1
|
Xi Z, Li Y, Liu S, Wang D, Guo J, Xian B, Rao K, Chen C, Peng Y, Zhou Y, Chen J, Pei J, Ren C. Functional analysis and molecular characterization of UGT95A2, a specialized glycosyltransferase for flavonoid 3'-O-glycosylation in Carthamus tinctorius L. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 122:e70213. [PMID: 40358466 DOI: 10.1111/tpj.70213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 03/27/2025] [Accepted: 04/29/2025] [Indexed: 05/15/2025]
Abstract
Safflower, a traditional Chinese medicine, is renowned for its efficacy in promoting blood circulation and alleviating blood stasis. Its principal bioactive components are flavonoids, which predominantly exist as flavonoid glycosides. Glycosyltransferases, as downstream post-modification enzymes in the biosynthesis of these active glycosides, are of considerable research interest. This study leverages transcriptome data from safflower to identify a glycosyltransferase gene, UGT95A2, which was subjected to comprehensive bioinformatics and enzymatic property analyses. In vitro enzymatic assays demonstrated that UGT95A2 catalyzes the glycosylation of flavonoids with an ortho hydroxyl group on the B-ring, generating 3'-OH glycosylated products, such as luteolin, taxifolin, catechin, butin, and eriodictyol. When the ortho hydroxyl groups are located on the A-ring, UGT95A2 instead catalyzes the formation of 6-O-glucosides, as observed for baicalein and 6,7,4'-trihydroxyisoflavone. Validation of in vitro activity showed that overexpression of UGT95A2 enhances the luteolin-3'-O-glucoside content in safflower protoplasts and tobacco leaves. Molecular modeling and site-directed mutagenesis studies indicated that E328 is a critical active site for 3'-hydroxyl glycosylation, while D444 is essential for the enzyme's catalytic activity in generating disaccharides. The identification of the novel glycosyltransferase UGT95A2 provides a foundation for further elucidation of the glycosylation processes of flavonoid glycosides and offers a new biotechnological approach for the production of flavonoid 3'-O-glucosides. This advancement has significant implications for expanding the repertoire of glycosylation enzymes and offers valuable insights for the directed modification of engineering enzymes.
Collapse
Affiliation(s)
- Ziqing Xi
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yuhang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Siyu Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Di Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jinxin Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Bin Xian
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ke Rao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Chao Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yanni Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yanxun Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jiang Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- The State Bank of Chinese Drug Germplasm Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jin Pei
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- The State Bank of Chinese Drug Germplasm Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Chaoxiang Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- The State Bank of Chinese Drug Germplasm Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| |
Collapse
|
2
|
Gao Z, Cao Q, Deng Z. Unveiling the Power of Flax Lignans: From Plant Biosynthesis to Human Health Benefits. Nutrients 2024; 16:3520. [PMID: 39458513 PMCID: PMC11510306 DOI: 10.3390/nu16203520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Flax (Linum usitatissimum L.) is the richest plant source of lignin secondary metabolites. Lignans from flax have been applied in the fields of food, medicine, and health due to their significant physiological activities. The most abundant lignan is secoisolariciresinol, which exists in a glycosylated form in plants. RESULTS After ingestion, it is converted by human intestinal flora into enterodiol and enterolactone, which both have physiological roles. Here, the basic structures, contents, synthesis, regulatory, and metabolic pathways, as well as extraction and isolation methods, of flax lignans were reviewed. Additionally, the physiological activity-related mechanisms and their impacts on human health, from the biosynthesis of lignans in plants to the physiological activity effects observed in animal metabolites, were examined. CONCLUSIONS The review elucidates that lignans, as phenolic compounds, not only function as active substances in plants but also offer significant nutritional values and health benefits when flax is consumed.
Collapse
Affiliation(s)
- Zhan Gao
- School of Physical Education and Training, Capital University of Physical Education and Sports, Beijing 100191, China
| | - Qinglei Cao
- Department of Physical Education, University of Science and Technology Beijing, Beijing 100083, China; (Q.C.); (Z.D.)
| | - Zhongyuan Deng
- Department of Physical Education, University of Science and Technology Beijing, Beijing 100083, China; (Q.C.); (Z.D.)
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
3
|
Sirirungruang S, Blay V, Scott YF, Pereira JH, Hammel M, Barnum CR, Adams PD, Shih PM. Structural and biochemical basis for regiospecificity of the flavonoid glycosyltransferase UGT95A1. J Biol Chem 2024; 300:107602. [PMID: 39059496 PMCID: PMC11381871 DOI: 10.1016/j.jbc.2024.107602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/02/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Glycosylation is a predominant strategy plants use to fine-tune the properties of small molecule metabolites to affect their bioactivity, transport, and storage. It is also important in biotechnology and medicine as many glycosides are utilized in human health. Small molecule glycosylation is largely carried out by family 1 glycosyltransferases. Here, we report a structural and biochemical investigation of UGT95A1, a family 1 GT enzyme from Pilosella officinarum that exhibits a strong, unusual regiospecificity for the 3'-O position of flavonoid acceptor substrate luteolin. We obtained an apo crystal structure to help drive the analyses of a series of binding site mutants, revealing that while most residues are tolerant to mutations, key residues M145 and D464 are important for overall glycosylation activity. Interestingly, E347 is crucial for maintaining the strong preference for 3'-O glycosylation, while R462 can be mutated to increase regioselectivity. The structural determinants of regioselectivity were further confirmed in homologous enzymes. Our study also suggests that the enzyme contains large, highly dynamic, disordered regions. We showed that while most disordered regions of the protein have little to no implication in catalysis, the disordered regions conserved among investigated homologs are important to both the overall efficiency and regiospecificity of the enzyme. This report represents a comprehensive in-depth analysis of a family 1 GT enzyme with a unique substrate regiospecificity and may provide a basis for enzyme functional prediction and engineering.
Collapse
Affiliation(s)
- Sasilada Sirirungruang
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA; Feedstocks Division, Joint BioEnergy Institute, Emeryville, California, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA; Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Vincent Blay
- Biofuels and Bioproducts Division, Joint BioEnergy Institute, Emeryville, California, USA
| | - Yasmine F Scott
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| | - Jose H Pereira
- Technology Division, Joint BioEnergy Institute, Emeryville, California, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Michal Hammel
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Collin R Barnum
- Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California, Davis, California, USA
| | - Paul D Adams
- Technology Division, Joint BioEnergy Institute, Emeryville, California, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Patrick M Shih
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA; Feedstocks Division, Joint BioEnergy Institute, Emeryville, California, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA; Innovative Genomics Institute, University of California, Berkeley, California, USA.
| |
Collapse
|
4
|
Lu M, Zhao Y, Feng Y, Tang X, Zhao W, Yu K, Pan Y, Wang Q, Cui J, Zhang M, Jin J, Wang J, Zhao M, Schwab W, Song C. 2,4-Dihydroxybenzoic Acid, a Novel SA Derivative, Controls Plant Immunity via UGT95B17-Mediated Glucosylation: A Case Study in Camellia Sinensis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307051. [PMID: 38063804 PMCID: PMC10870048 DOI: 10.1002/advs.202307051] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/02/2023] [Indexed: 02/17/2024]
Abstract
The plant hormone salicylic acid (SA) plays critical roles in plant innate immunity. Several SA derivatives and associated modification are identified, whereas the range and modes of action of SA-related metabolites remain elusive. Here, the study discovered 2,4-dihydroxybenzoic acid (2,4-DHBA) and its glycosylated form as native SA derivatives in plants whose accumulation is largely induced by SA application and Ps. camelliae-sinensis (Pcs) infection. CsSH1, a 4/5-hydroxylase, catalyzes the hydroxylation of SA to 2,4-DHBA, and UDP-glucosyltransferase UGT95B17 catalyzes the formation of 2,4-DHBA glucoside. Down-regulation reduced the accumulation of 2,4-DHBA glucosides and enhanced the sensitivity of tea plants to Pcs. Conversely, overexpression of UGT95B17 increased plant disease resistance. The exogenous application of 2,4-DHBA and 2,5-DHBA, as well as the accumulation of DHBA and plant resistance comparison, indicate that 2,4-DHBA functions as a potentially bioactive molecule and is stored mainly as a glucose conjugate in tea plants, differs from the mechanism described in Arabidopsis. When 2,4-DHBA is applied exogenously, UGT95B17-silenced tea plants accumulated more 2,4-DHBA than SA and showed induced resistance to Pcs infection. These results indicate that 2,4-DHBA glucosylation positively regulates disease resistance and highlight the role of 2,4-DHBA as potentially bioactive molecule in the establishment of basal resistance in tea plants.
