenesis, as shown by the decreased embryo number observed in tissue treated with the ethylene releasing agent Ethephon (ETH), as well as by the increased embryo production obtained with the two ethylene insensitive mutant lines (ein2-1 and ein3-1). A repression in ethylene level increased the expression of many auxin biosynthetic genes and favored the accumulation of the auxin indole-acetic acid (IAA) at the sites of the explants where embryogenic tissue will form. Collectively these data reveal that high levels of NO, generated by the Glb1 suppressing line, but not by the Glb2 suppressing line, might increase the level of ethylene, which represses the production of auxin. Auxin is the inductive signal required for the formation of the embryogenic tissue.
Collapse
Affiliation(s)
- Mohamed M. Mira
- Department of Botany, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - El-Shanshory Adel
- Department of Botany, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Claudio Stasolla
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| |
Collapse
|
40
|
Sanz-Luque E, Ocaña-Calahorro F, de Montaigu A, Chamizo-Ampudia A, Llamas Á, Galván A, Fernández E. THB1, a truncated hemoglobin, modulates nitric oxide levels and nitrate reductase activity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 81:467-79. [PMID: 25494936 DOI: 10.1111/tpj.12744] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 11/21/2014] [Accepted: 12/02/2014] [Indexed: 05/18/2023]
Abstract
Hemoglobins are ubiquitous proteins that sense, store and transport oxygen, but the physiological processes in which they are implicated is currently expanding. Recent examples of previously unknown hemoglobin functions, which include scavenging of the signaling molecule nitric oxide (NO), illustrate how the implication of hemoglobins in different cell signaling processes is only starting to be unraveled. The extent and diversity of the hemoglobin protein family suggest that hemoglobins have diverged and have potentially evolved specialized functions in certain organisms. A unique model organism to study this functional diversity at the cellular level is the green alga Chlamydomonas reinhardtii because, among other reasons, it contains an unusually high number of a particular type of hemoglobins known as truncated hemoglobins (THB1-THB12). Here, we reveal a cell signaling function for a truncated hemoglobin of Chlamydomonas that affects the nitrogen assimilation pathway by simultaneously modulating NO levels and nitrate reductase (NR) activity. First, we found that THB1 and THB2 expression is modulated by the nitrogen source and depends on NIT2, a transcription factor required for nitrate assimilation genes expression. Furthermore, THB1 is highly expressed in the presence of NO and is able to convert NO into nitrate in vitro. Finally, THB1 is maintained on its active and reduced form by NR, and in vivo lower expression of THB1 results in increased NR activity. Thus, THB1 plays a dual role in NO detoxification and in the modulation of NR activity. This mechanism can partly explain how NO inhibits NR post-translationally.
Collapse
Affiliation(s)
- Emanuel Sanz-Luque
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Córdoba, Campus de Rabanales, Campus de excelencia internacional (CeiA3), Edif. Severo Ochoa, 14071, Córdoba, Spain
| | | | | | | | | | | | | |
Collapse
|
41
|
Mitochondrial Signaling in Plants Under Hypoxia: Use of Reactive Oxygen Species (ROS) and Reactive Nitrogen Species (RNS). SIGNALING AND COMMUNICATION IN PLANTS 2015. [DOI: 10.1007/978-3-319-10079-1_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
42
|
Huang S, Hill RD, Wally OSD, Dionisio G, Ayele BT, Jami SK, Stasolla C. Hemoglobin Control of Cell Survival/Death Decision Regulates in Vitro Plant Embryogenesis. PLANT PHYSIOLOGY 2014; 165:810-825. [PMID: 24784758 PMCID: PMC4044835 DOI: 10.1104/pp.114.239335] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 04/22/2014] [Indexed: 05/19/2023]
Abstract
Programmed cell death (PCD) in multicellular organisms is a vital process in growth, development, and stress responses that contributes to the formation of tissues and organs. Although numerous studies have defined the molecular participants in apoptotic and PCD cascades, successful identification of early master regulators that target specific cells to live or die is limited. Using Zea mays somatic embryogenesis as a model system, we report that the expressions of two plant hemoglobin (Hb) genes (ZmHb1 and ZmHb2) regulate the cell survival/death decision that influences somatic embryogenesis through their cell-specific localization patterns. Suppression of either of the two ZmHbs is sufficient to induce PCD through a pathway initiated by elevated NO and Zn2+ levels and mediated by production of reactive oxygen species. The effect of the death program on the fate of the developing embryos is dependent on the localization patterns of the two ZmHbs. During somatic embryogenesis, ZmHb2 transcripts are restricted to a few cells anchoring the embryos to the subtending embryogenic tissue, whereas ZmHb1 transcripts extend to several embryonic domains. Suppression of ZmHb2 induces PCD in the anchoring cells, allowing the embryos to develop further, whereas suppression of ZmHb1 results in massive PCD, leading to abortion. We conclude that regulation of the expression of these ZmHbs has the capability to determine the developmental fate of the embryogenic tissue during somatic embryogenesis through their effect on PCD. This unique regulation might have implications for development and differentiation in other species.
