1
|
Pretzler M, Rompel A. Tyrosinases: a family of copper-containing metalloenzymes. CHEMTEXTS 2024; 10:12. [PMID: 39624788 PMCID: PMC11608171 DOI: 10.1007/s40828-024-00195-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/15/2024] [Indexed: 12/08/2024]
Abstract
Tyrosinases (TYRs) are a family of copper-containing metalloenzymes that are present in all domains of life. TYRs catalyze the reactions that start the biosynthesis of melanin, the main pigment of the animal kingdom, and are also involved in the formation of the bright colors seen on the caps of mushrooms and in the petals of flowers. TYRs catalyze the ortho-hydroxylation and oxidation of phenols and the oxidation of catechols to the respective o-quinones. They only need molecular oxygen to do that, and the products of TYRs-o-quinones-are highly reactive and will usually react with the next available nucleophile. This reactivity can be harnessed for pharmaceutical applications as well as in environmental and food biotechnology. The majority of both basic and applied research on TYRs utilizes "mushroom tyrosinase", a crude enzyme preparation derived from button mushroom (Agaricus bisporus) fruiting bodies. Access to pure TYR preparations comes almost exclusively from the production of recombinant TYRs as the purification of these enzymes from the natural source is usually very laborious and plagued by low yields. In this text an introduction into the biochemistry of the enzyme TYR will be given, followed by an overview of available structural data of TYRs, the current model for the catalytic mechanism, a survey of reports on the recombinant production of this important metalloenzyme family, and a review of the applications of TYRs for the synthesis of catechols, as biosensors, in bioremediation, for the cross-linking of proteins and medical hydrogels as well as for melanoma treatment. Graphical Abstract
Collapse
Affiliation(s)
- Matthias Pretzler
- Institut für Biophysikalische Chemie, Fakultät für Chemie, Universität Wien, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Annette Rompel
- Institut für Biophysikalische Chemie, Fakultät für Chemie, Universität Wien, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| |
Collapse
|
2
|
Yang J, Gao Z, Yu Z, Hou Y, Tang D, Yan H, Wu F, Chang SK, Pan Y, Jiang Y, Zhang Z, Yang B. An update of aurones: food resource, health benefit, biosynthesis and application. Crit Rev Food Sci Nutr 2024; 64:12083-12102. [PMID: 37599623 DOI: 10.1080/10408398.2023.2248244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Aurones are a subclass of active flavonoids characterized with a scaffold of 2-benzylidene-3(2H)-benzofuranone. This type of chemicals are widely distributed in fruit, vegetable and flower, and contribute to human health. In this review, we summarize the natural aurones isolated from dietary plants. Their positive effects on immunomodulation, antioxidation, cancer prevention as well as maintaining the health status of cardiovascular, nervous system and liver organs are highlighted. The biosynthesis strategies of plant-derived aurones are elaborated to provide solutions for their limited natural abundance. The potential application of natural aurones in food coloration are also discussed. This paper combines the up-to-date information and gives a full image of dietary aurones.