Collapse
Affiliation(s)
- Mengqian Lu
- State Key Laboratory of Tea Plant Biology and UtilizationInternational Joint Laboratory on Tea Chemistry and Health EffectsAnhui Agricultural UniversityHefeiAnhui230036P. R. China
| | - Yifan Zhao
- State Key Laboratory of Tea Plant Biology and UtilizationInternational Joint Laboratory on Tea Chemistry and Health EffectsAnhui Agricultural UniversityHefeiAnhui230036P. R. China
| | - Yingying Feng
- State Key Laboratory of Tea Plant Biology and UtilizationInternational Joint Laboratory on Tea Chemistry and Health EffectsAnhui Agricultural UniversityHefeiAnhui230036P. R. China
| | - Xiaoyan Tang
- State Key Laboratory of Tea Plant Biology and UtilizationInternational Joint Laboratory on Tea Chemistry and Health EffectsAnhui Agricultural UniversityHefeiAnhui230036P. R. China
| | - Wei Zhao
- State Key Laboratory of Tea Plant Biology and UtilizationInternational Joint Laboratory on Tea Chemistry and Health EffectsAnhui Agricultural UniversityHefeiAnhui230036P. R. China
| | - Keke Yu
- State Key Laboratory of Tea Plant Biology and UtilizationInternational Joint Laboratory on Tea Chemistry and Health EffectsAnhui Agricultural UniversityHefeiAnhui230036P. R. China
| | - Yuting Pan
- State Key Laboratory of Tea Plant Biology and UtilizationInternational Joint Laboratory on Tea Chemistry and Health EffectsAnhui Agricultural UniversityHefeiAnhui230036P. R. China
| | - Qiang Wang
- State Key Laboratory of Tea Plant Biology and UtilizationInternational Joint Laboratory on Tea Chemistry and Health EffectsAnhui Agricultural UniversityHefeiAnhui230036P. R. China
| | - Jilai Cui
- State Key Laboratory of Tea Plant Biology and UtilizationInternational Joint Laboratory on Tea Chemistry and Health EffectsAnhui Agricultural UniversityHefeiAnhui230036P. R. China
- Key Laboratory of Tea Plant Biology of Henan ProvinceCollege of Life ScienceXinyang Normal University237 Nanhu R.XinyangHenan464000P. R. China
| | - Mengting Zhang
- State Key Laboratory of Tea Plant Biology and UtilizationInternational Joint Laboratory on Tea Chemistry and Health EffectsAnhui Agricultural UniversityHefeiAnhui230036P. R. China
| | - Jieyang Jin
- State Key Laboratory of Tea Plant Biology and UtilizationInternational Joint Laboratory on Tea Chemistry and Health EffectsAnhui Agricultural UniversityHefeiAnhui230036P. R. China
| | - Jingming Wang
- State Key Laboratory of Tea Plant Biology and UtilizationInternational Joint Laboratory on Tea Chemistry and Health EffectsAnhui Agricultural UniversityHefeiAnhui230036P. R. China
| | - Mingyue Zhao
- State Key Laboratory of Tea Plant Biology and UtilizationInternational Joint Laboratory on Tea Chemistry and Health EffectsAnhui Agricultural UniversityHefeiAnhui230036P. R. China
| | - Wilfried Schwab
- State Key Laboratory of Tea Plant Biology and UtilizationInternational Joint Laboratory on Tea Chemistry and Health EffectsAnhui Agricultural UniversityHefeiAnhui230036P. R. China
- Biotechnology of Natural ProductsTechnische Universität MünchenLiesel‐Beckmann‐Str. 185354FreisingGermany
| | - Chuankui Song
- State Key Laboratory of Tea Plant Biology and UtilizationInternational Joint Laboratory on Tea Chemistry and Health EffectsAnhui Agricultural UniversityHefeiAnhui230036P. R. China
| |
Collapse
|
5
|
UGT72, a Major Glycosyltransferase Family for Flavonoid and Monolignol Homeostasis in Plants. BIOLOGY 2022; 11:biology11030441. [PMID: 35336815 PMCID: PMC8945231 DOI: 10.3390/biology11030441] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Phenylpropanoids are specialized metabolites playing crucial roles in plant developmental processes and in plant defense towards pathogens. The attachment of sugar moieties to these small hydrophobic molecules renders them more hydrophilic and increases their solubility. The UDP-glycosyltransferase 72 family (UGT72) of plants has been shown to glycosylate mainly two classes of phenylpropanoids, (i) the monolignols that are the building blocks of lignin, the second most abundant polymer after cellulose, and (ii) the flavonoids, which play determinant roles in plant interactions with other organisms and in response to stress. The purpose of this review is to bring an overview of the current knowledge of the UGT72 family and to highlight its role in the homeostasis of these molecules. Potential applications in pharmacology and in wood, paper pulp, and bioethanol production are given within the perspectives. Abstract Plants have developed the capacity to produce a diversified range of specialized metabolites. The glycosylation of those metabolites potentially decreases their toxicity while increasing their stability and their solubility, modifying their transport and their storage. The UGT, forming the largest glycosyltransferase superfamily in plants, combine enzymes that glycosylate mainly hormones and phenylpropanoids by using UDP-sugar as a sugar donor. Particularly, members of the UGT72 family have been shown to glycosylate the monolignols and the flavonoids, thereby being involved in their homeostasis. First, we explore primitive UGTs in algae and liverworts that are related to the angiosperm UGT72 family and their role in flavonoid homeostasis. Second, we describe the role of several UGT72s glycosylating monolignols, some of which have been associated with lignification. In addition, the role of other UGT72 members that glycosylate flavonoids and are involved in the development and/or stress response is depicted. Finally, the importance to explore the subcellular localization of UGTs to study their roles in planta is discussed.
Collapse
|
6
|
Zhang Y, Guo W, Chen L, Shen X, Yang H, Fang Y, Ouyang W, Mai S, Chen H, Chen S, Hao Q, Yuan S, Zhang C, Huang Y, Shan Z, Yang Z, Qiu D, Zhou X, Cao D, Li X, Jiao Y. CRISPR/Cas9-Mediated Targeted Mutagenesis of GmUGT Enhanced Soybean Resistance Against Leaf-Chewing Insects Through Flavonoids Biosynthesis. FRONTIERS IN PLANT SCIENCE 2022; 13:802716. [PMID: 35273623 PMCID: PMC8902248 DOI: 10.3389/fpls.2022.802716] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/07/2022] [Indexed: 05/03/2023]
Abstract
Leaf-chewing insects are important pests that cause yield loss and reduce seed quality in soybeans (Glycine max). Breeding soybean varieties that are resistant to leaf-chewing insects can minimize the need for insecticide use and reduce yield loss. The marker gene for QTL-M, Glyma.07g110300 (LOC100775351) that encodes a UDP-glycosyltransferase (UGT) is the major determinant of resistance against leaf-chewing insects in soybean; it exhibits a loss of function in insect-resistant soybean germplasms. In this study, Agrobacterium-mediated transformation introduced the CRISPR/Cas9 expression vector into the soybean cultivar Tianlong No. 1 to generate Glyma.07g110300-gene mutants. We obtained two novel types of mutations, a 33-bp deletion and a single-bp insertion in the GmUGT coding region, which resulted in an enhanced resistance to Helicoverpa armigera and Spodoptera litura. Additionally, overexpressing GmUGT produced soybean varieties that were more sensitive to H. armigera and S. litura. Both mutant and overexpressing lines exhibited no obvious phenotypic changes. The difference in metabolites and gene expression suggested that GmUGT is involved in imparting resistance to leaf-chewing insects by altering the flavonoid content and expression patterns of genes related to flavonoid biosynthesis and defense. Furthermore, ectopic expression of the GmUGT gene in the ugt72b1 mutant of Arabidopsis substantially rescued the phenotype of H. armigera resistance in the atugt72b1 mutant. Our study presents a strategy for increasing resistance against leaf-chewing insects in soybean through CRISPR/Cas9-mediated targeted mutagenesis of the UGT genes.
