1
|
Li W, Wang Y, Li J, Guo X, Song Q, Xu J. Selenite improves growth by modulating phytohormone pathways and reprogramming primary and secondary metabolism in tomato plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108930. [PMID: 39013356 DOI: 10.1016/j.plaphy.2024.108930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/10/2024] [Accepted: 07/09/2024] [Indexed: 07/18/2024]
Abstract
Selenium (Se) is an essential micronutrient in organisms that has a significant impact on physiological activity and gene expression in plants, thereby affecting growth and development. Humans and animals acquire Se from plants. Tomato (Solanum lycopersicum L.) is an important vegetable crop worldwide. Improving the Se nutrient level not only is beneficial for growth, development and stress resistance in tomato plants but also contributes to improving human health. However, the molecular basis of Se-mediated tomato plant growth has not been fully elucidated. In this study, using physiological and transcriptomic analyses, we investigated the effects of a low dosage of selenite [Se(Ⅳ)] on tomato seedling growth. Se(IV) enhanced the photosynthetic efficiency and increased the accumulation of soluble sugars, dry matter and organic matter, thereby promoting tomato plant growth. Transcriptome analysis revealed that Se(IV) reprogrammed primary and secondary metabolic pathways, thus modulating plant growth. Se(IV) also increased the concentrations of auxin, jasmonic acid and salicylic acid in leaves and the concentration of cytokinin in roots, thus altering phytohormone signaling pathways and affecting plant growth and stress resistance in tomato plants. Furthermore, exogenous Se(IV) alters the expression of genes involved in flavonoid biosynthesis, thereby modulating plant growth and development in tomato plants. Taken together, these findings provide important insights into the regulatory mechanisms of low-dose Se(IV) on tomato growth and contribute to the breeding of Se-accumulating tomato cultivars.
Collapse
Affiliation(s)
- Weimin Li
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, China; Shanxi Key Laboratory of Germplasm Resources Innovation and Utilization of Vegetable and Flower, Taiyuan, 030031, China
| | - Yanli Wang
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, China; Shanxi Key Laboratory of Germplasm Resources Innovation and Utilization of Vegetable and Flower, Taiyuan, 030031, China
| | - Junjun Li
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, China; Shanxi Key Laboratory of Germplasm Resources Innovation and Utilization of Vegetable and Flower, Taiyuan, 030031, China
| | - Xiaoyu Guo
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, China; Shanxi Key Laboratory of Germplasm Resources Innovation and Utilization of Vegetable and Flower, Taiyuan, 030031, China
| | - Qianqian Song
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, China; Shanxi Key Laboratory of Germplasm Resources Innovation and Utilization of Vegetable and Flower, Taiyuan, 030031, China
| | - Jin Xu
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, China; Shanxi Key Laboratory of Germplasm Resources Innovation and Utilization of Vegetable and Flower, Taiyuan, 030031, China.
| |
Collapse
|
2
|
Yuan L, Avello P, Zhu Z, Lock SCL, McCarthy K, Redmond EJ, Davis AM, Song Y, Ezer D, Pitchford JW, Quint M, Xie Q, Xu X, Davis SJ, Ronald J. Complex epistatic interactions between ELF3, PRR9, and PRR7 regulate the circadian clock and plant physiology. Genetics 2024; 226:iyad217. [PMID: 38142447 PMCID: PMC10917503 DOI: 10.1093/genetics/iyad217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/07/2023] [Accepted: 12/05/2023] [Indexed: 12/26/2023] Open
Abstract
Circadian clocks are endogenous timekeeping mechanisms that coordinate internal physiological responses with the external environment. EARLY FLOWERING3 (ELF3), PSEUDO RESPONSE REGULATOR (PRR9), and PRR7 are essential components of the plant circadian clock and facilitate entrainment of the clock to internal and external stimuli. Previous studies have highlighted a critical role for ELF3 in repressing the expression of PRR9 and PRR7. However, the functional significance of activity in regulating circadian clock dynamics and plant development is unknown. To explore this regulatory dynamic further, we first employed mathematical modeling to simulate the effect of the prr9/prr7 mutation on the elf3 circadian phenotype. These simulations suggested that simultaneous mutations in prr9/prr7 could rescue the elf3 circadian arrhythmia. Following these simulations, we generated all Arabidopsis elf3/prr9/prr7 mutant combinations and investigated their circadian and developmental phenotypes. Although these assays could not replicate the results from the mathematical modeling, our results have revealed a complex epistatic relationship between ELF3 and PRR9/7 in regulating different aspects of plant development. ELF3 was essential for hypocotyl development under ambient and warm temperatures, while PRR9 was critical for root thermomorphogenesis. Finally, mutations in prr9 and prr7 rescued the photoperiod-insensitive flowering phenotype of the elf3 mutant. Together, our results highlight the importance of investigating the genetic relationship among plant circadian genes.
