1
|
Larkin RM. Recent progress on mechanisms that allocate cellular space to plastids. FUNDAMENTAL RESEARCH 2024; 4:1167-1170. [PMID: 39431144 PMCID: PMC11489472 DOI: 10.1016/j.fmre.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/29/2022] [Accepted: 09/07/2022] [Indexed: 11/19/2022] Open
Abstract
Mechanisms that allocate cellular space to organelles are of fundamental importance to biology but remain poorly understood. A detailed understanding of mechanisms that allocate cellular space to plastids, such as chloroplasts, will lead to high-yielding crops with enhanced nutritional value. The HIGH PIGMENT (HP) genes in tomato contribute to regulated proteolysis and abscisic acid metabolism. The HP1 gene was the first gene reported to influence the amount of cellular space occupied by chloroplasts and chromoplasts almost 20 years ago. Recently, our knowledge of mechanisms that allocate cellular space to plastids was enhanced by new information on the influence of cell type on the amount of cellular space occupied by plastids and the identification of new genes that help to allocate cellular space to plastids. These genes encode proteins with unknown and diverse biochemical functions. Several transcription factors were recently reported to regulate the numbers and sizes of chloroplasts in fleshy fruit. If these transcription factors do not induce compensating effects on cell size, they should affect the amount of cellular space occupied by plastids. Although we can now propose more detailed models for the network that allocates cellular space to plastids, many gaps remain in our knowledge of this network and the genes targeted by this network. Nonetheless, these recent breakthroughs provide optimism for future progress in this field.
Collapse
Affiliation(s)
- Robert M. Larkin
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
2
|
Zhang H, Zhang K, Zhao X, Bi M, Liu Y, Wang S, He Y, Ma K, Qi M. Galactinol synthase 2 influences the metabolism of chlorophyll, carotenoids, and ethylene in tomato fruits. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3337-3350. [PMID: 38486362 DOI: 10.1093/jxb/erae121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/14/2024] [Indexed: 06/18/2024]
Abstract
Galactinol synthase (GolS), which catalyses the synthesis of galactinol, is the first critical enzyme in the biosynthesis of raffinose family oligosaccharides (RFOs) and contributes to plant growth and development, and resistance mechanisms. However, its role in fruit development remains largely unknown. In this study, we used CRISPR/Cas9 gene-editing technology in tomato (Solanum lycopersicum) to create the gols2 mutant showing uniformly green fruits without dark-green shoulders, and promoting fruit ripening. Analysis indicated that galactinol was undetectable in the ovaries and fruits of the mutant, and the accumulation of chlorophyll and chloroplast development was suppressed in the fruits. RNA-sequencing analysis showed that genes related to chlorophyll accumulation and chloroplast development were down-regulated, including PROTOCHLOROPHYLLIDE OXIDOREDUCTASE, GOLDEN 2-LIKE 2, and CHLOROPHYLL A/B-BINDING PROTEINS. In addition, early color transformation and ethylene release was prompted in the gols2 lines by regulation of the expression of genes involved in carotenoid and ethylene metabolism (e.g. PHYTOENE SYNTHASE 1, CAROTENE CIS-TRANS ISOMERASE, and 1-AMINOCYCLOPROPANE-1-CARBOXYLIC ACID SYNTHASE2/4) and fruit ripening (e.g. RIPENING INHIBITOR, NON-RIPENING, and APETALA2a). Our results provide evidence for the involvement of GolS2 in pigment and ethylene metabolism of tomato fruits.