Collapse
Affiliation(s)
- Jiali Yang
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Haikou, China
| | - Zhengjiao Gao
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Haikou, China
| | - Zhiqian Yu
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Haikou, China
| | - Yu Hou
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Haikou, China
| | - Dingtao Tang
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Haikou, China
| | - Huiling Yan
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Fuwang Wu
- College of Food Science and Engineering, Foshan University, Foshan, China
| | - Sui Kiat Chang
- Department of Allied Health Sciences, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar, Malaysia
| | - Yonggui Pan
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Haikou, China
| | - Yueming Jiang
- State Key Laboratory of Plant Diversity and Specialty Crops, Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Zhengke Zhang
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Haikou, China
| | - Bao Yang
- State Key Laboratory of Plant Diversity and Specialty Crops, Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
3
|
Pretzler M, Rompel A. Mushroom Tyrosinase: Six Isoenzymes Catalyzing Distinct Reactions. Chembiochem 2024; 25:e202400050. [PMID: 38386893 DOI: 10.1002/cbic.202400050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 02/24/2024]
Abstract
"Mushroom tyrosinase" from the common button mushroom is the most frequently used source of tyrosinase activity, both for basic and applied research. Here, the complete tyrosinase family from Agaricus bisporus var. bisporus (abPPO1-6) was cloned from mRNA and expressed heterologously using a single protocol. All six isoenzymes accept a wide range of phenolic and catecholic substrates, but display pronounced differences in their specificity and enzymatic reaction rate. AbPPO3 ignores γ-l-glutaminyl-4-hydroxybenzene (GHB), a natural phenol present in mM concentrations in A. bisporus, while AbPPO4 processes 100 μM GHB at 4-times the rate of the catechol l-DOPA. All six AbPPOs are biochemically distinct enzymes fit for different roles in the fungal life cycle, which challenges the traditional concept of isoenzymes as catalyzing the same physiological reaction and varying only in secondary properties. Transferring this approach to other enzymes and organisms will greatly stimulate both the study of the in vivo function(s) of enzymes and the application of these highly efficient catalysts.
Collapse
Affiliation(s)
- Matthias Pretzler
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Josef-Holaubek-Platz 2, 1090, Wien, Austria
| | - Annette Rompel
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Josef-Holaubek-Platz 2, 1090, Wien, Austria
| |
Collapse
|
4
|
Maruyama K, Yamada H, Doi M, Ohno S. Identification of two 6'-deoxychalcone 4'-glucosyltransferase genes in dahlia (Dahlia variabilis). PLANTA 2024; 259:114. [PMID: 38587670 DOI: 10.1007/s00425-024-04395-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 03/19/2024] [Indexed: 04/09/2024]
Abstract
MAIN CONCLUSION Two glycosyltransferase genes belonging to UGT88 family were identified to have 6'-deoxychalcone 4'-glucosyltransferase activity in dahlia. 6'-Deoxychalcones (isoliquiritigenin and butein) are important pigments for yellow and orange to red flower color. 6'-Deoxychalcones are glucosylated at the 4'-position in vivo, but the genes encoding 6'-deoxychalcone 4'-glucosyltransferase have not yet been identified. In our previous study, it was indicated that snapdragon (Antirrhinum majus) chalcone 4'-O-glucosyltransferase (Am4'CGT) has isoliquiritigenin 4'-glucosylation activity. Therefore, to identify genes encoding 6'-deoxychalcone 4'-glucosyltransferase in dahlia (Dahlia variabilis), genes expressed in ray florets that shared high homology with Am4'CGT were explored. As a result, c34671_g1_i1 and c35662_g1_i1 were selected as candidate genes for 6'-deoxychalcone 4'-glucosyltransferases in dahlia. We conducted transient co-overexpression of three genes (c34671_g1_i1 or c35662_g1_i1, dahlia aldo-keto reductase1 (DvAKR1) or soybean (Glycine max) chalcone reductase5 (GmCHR5), and chili pepper (Capsicum annuum) MYB transcription factor (CaMYBA)) in Nicotiana benthamiana by agroinfiltration. Transient overexpression of c34671_g1_i1, DvAKR1, and CaMYBA resulted in increase in the accumulation of isoliquiritigenin 4'-glucosides, isoliquiritigenin 4'-O-glucoside, and isoliquiritigenin 4'-O-[6-O-(malonyl)-glucoside]. However, transient overexpression of c35662_g1_i1, DvAKR1, and CaMYBA did not increase accumulation of isoliquiritigenin 4'-glucosides. Using GmCHR5 instead of DvAKR1 showed similar results suggesting that c34671_g1_i1 has isoliquiritigenin 4'-glucosyltransferase activity. In addition, we conducted co-overexpression of four genes (c34671_g1_i1, c35662_g1_i1 or Am4'CGT, DvAKR1 or GmCHR5, CaMYBA, and chalcone 3-hydroxylase from dahlia). Accumulation of butein 4'-O-glucoside and butein 4'-O-[6-O-(malonyl)-glucoside] was detected for c35662_g1_i1, suggesting that c35662_g1_i1 has butein 4'-glucosyltransferase activity. Recombinant enzyme analysis also supported butein 4'-glucosyltransferases activity of c35662_g1_i1. Therefore, our results suggested that both c34671_g1_i1 and c35662_g1_i1 are 6'-deoxychalcone 4'-glucosyltransferases but with different substrate preference.