Collapse
Affiliation(s)
- Yongxing Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wei Guo
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Limiao Chen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xinjie Shen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Hongli Yang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Yisheng Fang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Wenqi Ouyang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Sihua Mai
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Haifeng Chen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Shuilian Chen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Qingnan Hao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Songli Yuan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Chanjuan Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Yi Huang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Zhihui Shan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Zhonglu Yang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Dezhen Qiu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xinan Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Dong Cao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xia Li
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yongqing Jiao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
7
|
Lee C, Hong WJ, Jung KH, Hong HC, Kim DY, Ok HC, Choi MS, Park SK, Kim J, Koh HJ. Arachis hypogaea resveratrol synthase 3 alters the expression pattern of UDP-glycosyltransferase genes in developing rice seeds. PLoS One 2021; 16:e0245446. [PMID: 33444365 PMCID: PMC7808588 DOI: 10.1371/journal.pone.0245446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/31/2020] [Indexed: 12/19/2022] Open
Abstract
The resveratrol-producing rice (Oryza sativa L.) inbred lines, Iksan 515 (I.515) and Iksan 526 (I.526), developed by the expression of the groundnut (Arachis hypogaea) resveratrol synthase 3 (AhRS3) gene in the japonica rice cultivar Dongjin, accumulated both resveratrol and its glucoside, piceid, in seeds. Here, we investigated the effect of the AhRS3 transgene on the expression of endogenous piceid biosynthesis genes (UGTs) in the developing seeds of the resveratrol-producing rice inbred lines. Ultra-performance liquid chromatography (UPLC) analysis revealed that I.526 accumulates significantly higher resveratrol and piceid in seeds than those in I.515 seeds and, in I.526 seeds, the biosynthesis of resveratrol and piceid reached peak levels at 41 days after heading (DAH) and 20 DAH, respectively. Furthermore, RNA-seq analysis showed that the expression patterns of UGT genes differed significantly between the 20 DAH seeds of I.526 and those of Dongjin. Quantitative real-time PCR (RT-qPCR) analyses confirmed the data from RNA-seq analysis in seeds of Dongjin, I.515 and I.526, respectively, at 9 DAH, and in seeds of Dongjin and I.526, respectively, at 20 DAH. A total of 245 UGTs, classified into 31 UGT families, showed differential expression between Dongjin and I.526 seeds at 20 DAH. Of these, 43 UGTs showed more than 2-fold higher expression in I.526 seeds than in Dongjin seeds. In addition, the expression of resveratrol biosynthesis genes (PAL, C4H and 4CL) was also differentially expressed between Dongjin and I.526 developing seeds. Collectively, these data suggest that AhRS3 altered the expression pattern of UGT genes, and PAL, C4H and 4CL in developing rice seeds.
Collapse
Affiliation(s)
- Choonseok Lee
- Department of Plant Science, Research Institute for Agriculture and Life Sciences, and Plant Genomics and Breeding Institute, Seoul National University, Seoul, Republic of Korea
| | - Woo-Jong Hong
- Graduate School of Biotechnology, Kyung Hee University, Yongin, Gyeonggi-do, Republic of Korea
| | - Ki-Hong Jung
- Graduate School of Biotechnology, Kyung Hee University, Yongin, Gyeonggi-do, Republic of Korea
| | - Ha-Cheol Hong
- National Institute of Agricultural Sciences, Wanju, Jeollabuk-do, Republic of Korea
| | - Dool-Yi Kim
- National Institute of Crop Science, Wanju, Jeollabuk-do, Republic of Korea
| | - Hyun-Choong Ok
- Rural Development Administration, Jeonju, Jeollabuk-do, Republic of Korea
| | - Man-Soo Choi
- National Institute of Crop Science, Wanju, Jeollabuk-do, Republic of Korea
| | - Soo-Kwon Park
- Rural Development Administration, Jeonju, Jeollabuk-do, Republic of Korea
| | - Jaehyun Kim
- National Institute of Crop Science, Wanju, Jeollabuk-do, Republic of Korea
- * E-mail: (JK); (HJK)
| | - Hee-Jong Koh
- Department of Plant Science, Research Institute for Agriculture and Life Sciences, and Plant Genomics and Breeding Institute, Seoul National University, Seoul, Republic of Korea
- * E-mail: (JK); (HJK)
| |
Collapse
|
8
|
Wilson AE, Tian L. Phylogenomic analysis of UDP-dependent glycosyltransferases provides insights into the evolutionary landscape of glycosylation in plant metabolism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:1273-1288. [PMID: 31446648 DOI: 10.1111/tpj.14514] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/09/2019] [Accepted: 08/19/2019] [Indexed: 05/05/2023]
Abstract
Glycosylated metabolites generated by UDP-dependent glycosyltransferases (UGTs) play critical roles in plant interactions with the environment as well as human and animal nutrition. The evolution of plant UGTs has previously been explored, but with a limited taxon sampling. In this study, 65 fully sequenced plant genomes were analyzed, and stringent criteria for selection of candidate UGTs were applied to ensure a more comprehensive taxon sampling and reliable sequence inclusion. In addition to revealing the overall evolutionary landscape of plant UGTs, the phylogenomic analysis also resolved the phylogenetic association of UGTs from free-sporing plants and gymnosperms, and identified an additional UGT group (group R) in seed plants. Furthermore, lineage-specific expansions and contractions of UGT groups were detected in angiosperms, with the total number of UGTs per genome remaining constant generally. The loss of group Q UGTs in Poales and Brassicales, rather than functional convergence in the group Q containing species, was supported by a gene tree of group Q UGTs sampled from many species, and further corroborated by the absence of group Q homologs on the syntenic chromosomal regions in Arabidopsis thaliana (Brassicales). Branch-site analyses of the group Q UGT gene tree allowed for identification of branches and amino acid sites that experienced episodic positive selection. The positively selected sites are located on the surface of a representative group Q UGT (PgUGT95B2), away from the active site, suggesting their role in protein folding/stability or protein-protein interactions.
Collapse
Affiliation(s)
- Alexander E Wilson
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Li Tian
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| |
Collapse
|
9
|
Wilson AE, Wu S, Tian L. PgUGT95B2 preferentially metabolizes flavones/flavonols and has evolved independently from flavone/flavonol UGTs identified in Arabidopsis thaliana. PHYTOCHEMISTRY 2019; 157:184-193. [PMID: 30419412 DOI: 10.1016/j.phytochem.2018.10.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/16/2018] [Accepted: 10/25/2018] [Indexed: 05/20/2023]
Abstract
UDP-dependent glycosyltransferases (UGTs) convert aglycones into more stable, bioactive, and structurally diverse glycosylated derivatives. Pomegranate (Punica granatum L.) produces various glycosylated phenolic metabolites, e.g. hydrolyzable tannins (HTs), anthocyanins, and flavonoids, and constitutes an excellent system for investigating the corresponding UGT activities. Here we report the cloning and functional characterization of a pomegranate UGT, PgUGT95B2, which is highly active towards flavones and flavonols and can glycosylate at more than one position in the substrate molecule. Particularly, PgUGT95B2 has the strongest activity towards tricetin (flavone with a tri-hydroxylated B-ring) and can act at the 4'-O position of its B-ring. In addition, PgUGT95B2 was able to glycosylate flavones present in pomegranate metabolite extracts. Conversely, PgUGT95B2 did not produce a galloylglucose ester (precursor for HT biosynthesis) or anthocyanins in enzyme assays. Our phylogenetic analysis suggested an independent evolution of PgUGT95B2 and flavone/flavonol UGTs identified in the model plant Arabidopsis thaliana through convergent evolution or gene loss.