Collapse
Affiliation(s)
- Huidong Zhang
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, China
- Key Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, Shenyang, China
| | - Kunpeng Zhang
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, China
- Key Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, Shenyang, China
| | - Xueya Zhao
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, China
- Key Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, Shenyang, China
| | - Mengxi Bi
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, China
- Key Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, Shenyang, China
| | | | - Shuo Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, China
- Key Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, Shenyang, China
| | - Yi He
- Key Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, Shenyang, China
| | - Kui Ma
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, China
| | - Mingfang Qi
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, China
- Key Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, Shenyang, China
| |
Collapse
|
3
|
Wang H, Tang X, Liu Y. SlCK2α as a novel substrate for CRL4 E3 ligase regulates fruit size through maintenance of cell division homeostasis in tomato. PLANTA 2023; 257:38. [PMID: 36645501 DOI: 10.1007/s00425-023-04070-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
This study unravels a novel regulatory module (CRL4-CK2α-CDK2) involving fruit size control by mediating cell division homeostasis (SlCK2α and SlCDK2) in tomato. Fruit size is one of the crucial agronomical traits for crop production. UV-damaged DNA binding protein 1 (DDB1), a core component of Cullin4-RING E3 ubiquitin ligase complex (CRL4), has been identified as a negative regulator of fruit size in tomato (Solanum lycopersicum). However, the underlying molecular mechanism remains largely unclear. Here, we report the identification and characterization of a SlDDB1-interacting protein putatively involving fruit size control through regulating cell proliferation in tomato. It is a tomato homolog SlCK2α, the catalytic subunit of the casein kinase 2 (CK2), identified by yeast two-hybrid (Y2H) assays. The interaction between SlDDB1 and SlCK2α was demonstrated by bimolecular fluorescence complementation (BiFC) and co-immunoprecipitation (Co-IP). RNA interference (RNAi) and CRISPR/Cas9-based mutant analyses showed that lack of SlCK2α resulted in reduction of fruit size with reduced cell number, suggesting it is a positive regulator on fruit size by promoting cell proliferation. We also showed SlDDB1 is required to ubiquitinate SlCK2α and negatively regulate its stability through 26S proteasome-mediated degradation. Furthermore, we found that a tomato homolog of cell division protein kinase 2 (SlCDK2) could interact with and specifically be phosphorylated by SlCK2α, resulting in an increase of SlCDK2 protein stability. CRISPR/Cas9-based genetic evidence showed that SlCDK2 is also a positive regulator of fruit size by influencing cell division in tomato. Taken together, our findings, thus, unravel a novel regulatory module CRL4-CK2α-CDK2 in finely modulating cell division homeostasis and the consequences on fruit size.
Collapse
Affiliation(s)
- Hongtao Wang
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xiaofeng Tang
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China.
| | - Yongsheng Liu
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China.
- School of Horticulture and State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China.
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
4
|
Jia T, Cheng Y, Khan I, Zhao X, Gu T, Hu X. Progress on Understanding Transcriptional Regulation of Chloroplast Development in Fleshy Fruit. Int J Mol Sci 2020; 21:ijms21186951. [PMID: 32971815 PMCID: PMC7555698 DOI: 10.3390/ijms21186951] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 02/03/2023] Open
Abstract
Edible fleshy fruits are important food sources in the human diet. Their yield and nutritional quality have long been considered as breeding targets for improvement. Various developing fleshy fruits with functional chloroplasts are capable of photosynthesis and contribute to fruit photosynthate, leading to the accumulation of metabolites associated with nutritional quality in ripe fruit. Although tomato high-pigment mutants with dark-green fruits have been isolated for more than 100 years, our understanding of the mechanism of chloroplast development in fleshy fruit remain poor. During the past few years, several transcription factors that regulate chloroplast development in fleshy fruit were identified through map-based cloning. In addition, substantial progress has been made in elucidating the mechanisms that how these transcription factors regulate chloroplast development. This review provides a summary and update on this progress, with a framework for further investigations of the multifaceted and hierarchical regulation of chloroplast development in fleshy fruit.
Collapse
Affiliation(s)
- Ting Jia
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China;
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Yuting Cheng
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; (Y.C.); (I.K.); (X.Z.); (T.G.)
| | - Imran Khan
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; (Y.C.); (I.K.); (X.Z.); (T.G.)
| | - Xuan Zhao
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; (Y.C.); (I.K.); (X.Z.); (T.G.)
| | - Tongyu Gu
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; (Y.C.); (I.K.); (X.Z.); (T.G.)
| | - Xueyun Hu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China;
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; (Y.C.); (I.K.); (X.Z.); (T.G.)