Collapse
Affiliation(s)
- Li Yuan
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Paula Avello
- Department of Mathematics, University of York, York, YO10 5DD, UK
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Zihao Zhu
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale) 06108, Germany
| | - Sarah C L Lock
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Kayla McCarthy
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Ethan J Redmond
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Amanda M Davis
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Yang Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Daphne Ezer
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Jonathan W Pitchford
- Department of Mathematics, University of York, York, YO10 5DD, UK
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Marcel Quint
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale) 06108, Germany
| | - Qiguang Xie
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Xiaodong Xu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Seth J Davis
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - James Ronald
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bower Building, University Avenue, Glasgow G12 8QQ, UK
| |
Collapse
|
3
|
Li J, Li Q, Wang W, Zhang X, Chu C, Tang X, Zhu B, Xiong L, Zhao Y, Zhou D. DELLA-mediated gene repression is maintained by chromatin modification in rice. EMBO J 2023; 42:e114220. [PMID: 37691541 PMCID: PMC10620761 DOI: 10.15252/embj.2023114220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 09/12/2023] Open
Abstract
DELLA proteins are master regulators of gibberellic acid (GA) signaling through their effects on gene expression. Enhanced DELLA accumulation in rice and wheat varieties has greatly contributed to grain yield increases during the green revolution. However, the molecular basis of DELLA-mediated gene repression remains elusive. In this work, we show that the rice DELLA protein SLENDER RICE1 (SLR1) forms a tripartite complex with Polycomb-repressive complex 2 (PRC2) and the histone deacetylase HDA702 to repress downstream genes by establishing a silent chromatin state. The slr1 mutation and GA signaling resulted in dissociation of PRC2 and HDA702 from GA-inducible genes. Loss-of-function or downregulation of the chromatin regulators impaired SLR1-dependent histone modification and gene repression. Time-resolved analysis of GA signaling revealed that GA-induced transcriptional activation was associated with a rapid increase of H3K9ac followed by H3K27me3 removal. Collectively, these results establish a general epigenetic mechanism for DELLA-mediated gene repression and reveal details of the chromatin dynamics during transcriptional activation stimulated by GA signaling.
Collapse
Affiliation(s)
- Junjie Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Qi Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Wentao Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Xinran Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Chen Chu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Xintian Tang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Bo Zhu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Lizhong Xiong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Yu Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Dao‐Xiu Zhou
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
- Institute of Plant Science Paris‐Saclay (IPS2), CNRS, INRAEUniversity Paris‐SaclayOrsayFrance
| |
Collapse
|
4
|
Qin DD, Liu R, Xu F, Dong G, Xu Q, Peng Y, Xu L, Cheng H, Guo G, Dong J, Li C. Characterization of a barley ( Hordeum vulgare L.) mutant with multiple stem nodes and spikes and dwarf ( msnsd) and fine-mapping of its causal gene. FRONTIERS IN PLANT SCIENCE 2023; 14:1189743. [PMID: 37484471 PMCID: PMC10359901 DOI: 10.3389/fpls.2023.1189743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/13/2023] [Indexed: 07/25/2023]
Abstract
Introduction Multiple nodes and dwarf mutants in barley are a valuable resource for identifying genes that control shoot branching, vegetative growth and development. Methods In this study, physiological, microscopic and genetic analysis were conducted to characterize and fine-map the underling gene of a barley mutant with Multiple Stem Nodes and Spikes and Dwarf (msnsd), which was selected from EMS- and 60Co-treated barley cv. Edamai 934. Results and discussion The msnsd mutant had more stem nodes, lower plant height and a shorter plastochron than Edamai 934. Moreover, the mutant had two or more spikes on each tiller. Microscopic analysis showed that the dwarf phenotype of msnsd resulted from reduced cell lengths and cell numbers in the stem. Further physiological analysis showed that msnsd was GA3-deficient, with its plant height increasing after external GA3 application. Genetic analysis revealed that a single recessive nuclear gene, namely, HvMSNSD, controlled the msnsd phenotype. Using a segregating population derived from Harrington and the msnsd mutant, HvMSNSD was fine-mapped on chromosome 5H in a 200 kb interval using bulked segregant analysis (BSA) coupled with RNA-sequencing (BSR-seq), with a C-T substitution in the exon of HvTCP25 co-segregating with the msnsd phenotype. RNA-seq analysis showed that a gene encoding gibberellin 2-oxidase 8, a negative regulator of GA biosynthesis, was upregulated in the msnsd mutant. Several known genes related to inflorescence development that were also upregulated and enriched in the msnsd mutant. Collectively, we propose that HvMSNSD regulates the plastochron and morphology of reproductive organs, likely by coordinating GA homeostasis and changed expression of floral development related genes in barley. This study offers valuable insights into the molecular regulation of barley plant architecture and inflorescence development.
Collapse
Affiliation(s)
- Dandan D. Qin
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Hubei, Wuhan, China
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Hubei, Wuhan, China
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei, Wuhan, China
| | - Rui Liu
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Hubei, Wuhan, China
- School of Life Science and Technology, Wuhan Polytechnic University, Hubei, Wuhan, China
| | - Fuchao Xu
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Hubei, Wuhan, China
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Hubei, Wuhan, China
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei, Wuhan, China
| | - Guoqing Dong
- School of Life Science and Technology, Wuhan Polytechnic University, Hubei, Wuhan, China
| | - Qing Xu
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Hubei, Wuhan, China
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Hubei, Wuhan, China
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei, Wuhan, China
| | - Yanchun Peng
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Hubei, Wuhan, China
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Hubei, Wuhan, China
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei, Wuhan, China
| | - Le Xu
- Ministry of Agriculture and Rural Affairs (MARA) Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), College of Agriculture, Yangtze University, Hubei, Jingzhou, China
| | - Hongna Cheng
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Hubei, Wuhan, China
- Ministry of Agriculture and Rural Affairs (MARA) Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), College of Agriculture, Yangtze University, Hubei, Jingzhou, China
| | - Ganggang Guo
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jing Dong
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Hubei, Wuhan, China
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Hubei, Wuhan, China
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei, Wuhan, China
| | - Chengdao Li
- Western Crop Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| |
Collapse
|
5
|
Robil JM, McSteen P. Hormonal control of medial-lateral growth and vein formation in the maize leaf. THE NEW PHYTOLOGIST 2023; 238:125-141. [PMID: 36404129 DOI: 10.1111/nph.18625] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Parallel veins are characteristic of monocots, including grasses (Poaceae). Therefore, how parallel veins develop as the leaf grows in the medial-lateral (ML) dimension is a key question in grass leaf development. Using fluorescent protein reporters, we mapped auxin, cytokinin (CK), and gibberellic acid (GA) response patterns in maize (Zea mays) leaf primordia. We further defined the roles of these hormones in ML growth and vein formation through combinatorial genetic analyses and measurement of hormone concentrations. We discovered a novel pattern of auxin response in the adaxial protoderm that we hypothesize has important implications for the orderly formation of 3° veins early in leaf development. In addition, we found an auxin transport and response pattern in the margins that correlate with the transition from ML to proximal-distal growth. We present evidence that auxin efflux precedes CK response in procambial strand development. We also determined that GA plays an early role in the shoot apical meristem as well as a later role in the primordium to restrict ML growth. We propose an integrative model whereby auxin regulates ML growth and vein formation in the maize leaf through control of GA and CK.