Collapse
Affiliation(s)
- Kei Maruyama
- Graduate School of Agriculture, Kyoto University, Kyoto, Kyoto, 606-8502, Japan
| | - Haruka Yamada
- Graduate School of Agriculture, Kyoto University, Kyoto, Kyoto, 606-8502, Japan
| | - Motoaki Doi
- Graduate School of Agriculture, Kyoto University, Kyoto, Kyoto, 606-8502, Japan
| | - Sho Ohno
- Graduate School of Agriculture, Kyoto University, Kyoto, Kyoto, 606-8502, Japan.
| |
Collapse
|
5
|
Derardja AE, Pretzler M, Barkat M, Rompel A. Extraction, Purification, and Characterization of Olive ( Olea europaea L., cv. Chemlal) Polyphenol Oxidase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3099-3112. [PMID: 38291573 PMCID: PMC10870767 DOI: 10.1021/acs.jafc.3c07776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/10/2023] [Accepted: 12/21/2023] [Indexed: 02/01/2024]
Abstract
Among fruits susceptible to enzymatic browning, olive polyphenol oxidase (OePPO) stood out as being unisolated from a natural source until this study, wherein we successfully purified and characterized the enzyme. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of heated and nonheated OePPO revealed distinct molecular weights of 35 and 54 kDa, respectively, indicative of its oligomeric nature comprising active and C-terminal subunits. OePPO displayed latency, fully activating with 5 mM SDS under optimal conditions of pH 7.5 and 15 °C. The enzyme demonstrated monophenolase activity and showcased the highest efficiency toward hydroxytyrosol. Despite its low optimal temperature, OePPO exhibited high thermal resistance, maintaining stability up to 90 °C. However, beyond this threshold, the oligomeric enzyme disassociated, yielding a denatured main subunit and C-terminal fragments. Six OePPO genes were found in the fruits. Tryptic digestion identified the enzyme as mature OePPO1 (INSDC OY733096), while mass spectrometry detected the active form mass alongside several C-terminal fragments, revealing potential cleavage sites (Gly407, Tyr408).
Collapse
Affiliation(s)
- Ala eddine Derardja
- Universität
Wien, Fakultät für Chemie,
Institut für Biophysikalische Chemie, Josef-Holaubek-Platz 2, 1090 Wien, Austria
- Laboratoire
Bioqual, INATAA, Université Frères
Mentouri, Constantine
1, Route de Ain El-Bey, 25000 Constantine, Algeria
| | - Matthias Pretzler
- Universität
Wien, Fakultät für Chemie,
Institut für Biophysikalische Chemie, Josef-Holaubek-Platz 2, 1090 Wien, Austria
| | - Malika Barkat
- Laboratoire
Bioqual, INATAA, Université Frères
Mentouri, Constantine
1, Route de Ain El-Bey, 25000 Constantine, Algeria
| | - Annette Rompel
- Universität
Wien, Fakultät für Chemie,
Institut für Biophysikalische Chemie, Josef-Holaubek-Platz 2, 1090 Wien, Austria
| |
Collapse
|
6
|
Pham TN, Cazier EA, Gormally E, Lawrence P. Valorization of biomass polyphenols as potential tyrosinase inhibitors. Drug Discov Today 2024; 29:103843. [PMID: 38000718 DOI: 10.1016/j.drudis.2023.103843] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/08/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023]
Abstract
Tyrosinases (TYRs; EC 1.14.18.1) catalyze two sequential oxidative reactions of the melanin biosynthesis pathway and play an important role in mammalian pigmentation and enzymatic browning of fruit and vegetables. Inhibition of TYR activity is therefore an attractive target for new drugs and/or food ingredients. In addition, increasing evidence suggests that TYR regulation could be a novel target for treatments of cancer and Parkinson's disease. Biomasses, notably industrial byproducts and biowaste, are good sustainable sources of phytochemicals that may be valorized into bioactive compounds including TYR inhibitors. This review presents potential applications of biomass-derived polyphenols targeting TYR inhibition. Insights into structure-activity relationships of several polyphenols and their glycosides are highlighted. Finally, some remarks and perspectives on research into new TYR inhibitors from biomass waste are provided.