- Correspondence:
| |
Collapse
|
5
|
Yang Z, Yang Z, Yang C, Wang Z, Chen D, Xie Y, Wu Y. Identification and genetic analysis of alternative splicing of long non-coding RNAs in tomato initial flowering stage. Genomics 2019; 112:897-907. [PMID: 31175976 DOI: 10.1016/j.ygeno.2019.06.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/19/2019] [Accepted: 06/04/2019] [Indexed: 01/07/2023]
Abstract
Alternative splicing (AS) is a key modulator of development in many eukaryotic organisms. Long non-coding RNAs (lncRNAs) are a class of non-coding RNAs that play essential regulatory roles in various developmental processes and stress responses. However, the functions of AS lncRNAs during the initial flowering of tomato are largely unknown. This study was designed to investigate the AS pattern of lncRNAs in tomato flower, leaf, and root tissues at the initial flowering stage. Using RNA-Seq, we found that 72.55% of lncRNAs underwent AS in these tissues, yielding a total of 16,995 AS events. Among them, the main type of AS event is alternative first exon (AFE), followed by retained intron (RI). We performed candidate target genes analysis on tissue-specific AS lncRNA, and the results indicated that the candidate target genes of these lncRNAs may be involved in the regulation of circadian rhythm, plant immunity, cellulose synthesis and phosphate-containing compound metabolic process. Moreover, a total of 73,085 putative SNPs and 15,679 InDels were detected, and the potential relationship between the AS of lncRNAs and interesting SNP and InDel loci, as well as their numbers, revealed their effects on tomato genetic diversity and genomic stability. Our data provide new insights into the complexity of the transcriptome and the regulation of AS.
Collapse
Affiliation(s)
- Zhenchao Yang
- College of Horticulture, College of Life Sciences, College of Science, Northwest A&F University, Yangling, Shaan Xi, China
| | - Zhao Yang
- College of Horticulture, College of Life Sciences, College of Science, Northwest A&F University, Yangling, Shaan Xi, China
| | - Chengcheng Yang
- College of Horticulture, College of Life Sciences, College of Science, Northwest A&F University, Yangling, Shaan Xi, China
| | - Zhengyan Wang
- College of Horticulture, College of Life Sciences, College of Science, Northwest A&F University, Yangling, Shaan Xi, China
| | - Danyan Chen
- College of Horticulture, College of Life Sciences, College of Science, Northwest A&F University, Yangling, Shaan Xi, China
| | - Yingge Xie
- College of Horticulture, College of Life Sciences, College of Science, Northwest A&F University, Yangling, Shaan Xi, China.
| | - Yongjun Wu
- College of Horticulture, College of Life Sciences, College of Science, Northwest A&F University, Yangling, Shaan Xi, China.
| |
Collapse
|
6
|
Clark S, Yu F, Gu L, Min XJ. Expanding Alternative Splicing Identification by Integrating Multiple Sources of Transcription Data in Tomato. FRONTIERS IN PLANT SCIENCE 2019; 10:689. [PMID: 31191588 PMCID: PMC6546887 DOI: 10.3389/fpls.2019.00689] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 05/08/2019] [Indexed: 05/17/2023]
Abstract
Tomato (Solanum lycopersicum) is an important vegetable and fruit crop. Its genome was completely sequenced and there are also a large amount of available expressed sequence tags (ESTs) and short reads generated by RNA sequencing (RNA-seq) technologies. Mapping transcripts including mRNA sequences, ESTs, and RNA-seq reads to the genome allows identifying pre-mRNA alternative splicing (AS), a post-transcriptional process generating two or more RNA isoforms from one pre-mRNA transcript. We comprehensively analyzed the AS landscape in tomato by integrating genome mapping information of all available mRNA and ESTs with mapping information of RNA-seq reads which were collected from 27 published projects. A total of 369,911 AS events were identified from 34,419 genomic loci involving 161,913 transcripts. Within the basic AS events, intron retention is the prevalent type (18.9%), followed by alternative acceptor site (12.9%) and alternative donor site (7.3%), with exon skipping as the least type (6.0%). Complex AS types having two or more basic event accounted for 54.9% of total AS events. Within 35,768 annotated protein-coding gene models, 23,233 gene models were found having pre-mRNAs generating AS isoform transcripts. Thus the estimated AS rate was 65.0% in tomato. The list of identified AS genes with their corresponding transcript isoforms serves as a catalog for further detailed examination of gene functions in tomato biology. The post-transcriptional information is also expected to be useful in improving the predicted gene models in tomato. The sequence and annotation information can be accessed at plant alternative splicing database (http://proteomics.ysu.edu/altsplice).