Collapse
Affiliation(s)
- Alexander E Wilson
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Sheng Wu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China; Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Li Tian
- Department of Plant Sciences, University of California, Davis, CA 95616, USA; Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China; Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, 201602, China.
| |
Collapse
|
10
|
Kezimana P, Dmitriev AA, Kudryavtseva AV, Romanova EV, Melnikova NV. Secoisolariciresinol Diglucoside of Flaxseed and Its Metabolites: Biosynthesis and Potential for Nutraceuticals. Front Genet 2018; 9:641. [PMID: 30619466 PMCID: PMC6299007 DOI: 10.3389/fgene.2018.00641] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/27/2018] [Indexed: 12/28/2022] Open
Abstract
Secoisolariciresinol diglucoside (SDG), found mainly in flaxseed, is one of the essential lignans. SDG, as well as the beneficial fatty acid composition and high fiber content, has made flaxseed an important source of functional food or nutraceutical ingredients. Various studies have shown that SDG offers several health benefits, including protective effects against cardiovascular diseases, diabetes, cancer, and mental stress. These health benefits have been attributed to the antioxidant properties of SDG. Additionally, SDG metabolites, namely mammalian lignans, enterodiol and enterolactone, have shown promising effects against cancer. Therefore, understanding the biosynthetic pathway of SDG and its molecular mechanisms is a key to enable the production of new flaxseed cultivars rich in nutraceutical content. The present review highlights studies on the different health benefits of SDG, as well as lignan biosynthesis in flaxseed and genes involved in the biosynthetic pathway. Since SDG, the predominant lignan in flaxseed, is a glycosylated lignan, we also focus on studies investigating the genes involved in secoisolariciresinol glycosylation. These genes can be used to produce new cultivars with a novel level of glycosylation or lignan composition to maximize the yields of lignans with a therapeutic or protective potential.
Collapse
Affiliation(s)
- Parfait Kezimana
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Department of Agrobiotechnology, Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia
| | - Alexey A. Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Anna V. Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Elena V. Romanova
- Department of Agrobiotechnology, Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia
| | - Nataliya V. Melnikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
11
|
Ibdah M, Martens S, Gang DR. Biosynthetic Pathway and Metabolic Engineering of Plant Dihydrochalcones. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:2273-2280. [PMID: 29171271 DOI: 10.1021/acs.jafc.7b04445] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Dihydrochalcones are plant natural products containing the phenylpropanoid backbone and derived from the plant-specific phenylpropanoid pathway. Dihydrochalcone compounds are important in plant growth and response to stresses and, thus, can have large impacts on agricultural activity. In recent years, these compounds have also received increased attention from the biomedical community for their potential as anticancer treatments and other benefits for human health. However, they are typically produced at relatively low levels in plants. Therefore, an attractive alternative is to express the plant biosynthetic pathway genes in microbial hosts and to engineer the metabolic pathway/host to improve the production of these metabolites. In the present review, we discuss in detail the functions of genes and enzymes involved in the biosynthetic pathway of the dihydrochalcones and the recent strategies and achievements used in the reconstruction of multi-enzyme pathways in microorganisms in efforts to be able to attain higher amounts of desired dihydrochalcones.
Collapse
Affiliation(s)
- Mwafaq Ibdah
- Newe Ya'ar Research Center , Agriculture Research Organization , Post Office Box 1021, Ramat Yishay 30095 , Israel
| | - Stefan Martens
- Department of Food Quality and Nutrition, Centro Ricerca e Innovazione , Fondazione Edmund Mach , Via E. Mach 1 , 38010 San Michele all'Adige , Trentino , Italy
| | - David R Gang
- Institute of Biological Chemistry , Washington State University , Post Office Box 646340, Pullman , Washington 99164-6340 , United States
| |
Collapse
|
12
|
Fofana B, Ghose K, Somalraju A, McCallum J, Main D, Deyholos MK, Rowland GG, Cloutier S. Induced Mutagenesis in UGT74S1 Gene Leads to Stable New Flax Lines with Altered Secoisolariciresinol Diglucoside (SDG) Profiles. FRONTIERS IN PLANT SCIENCE 2017; 8:1638. [PMID: 28983308 PMCID: PMC5613138 DOI: 10.3389/fpls.2017.01638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 09/06/2017] [Indexed: 06/07/2023]
Abstract
Flax secoisolariciresinol (SECO) diglucoside (SDG) lignan is an emerging natural product purported to prevent chronic diseases in humans. SECO, the aglycone form of SDG, has shown higher intestinal cell absorption but it is not accumulated naturally in planta. Recently, we have identified and characterized a UDP-glucosyltransferase gene, UGT74S1, that glucosylates SECO into its monoglucoside (SMG) and SDG forms when expressed in yeast. However, whether this gene is unique in controlling SECO glucosylation into SDG in planta is unclear. Here, we report on the use of UGT74S1 in reverse and forward genetics to characterize an ethyl methane sulfonate (EMS) mutagenized flax population from cultivar CDC Bethune and consisting of 1996 M2 families. EMS mutagenesis generated 73 SNP variants causing 79 mutational events in the UGT74S1 exonic regions of 93 M2 families. The mutation frequency in the exonic regions was determined to be one per 28 Kb. Of these mutations, 13 homozygous missense mutations and two homozygous nonsense mutations were observed and all were transmitted into the M3 and M4 generations. Forward genetics screening of the population showed homozygous nonsense mutants completely lacking SDG biosynthesis while the production of SMG was observed only in a subset of the M4 lines. Heterozygous or homozygous M4 missense mutants displayed a wide range of SDG levels, some being greater than those of CDC Bethune. No additional deleterious mutations were detected in these mutant lines using a panel of 10 other genes potentially involved in the lignan biosynthesis. This study provides further evidence that UGT74S1 is unique in controlling SDG formation from SECO and this is the first report of non-transgenic flax germplasm with simultaneous knockout of SDG and presence of SMG in planta.
Collapse
Affiliation(s)
- Bourlaye Fofana
- Charlottetown Research and Development Centre, Agriculture and Agri-Food CanadaCharlottetown, PE, Canada
| | - Kaushik Ghose
- Charlottetown Research and Development Centre, Agriculture and Agri-Food CanadaCharlottetown, PE, Canada
| | - Ashok Somalraju
- Charlottetown Research and Development Centre, Agriculture and Agri-Food CanadaCharlottetown, PE, Canada
| | - Jason McCallum
- Charlottetown Research and Development Centre, Agriculture and Agri-Food CanadaCharlottetown, PE, Canada
| | - David Main
- Charlottetown Research and Development Centre, Agriculture and Agri-Food CanadaCharlottetown, PE, Canada
| | | | - Gordon G. Rowland
- Department of Plant Science, Crop Development Centre, University of SaskatchewanSaskatoon, SK, Canada
| | - Sylvie Cloutier
- Ottawa Research and Development Centre, Agriculture and Agri-Food CanadaOttawa, ON, Canada
| |
Collapse
|
13
|
Fofana B, Ghose K, McCallum J, You FM, Cloutier S. UGT74S1 is the key player in controlling secoisolariciresinol diglucoside (SDG) formation in flax. BMC PLANT BIOLOGY 2017; 17:35. [PMID: 28152982 PMCID: PMC5290659 DOI: 10.1186/s12870-017-0982-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 01/23/2017] [Indexed: 05/02/2023]
Abstract
BACKGROUND Flax lignan, commonly known as secoisolariciresinol (SECO) diglucoside (SDG), has recently been reported with health-promoting activities, including its positive impact in metabolic diseases. However, not much was reported on the biosynthesis of SDG and its monoglucoside (SMG) until lately. Flax UGT74S1 was recently reported to sequentially glucosylate SECO into SMG and SDG in vitro. However, whether this gene is the only UGT achieving SECO glucosylation in flax was not known. RESULTS Flax genome-wide mining for UGTs was performed. Phylogenetic and gene duplication analyses, heterologous gene expression and enzyme assays were conducted to identify family members closely related to UGT74S1 and to establish their roles in SECO glucosylation. A total of 299 different UGTs were identified, of which 241 (81%) were duplicated. Flax UGTs diverged 2.4-153.6 MYA and 71% were found to be under purifying selection pressure. UGT74S1, a single copy gene located on chromosome 7, displayed no evidence of duplication and was deemed to be under positive selection pressure. The phylogenetic analysis identified four main clusters where cluster 4, which included UGT74S1, was the most diverse. The duplicated UGT74S4 and UGT74S3, located on chromosomes 8 and 14, respectively, were the most closely related to UGT74S1 and were differentially expressed in different tissues. Heterologous expression levels of UGT74S1, UGT74S4 and UGT74S3 proteins were similar but UGT74S4 and UGT74S3 glucosylation activity towards SECO was seven fold less than UGT74S1. In addition, they both failed to produce SDG, suggesting neofunctionalization following their divergence from UGT74S1. CONCLUSIONS We showed that UGT74S1 is closely related to two duplicated genes, UGT74S4 and UGT74S3 which, unlike UGT74S1, failed to glucosylate SMG into SDG. The study suggests that UGT74S1 may be the key player in controlling SECO glucosylation into SDG in flax although its closely related genes may also contribute to a minor extent in supplying the SMG precursor to UGT74S1.