Collapse
Affiliation(s)
- Shuanglong Huang
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2 (S.H., R.D.H., O.S.D.W., B.T.A., S.K.J., C.S.); andDepartment of Molecular Biology and Genetics, Faculty of Science and Technology, Aarhus University-Flakkebjerg, 4200 Slagelse, Denmark (G.D.)
| | - Robert D Hill
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2 (S.H., R.D.H., O.S.D.W., B.T.A., S.K.J., C.S.); andDepartment of Molecular Biology and Genetics, Faculty of Science and Technology, Aarhus University-Flakkebjerg, 4200 Slagelse, Denmark (G.D.)
| | - Owen S D Wally
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2 (S.H., R.D.H., O.S.D.W., B.T.A., S.K.J., C.S.); andDepartment of Molecular Biology and Genetics, Faculty of Science and Technology, Aarhus University-Flakkebjerg, 4200 Slagelse, Denmark (G.D.)
| | - Giuseppe Dionisio
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2 (S.H., R.D.H., O.S.D.W., B.T.A., S.K.J., C.S.); andDepartment of Molecular Biology and Genetics, Faculty of Science and Technology, Aarhus University-Flakkebjerg, 4200 Slagelse, Denmark (G.D.)
| | - Belay T Ayele
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2 (S.H., R.D.H., O.S.D.W., B.T.A., S.K.J., C.S.); andDepartment of Molecular Biology and Genetics, Faculty of Science and Technology, Aarhus University-Flakkebjerg, 4200 Slagelse, Denmark (G.D.)
| | - Sravan Kumar Jami
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2 (S.H., R.D.H., O.S.D.W., B.T.A., S.K.J., C.S.); andDepartment of Molecular Biology and Genetics, Faculty of Science and Technology, Aarhus University-Flakkebjerg, 4200 Slagelse, Denmark (G.D.)
| | - Claudio Stasolla
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2 (S.H., R.D.H., O.S.D.W., B.T.A., S.K.J., C.S.); andDepartment of Molecular Biology and Genetics, Faculty of Science and Technology, Aarhus University-Flakkebjerg, 4200 Slagelse, Denmark (G.D.)
| |
Collapse
|
43
|
Hebelstrup KH, Shah JK, Simpson C, Schjoerring JK, Mandon J, Cristescu SM, Harren FJM, Christiansen MW, Mur LAJ, Igamberdiev AU. An assessment of the biotechnological use of hemoglobin modulation in cereals. PHYSIOLOGIA PLANTARUM 2014; 150:593-603. [PMID: 24118006 DOI: 10.1111/ppl.12115] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 09/30/2013] [Accepted: 10/01/2013] [Indexed: 05/11/2023]
Abstract
Non-symbiotic hemoglobin (nsHb) genes are ubiquitous in plants, but their biological functions have mostly been studied in model plant species rather than in crops. nsHb influences cell signaling and metabolism by modulating the levels of nitric oxide (NO). Class 1 nsHb is upregulated under hypoxia and is involved in various biotic and abiotic stress responses. Ectopic overexpression of nsHb in Arabidopsis thaliana accelerates development, whilst targeted overexpression in seeds can increase seed yield. Such observations suggest that manipulating nsHb could be a valid biotechnological target. We studied the effects of overexpression of class 1 nsHb in the monocotyledonous crop plant barley (Hordeum vulgare cv. Golden Promise). nsHb was shown to be involved in NO metabolism in barley, as ectopic overexpression reduced the amount of NO released during hypoxia. Further, as in Arabidopsis, nsHb overexpression compromised basal resistance toward pathogens in barley. However, unlike Arabidopsis, nsHb ectopic overexpression delayed growth and development in barley, and seed specific overexpression reduced seed yield. Thus, nsHb overexpression in barley does not seem to be an efficient strategy for increasing yield in cereal crops. These findings highlight the necessity for using actual crop plants rather than laboratory model plants when assessing the effects of biotechnological approaches to crop improvement.