Collapse
Affiliation(s)
- Sarah Clark
- Department of Biological Sciences, Youngstown State University, Youngstown, OH, United States
| | - Feng Yu
- Department of Computer Science and Information Systems, Youngstown State University, Youngstown, OH, United States
| | - Lianfeng Gu
- Basic Forestry and Proteomics Center, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiang Jia Min
- Department of Biological Sciences, Youngstown State University, Youngstown, OH, United States
- *Correspondence: Xiang Jia Min,
| |
Collapse
|
7
|
Liu X, He Z, Yin Y, Xu X, Wu W, Li L. Transcriptome sequencing and analysis during seed growth and development in Euryale ferox Salisb. BMC Genomics 2018; 19:343. [PMID: 29743016 PMCID: PMC5944168 DOI: 10.1186/s12864-018-4707-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 04/22/2018] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Euryale ferox Salisb., an annual aquatic plant, is the only species in the genus Euryale in the Nymphaeaceae. Seeds of E. ferox are a nutritious food and also used in traditional Chinese medicine (Qian Shi in Mandarin). The molecular events that occurred during seed development in E. ferox have not yet been characterized. In this study, we performed transcriptomic analysis of four developmental stages (T1, T2, T3, and T4) in E. ferox seeds with three biological replicates per developmental stage to understand the physiological and biochemical processes during E. ferox seeds development. RESULTS 313,844,425 clean reads were assembled into 160,107 transcripts and 85,006 unigenes with N50 lengths of 2052 bp and 1399 bp, respectively. The unigenes were annotated using five public databases (NR, COG, Swiss-Prot, KEGG, and GO). In the KEGG database, all of the unigenes were assigned to 127 pathways, of which phenylpropanoid biosynthesis was associated with the synthesis of secondary metabolites during E. ferox seed growth and development. Phenylalanine ammonia-lyase (PAL) as the first key enzyme catalyzed the conversion of phenylalanine to trans-cinnamic acid, then was related to the synthesis of flavonoids, lignins and alkaloid. The expression of PAL1 reached its peak at T3 stage, followed by a slight decrease at T4 stage. Cytochrome P450 (P450), encoded by CYP84A1 (which also called ferulate-5-hydroxylase (F5H) in Arabidopsis), was mainly involved in the biosynthesis of lignins. CONCLUSIONS Our study provides a transcriptomic analysis to better understand the morphological changes and the accumulation of medicinal components during E. ferox seed development. The increasing expression of PAL and P450 encoded genes in phenylpropanoid biosynthesis may promote the maturation of E. ferox seed including size, color, hardness and accumulation of medicinal components.
Collapse
Affiliation(s)
- Xian Liu
- School of Horticulture and Plant Protection, Yangzhou University, 48 Wenhui East Road, Yangzhou, Jiangsu Province 225009 People’s Republic of China
| | - Zhen He
- School of Horticulture and Plant Protection, Yangzhou University, 48 Wenhui East Road, Yangzhou, Jiangsu Province 225009 People’s Republic of China
| | - Yulai Yin
- Suzhou Vegetable Research Institute, 188 Xitang Road, Suzhou, Jiangsu Province 215008 People’s Republic of China
| | - Xu Xu
- School of Horticulture and Plant Protection, Yangzhou University, 48 Wenhui East Road, Yangzhou, Jiangsu Province 225009 People’s Republic of China
| | - Weiwen Wu
- School of Horticulture and Plant Protection, Yangzhou University, 48 Wenhui East Road, Yangzhou, Jiangsu Province 225009 People’s Republic of China
| | - Liangjun Li
- School of Horticulture and Plant Protection, Yangzhou University, 48 Wenhui East Road, Yangzhou, Jiangsu Province 225009 People’s Republic of China
| |
Collapse
|
8
|
Li Y, Deng H, Miao M, Li H, Huang S, Wang S, Liu Y. Tomato MBD5, a methyl CpG binding domain protein, physically interacting with UV-damaged DNA binding protein-1, functions in multiple processes. THE NEW PHYTOLOGIST 2016; 210:208-26. [PMID: 26551231 DOI: 10.1111/nph.13745] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 10/02/2015] [Indexed: 05/22/2023]
Abstract