Collapse
Affiliation(s)
- Thanh-Nhat Pham
- UCLy (Lyon Catholic University), ESTBB, Lyon, France; UCLy (Lyon Catholic University), UR CONFLUENCE: Sciences et Humanités (EA 1598), Lyon, France.
| | - Elisabeth A Cazier
- UCLy (Lyon Catholic University), ESTBB, Lyon, France; UCLy (Lyon Catholic University), UR CONFLUENCE: Sciences et Humanités (EA 1598), Lyon, France; Nantes Université, Oniris, GEPEA, UMR 6144, F-44600 Saint-Nazaire, France
| | - Emmanuelle Gormally
- UCLy (Lyon Catholic University), ESTBB, Lyon, France; UCLy (Lyon Catholic University), UR CONFLUENCE: Sciences et Humanités (EA 1598), Lyon, France
| | - Philip Lawrence
- UCLy (Lyon Catholic University), ESTBB, Lyon, France; UCLy (Lyon Catholic University), UR CONFLUENCE: Sciences et Humanités (EA 1598), Lyon, France
| |
Collapse
|
7
|
Xu X, Geng F, Sun W. Quantitative proteomics and metabolomics analysis reveals the response mechanism of alfalfa (Medicago sativa L.) to o-coumaric acid stress. PLoS One 2023; 18:e0295592. [PMID: 38064475 PMCID: PMC10707586 DOI: 10.1371/journal.pone.0295592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
O-coumaric acid (OCA), as a significant phenolic allelochemical found in hairy vetch (Vicia villosa Roth.), that can hinder the growth of alfalfa (Medicago sativa L.), particularly the growth of alfalfa roots. Nonetheless, the mechanism by which OCA inhibits alfalfa root growth remains unclear. In this study, a liquid chromatography tandem mass spectrometry (LC-MS/MS)-based quantitative proteomics analysis was carried out to identify differentially accumulated proteins (DAPs) under OCA treatment. The findings indicated that 680 proteins were DAPs in comparison to the control group. Of those, 333 proteins were up-regulated while 347 proteins were down-regulated. The enrichment analysis unveiled the significance of these DAPs in multiple biological and molecular processes, particularly in ribosome, phenylpropanoid biosynthesis, glutathione metabolism, glycolysis/gluconeogenesis and flavonoid biosynthesis. The majority of DAPs reside in the cytoplasm (36.62%), nucleus (20.59%) and extracellular space (14.12%). In addition, phenylalanine deaminase was identified as a potential chemical-induced regulation target associated with plant lignin formation. DAPs were mainly enriched in flavonoid biosynthesis pathways, which were related to plant root size. Using the UPLC-ESI-MS/MS technique and database, a total of 87 flavonoid metabolites were discovered. The metabolites were predominantly enriched for biosynthesizing naringenin chalcone, which was linked to plant lignin formation, aligning with the enrichment outcomes of DAPs. Consequently, it was deduced that OCA impacted the structure of cell walls by mediating the synthesis of lignin in alfalfa roots, subsequently inducing wilt. Furthermore, a range of proteins have been identified as potential candidates for the breeding of alfalfa strains with enhanced stress tolerance.