Collapse
Affiliation(s)
- Kim H Hebelstrup
- Department of Molecular Biology and Genetics, Aarhus University, Flakkebjerg, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Igamberdiev AU, Stasolla C, Hill RD. Low Oxygen Stress, Nonsymbiotic Hemoglobins, NO, and Programmed Cell Death. LOW-OXYGEN STRESS IN PLANTS 2014. [DOI: 10.1007/978-3-7091-1254-0_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
45
|
Sainz M, Pérez-Rontomé C, Ramos J, Mulet JM, James EK, Bhattacharjee U, Petrich JW, Becana M. Plant hemoglobins may be maintained in functional form by reduced flavins in the nuclei, and confer differential tolerance to nitro-oxidative stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:875-87. [PMID: 24118423 DOI: 10.1111/tpj.12340] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 09/09/2013] [Accepted: 09/27/2013] [Indexed: 05/09/2023]
Abstract
The heme of bacteria, plant and animal hemoglobins (Hbs) must be in the ferrous state to bind O(2) and other physiological ligands. Here we have characterized the full set of non-symbiotic (class 1 and 2) and 'truncated' (class 3) Hbs of Lotus japonicus. Class 1 Hbs are hexacoordinate, but class 2 and 3 Hbs are pentacoordinate. Three of the globins, Glb1-1, Glb2 and Glb3-1, are nodule-enhanced proteins. The O(2) affinity of Glb1-1 (50 pm) was the highest known for any Hb, and the protein may function as an O(2) scavenger. The five globins were reduced by free flavins, which transfer electrons from NAD(P)H to the heme iron under aerobic and anaerobic conditions. Class 1 Hbs were reduced at very fast rates by FAD, class 2 Hbs at slower rates by both FMN and FAD, and class 3 Hbs at intermediate rates by FMN. The members of the three globin classes were immunolocalized predominantly in the nuclei. Flavins were quantified in legume nodules and nuclei, and their concentrations were sufficient to maintain Hbs in their functional state. All Hbs, except Glb1-1, were expressed in a flavohemoglobin-deficient yeast mutant and found to confer tolerance to oxidative stress induced by methyl viologen, copper or low temperature, indicating an anti-oxidative role for the hemes. However, only Glb1-2 and Glb2 afforded protection against nitrosative stress induced by S-nitrosoglutathione. Because this compound is specifically involved in transnitrosylation reactions with thiol groups, our results suggest a contribution of the single cysteine residues of both proteins in the stress response.
Collapse
Affiliation(s)
- Martha Sainz
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Apartado 13034, 50080, Zaragoza, Spain
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Hill RD, Huang S, Stasolla C. Hemoglobins, programmed cell death and somatic embryogenesis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 211:35-41. [PMID: 23987809 DOI: 10.1016/j.plantsci.2013.06.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 06/16/2013] [Accepted: 06/17/2013] [Indexed: 05/04/2023]
Abstract
Programmed cell death (PCD) is a universal process in all multicellular organisms. It is a critical component in a diverse number of processes ranging from growth and differentiation to response to stress. Somatic embryogenesis is one such process where PCD is significantly involved. Nitric oxide is increasingly being recognized as playing a significant role in regulating PCD in both mammalian and plant systems. Plant hemoglobins scavenge NO, and evidence is accumulating that events that modify NO levels in plants also affect hemoglobin expression. Here, we review the process of PCD, describing the involvement of NO and plant hemoglobins in the process. NO is an effector of cell death in both plants and vertebrates, triggering the cascade of events leading to targeted cell death that is a part of an organism's response to stress or to tissue differentiation and development. Expression of specific hemoglobins can alter this response in plants by scavenging the NO, thus, interrupting the death process. Somatic embryogenesis is used as a model system to demonstrate how cell-specific expression of different classes of hemoglobins can alter the embryogenic process, affecting hormone synthesis, cell metabolite levels and genes associated with PCD and embryogenic competence. We propose that plant hemoglobins influence somatic embryogenesis and PCD through cell-specific expression of a distinct plant hemoglobin. It is based on the premise that both embryogenic competence and PCD are strongly influenced by cellular NO levels. Increases in cellular NO levels result in elevated Zn(2+) and reactive-oxygen species associated with PCD, but they also result in decreased expression of MYC2, a transcription factor that is a negative effector of indoleacetic acid synthesis, a hormone that positively influences embryogenic competence. Cell-specific hemoglobin expression reduces NO levels as a result of NO scavenging, resulting in cell survival.