In tomato (Solanum lycopersicum), high pigment mutations (hp-1 and hp-2) were mapped to genes encoding UV-damaged DNA binding protein 1 (DDB1) and de-etiolated-1 (DET1), respectively. Here we characterized a tomato methyl-CpG-binding domain protein SlMBD5 identified by yeast two-hybrid screening using SlDDB1 as a bait. Yeast two-hybrid assay demonstrated that the physical interaction of SlMBD5 with SlDDB1 is mediated by the C-termini of SlMBD5 and the β-propeller-C (BPC) of SlDDB1. Co-immunoprecipitation analyses revealed that SlMBD5 associates with SlDDB1-interacting partners including SlDET1, SlCUL4, SlRBX1a and SlRBX1b in vivo. SlMBD5 was shown to target to nucleus and dimerizes via its MBD motif. Electrophoresis mobility shift analysis suggested that the MBD of SlMBD5 specifically binds to methylated CpG dinucleotides but not to methylated CpHpG or CpHpH dinucleotides. SlMBD5 expressed in protoplast is capable of activating transcription of CG islands, whereas CUL4/DDB1 antagonizes this effect. Overexpressing SlMBD5 resulted in diverse developmental alterations including darker green fruits with increased plastid level and elevated pigmentation, as well as enhanced expression of SlGLK2, a key regulator of plastid biogenesis. Taken together, we hypothesize that the physical interaction of SlMBD5 with the CUL4-DDB1-DET1 complex component may affect its binding activity to methylated DNA and subsequently attenuate its transcription activation of downstream genes.
Collapse
Affiliation(s)
- Yuxiang Li
- Ministry of education Key Laboratory for Bio-resource and Eco-environment, State key laboratory of Hydraulics and mountain River Engineering, College of Life Science, Sichuan University, Chengdu, 610064, China
| | - Heng Deng
- Ministry of education Key Laboratory for Bio-resource and Eco-environment, State key laboratory of Hydraulics and mountain River Engineering, College of Life Science, Sichuan University, Chengdu, 610064, China
| | - Min Miao
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Huirong Li
- Ministry of education Key Laboratory for Bio-resource and Eco-environment, State key laboratory of Hydraulics and mountain River Engineering, College of Life Science, Sichuan University, Chengdu, 610064, China
| | - Shengxiong Huang
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Songhu Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Yongsheng Liu
- Ministry of education Key Laboratory for Bio-resource and Eco-environment, State key laboratory of Hydraulics and mountain River Engineering, College of Life Science, Sichuan University, Chengdu, 610064, China
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China
| |
Collapse
|
9
|
Tang W, Zheng Y, Dong J, Yu J, Yue J, Liu F, Guo X, Huang S, Wisniewski M, Sun J, Niu X, Ding J, Liu J, Fei Z, Liu Y. Comprehensive Transcriptome Profiling Reveals Long Noncoding RNA Expression and Alternative Splicing Regulation during Fruit Development and Ripening in Kiwifruit (Actinidia chinensis). FRONTIERS IN PLANT SCIENCE 2016; 7:335. [PMID: 27594858 PMCID: PMC5007456 DOI: 10.3389/fpls.2016.00335] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 03/04/2016] [Indexed: 05/18/2023]
Abstract
Genomic and transcriptomic data on kiwifruit (Actinidia chinensis) in public databases are very limited despite its nutritional and economic value. Previously, we have constructed and sequenced nine fruit RNA-Seq libraries of A. chinensis "Hongyang" at immature, mature, and postharvest ripening stages of fruit development, and generated over 66.2 million paired-end and 24.4 million single-end reads. From this dataset, here we have identified 7051 long noncoding RNAs (lncRNAs), 29,327 alternative splicing (AS) events and 2980 novel protein-coding genes that were not annotated in the draft genome of "Hongyang." AS events were demonstrated in genes involved in the synthesis of nutritional metabolites in fruit, such as ascorbic acids, carotenoids, anthocyanins, and chlorophylls, and also in genes in the ethylene signaling pathway, which plays an indispensable role in fruit ripening. Additionally, transcriptome profiles and the contents of sugars, organic and main amino acids were compared between immature, mature, and postharvest ripening stages in kiwifruits. A total of 5931 differentially expressed genes were identified, including those associated with the metabolism of sugar, organic acid, and main amino acids. The data generated in this study provide a foundation for further studies of fruit development and ripening in kiwifruit, and identify candidate genes and regulatory elements that could serve as targets for improving important agronomic traits through marker assisted breeding and biotechnology.