Collapse
Affiliation(s)
- Bourlaye Fofana
- Charlottetown Research and Development Centre, Agriculture and Agri-Food Canada, 440 University Avenue, Charlottetown, Prince Edward Island C1A 4N6 Canada
| | - Kaushik Ghose
- Charlottetown Research and Development Centre, Agriculture and Agri-Food Canada, 440 University Avenue, Charlottetown, Prince Edward Island C1A 4N6 Canada
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409 USA
| | - Jason McCallum
- Charlottetown Research and Development Centre, Agriculture and Agri-Food Canada, 440 University Avenue, Charlottetown, Prince Edward Island C1A 4N6 Canada
| | - Frank M. You
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, 101 Route 100 Unit 100, Morden, Manitoba R6M 1Y5 Canada
| | - Sylvie Cloutier
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Ontario K1A 0C6 Canada
| |
Collapse
|
14
|
Yahyaa M, Davidovich-Rikanati R, Eyal Y, Sheachter A, Marzouk S, Lewinsohn E, Ibdah M. Identification and characterization of UDP-glucose:Phloretin 4'-O-glycosyltransferase from Malus x domestica Borkh. PHYTOCHEMISTRY 2016; 130:47-55. [PMID: 27316677 DOI: 10.1016/j.phytochem.2016.06.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 05/27/2016] [Accepted: 06/06/2016] [Indexed: 06/06/2023]
Abstract
Apples (Malus x domestica Brokh.) are among the world's most important food crops with nutritive and medicinal importance. Many of the health beneficial properties of apple fruit are suggested to be due to (poly)phenolic metabolites, including various dihydrochalcones. Although many of the genes and enzymes involved in polyphenol biosynthesis are known in many plant species, the specific reactions that lead to the biosynthesis of the sweet tasting dihydrochalcones, such as trilobatin, are unknown. To identify candidate genes for involvement in the glycosylation of dihydrochalcones, existing genome databases of the Rosaceae were screened for apple genes with significant sequence similarity to Bacillus subtilis phloretin glycosyltransferase. Herein reported is the identification and functional characterization of a Malus x domestica gene encoding phloretin-4'-O-glycosyltransferase designated MdPh-4'-OGT. Recombinant MdPh-4'-OGT protein glycosylates phloretin in the presence of UDP-glucose into trilobatin in vitro. Its apparent Km values for phloretin and UDP-glucose were 26.1 μM and 1.2 mM, respectively. Expression analysis of the MdPh-4'-OGT gene indicated that its transcript levels showed significant variation in apple tissues of different developmental stages.
Collapse
Affiliation(s)
- Mosaab Yahyaa
- NeweYaar Research Center, Agriculture Research Organization, P.O. Box 1021, Ramat Yishay, 30095, Israel
| | | | - Yoram Eyal
- Institute of Plant Science, The Volcani Center, ARO, P.O. Box 6, Bet Dagan, 50250, Israel
| | - Alona Sheachter
- NeweYaar Research Center, Agriculture Research Organization, P.O. Box 1021, Ramat Yishay, 30095, Israel
| | - Sally Marzouk
- NeweYaar Research Center, Agriculture Research Organization, P.O. Box 1021, Ramat Yishay, 30095, Israel
| | - Efraim Lewinsohn
- NeweYaar Research Center, Agriculture Research Organization, P.O. Box 1021, Ramat Yishay, 30095, Israel
| | - Mwafaq Ibdah
- NeweYaar Research Center, Agriculture Research Organization, P.O. Box 1021, Ramat Yishay, 30095, Israel.
| |
Collapse
|
15
|
Tiwari P, Sangwan RS, Sangwan NS. Plant secondary metabolism linked glycosyltransferases: An update on expanding knowledge and scopes. Biotechnol Adv 2016; 34:714-739. [PMID: 27131396 DOI: 10.1016/j.biotechadv.2016.03.006] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 02/06/2016] [Accepted: 03/19/2016] [Indexed: 02/04/2023]
Abstract
The multigene family of enzymes known as glycosyltransferases or popularly known as GTs catalyze the addition of carbohydrate moiety to a variety of synthetic as well as natural compounds. Glycosylation of plant secondary metabolites is an emerging area of research in drug designing and development. The unsurpassing complexity and diversity among natural products arising due to glycosylation type of alterations including glycodiversification and glycorandomization are emerging as the promising approaches in pharmacological studies. While, some GTs with broad spectrum of substrate specificity are promising candidates for glycoengineering while others with stringent specificity pose limitations in accepting molecules and performing catalysis. With the rising trends in diseases and the efficacy/potential of natural products in their treatment, glycosylation of plant secondary metabolites constitutes a key mechanism in biogeneration of their glycoconjugates possessing medicinal properties. The present review highlights the role of glycosyltransferases in plant secondary metabolism with an overview of their identification strategies, catalytic mechanism and structural studies on plant GTs. Furthermore, the article discusses the biotechnological and biomedical application of GTs ranging from detoxification of xenobiotics and hormone homeostasis to the synthesis of glycoconjugates and crop engineering. The future directions in glycosyltransferase research should focus on the synthesis of bioactive glycoconjugates via metabolic engineering and manipulation of enzyme's active site leading to improved/desirable catalytic properties. The multiple advantages of glycosylation in plant secondary metabolomics highlight the increasing significance of the GTs, and in near future, the enzyme superfamily may serve as promising path for progress in expanding drug targets for pharmacophore discovery and development.
Collapse
Affiliation(s)
- Pragya Tiwari
- Department of Metabolic and Structural Biology, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Lucknow 226015, India
| | - Rajender Singh Sangwan
- Department of Metabolic and Structural Biology, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Lucknow 226015, India; Center of Innovative and Applied Bioprocessing (CIAB), A National Institute under Department of Biotechnology, Government of India, C-127, Phase-8, Industrial Area, S.A.S. Nagar, Mohali 160071, Punjab, India
| | - Neelam S Sangwan
- Department of Metabolic and Structural Biology, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Lucknow 226015, India.
| |
Collapse
|
16
|
Cui L, Yao S, Dai X, Yin Q, Liu Y, Jiang X, Wu Y, Qian Y, Pang Y, Gao L, Xia T. Identification of UDP-glycosyltransferases involved in the biosynthesis of astringent taste compounds in tea (Camellia sinensis). JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2285-97. [PMID: 26941235 PMCID: PMC4809296 DOI: 10.1093/jxb/erw053] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Galloylated catechins and flavonol 3-O-glycosides are characteristic astringent taste compounds in tea (Camellia sinensis). The mechanism involved in the formation of these metabolites remains unknown in tea plants. In this paper, 178 UGT genes (CsUGTs) were identified inC. sinensis based on an analysis of tea transcriptome data. Phylogenetic analysis revealed that 132 of these genes were clustered into 15 previously established phylogenetic groups (A to M, O and P) and a newly identified group R. Three of the 11 recombinant UGT proteins tested were found to be involved in the in vitro biosynthesis of β-glucogallin and glycosylated flavonols. CsUGT84A22 exhibited catalytic activity toward phenolic acids, in particular gallic acid, to produce β-glucogallin, which is the immediate precursor of galloylated catechin biosynthesis in tea plants. CsUGT78A14 and CsUGT78A15 were found to be responsible for the biosynthesis of flavonol 3-O-glucosides and flavonol 3-O-galactosides, respectively. Site-directed mutagenesis of the Q373H substitution for CsUGT78A14 indicated that the Q (Gln) residue played a catalytically crucial role for flavonoid 3-O-glucosyltransferase activity. The expression profiles of the CsUGT84A22, CsUGT78A14, and CsUGT78A15 genes were correlated with the accumulation patterns of β-glucogallin and the glycosylated flavonols which indicated that these three CsUGT genes were involved in the biosynthesis of astringent compounds inC. sinensis.