Collapse
Affiliation(s)
- Janlo M Robil
- Division of Biological Sciences, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri, Columbia, MO, 65211, USA
- Department of Biology, School of Science and Engineering, Ateneo de Manila University, Loyola Heights, Quezon City, Metro Manila, 1108, Philippines
| | - Paula McSteen
- Division of Biological Sciences, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
6
|
Narawatthana S, Phansenee Y, Thammasamisorn BO, Vejchasarn P. Multi-model genome-wide association studies of leaf anatomical traits and vein architecture in rice. FRONTIERS IN PLANT SCIENCE 2023; 14:1107718. [PMID: 37123816 PMCID: PMC10130391 DOI: 10.3389/fpls.2023.1107718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/20/2023] [Indexed: 05/03/2023]
Abstract
Introduction The anatomy of rice leaves is closely related to photosynthesis and grain yield. Therefore, exploring insight into the quantitative trait loci (QTLs) and alleles related to rice flag leaf anatomical and vein traits is vital for rice improvement. Methods Here, we aimed to explore the genetic architecture of eight flag leaf traits using one single-locus model; mixed-linear model (MLM), and two multi-locus models; fixed and random model circulating probability unification (FarmCPU) and Bayesian information and linkage disequilibrium iteratively nested keyway (BLINK). We performed multi-model GWAS using 329 rice accessions of RDP1 with 700K single-nucleotide polymorphisms (SNPs) markers. Results The phenotypic correlation results indicated that rice flag leaf thickness was strongly correlated with leaf mesophyll cells layer (ML) and thickness of both major and minor veins. All three models were able to identify several significant loci associated with the traits. MLM identified three non-synonymous SNPs near NARROW LEAF 1 (NAL1) in association with ML and the distance between minor veins (IVD) traits. Discussion Several numbers of significant SNPs associated with known gene function in leaf development and yield traits were detected by multi-model GWAS performed in this study. Our findings indicate that flag leaf traits could be improved via molecular breeding and can be one of the targets in high-yield rice development.
Collapse
Affiliation(s)
- Supatthra Narawatthana
- Rice Department, Thailand Rice Science Institute, Ministry of Agriculture and Cooperatives (MOAC), Suphan Buri, Thailand
- *Correspondence: Supatthra Narawatthana,
| | - Yotwarit Phansenee
- Ubon Ratchathani Rice Research Center, Rice Department, Ministry of Agriculture and Cooperatives (MOAC), Ubon Ratchathani, Thailand
| | - Bang-On Thammasamisorn
- Rice Department, Thailand Rice Science Institute, Ministry of Agriculture and Cooperatives (MOAC), Suphan Buri, Thailand
| | - Phanchita Vejchasarn
- Ubon Ratchathani Rice Research Center, Rice Department, Ministry of Agriculture and Cooperatives (MOAC), Ubon Ratchathani, Thailand
| |
Collapse
|
7
|
TaKLU Plays as a Time Regulator of Leaf Growth via Auxin Signaling. Int J Mol Sci 2022; 23:ijms23084219. [PMID: 35457033 PMCID: PMC9033062 DOI: 10.3390/ijms23084219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/01/2022] [Accepted: 04/08/2022] [Indexed: 02/04/2023] Open
Abstract
The growth of leaves is subject to strict time regulation. Several genes influencing leaf growth have been identified, but little is known about how genes regulate the orderly initiation and growth of leaves. Here, we demonstrate that TaKLU/TaCYP78A5 contributes to a time regulation mechanism in leaves from initiation to expansion. TaKLU encodes the cytochrome P450 CYP78A5, and its homolog AtKLU has been described whose deletion is detrimental to organ growth. Our results show that TaKLU overexpression increases leaf size and biomass by altering the time of leaf initiation and expansion. TaKLU-overexpressing plants have larger leaves with more cells. Further dynamic observations indicate that enlarged wheat leaves have experienced a longer expansion time. Different from AtKLU inactivation increases leaf number and initiation rates, TaKLU overexpression only smooths the fluctuations of leaf initiation rates by adjusting the initiation time of local leaves, without affecting the overall leaf number and initiation rates. In addition, complementary analyses suggest TaKLU is functionally conserved with AtKLU in controlling the leaf initiation and size and may involve auxin accumulation. Our results provide a new insight into the time regulation mechanisms of leaf growth in wheat.