Collapse
Affiliation(s)
- Wei Tang
- Department of Biological Sciences, School of Biotechnology and Food Engineering, Hefei University of TechnologyHefei, China
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan UniversityChengdu, China
| | - Yi Zheng
- Section of Plant Biology, Boyce Thompson Institute for Plant Research, Cornell UniversityIthaca, NY, USA
| | - Jing Dong
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan UniversityChengdu, China
| | - Jia Yu
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan UniversityChengdu, China
| | - Junyang Yue
- Department of Biological Sciences, School of Biotechnology and Food Engineering, Hefei University of TechnologyHefei, China
| | - Fangfang Liu
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan UniversityChengdu, China
| | - Xiuhong Guo
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan UniversityChengdu, China
| | - Shengxiong Huang
- Department of Biological Sciences, School of Biotechnology and Food Engineering, Hefei University of TechnologyHefei, China
| | - Michael Wisniewski
- U.S. Department of Agriculture – Agricultural Research ServiceKearneysville, WV, USA
| | - Jiaqi Sun
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan UniversityChengdu, China
| | - Xiangli Niu
- Department of Biological Sciences, School of Biotechnology and Food Engineering, Hefei University of TechnologyHefei, China
| | - Jian Ding
- Sichuan Technical Exchange CenterChengdu, China
| | - Jia Liu
- Department of Biological Sciences, School of Biotechnology and Food Engineering, Hefei University of TechnologyHefei, China
| | - Zhangjun Fei
- Section of Plant Biology, Boyce Thompson Institute for Plant Research, Cornell UniversityIthaca, NY, USA
| | - Yongsheng Liu
- Department of Biological Sciences, School of Biotechnology and Food Engineering, Hefei University of TechnologyHefei, China
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan UniversityChengdu, China
| |
Collapse
|
10
|
Tang X, Miao M, Niu X, Zhang D, Cao X, Jin X, Zhu Y, Fan Y, Wang H, Liu Y, Sui Y, Wang W, Wang A, Xiao F, Giovannoni J, Liu Y. Ubiquitin-conjugated degradation of golden 2-like transcription factor is mediated by CUL4-DDB1-based E3 ligase complex in tomato. THE NEW PHYTOLOGIST 2016; 209:1028-39. [PMID: 26352615 DOI: 10.1111/nph.13635] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 08/11/2015] [Indexed: 05/19/2023]
Abstract
CULLIN4-RING ubiquitin ligases (CRL4s) as well as their targets are fundamental regulators functioning in many key developmental and stress responses in eukaryotes. In tomato (Solanum lycopersicum), molecular cloning has revealed that the underlying genes of natural spontaneous mutations high pigment 1 (hp1), high pigment 2 (hp2) and uniform ripening (u) encode UV-DAMAGED DNA BINDING PROTEIN 1 (DDB1), DE-ETIOLATED 1 (DET1) and GOLDEN 2-LIKE (GLK2), respectively. However, the molecular basis of the opposite actions of tomato GLK2 vs CUL4-DDB1-DET1 complex on regulating plastid level and fruit quality remains unknown. Here, we provide molecular evidence showing that the tomato GLK2 protein is a substrate of the CUL4-DDB1-DET1 ubiquitin ligase complex for the proteasome degradation. SlGLK2 is degraded by the ubiquitin-proteasome system, which is mainly determined by two lysine residues (K11 and K253). SlGLK2 associates with the CUL4-DDB1-DET1 E3 complex in plant cells. Genetically impairing CUL4, DDB1 or DET1 results in a retardation of SlGLK2 degradation by the 26S proteasome. These findings are relevant to the potential of nutrient accumulation in tomato fruit by mediating the plastid level and contribute to a deeper understanding of an important regulatory loop, linking protein turnover to gene regulation.