Collapse
Affiliation(s)
- Lilan Cui
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui 230036, China Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Shengbo Yao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Xinlong Dai
- School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Qinggang Yin
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yajun Liu
- School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Xiaolan Jiang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Yahui Wu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Yumei Qian
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Yongzhen Pang
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Liping Gao
- School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Tao Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui 230036, China
| |
Collapse
|
17
|
Ghose K, McCallum J, Sweeney-Nixon M, Fofana B. Histidine 352 (His352) and tryptophan 355 (Trp355) are essential for flax UGT74S1 glucosylation activity toward secoisolariciresinol. PLoS One 2015; 10:e116248. [PMID: 25714779 PMCID: PMC4340967 DOI: 10.1371/journal.pone.0116248] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 12/06/2014] [Indexed: 11/19/2022] Open
Abstract
Flax secoisolariciresinol diglucoside (SDG) lignan is a natural phytoestrogen for which a positive role in metabolic diseases is emerging. Until recently however, much less was known about SDG and its monoglucoside (SMG) biosynthesis. Lately, flax UGT74S1 was identified and characterized as an enzyme sequentially glucosylating secoisolariciresinol (SECO) into SMG and SDG when expressed in yeast. However, the amino acids critical for UGT74S1 glucosyltransferase activity were unknown. A 3D structural modeling and docking, site-directed mutagenesis of five amino acids in the plant secondary product glycosyltransferase (PSPG) motif, and enzyme assays were conducted. UGT74S1 appeared to be structurally similar to the Arabidopsis thaliana UGT72B1 model. The ligand docking predicted Ser357 and Trp355 as binding to the phosphate and hydroxyl groups of UDP-glucose, whereas Cys335, Gln337 and Trp355 were predicted to bind the 7-OH, 2-OCH3 and 17-OCH3 of SECO. Site-directed mutagenesis of Cys335, Gln337, His352, Trp355 and Ser357, and enzyme assays revealed an alteration of these binding sites and a significant reduction of UGT74S1 glucosyltransferase catalytic activity towards SECO and UDP-glucose in all mutants. A complete abolition of UGT74S1 activity was observed when Trp355 was substituted to Ala355 and Gly355 or when changing His352 to Asp352, and an altered metabolite profile was observed in Cys335Ala, Gln337Ala, and Ser357Ala mutants. This study provided for the first time evidence that Trp355 and His352 are critical for UGT74S1's glucosylation activity toward SECO and suggested the possibility for SMG production in vitro.
Collapse
Affiliation(s)
- Kaushik Ghose
- Crops and Livestock Research Centre, Agriculture and Agri-Food Canada, 440 University Avenue, Charlottetown, Prince Edward Island, C1A 4N6, Canada
- University of Prince Edward Island, 550 University Avenue, Charlottetown, Prince Edward Island, C1A 4P3, Canada
| | - Jason McCallum
- Crops and Livestock Research Centre, Agriculture and Agri-Food Canada, 440 University Avenue, Charlottetown, Prince Edward Island, C1A 4N6, Canada
- University of Prince Edward Island, 550 University Avenue, Charlottetown, Prince Edward Island, C1A 4P3, Canada
| | - Marva Sweeney-Nixon
- University of Prince Edward Island, 550 University Avenue, Charlottetown, Prince Edward Island, C1A 4P3, Canada
| | - Bourlaye Fofana
- Crops and Livestock Research Centre, Agriculture and Agri-Food Canada, 440 University Avenue, Charlottetown, Prince Edward Island, C1A 4N6, Canada
- University of Prince Edward Island, 550 University Avenue, Charlottetown, Prince Edward Island, C1A 4P3, Canada
| |
Collapse
|
18
|
Yauk YK, Ged C, Wang MY, Matich AJ, Tessarotto L, Cooney JM, Chervin C, Atkinson RG. Manipulation of flavour and aroma compound sequestration and release using a glycosyltransferase with specificity for terpene alcohols. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:317-30. [PMID: 25088478 DOI: 10.1111/tpj.12634] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 07/24/2014] [Accepted: 07/29/2014] [Indexed: 05/23/2023]
Abstract
Glycosides are an important potential source of aroma and flavour compounds for release as volatiles in flowers and fruit. The production of glycosides is catalysed by UDP-glycosyltransferases (UGTs) that mediate the transfer of an activated nucleotide sugar to acceptor aglycones. A screen of UGTs expressed in kiwifruit (Actinidia deliciosa) identified the gene AdGT4 which was highly expressed in floral tissues and whose expression increased during fruit ripening. Recombinant AdGT4 enzyme glycosylated a range of terpenes and primary alcohols found as glycosides in ripe kiwifruit. Two of the enzyme's preferred alcohol aglycones, hexanol and (Z)-hex-3-enol, contribute strongly to the 'grassy-green' aroma notes of ripe kiwifruit and other fruit including tomato and olive. Transient over-expression of AdGT4 in tobacco leaves showed that enzyme was able to glycosylate geraniol and octan-3-ol in planta whilst transient expression of an RNAi construct in Actinidia eriantha fruit reduced accumulation of a range of terpene glycosides. Stable over-expression of AdGT4 in transgenic petunia resulted in increased sequestration of hexanol and other alcohols in the flowers. Transgenic tomato fruit stably over-expressing AdGT4 showed changes in both the sequestration and release of a range of alcohols including 3-methylbutanol, hexanol and geraniol. Sequestration occurred at all stages of fruit ripening. Ripe fruit sequestering high levels of glycosides were identified as having a less intense, earthier aroma in a sensory trial. These results demonstrate the importance of UGTs in sequestering key volatile compounds in planta and suggest a future approach to enhancing aromas and flavours in flowers and during fruit ripening.
Collapse
Affiliation(s)
- Yar-Khing Yauk
- The New Zealand Institute for Plant & Food Research Limited (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Ghose K, Selvaraj K, McCallum J, Kirby CW, Sweeney-Nixon M, Cloutier SJ, Deyholos M, Datla R, Fofana B. Identification and functional characterization of a flax UDP-glycosyltransferase glucosylating secoisolariciresinol (SECO) into secoisolariciresinol monoglucoside (SMG) and diglucoside (SDG). BMC PLANT BIOLOGY 2014; 14:82. [PMID: 24678929 PMCID: PMC3986616 DOI: 10.1186/1471-2229-14-82] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Accepted: 03/19/2014] [Indexed: 05/02/2023]
Abstract
BACKGROUND Lignans are a class of diphenolic nonsteroidal phytoestrogens often found glycosylated in planta. Flax seeds are a rich source of secoisolariciresinol diglucoside (SDG) lignans. Glycosylation is a process by which a glycosyl group is covalently attached to an aglycone substrate and is catalyzed by uridine diphosphate glycosyltransferases (UGTs). Until now, very little information was available on UGT genes that may play a role in flax SDG biosynthesis. Here we report on the identification, structural and functional characterization of 5 putative UGTs potentially involved in secoisolariciresinol (SECO) glucosylation in flax. RESULTS Five UGT genes belonging to the glycosyltransferases' family 1 (EC 2.4.x.y) were cloned and characterized. They fall under four UGT families corresponding to five sub-families referred to as UGT74S1, UGT74T1, UGT89B3, UGT94H1, UGT712B1 that all display the characteristic plant secondary product glycosyltransferase (PSPG) conserved motif. However, diversity was observed within this 44 amino acid sequence, especially in the two peptide sequences WAPQV and HCGWNS known to play a key role in the recognition and binding of diverse aglycone substrates and in the sugar donor specificity. In developing flax seeds, UGT74S1 and UGT94H1 showed a coordinated gene expression with that of pinoresinol-lariciresinol reductase (PLR) and their gene expression patterns correlated with SDG biosynthesis. Enzyme assays of the five heterologously expressed UGTs identified UGT74S1 as the only one using SECO as substrate, forming SECO monoglucoside (SMG) and then SDG in a sequential manner. CONCLUSION We have cloned and characterized five flax UGTs and provided evidence that UGT74S1 uses SECO as substrate to form SDG in vitro. This study allowed us to propose a model for the missing step in SDG lignan biosynthesis.