Collapse
|
8
|
Kusnandar AS, Itoh JI, Sato Y, Honda E, Hibara KI, Kyozuka J, Naramoto S. NARROW AND DWARF LEAF 1, the Ortholog of Arabidopsis ENHANCER OF SHOOT REGENERATION1/DORNRÖSCHEN, Mediates Leaf Development and Maintenance of the Shoot Apical Meristem in Oryza sativa L. PLANT & CELL PHYSIOLOGY 2022; 63:265-278. [PMID: 34865135 DOI: 10.1093/pcp/pcab169] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/26/2021] [Accepted: 12/02/2021] [Indexed: 06/13/2023]
Abstract
The molecular basis for leaf development, a major focus in developmental biology, remains unclear in the monocotyledonous grass, rice (Oryza sativa). Here, we performed a mutant screen in rice and identified an AP2-type transcription factor family protein, NARROW AND DWARF LEAF1 (NDL1). NDL1 is the ortholog of Arabidopsis thaliana (subsequently called Arabidopsis) ENHANCER OF SHOOT REGENERATION1 (ESR1)/DORNRÖSCHEN (DRN) and mediates leaf development and maintenance of the shoot apical meristem (SAM). Loss of function of NDL1 results in bladeless leaves and SAMs that are flat, rather than dome-shaped, and lack cell proliferation activity. This loss of function also causes reduced auxin signaling. Moreover, as is the case with Arabidopsis ESR1/DRN, NDL1 plays crucial roles in shoot regeneration. Importantly, we found that NDL1 is not expressed in the SAM but is expressed in leaf primordia. We propose that NDL1 cell autonomously regulates leaf development, but non-cell autonomously regulates SAM maintenance in rice.
Collapse
Affiliation(s)
| | - Jun-Ichi Itoh
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Yutaka Sato
- Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Shizuoka, 411-8540 Japan
| | - Eriko Honda
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Ken-Ichiro Hibara
- Graduate School of Agricultural Regional Vitalization, Kibi International University, Minamiawaji, Hyogo, 656-0484 Japan
| | - Junko Kyozuka
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, 980-8577 Japan
| | - Satoshi Naramoto
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Hokkaido, 060-0810 Japan
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, 980-8577 Japan
| |
Collapse
|
9
|
Morphological Characterization and Transcriptome Analysis of New Dwarf and Narrow-Leaf ( dnl2) Mutant in Maize. Int J Mol Sci 2022; 23:ijms23020795. [PMID: 35054982 PMCID: PMC8775757 DOI: 10.3390/ijms23020795] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 12/04/2022] Open
Abstract
Lodging is the primary factor limiting high yield under a high plant density. However, an optimal plant height and leaf shape can effectively decrease the lodging risk. Here we studied an ethyl methanesulfonate (EMS)-induced dwarf and a narrow-leaf mutant, dnl2. Gene mapping indicated that the mutant was controlled by a gene located on chromosome nine. Phenotypic and cytological observations revealed that dnl2 showed inhibited cell growth, altered vascular bundle patterning, and disrupted secondary cell wall structure when compared with the wild-type, which could be the direct cause of the dwarf and narrow-leaf phenotype. The phytohormone levels, especially auxin and gibberellin, were significantly decreased in dnl2 compared to the wild-type plants. Transcriptome profiling of the internodes of the dnl2 mutant and wild-type revealed a large number of differentially expressed genes enriched in the cell wall biosynthesis, remodeling, and hormone biosynthesis and signaling pathways. Therefore, we suggest that crosstalk between hormones (the altered vascular bundle and secondary cell wall structure) may contribute to the dwarf and narrow-leaf phenotype by influencing cell growth. These results provide a foundation for DNL2 gene cloning and further elucidation of the molecular mechanism of the regulation of plant height and leaf shape in maize.
Collapse
|
10
|
Yin X. Phyllotaxis: from classical knowledge to molecular genetics. JOURNAL OF PLANT RESEARCH 2021; 134:373-401. [PMID: 33550488 DOI: 10.1007/s10265-020-01247-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
Plant organs are repetitively generated at the shoot apical meristem (SAM) in recognizable patterns. This phenomenon, known as phyllotaxis, has long fascinated scientists from different disciplines. While we have an enriched body of knowledge on phyllotactic patterns, parameters, and transitions, only in the past 20 years, however, have we started to identify genes and elucidate genetic pathways that involved in phyllotaxis. In this review, I first summarize the classical knowledge of phyllotaxis from a morphological perspective. I then discuss recent advances in the regulation of phyllotaxis, from a molecular genetics perspective. I show that the morphological beauty of phyllotaxis we appreciate is the manifestation of many regulators, in addition to the critical role of auxin as a patterning signal, exerting their respective effects in a coordinated fashion either directly or indirectly in the SAM.
Collapse
Affiliation(s)
- Xiaofeng Yin
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan.