Collapse
Affiliation(s)
- Xiaofeng Tang
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - Min Miao
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xiangli Niu
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Danfeng Zhang
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xulv Cao
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xichen Jin
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yunye Zhu
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Youhong Fan
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Hongtao Wang
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Ying Liu
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yuan Sui
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Wenjie Wang
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China
- Department of Plant, Soil, and Entomological Sciences, University of Idaho, Moscow, ID, 83844, USA
| | - Anquan Wang
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China
- Boyce Thompson Institute for Plant Research, Cornell University, Tower Road, Ithaca, NY, 14853, USA
| | - Fangming Xiao
- Department of Plant, Soil, and Entomological Sciences, University of Idaho, Moscow, ID, 83844, USA
| | - Jim Giovannoni
- Boyce Thompson Institute for Plant Research, Cornell University, Tower Road, Ithaca, NY, 14853, USA
| | - Yongsheng Liu
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
11
|
Zhu Y, Huang S, Miao M, Tang X, Yue J, Wang W, Liu Y. Genome-wide identification, sequence characterization, and protein-protein interaction properties of DDB1 (damaged DNA binding protein-1)-binding WD40-repeat family members in Solanum lycopersicum. PLANTA 2015; 241:1337-50. [PMID: 25680350 DOI: 10.1007/s00425-015-2258-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 02/02/2015] [Indexed: 06/04/2023]
Abstract
MAIN CONCLUSIONS One hundred DDB1 (damaged DNA binding protein-1)-binding WD40-repeat domain (DWD) family genes were identified in the S. lycopersicum genome. The DWD genes encode proteins presumably functioning as the substrate recognition subunits of the cullin4-ring ubiquitin E3 ligase complex. These findings provide candidate genes and a research platform for further gene functionality and molecular breeding study. A subclass of DDB1 (damaged DNA binding protein-1)-binding WD40-repeat domain (DWD) family proteins has been demonstrated to function as the substrate recognition subunits of the cullin4-ring ubiquitin E3 ligase complex. However, little information is available about the cognate subfamily genes in tomato (S. lycopersicum). In this study, based on the recently released tomato genome sequences, 100 tomato genes encoding DWD proteins that potentially interact with DDB1 were identified and characterized, including analyses of the detailed annotations, chromosome locations and compositions of conserved amino acid domains. In addition, a phylogenetic tree, which comprises of three main groups, of the subfamily genes was constructed. The physical interaction between tomato DDB1 and 14 representative DWD proteins was determined by yeast two-hybrid and co-immunoprecipitation assays. The subcellular localization of these 14 representative DWD proteins was determined. Six of them were localized in both nucleus and cytoplasm, seven proteins exclusively in cytoplasm, and one protein either in nucleus and cytoplasm, or exclusively in cytoplasm. Comparative genomic analysis demonstrated that the expansion of these subfamily members in tomato predominantly resulted from two whole-genome triplication events in the evolution history.
Collapse
Affiliation(s)
- Yunye Zhu
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China
| | | | | | | | | | | | | |
Collapse
|
12
|
Du H, Wang Y, Yang J, Yang W. Comparative Transcriptome Analysis of Resistant and Susceptible Tomato Lines in Response to Infection by Xanthomonas perforans Race T3. FRONTIERS IN PLANT SCIENCE 2015; 6:1173. [PMID: 26734053 PMCID: PMC4689867 DOI: 10.3389/fpls.2015.01173] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 12/07/2015] [Indexed: 05/03/2023]
Abstract
Bacterial spot, incited by several Xanthomonas sp., is a serious disease in tomato (Solanum lycopersicum L.). Although genetics of resistance has been widely investigated, the interactions between the pathogen and tomato plants remain unclear. In this study, tanscriptomes of X. perforans race T3 infected tomato lines were compared to those of controls. An average of 7 million reads were generated with approximately 21,526 genes mapped in each sample post-inoculation at 6 h (6 HPI) and 6 days (6 DPI) using RNA-sequencing technology. Overall, the numbers of differentially expressed genes (DEGs) were higher in the resistant tomato line PI 114490 than in the susceptible line OH 88119, and the numbers of DEGs were higher at 6 DPI than at 6 HPI. Fewer genes (78 in PI 114490 and 15 in OH 88119) were up-regulated and most DEGs were down-regulated, suggesting that the inducible defense response might not be fully activated at 6 HPI. Accumulation expression levels of 326 co-up regulated genes in both tomato lines at 6 DPI might be involved in basal defense, while the specific and strongly induced genes at 6 DPI might be correlated with the resistance in PI 114490. Most DEGs were involved in plant hormone signal transduction, plant-pathogen interaction and phenylalanine metabolism, and the genes significantly up-regulated in PI 114490 at 6 DPI were associated with defense response pathways. DEGs containing NBS-LRR domain or defense-related WRKY transcription factors were also identified. The results will provide a valuable resource for understanding the interactions between X. perforans and tomato plants.