Collapse
Affiliation(s)
- Kaushik Ghose
- Crops and Livestock Research Centre, Agriculture and Agri-Food Canada, 440 University Avenue, Charlottetown, PE C1A 4 N6, Canada
- Department of Biology, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE C1A 4P3, Canada
| | - Kumarakurubaran Selvaraj
- Crops and Livestock Research Centre, Agriculture and Agri-Food Canada, 440 University Avenue, Charlottetown, PE C1A 4 N6, Canada
- Department of Biology, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE C1A 4P3, Canada
| | - Jason McCallum
- Crops and Livestock Research Centre, Agriculture and Agri-Food Canada, 440 University Avenue, Charlottetown, PE C1A 4 N6, Canada
| | - Chris W Kirby
- Crops and Livestock Research Centre, Agriculture and Agri-Food Canada, 440 University Avenue, Charlottetown, PE C1A 4 N6, Canada
| | - Marva Sweeney-Nixon
- Department of Biology, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE C1A 4P3, Canada
| | - Sylvie J Cloutier
- Cereal Research Centre, Agriculture and Agri-Food Canada, 195 Dafoe Road, Winnipeg, MB R3T 2 M9, Canada
| | - Michael Deyholos
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Raju Datla
- National Research Council, 110 Gymnasium Place, Saskatoon, SK S7N 0 W9, Canada
| | - Bourlaye Fofana
- Crops and Livestock Research Centre, Agriculture and Agri-Food Canada, 440 University Avenue, Charlottetown, PE C1A 4 N6, Canada
| |
Collapse
|
20
|
Cheynier V, Comte G, Davies KM, Lattanzio V, Martens S. Plant phenolics: recent advances on their biosynthesis, genetics, and ecophysiology. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 72:1-20. [PMID: 23774057 DOI: 10.1016/j.plaphy.2013.05.009] [Citation(s) in RCA: 571] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 05/10/2013] [Indexed: 05/18/2023]
Abstract
Land-adapted plants appeared between about 480 and 360 million years ago in the mid-Palaeozoic era, originating from charophycean green algae. The successful adaptation to land of these prototypes of amphibious plants - when they emerged from an aquatic environment onto the land - was achieved largely by massive formation of "phenolic UV light screens". In the course of evolution, plants have developed the ability to produce an enormous number of phenolic secondary metabolites, which are not required in the primary processes of growth and development but are of vital importance for their interaction with the environment, for their reproductive strategy and for their defense mechanisms. From a biosynthetic point of view, beside methylation catalyzed by O-methyltransferases, acylation and glycosylation of secondary metabolites, including phenylpropanoids and various derived phenolic compounds, are fundamental chemical modifications. Such modified metabolites have altered polarity, volatility, chemical stability in cells but also in solution, ability for interaction with other compounds (co-pigmentation) and biological activity. The control of the production of plant phenolics involves a matrix of potentially overlapping regulatory signals. These include developmental signals, such as during lignification of new growth or the production of anthocyanins during fruit and flower development, and environmental signals for protection against abiotic and biotic stresses. For some of the key compounds, such as the flavonoids, there is now an excellent understanding of the nature of those signals and how the signal transduction pathway connects through to the activation of the phenolic biosynthetic genes. Within the plant environment, different microorganisms can coexist that can establish various interactions with the host plant and that are often the basis for the synthesis of specific phenolic metabolites in response to these interactions. In the rhizosphere, increasing evidence suggests that root specific chemicals (exudates) might initiate and manipulate biological and physical interactions between roots and soil organisms. These interactions include signal traffic between roots of competing plants, roots and soil microbes, and one-way signals that relate the nature of chemical and physical soil properties to the roots. Plant phenolics can also modulate essential physiological processes such as transcriptional regulation and signal transduction. Some interesting effects of plant phenolics are also the ones associated with the growth hormone auxin. An additional role for flavonoids in functional pollen development has been observed. Finally, anthocyanins represent a class of flavonoids that provide the orange, red and blue/purple colors to many plant tissues. According to the coevolution theory, red is a signal of the status of the tree to insects that migrate to (or move among) the trees in autumn.
Collapse
Affiliation(s)
- Véronique Cheynier
- INRA, UMR1083 Sciences Pour l'oenologie, 2 place Viala, 34060 Montpellier Cedex 1, France.
| | | | | | | | | |
Collapse
|
21
|
Xu ZS, Lin YQ, Xu J, Zhu B, Zhao W, Peng RH, Yao QH. Selective Detoxification of Phenols by Pichia pastoris and Arabidopsis thaliana Heterologously Expressing the PtUGT72B1 from Populus trichocarpa. PLoS One 2013; 8:e66878. [PMID: 23840543 PMCID: PMC3694158 DOI: 10.1371/journal.pone.0066878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 05/10/2013] [Indexed: 11/20/2022] Open
Abstract
Phenols are present in the environment and commonly in contact with humans and animals because of their wide applications in many industries. In a previous study, we reported that uridine diphosphate-glucose-dependent glucosyltransferase PtUGT72B1 from Populus trichocarpa has high activity in detoxifying trichlorophenol by conjugating glucose. In this study, more experiments were performed to determine the substrate specificity of PtUGT72B1 towards phenolic compounds. Among seven phenols tested, three were glucosylated by PtUGT72B1 including phenol, hydroquinone, and catechol. Transgenic Arabidopsis plants expressing the enzyme PtUGT72B1 showed higher resistance to hydroquinone and catechol but more sensitivity to phenol than wild type plants. Transgenic Pichia pastoris expressing PtUGT72B1 showed enhanced resistance to all three phenols. Compared with wild type Arabidopsis plants, transgenic Arabidopsis plants showed higher removal efficiencies and exported more glucosides of phenol, phenyl β-D-glucopyranoside, to the medium after cultured with the three phenols. Protein extracts from transgenic Arabidopsis plants showed enhanced conjugating activity towards phenol, hydroquinone and catechol. PtUGT72B1 showed much higher expression level in Pichia pastoris than in Arabidopsis plants. Kinetic analysis of the PtUGT72B1 was also performed.
Collapse
Affiliation(s)
- Zhi-Sheng Xu
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Agricultural Biotechnology Research Center, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Ya-Qiu Lin
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Agricultural Biotechnology Research Center, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Jing Xu
- Agricultural Biotechnology Research Center, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Bo Zhu
- Agricultural Biotechnology Research Center, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Wei Zhao
- Agricultural Biotechnology Research Center, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Ri-He Peng
- Agricultural Biotechnology Research Center, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Quan-Hong Yao
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Agricultural Biotechnology Research Center, Shanghai Academy of Agricultural Sciences, Shanghai, China
- * E-mail:
| |
Collapse
|
22
|
Trapero A, Ahrazem O, Rubio-Moraga A, Jimeno ML, Gómez MD, Gómez-Gómez L. Characterization of a glucosyltransferase enzyme involved in the formation of kaempferol and quercetin sophorosides in Crocus sativus. PLANT PHYSIOLOGY 2012; 159:1335-54. [PMID: 22649274 PMCID: PMC3425182 DOI: 10.1104/pp.112.198069] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 05/29/2012] [Indexed: 05/17/2023]
Abstract
UGT707B1 is a new glucosyltransferase isolated from saffron (Crocus sativus) that localizes to the cytoplasm and the nucleus of stigma and tepal cells. UGT707B1 transcripts were detected in the stigma tissue of all the Crocus species analyzed, but expression analysis of UGT707B1 in tepals revealed its absence in certain species. The analysis of the glucosylated flavonoids present in Crocus tepals reveals the presence of two major flavonoid compounds in saffron: kaempferol-3-O-β-D-glucopyranosyl-(1-2)-β-D-glucopyranoside and quercetin-3-O-β-D-glucopyranosyl-(1-2)-β-D-glucopyranoside, both of which were absent from the tepals of those Crocus species that did not express UGT707B1. Transgenic Arabidopsis (Arabidopsis thaliana) plants constitutively expressing UGT707B1 under the control of the cauliflower mosaic virus 35S promoter have been constructed and their phenotype analyzed. The transgenic lines displayed a number of changes that resembled those described previously in lines where flavonoid levels had been altered. The plants showed hyponastic leaves, a reduced number of trichomes, thicker stems, and flowering delay. Levels of flavonoids measured in extracts of the transgenic plants showed changes in the composition of flavonols when compared with wild-type plants. The major differences were observed in the extracts from stems and flowers, with an increase in 3-sophoroside flavonol glucosides. Furthermore, a new compound not detected in ecotype Columbia wild-type plants was detected in all the tissues and identified as kaempferol-3-O-sophoroside-7-O-rhamnoside. These data reveal the involvement of UGT707B1 in the biosynthesis of flavonol-3-O-sophorosides and how significant changes in flavonoid homeostasis can be caused by the overproduction of a flavonoid-conjugating enzyme.