- Japan Society for the Promotion of Science, Tokyo, Japan.
| |
Collapse
|
11
|
Cheng P, Cao LJ, Bai C, Ashikari M, Song XJ. Fine mapping and characterization of two novel quantitative trait loci for early seedling growth in rice. PLANTA 2021; 253:56. [PMID: 33527150 DOI: 10.1007/s00425-021-03576-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
Two novel QTLs for early seedling growth in rice were fine mapped, with one of which to a 4-kb identical to the known GW6a gene, and another one to a 43-kb region that contains six candidate genes. Leaves are extremely important for plant photosynthesis: the size and shape of which determine the rate of transpiration, carbon fixation and light interception, and their robust growth at seedling stage endow crops with the ability to compete with weeds. So far, many genes for the traits have been cloned with mutants; however, identification of those quantitative trait loci (QTLs) that control early seedling growth has seldom been reported. In this study, we report the identification of two QTLs, qLBL1 and qLBL2 on the rice chromosome 6 for leaf blade length at early seedling stage. Fine mapping revealed that qLBL1 was placed into a 4-kb, and qLBL2 was delimited to a 43-kb genomic interval. We further found that LBL1 was equivalent to the known grain-size gene GW6a and the qLBL2 region contains 6 candidate genes. Genetic analysis using nearly isogenic lines and transgenic rice plants revealed that both genetic factors were positive regulators. The genetic effects were mainly due to alterations of cell division by cytological observations. RT-qPCR results showed that LBL1 was preferentially expressed in leaf blades, and consistently, histochemical staining of pGW6a::GUS plants showed that GUS signal was strong in the vascular tissues of leaf blade of seedlings. Thus, we fine mapped and characterized two QTLs for early seedling growth and provided useful information to improve crop breeding.
Collapse
Affiliation(s)
- Peng Cheng
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ling- Jie Cao
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chen Bai
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Motoyuki Ashikari
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Xian-Jun Song
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
12
|
Yu KMJ, McKinley B, Rooney WL, Mullet JE. High planting density induces the expression of GA3-oxidase in leaves and GA mediated stem elongation in bioenergy sorghum. Sci Rep 2021; 11:46. [PMID: 33420129 PMCID: PMC7794234 DOI: 10.1038/s41598-020-79975-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/30/2020] [Indexed: 01/29/2023] Open
Abstract
The stems of bioenergy sorghum hybrids at harvest are > 4 m long, contain > 40 internodes and account for ~ 80% of harvested biomass. In this study, bioenergy sorghum hybrids were grown at four planting densities (~ 20,000 to 132,000 plants/ha) under field conditions for 60 days to investigate the impact shading has on stem growth and biomass accumulation. Increased planting density induced a > 2-fold increase in sorghum internode length and a ~ 22% decrease in stem diameter, a typical shade avoidance response. Shade-induced internode elongation was due to an increase in cell length and number of cells spanning the length of internodes. SbGA3ox2 (Sobic.003G045900), a gene encoding the last step in GA biosynthesis, was expressed ~ 20-fold higher in leaf collar tissue of developing phytomers in plants grown at high vs. low density. Application of GA3 to bioenergy sorghum increased plant height, stem internode length, cell length and the number of cells spanning internodes. Prior research showed that sorghum plants lacking phytochrome B, a key photoreceptor involved in shade signaling, accumulated more GA1 and displayed shade avoidance phenotypes. These results are consistent with the hypothesis that increasing planting density induces expression of GA3-oxidase in leaf collar tissue, increasing synthesis of GA that stimulates internode elongation.
Collapse
Affiliation(s)
- Ka Man Jasmine Yu
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843-2128, USA
| | - Brian McKinley
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843-2128, USA
| | - William L Rooney
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, 77843-2128, USA
| | - John E Mullet
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843-2128, USA.
| |
Collapse
|
13
|
Jerome Jeyakumar JM, Ali A, Wang WM, Thiruvengadam M. Characterizing the Role of the miR156-SPL Network in Plant Development and Stress Response. PLANTS 2020; 9:plants9091206. [PMID: 32942558 PMCID: PMC7570127 DOI: 10.3390/plants9091206] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/27/2020] [Accepted: 09/11/2020] [Indexed: 01/22/2023]
Abstract
MicroRNA (miRNA) is a short, single-stranded, non-coding RNA found in eukaryotic cells that can regulate the expression of many genes at the post-transcriptional level. Among various plant miRNAs with diverse functions, miR156 plays a key role in biological processes, including developmental regulation, immune response, metabolic regulation, and abiotic stress. MiRNAs have become the regulatory center for plant growth and development. MicroRNA156 (miR156) is a highly conserved and emerging tool for the improvement of plant traits, including crop productivity and stress tolerance. Fine-tuning of squamosa promoter biding-like (SPL) gene expression might be a useful strategy for crop improvement. Here, we studied the regulation of the miR156 module and its interaction with SPL factors to understand the developmental transition of various plant species. Furthermore, this review provides a strong background for plant biotechnology and is an important source of information for further molecular breeding to optimize farming productivity.
Collapse
Affiliation(s)
- John Martin Jerome Jeyakumar
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Wenjiang, Chengdu 625014, China; (J.M.J.J.); (A.A.)
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Institute of Rice Research, Sichuan Agricultural University, Wenjiang, Chengdu 625014, China
| | - Asif Ali
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Wenjiang, Chengdu 625014, China; (J.M.J.J.); (A.A.)
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Institute of Rice Research, Sichuan Agricultural University, Wenjiang, Chengdu 625014, China
| | - Wen-Ming Wang
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Wenjiang, Chengdu 625014, China; (J.M.J.J.); (A.A.)