Collapse
|
13
|
Zhao D, Jiang Y, Ning C, Meng J, Lin S, Ding W, Tao J. Transcriptome sequencing of a chimaera reveals coordinated expression of anthocyanin biosynthetic genes mediating yellow formation in herbaceous peony (Paeonia lactiflora Pall.). BMC Genomics 2014; 15:689. [PMID: 25134523 PMCID: PMC4159507 DOI: 10.1186/1471-2164-15-689] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 08/15/2014] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Herbaceous peony (Paeonia lactiflora Pall.) is a traditional flower in China and a wedding attractive flower in worldwide. In its flower colour, yellow is the rarest which is ten times the price of the other colours. However, the breeding of new yellow P. lactiflora varieties using genetic engineering is severely limited due to the little-known biochemical and molecular mechanisms underlying its characteristic formation. RESULTS In this study, two cDNA libraries generated from P. lactiflora chimaera with red outer-petal and yellow inner-petal were sequenced using an Illumina HiSeq™ 2000 platform. 66,179,398 and 65,481,444 total raw reads from red outer-petal and yellow inner-petal cDNA libraries were generated, which were assembled into 61,431 and 70,359 Unigenes with an average length of 628 and 617 nt, respectively. Moreover, 61,408 non-redundant All-unigenes were obtained, with 37,511 All-unigenes (61.08%) annotated in public databases. In addition, 6,345 All-unigenes were differentially expressed between the red outer-petal and yellow inner-petal, with 3,899 up-regulated and 2,446 down-regulated All-unigenes, and the flavonoid metabolic pathway related to colour development was identified using the Kyoto encyclopedia of genes and genomes database (KEGG). Subsequently, the expression patterns of 10 candidate differentially expressed genes (DEGs) involved in the flavonoid metabolic pathway were examined, and flavonoids were qualitatively and quantitatively analysed. Numerous anthoxanthins (flavone and flavonol) and a few anthocyanins were detected in the yellow inner-petal, which were all lower than those in the red outer-petal due to the low expression levels of the phenylalanine ammonialyase gene (PlPAL), flavonol synthase gene (PlFLS), dihydroflavonol 4-reductase gene (PlDFR), anthocyanidin synthase gene (PlANS), anthocyanidin 3-O-glucosyltransferase gene (Pl3GT) and anthocyanidin 5-O-glucosyltransferase gene (Pl5GT). CONCLUSION Transcriptome sequencing (RNA-Seq) analysis based on the high throughput sequencing technology was an efficient approach to identify critical genes in P. lactiflora and other non-model plants. The flavonoid metabolic pathway and glucide metabolic pathway were identified as relatived yellow formation in P. lactiflora, PlPAL, PlFLS, PlDFR, PlANS, Pl3GT and Pl5GT were selected as potential candidates involved in flavonoid metabolic pathway, which inducing inhibition of anthocyanin biosynthesis mediated yellow formation in P. lactiflora. This study could lay a theoretical foundation for breeding new yellow P. lactiflora varieties.
Collapse
Affiliation(s)
- Daqiu Zhao
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009 Jiangsu P.R. China
| | - Yao Jiang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009 Jiangsu P.R. China
| | - Chuanlong Ning
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009 Jiangsu P.R. China
| | - Jiasong Meng
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009 Jiangsu P.R. China
| | - Shasha Lin
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009 Jiangsu P.R. China
| | - Wen Ding
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009 Jiangsu P.R. China
| | - Jun Tao
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009 Jiangsu P.R. China
| |
Collapse
|