Collapse
Affiliation(s)
- Robert D Hill
- Department of Plant Science, University of Manitoba, Winnipeg, MB, Canada.
| | | | | |
Collapse
|
47
|
Arc E, Galland M, Godin B, Cueff G, Rajjou L. Nitric oxide implication in the control of seed dormancy and germination. FRONTIERS IN PLANT SCIENCE 2013; 4:346. [PMID: 24065970 PMCID: PMC3777103 DOI: 10.3389/fpls.2013.00346] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 08/16/2013] [Indexed: 05/20/2023]
Abstract
Germination ability is regulated by a combination of environmental and endogenous signals with both synergistic and antagonistic effects. Nitric oxide (NO) is a potent dormancy-releasing agent in many species, including Arabidopsis, and has been suggested to behave as an endogenous regulator of this physiological blockage. Distinct reports have also highlighted a positive impact of NO on seed germination under sub-optimal conditions. However, its molecular mode of action in the context of seed biology remains poorly documented. This review aims to focus on the implications of this radical in the control of seed dormancy and germination. The consequences of NO chemistry on the investigations on both its signaling and its targets in seeds are discussed. NO-dependent protein post-translational modifications are proposed as a key mechanism underlying NO signaling during early seed germination.
Collapse
Affiliation(s)
- Erwann Arc
- INRA, Institut Jean-Pierre Bourgin (UMR1318 Institut National de la Recherche Agronomique – AgroParisTech), Laboratory of Excellence “Saclay Plant Sciences”, VersaillesFrance
- AgroParisTech, UFR de Physiologie végétaleParis, France
- University of Innsbruck, Institute of BotanyInnsbruck, Austria
- *Correspondence: Erwann Arc and Loïc Rajjou, INRA, Institut Jean-Pierre Bourgin (UMR1318 Institut National de la Recherche Agronomique – AgroParisTech), Laboratory of Excellence “Saclay Plant Sciences”, Route de Saint Cyr (RD10) - Bât 2, F-78026 Versailles Cedex, France e-mail: ;
| | - Marc Galland
- INRA, Institut Jean-Pierre Bourgin (UMR1318 Institut National de la Recherche Agronomique – AgroParisTech), Laboratory of Excellence “Saclay Plant Sciences”, VersaillesFrance
- AgroParisTech, UFR de Physiologie végétaleParis, France
| | - Béatrice Godin
- INRA, Institut Jean-Pierre Bourgin (UMR1318 Institut National de la Recherche Agronomique – AgroParisTech), Laboratory of Excellence “Saclay Plant Sciences”, VersaillesFrance
- AgroParisTech, UFR de Physiologie végétaleParis, France
| | - Gwendal Cueff
- INRA, Institut Jean-Pierre Bourgin (UMR1318 Institut National de la Recherche Agronomique – AgroParisTech), Laboratory of Excellence “Saclay Plant Sciences”, VersaillesFrance
- AgroParisTech, UFR de Physiologie végétaleParis, France
| | - Loïc Rajjou
- INRA, Institut Jean-Pierre Bourgin (UMR1318 Institut National de la Recherche Agronomique – AgroParisTech), Laboratory of Excellence “Saclay Plant Sciences”, VersaillesFrance
- AgroParisTech, UFR de Physiologie végétaleParis, France
- *Correspondence: Erwann Arc and Loïc Rajjou, INRA, Institut Jean-Pierre Bourgin (UMR1318 Institut National de la Recherche Agronomique – AgroParisTech), Laboratory of Excellence “Saclay Plant Sciences”, Route de Saint Cyr (RD10) - Bât 2, F-78026 Versailles Cedex, France e-mail: ;
| |
Collapse
|
48
|
Hebelstrup KH, Shah JK, Igamberdiev AU. The role of nitric oxide and hemoglobin in plant development and morphogenesis. PHYSIOLOGIA PLANTARUM 2013; 148:457-69. [PMID: 23600702 DOI: 10.1111/ppl.12062] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 04/05/2013] [Accepted: 04/09/2013] [Indexed: 05/03/2023]
Abstract
Plant morphogenesis is regulated endogenously through phytohormones and other chemical signals, which may act either locally or distant from their place of synthesis. Nitric oxide (NO) is formed by a number of controlled processes in plant cells. It is a central signaling molecule with several effects on control of plant growth and development, such as shoot and root architecture. All plants are able to express non-symbiotic hemoglobins at low concentration. Their function is generally not related to oxygen transport or storage; instead they effectively oxidize NO to NO(3)(-) and thereby control the local cellular NO concentration. In this review, we analyze available data on the role of NO and plant hemoglobins in morphogenetic processes in plants. The comparison of the data suggests that hemoglobin gene expression in plants modulates development and morphogenesis of organs, such as roots and shoots, through the localized control of NO, and that hemoglobin gene expression should always be considered a modulating factor in processes controlled directly or indirectly by NO in plants.