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Institute of Rice Research, Sichuan Agricultural University, Wenjiang, Chengdu 625014, China
- Correspondence:
| | - Muthu Thiruvengadam
- Department of Applied Bioscience, College of Life and Environmental Sciences, Konkuk University, Seoul 05029, Korea;
| |
Collapse
|
14
|
Mathew IE, Priyadarshini R, Mahto A, Jaiswal P, Parida SK, Agarwal P. SUPER STARCHY1/ONAC025 participates in rice grain filling. PLANT DIRECT 2020; 4:e00249. [PMID: 32995698 PMCID: PMC7507516 DOI: 10.1002/pld3.249] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 06/10/2020] [Accepted: 07/10/2020] [Indexed: 05/04/2023]
Abstract
NAC transcription factors (TFs) are known for their role in development and stress. This article attempts to functionally validate the role of rice SS1/ ONAC025 (LOC_Os11g31330) during seed development. The gene is seed-specific and its promoter directs reporter expression in the developing endosperm and embryo in rice transgenic plants. Furthermore, rice transgenic plants ectopically expressing SS1/ ONAC025 have a plantlet lethal phenotype with hampered vegetative growth, but increased tillers and an altered shoot apical meristem structure. The vegetative cells of these plantlets are filled with distinct starch granules. RNAseq analysis of two independent plantlets reveals the differential expression of reproductive and photosynthetic genes. A comparison with seed development transcriptome indicates differential regulation of many seed-related genes by SS1/ ONAC025. Genes involved in starch biosynthesis, especially amylopectin and those encoding seed storage proteins, and regulating seed size are also differentially expressed. In conjunction, SS1/ ONAC025 shows highest expression in japonica rice. As a TF, SS1/ ONAC025 is a transcriptional repressor localized to endoplasmic reticulum and nucleus. The article shows that SS1/ ONAC025 is a seed-specific gene promoting grain filling in rice, and negatively affecting vegetative growth.
Collapse
Affiliation(s)
| | | | - Arunima Mahto
- National Institute of Plant Genome ResearchNew DelhiIndia
| | - Priya Jaiswal
- National Institute of Plant Genome ResearchNew DelhiIndia
| | | | - Pinky Agarwal
- National Institute of Plant Genome ResearchNew DelhiIndia
| |
Collapse
|
15
|
Xu P, Ali A, Han B, Wu X. Current Advances in Molecular Basis and Mechanisms Regulating Leaf Morphology in Rice. FRONTIERS IN PLANT SCIENCE 2018; 9:1528. [PMID: 30405666 PMCID: PMC6206276 DOI: 10.3389/fpls.2018.01528] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/28/2018] [Indexed: 05/03/2023]
Abstract
Yield is majorly affected by photosynthetic efficiency. Leaves are essential structure for photosynthesis and their morphology especially size and shape in a plant canopy can affect the rate of transpiration, carbon fixation and photosynthesis. Leaf rolling and size are considered key agronomic traits in plant architecture that can subsidize yield parameters. In last era, a number of genes controlling leaf morphology have been molecularly characterized. Despite of several findings, our understanding toward molecular mechanism of leaf rolling and size are under-developed. Here, we proposed a model to apprehend the physiological basis of different genes organized in a complex fashion and govern the final phenotype of leaf morphology. According to this leaf rolling is mainly controlled by regulation of bulliform cells by SRL1, ROC5, OsRRK1, SLL2, CLD1, OsZHD1/2, and NRL1, structure and processes of sclerenchyma cells by SLL1 and SRL2, leaf polarity by ADL1, RFS and cuticle formation by CFL1, and CLD1. Many of above mentioned and several other genes interact in a complex manner in order to sustain cellular integrity and homeostasis for optimum leaf rolling. While, leaf size is synchronized by multifarious interaction of PLA1, PLA2, OsGASR1, and OsEXPA8 in cell division, NAL1, NAL9, NRL1, NRL2 in regulation of number of veins, OsCOW1, OsPIN1, OsARF19, OsOFP2, D1 and GID in regulation of phytohormones and HDT702 in epigenetic aspects. In this review, we curtailed recent advances engrossing regulation and functions of those genes that directly or indirectly can distress leaf rolling or size by encoding different types of proteins and genic expression. Moreover, this effort could be used further to develop comprehensive learning and directing our molecular breeding of rice.
Collapse
Affiliation(s)
- Peizhou Xu
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Southwest Crop Genetic Resources and Genetic Improvement, Ministry of Education, Chengdu, China
| | - Asif Ali
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Southwest Crop Genetic Resources and Genetic Improvement, Ministry of Education, Chengdu, China
| | - Baolin Han
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Southwest Crop Genetic Resources and Genetic Improvement, Ministry of Education, Chengdu, China
| | - Xianjun Wu
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Southwest Crop Genetic Resources and Genetic Improvement, Ministry of Education, Chengdu, China
| |
Collapse
|
16
|
Ke S, Liu XJ, Luan X, Yang W, Zhu H, Liu G, Zhang G, Wang S. Genome-wide transcriptome profiling provides insights into panicle development of rice (Oryza sativa L.). Gene 2018; 675:285-300. [PMID: 29969697 DOI: 10.1016/j.gene.2018.06.105] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/26/2018] [Accepted: 06/28/2018] [Indexed: 12/19/2022]
Abstract
Panicle architecture is an important component of agronomic trait in rice, which is also a key ingredient that could influence yield and quality of rice. In the panicle growth and development process, there are a series of complicated molecular and cellular events which are regulated by many interlinking genes. In this study, to explore the potential mechanism and identify genes and pathways involved in the formation of rice panicle, we compared the transcriptional profile of rice panicles (NIL-GW8 and NIL-gw8Amol) at three different stages of panicle development: In5 (formation of higher-order branches), In6 (differentiation of glumes) and In7 (differentiation of floral organs). A range of 40.5 to 54.1 million clean reads was aligned to 31,209 genes in our RNA-Seq analysis. In addition, we investigated transcriptomic changes between the two rice lines during different stages. A total of 726, 1121 and 2584 differentially expressed genes (DEGs) were identified at stages 1, 2 and 3, respectively. Based on an impact analysis of the DEGs, we hypothesize that MADS-box gene family, cytochrome P450 (CYP) and pentatricopeptide repeat (PPR) protein and various transcription factors may be involved in regulation of panicle development. Further, we also explored the functional properties of DEGs by gene ontology analysis, and the results showed that different numbers of DEGs genes were associated with 53 GO groups. In KEGG pathway enrichment analysis, many DEGs related to biosynthesis of secondary metabolites and plant hormone signal transduction, suggesting their important roles during panicle development. This study provides the first examination of changes in gene expression between different panicle development stages in rice. Our results of transcriptomic characterization provide important information to elucidate the complex molecular and cellular events about the panicle formation in rice or other cereal crops. Also, the findings will be helpful for the further identification of the genes related to panicle development.