Collapse
Affiliation(s)
- Xiaoyang Xu
- School of Economics and Management, Shandong Agricultural University, Shandong, China
| | - Feilong Geng
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Weihong Sun
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
8
|
Tilley A, McHenry MP, McHenry JA, Solah V, Bayliss K. Enzymatic browning: The role of substrates in polyphenol oxidase mediated browning. Curr Res Food Sci 2023; 7:100623. [PMID: 37954915 PMCID: PMC10637886 DOI: 10.1016/j.crfs.2023.100623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 10/04/2023] [Accepted: 10/18/2023] [Indexed: 11/14/2023] Open
Abstract
Enzymatic browning is a biological process that can have significant consequences for fresh produce, such as quality reduction in fruit and vegetables. It is primarily initiated by polyphenol oxidase (PPO) (EC 1.14.18.1 and EC 1.10.3.1) which catalyses the oxidation of phenolic compounds. It is thought that subsequent non-enzymatic reactions result in these compounds polymerising into dark pigments called melanins. Most work to date has investigated the kinetics of PPO with anti-browning techniques focussed on inhibition of the enzyme. However, there is substantially less knowledge on how the subsequent non-enzymatic reactions contribute to enzymatic browning. This review considers the current knowledge and recent advances in non-enzymatic reactions occurring after phenolic oxidation, in particular the role of non-PPO substrates. Enzymatic browning reaction models are compared, and a generalised redox cycling mechanism is proposed. The review identifies future areas for mechanistic research which may inform the development of new anti-browning processes.
Collapse
Affiliation(s)
- Andrew Tilley
- School of Medical, Molecular & Forensic Sciences, College of Environmental & Life Sciences, Murdoch, 6150, Western Australia, Australia
- Food Futures Institute, Murdoch University, 90 South Street, Murdoch, 6150, Western Australia, Australia
| | - Mark P. McHenry
- Harry Butler Institute, Murdoch University, 90 South Street, Murdoch, 6150, Western Australia, Australia
- Mt Lindesay, 56 McHenry Lane, Scotsdale, 6333, Western Australia, Australia
| | | | - Vicky Solah
- School of Medical, Molecular & Forensic Sciences, College of Environmental & Life Sciences, Murdoch, 6150, Western Australia, Australia
- Food Futures Institute, Murdoch University, 90 South Street, Murdoch, 6150, Western Australia, Australia
| | - Kirsty Bayliss
- Food Futures Institute, Murdoch University, 90 South Street, Murdoch, 6150, Western Australia, Australia
- Harry Butler Institute, Murdoch University, 90 South Street, Murdoch, 6150, Western Australia, Australia
| |
Collapse
|
9
|
Fekry M, Dave KK, Badgujar D, Hamnevik E, Aurelius O, Dobritzsch D, Danielson UH. The Crystal Structure of Tyrosinase from Verrucomicrobium spinosum Reveals It to Be an Atypical Bacterial Tyrosinase. Biomolecules 2023; 13:1360. [PMID: 37759761 PMCID: PMC10526336 DOI: 10.3390/biom13091360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Tyrosinases belong to the type-III copper enzyme family, which is involved in melanin production in a wide range of organisms. Despite similar overall characteristics and functions, their structures, activities, substrate specificities and regulation vary. The tyrosinase from the bacterium Verrucomicrobium spinosum (vsTyr) is produced as a pre-pro-enzyme in which a C-terminal extension serves as an inactivation domain. It does not require a caddie protein for copper ion incorporation, which makes it similar to eukaryotic tyrosinases. To gain an understanding of the catalytic machinery and regulation of vsTyr activity, we determined the structure of the catalytically active "core domain" of vsTyr by X-ray crystallography. The analysis showed that vsTyr is an atypical bacterial tyrosinase not only because it is independent of a caddie protein but also because it shows the highest structural (and sequence) similarity to plant-derived members of the type-III copper enzyme family and is more closely related to fungal tyrosinases regarding active site features. By modelling the structure of the pre-pro-enzyme using AlphaFold, we observed that Phe453, located in the C-terminal extension, is appropriately positioned to function as a "gatekeeper" residue. Our findings raise questions concerning the evolutionary origin of vsTyr.