Collapse
|
23
|
Sui C, Zhang J, Wei J, Chen S, Li Y, Xu J, Jin Y, Xie C, Gao Z, Chen H, Yang C, Zhang Z, Xu Y. Transcriptome analysis of Bupleurum chinense focusing on genes involved in the biosynthesis of saikosaponins. BMC Genomics 2011; 12:539. [PMID: 22047182 PMCID: PMC3219613 DOI: 10.1186/1471-2164-12-539] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 11/02/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bupleurum chinense DC. is a widely used traditional Chinese medicinal plant. Saikosaponins are the major bioactive constituents of B. chinense, but relatively little is known about saikosaponin biosynthesis. The 454 pyrosequencing technology provides a promising opportunity for finding novel genes that participate in plant metabolism. Consequently, this technology may help to identify the candidate genes involved in the saikosaponin biosynthetic pathway. RESULTS One-quarter of the 454 pyrosequencing runs produced a total of 195, 088 high-quality reads, with an average read length of 356 bases (NCBI SRA accession SRA039388). A de novo assembly generated 24, 037 unique sequences (22, 748 contigs and 1, 289 singletons), 12, 649 (52.6%) of which were annotated against three public protein databases using a basic local alignment search tool (E-value ≤1e-10). All unique sequences were compared with NCBI expressed sequence tags (ESTs) (237) and encoding sequences (44) from the Bupleurum genus, and with a Sanger-sequenced EST dataset (3, 111). The 23, 173 (96.4%) unique sequences obtained in the present study represent novel Bupleurum genes. The ESTs of genes related to saikosaponin biosynthesis were found to encode known enzymes that catalyze the formation of the saikosaponin backbone; 246 cytochrome P450 (P450s) and 102 glycosyltransferases (GTs) unique sequences were also found in the 454 dataset. Full length cDNAs of 7 P450s and 7 uridine diphosphate GTs (UGTs) were verified by reverse transcriptase polymerase chain reaction or by cloning using 5' and/or 3' rapid amplification of cDNA ends. Two P450s and three UGTs were identified as the most likely candidates involved in saikosaponin biosynthesis. This finding was based on the coordinate up-regulation of their expression with β-AS in methyl jasmonate-treated adventitious roots and on their similar expression patterns with β-AS in various B. chinense tissues. CONCLUSIONS A collection of high-quality ESTs for B. chinense obtained by 454 pyrosequencing is provided here for the first time. These data should aid further research on the functional genomics of B. chinense and other Bupleurum species. The candidate genes for enzymes involved in saikosaponin biosynthesis, especially the P450s and UGTs, that were revealed provide a substantial foundation for follow-up research on the metabolism and regulation of the saikosaponins.
Collapse
Affiliation(s)
- Chun Sui
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Jie Zhang
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Jianhe Wei
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Shilin Chen
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Ying Li
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Jiesen Xu
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Yue Jin
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Caixiang Xie
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Zhihui Gao
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Hongjiang Chen
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Chengmin Yang
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Zheng Zhang
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Yanhong Xu
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| |
Collapse
|
24
|
Louveau T, Leitao C, Green S, Hamiaux C, van der Rest B, Dechy-Cabaret O, Atkinson RG, Chervin C. Predicting the substrate specificity of a glycosyltransferase implicated in the production of phenolic volatiles in tomato fruit. FEBS J 2010; 278:390-400. [PMID: 21166996 DOI: 10.1111/j.1742-4658.2010.07962.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The volatile compounds that constitute the fruit aroma of ripe tomato (Solanum lycopersicum) are often sequestered in glycosylated form. A homology-based screen was used to identify the gene SlUGT5, which is a member of UDP-glycosyltransferase 72 family and shows specificity towards a range of substrates, including flavonoid, flavanols, hydroquinone, xenobiotics and chlorinated pollutants. SlUGT5 was shown to be expressed primarily in ripening fruit and flowers, and mapped to chromosome I in a region containing a QTL that affected the content of guaiacol and eugenol in tomato crosses. Recombinant SlUGT5 protein demonstrated significant activity towards guaiacol and eugenol, as well as benzyl alcohol and methyl salicylate; however, the highest in vitro activity and affinity was shown for hydroquinone and salicyl alcohol. NMR analysis identified isosalicin as the only product of salicyl alcohol glycosylation. Protein modelling and substrate docking analysis were used to assess the basis for the substrate specificity of SlUGT5. The analysis correctly predicted the interactions with SlUGT5 substrates, and also indicated that increased hydrogen bonding, due to the presence of a second hydrophilic group in methyl salicylate, guaiacol and hydroquinone, appeared to more favourably anchor these acceptors within the glycosylation site, leading to increased stability, higher activities and higher substrate affinities.
Collapse
Affiliation(s)
- Thomas Louveau
- Université de Toulouse, UMR Génomique et Biotechnologie des Fruits, INRA-INP/ENSAT, Castanet-Tolosan, France
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Martens S, Preuss A, Matern U. Multifunctional flavonoid dioxygenases: flavonol and anthocyanin biosynthesis in Arabidopsis thaliana L. PHYTOCHEMISTRY 2010; 71:1040-9. [PMID: 20457455 DOI: 10.1016/j.phytochem.2010.04.016] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Revised: 04/14/2010] [Accepted: 04/14/2010] [Indexed: 05/20/2023]
Abstract
Flavonols and conditionally also anthocyanins, aside from flavonols, are the predominant polyphenols accumulated in various tissues of the model plant Arabidopsis thaliana L. In vitro experiments suggested that the dioxygenases involved in their biosynthesis, flavonol synthase and anthocyanidin synthase, are "multifunctional" enzymes showing distinct side activities. The in vivo relevance of the additional activities attributed to these enzymes, however, has remained obscure. In this review we summarize the most recent results and present final proof of the complementing activities of these synthases for flavonol and anthocyanidin formation in the model plant A. thaliana. The impact of their modification on the biosynthetic pathway and the pattern of flavonoids in different plant tissues are discussed.
Collapse
Affiliation(s)
- Stefan Martens
- Institut für Pharmazeutische Biologie, Philipps Universität Marburg, Deutschhausstr. 17A, D-35037 Marburg/Lahn, Germany.
| | | | | |
Collapse
|
26
|
Kim BG, Sung SH, Jung NR, Chong Y, Ahn JH. Biological synthesis of isorhamnetin 3-O-glucoside using engineered glucosyltransferase. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.molcatb.2010.01.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
27
|
Du H, Huang Y, Tang Y. Genetic and metabolic engineering of isoflavonoid biosynthesis. Appl Microbiol Biotechnol 2010; 86:1293-312. [DOI: 10.1007/s00253-010-2512-8] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 02/15/2010] [Accepted: 02/16/2010] [Indexed: 10/19/2022]
|
28
|
Preuss A, Stracke R, Weisshaar B, Hillebrecht A, Matern U, Martens S. Arabidopsis thaliana expresses a second functional flavonol synthase. FEBS Lett 2009; 583:1981-6. [PMID: 19433090 DOI: 10.1016/j.febslet.2009.05.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 04/27/2009] [Accepted: 05/04/2009] [Indexed: 02/09/2023]
Abstract
Arabidopsis thaliana L. produces flavonoid pigments, i.e. flavonols, anthocyanidins and proanthocyanidins, from dihydroflavonol substrates. A small family of putative flavonol synthase (FLS) genes had been recognized in Arabidopsis, and functional activity was attributed only to FLS1. Nevertheless, other FLS activities must be present, because A. thalianafls1 mutants still accumulate significant amounts of flavonols. The recombinant FLSs and leucoanthocyanidin dioxygenase (LDOX) proteins were therefore examined for their enzyme activities, which led to the identification of FLS3 as a second active FLS. This enzyme is therefore likely responsible for the formation of flavonols in the ldox/fls1-2 double mutant. These double mutant and biochemical data demonstrate for the first time that LDOX is capable of catalyzing the in planta formation of flavonols.
Collapse
Affiliation(s)
- Anja Preuss
- Philipps-Universität Marburg, Institut für Pharmazeutische Biologie, Marburg/Lahn, Germany
| | | | | | | | | | | |
Collapse
|