Collapse
Affiliation(s)
- Shanwen Ke
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Xin-Jiang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Xin Luan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Weifeng Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Haitao Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Guifu Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Guiquan Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China..
| | - Shaokui Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China..
| |
Collapse
|
17
|
Miyazaki S, Jiang K, Kobayashi M, Asami T, Nakajima M. Helminthosporic acid functions as an agonist for gibberellin receptor. Biosci Biotechnol Biochem 2017; 81:2152-2159. [PMID: 29017401 DOI: 10.1080/09168451.2017.1381018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Helminthosporol was isolated from a fungus, Helminthosporium sativum, as a natural plant growth regulator in 1963. It showed gibberellin-like bioactivity that stimulated the growth of the second leaf sheath of rice. After studying the structure-activity relationship between the compound and some synthesized analogs, it was found that helminthosporic acid (H-acid) has higher gibberellin-like activity and chemical stability than helminthosporol. In this study, we showed that (1) H-acid displays gibberellin-like activities not only in rice but also in Arabidopsis, (2) it regulates the expression of gibberellin-related genes, (3) it induces DELLA degradation through binding with a gibberellin receptor (GID1), and (4) it forms the GID1-(H-acid)-DELLA complex to transduce the gibberellin signal in the same manner as gibberellin. This work shows that the H-acid mode of action acts as an agonist for gibberellin receptor.
Collapse
Affiliation(s)
- Sho Miyazaki
- a Department of Applied Biological Chemistry , The University of Tokyo , Tokyo , Japan
| | - Kai Jiang
- a Department of Applied Biological Chemistry , The University of Tokyo , Tokyo , Japan
| | | | - Tadao Asami
- a Department of Applied Biological Chemistry , The University of Tokyo , Tokyo , Japan
| | - Masatoshi Nakajima
- a Department of Applied Biological Chemistry , The University of Tokyo , Tokyo , Japan
| |
Collapse
|
18
|
Genetic Determinants of Crop Timing and Quality Traits in Two Interspecific Petunia Recombinant Inbred Line Populations. Sci Rep 2017; 7:3200. [PMID: 28600539 PMCID: PMC5466624 DOI: 10.1038/s41598-017-03528-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 04/28/2017] [Indexed: 02/02/2023] Open
Abstract
The rate at which plants develop new nodes (development rate) is a major determinant of crop production time, yet the genetic control of this process, including genetic interactions with crop quality parameters, is poorly understood. We employed a modified genotyping-by-sequencing approach and generated genetic linkage maps with 6,291 and 3,297 single nucleotide polymorphisms (SNPs) for the interspecific Petunia recombinant inbred line (RIL) population - P. axillaris × P. exserta (AE) and P. integrifolia × P. axillaris (IA), respectively. Comparative mapping between the populations revealed perfect collinearity of marker order but different recombination frequency at the corresponding linkage groups (LGs). Quantitative trait loci (QTL) mapping conducted for development traits and other important quality traits indicated QTL clustered on chromosome 1, 2, 4 and 6 for the AE population and chromosome 1, 2, 5 and 6 for the IA population. Additionally, 209 differentially expressed unique transcripts were identified in shoot apex tissue between fast- and slow-developing RILs, 13 of which mapped to within 1 cM of a development rate QTL. These results will facilitate the identification of novel genes controlling crop timing and quality traits in Petunia and highlight the power of using multiple interspecific populations to elucidate genetic determinants of natural variation.
Collapse
|
19
|
Hibara KI, Isono M, Mimura M, Sentoku N, Kojima M, Sakakibara H, Kitomi Y, Yoshikawa T, Itoh JI, Nagato Y. Jasmonate regulates juvenile-to-adult phase transition in rice. Development 2016; 143:3407-16. [PMID: 27578792 DOI: 10.1242/dev.138602] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 08/04/2016] [Indexed: 12/15/2022]
Abstract
Juvenile-to-adult phase transition is an important shift for the acquisition of adult vegetative characteristics and subsequent reproductive competence. We identified a recessive precocious (pre) mutant exhibiting a long leaf phenotype in rice. The long leaf phenotype is conspicuous in the second to the fourth leaves, which are juvenile and juvenile-to-adult transition leaves. We found that morphological and physiological traits, such as midrib formation, shoot meristem size, photosynthetic rate and plastochron, in juvenile and juvenile-to-adult transition stages of the pre mutant have precociously acquired adult characteristics. In agreement with these results, expression patterns of miR156 and miR172, which are microRNAs regulating phase change, support the accelerated juvenile-to-adult phase change in the pre mutant. The mutated gene encodes an allene oxide synthase (OsAOS1), which is a key enzyme for the biosynthesis of jasmonic acid (JA). The pre mutant showed a low level of JA and enhanced sensitivity to gibberellic acid, which promotes the phase change in some plant species. We also show that prolonged plastochron in the pre mutant is caused by accelerated PLASTOCHRON1 (PLA1) function. The present study reveals a substantial role of JA as a negative regulator of vegetative phase change.