Collapse
Affiliation(s)
- Mostafa Fekry
- Department of Chemistry—BMC, Uppsala University, SE 751 23 Uppsala, Sweden; (M.F.); (K.K.D.); (D.B.); (E.H.); (D.D.)
- Biophysics Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Khyati K. Dave
- Department of Chemistry—BMC, Uppsala University, SE 751 23 Uppsala, Sweden; (M.F.); (K.K.D.); (D.B.); (E.H.); (D.D.)
| | - Dilip Badgujar
- Department of Chemistry—BMC, Uppsala University, SE 751 23 Uppsala, Sweden; (M.F.); (K.K.D.); (D.B.); (E.H.); (D.D.)
| | - Emil Hamnevik
- Department of Chemistry—BMC, Uppsala University, SE 751 23 Uppsala, Sweden; (M.F.); (K.K.D.); (D.B.); (E.H.); (D.D.)
| | | | - Doreen Dobritzsch
- Department of Chemistry—BMC, Uppsala University, SE 751 23 Uppsala, Sweden; (M.F.); (K.K.D.); (D.B.); (E.H.); (D.D.)
| | - U. Helena Danielson
- Department of Chemistry—BMC, Uppsala University, SE 751 23 Uppsala, Sweden; (M.F.); (K.K.D.); (D.B.); (E.H.); (D.D.)
- Science for Life Laboratory, Drug Discovery & Development Platform, Uppsala University, SE 751 23 Uppsala, Sweden
| |
Collapse
|
10
|
Cherubino Ribeiro TH, de Oliveira RR, das Neves TT, Santiago WD, Mansur BL, Saczk AA, Vilela de Resende ML, Chalfun-Junior A. Metabolic Pathway Reconstruction Indicates the Presence of Important Medicinal Compounds in Coffea Such as L-DOPA. Int J Mol Sci 2023; 24:12466. [PMID: 37569839 PMCID: PMC10419165 DOI: 10.3390/ijms241512466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/21/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
The use of transcriptomic data to make inferences about plant metabolomes is a useful tool to help the discovery of important compounds in the available biodiversity. To unveil previously undiscovered metabolites of Coffea, of phytotherapeutic and economic value, we employed 24 RNAseq libraries. These libraries were sequenced from leaves exposed to a diverse range of environmental conditions. Subsequently, the data were meticulously processed to create models of putative metabolic networks, which shed light on the production of potential natural compounds of significant interest. Then, we selected one of the predicted compounds, the L-3,4-dihydroxyphenylalanine (L-DOPA), to be analyzed by LC-MS/MS using three biological replicates of flowers, leaves, and fruits from Coffea arabica and Coffea canephora. We were able to identify metabolic pathways responsible for producing several compounds of economic importance. One of the identified pathways involved in isoquinoline alkaloid biosynthesis was found to be active and producing L-DOPA, which is a common product of POLYPHENOL OXIDASES (PPOs, EC 1.14.18.1 and EC 1.10.3.1). We show that coffee plants are a natural source of L-DOPA, a widely used medicine for treatment of the human neurodegenerative condition called Parkinson's disease. In addition, dozens of other compounds with medicinal significance were predicted as potential natural coffee products. By further refining analytical chemistry techniques, it will be possible to enhance the characterization of coffee metabolites, enabling a deeper understanding of their properties and potential applications in medicine.
Collapse
Affiliation(s)
- Thales Henrique Cherubino Ribeiro
- Laboratory of Plant Molecular Physiology, Plant Physiology Sector, Department of Biology, Federal University of Lavras (UFLA), Lavras 37200-000, Brazil; (T.H.C.R.); (R.R.d.O.)
| | - Raphael Ricon de Oliveira
- Laboratory of Plant Molecular Physiology, Plant Physiology Sector, Department of Biology, Federal University of Lavras (UFLA), Lavras 37200-000, Brazil; (T.H.C.R.); (R.R.d.O.)