Collapse
Affiliation(s)
- Kim H Hebelstrup
- Department of Molecular Biology and Genetics, Aarhus University, DK-4200, Slagelse, Denmark.
| | | | | |
Collapse
|
49
|
Wally OS, Mira MM, Hill RD, Stasolla C. Hemoglobin regulation of plant embryogenesis and plant pathogen interaction. PLANT SIGNALING & BEHAVIOR 2013; 8:25264. [PMID: 23759548 PMCID: PMC3999057 DOI: 10.4161/psb.25264] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Plant hemoglobins are ubiquitous molecules involved in several aspects of plant development and stress responses. Studies on the functional aspects of plant hemoglobins at the cellular level in these processes are limited, despite their ability to scavenge nitric oxide (NO), an important signal molecule interfering with hormone synthesis and sensitivity. This mini-review summarizes current knowledge on plant hemoglobins, analyzes their participation in plant pathogen interaction and embryogenesis and proposes a possible model centering on jasmonic acid (JA) as a downstream component of hemoglobin responses.
Collapse
|
50
|
Elhiti M, Hebelstrup KH, Wang A, Li C, Cui Y, Hill RD, Stasolla C. Function of type-2 Arabidopsis hemoglobin in the auxin-mediated formation of embryogenic cells during morphogenesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 74:946-58. [PMID: 23510449 DOI: 10.1111/tpj.12181] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 03/04/2013] [Accepted: 03/13/2013] [Indexed: 05/22/2023]
Abstract
Suppression of Arabidopsis GLB2, a type-2 nonsymbiotic hemoglobin, enhances somatic embryogenesis by increasing auxin production. In the glb2 knock-out line (GLB2-/-), polarization of PIN1 proteins and auxin maxima occurred at the base of the cotyledons of the zygotic explants, which are the sites of embryogenic tissue formation. These changes were also accompanied by a transcriptional upregulation of WUSCHEL (WUS) and SOMATIC EMBRYOGENESIS RECEPTOR KINASE (SERK1), which are markers of embryogenic competence. The increased auxin levels in the GLB2-/- line were ascribed to the induction of several key enzymes of the tryptophan and IAA biosynthetic pathways, including ANTHRANILATE SYNTHASE (α subunit; ASA1), CYTOCHROME P79B2 (CYP79B2) and AMIDASE1 (AMI1). The effects of GLB2 suppression on somatic embryogenesis and IAA synthesis are mediated by increasing levels of nitric oxide (NO) within the embryogenic cells, which repress the expression of the transcription factor MYC2, a well-characterized repressor of the auxin biosynthetic pathway. A model is proposed in which the suppression of GLB2 reduces the degree of NO scavenging by oxyhemoglobin, thereby increasing the cellular NO concentration. The increased levels of NO repress the expression of MYC2, relieving the inhibition of IAA synthesis and increasing cellular IAA, which is the inductive signal promoting embryogenic competence. Besides providing a model for the induction phase of embryogenesis in vitro, these studies propose previously undescribed functions for plant hemoglobins.
Collapse
Affiliation(s)
- Mohamed Elhiti
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T2N2, Canada
| | | | | | | | | | | | | |
Collapse
|