Collapse
Affiliation(s)
- Ken-Ichiro Hibara
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Miyako Isono
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Manaki Mimura
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Naoki Sentoku
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Ibaraki 305-8602, Japan
| | - Mikiko Kojima
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
| | - Hitoshi Sakakibara
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Yuka Kitomi
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Takanori Yoshikawa
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Jun-Ichi Itoh
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Yasuo Nagato
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|
20
|
Nunes-Nesi A, Nascimento VDL, de Oliveira Silva FM, Zsögön A, Araújo WL, Sulpice R. Natural genetic variation for morphological and molecular determinants of plant growth and yield. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2989-3001. [PMID: 27012286 DOI: 10.1093/jxb/erw124] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The rates of increase in yield of the main commercial crops have been steadily falling in many areas worldwide. This generates concerns because there is a growing demand for plant biomass due to the increasing population. Plant yield should thus be improved in the context of climate change and decreasing natural resources. It is a major challenge which could be tackled by improving and/or altering light-use efficiency, CO2 uptake and fixation, primary metabolism, plant architecture and leaf morphology, and developmental plant processes. In this review, we discuss some of the traits which could lead to yield increase, with a focus on how natural genetic variation could be harnessed. Moreover, we provide insights for advancing our understanding of the molecular aspects governing plant growth and yield, and propose future avenues for improvement of crop yield. We also suggest that knowledge accumulated over the last decade in the field of molecular physiology should be integrated into new ideotypes.
Collapse
Affiliation(s)
- Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Vitor de Laia Nascimento
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Franklin Magnum de Oliveira Silva
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Agustin Zsögön
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Wagner L Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Ronan Sulpice
- National University of Ireland, Galway, Plant Systems Biology Lab, Plant and AgriBiosciences Research Centre, School of Natural Sciences, Galway, Ireland
| |
Collapse
|
21
|
Mimura M, Itoh JI. Genetic interaction between rice PLASTOCHRON genes and the gibberellin pathway in leaf development. RICE (NEW YORK, N.Y.) 2014; 7:25. [PMID: 25243048 PMCID: PMC4169055 DOI: 10.1186/s12284-014-0025-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 09/11/2014] [Indexed: 05/28/2023]
Abstract
BACKGROUND The rice PLASTOCHRON (PLA) genes PLA1 and PLA2 regulate leaf maturation and the temporal pattern of leaf initiation. Although the function of PLA genes in the leaf initiation process has been analyzed, little is known about how they affect leaf growth. Previously, we suggested that PLA1 and PLA2 function downstream of the gibberellin (GA) signal transduction pathway. In the present study, we examined the phenotype of a double mutant of pla and slender rice 1 (slr1), which is a constitutive GA response mutant. By analyzing these double mutants, we discuss the relationship between PLA-related and GA-dependent pathways and the possible function of PLA genes in leaf growth. FINDINGS Single slr1 and pla mutants exhibited elongated and dwarf phenotypes in the vegetative stage, respectively. The stature and leaf size of the pla1/slr1 and pla2/slr1 double mutants were intermediate between those of the pla and slr1 single mutants. However, the effects of slr1 on leaf elongation were markedly suppressed in the pla1 and pla2 mutant backgrounds. On the other hand, the change in cell length in the double mutants was almost the same as that in the single mutants. An expression analysis of genes involved in GA biosynthesis and catabolism indicated that feedback regulation functioned normally in the pla/slr1 double mutants. CONCLUSIONS Our genetic results confirm that PLA genes regulate leaf growth downstream of the GA pathway. Our findings also suggest that PLA1 and PLA2 are partly required for GA-dependent leaf elongation, mainly by affecting cellular proliferation.
Collapse
Affiliation(s)
- Manaki Mimura
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Jun-Ichi Itoh
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|
22
|
Claeys H, De Bodt S, Inzé D. Gibberellins and DELLAs: central nodes in growth regulatory networks. TRENDS IN PLANT SCIENCE 2014; 19:231-9. [PMID: 24182663 DOI: 10.1016/j.tplants.2013.10.001] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 09/27/2013] [Accepted: 10/04/2013] [Indexed: 05/22/2023]
Abstract
Gibberellins (GAs) are growth-promoting phytohormones that were crucial in breeding improved semi-dwarf varieties during the green revolution. However, the molecular basis for GA-induced growth stimulation is poorly understood. In this review, we use light-regulated hypocotyl elongation as a case study, combined with a meta-analysis of available transcriptome data, to discuss the role of GAs as central nodes in networks connecting environmental inputs to growth. These networks are highly tissue-specific, with dynamic and rapid regulation that mostly occurs at the protein level, directly affecting the activity and transcription of effectors. New systems biology approaches addressing the role of GAs in growth should take these properties into account, combining tissue-specific interactomics, transcriptomics and modeling, to provide essential knowledge to fuel a second green revolution.
Collapse
Affiliation(s)
- Hannes Claeys
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Stefanie De Bodt
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Dirk Inzé
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium.
| |
Collapse
|