| | - Taís Teixeira das Neves
- Plant Physiology Sector, Department of Biology, Federal University of Lavras (UFLA), Lavras 37200-000, Brazil;
| | - Wilder Douglas Santiago
- National Institute of Coffee Science and Technology (INCT-CAFÉ), Federal University of Lavras (UFLA), Lavras 37200-000, Brazil;
| | - Bethania Leite Mansur
- Multiuser Instrumental Analysis Laboratory (LabMAI), Federal University of Lavras (UFLA), Lavras 37200-000, Brazil;
| | - Adelir Aparecida Saczk
- Analytical and Electroanalytical Laboratory (LAE), Federal University of Lavras (UFLA), Lavras 37200-000, Brazil;
| | | | - Antonio Chalfun-Junior
- Laboratory of Plant Molecular Physiology, Plant Physiology Sector, Department of Biology, Federal University of Lavras (UFLA), Lavras 37200-000, Brazil; (T.H.C.R.); (R.R.d.O.)
| |
Collapse
|
11
|
Liao J, Wei X, Tao K, Deng G, Shu J, Qiao Q, Chen G, Wei Z, Fan M, Saud S, Fahad S, Chen S. Phenoloxidases: catechol oxidase - the temporary employer and laccase - the rising star of vascular plants. HORTICULTURE RESEARCH 2023; 10:uhad102. [PMID: 37786731 PMCID: PMC10541563 DOI: 10.1093/hr/uhad102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 05/16/2023] [Accepted: 05/05/2023] [Indexed: 10/04/2023]
Abstract
Phenolics are vital for the adaptation of plants to terrestrial habitats and for species diversity. Phenoloxidases (catechol oxidases, COs, and laccases, LACs) are responsible for the oxidation and polymerization of phenolics. However, their origin, evolution, and differential roles during plant development and land colonization are unclear. We performed the phylogeny, domain, amino acids, compositional biases, and intron analyses to clarify the origin and evolution of COs and LACs, and analysed the structure, selective pressure, and chloroplast targeting to understand the species-dependent distribution of COs. We found that Streptophyta COs were not homologous to the Chlorophyta tyrosinases (TYRs), and might have been acquired by horizontal gene transfer from bacteria. COs expanded in bryophytes. Structural-functionality and selective pressure were partially responsible for the species-dependent retention of COs in embryophytes. LACs emerged in Zygnemaphyceae, having evolved from ascorbate oxidases (AAOs), and prevailed in the vascular plants and strongly expanded in seed plants. COs and LACs coevolved with the phenolic metabolism pathway genes. These results suggested that TYRs and AAOs were the first-stage phenoloxidases in Chlorophyta. COs might be the second key for the early land colonization. LACs were the third one (dominating in the vascular plants) and might be advantageous for diversified phenol substrates and the erect growth of plants. This work provided new insights into how phenoloxidases evolved and were devoted to plant evolution.
Collapse
Affiliation(s)
- Jugou Liao
- School of Ecology and Environmental Sciences, Yunnan University; Biocontrol Engineering Research Center of Crop Diseases & Pests, Yunnan Province, Kunming 650091, China
| | - Xuemei Wei
- School of Engineering, Dali University, Dali, Yunnan Province, 671003, China
| | - Keliang Tao
- School of Life Science, Yunnan University, Yunnan Province, Kunming 650091, China
| | - Gang Deng
- College of Horticulture and Landscape, Yunnan Agricultural University, Yunnan Province, Kunming 650091, China
| | - Jie Shu
- School of Life Science, Yunnan University, Yunnan Province, Kunming 650091, China
| | - Qin Qiao
- College of Horticulture and Landscape, Yunnan Agricultural University, Yunnan Province, Kunming 650091, China
| | - Gonglin Chen
- School of Ecology and Environmental Sciences, Yunnan University; Biocontrol Engineering Research Center of Crop Diseases & Pests, Yunnan Province, Kunming 650091, China
| | - Zhuo Wei
- School of Ecology and Environmental Sciences, Yunnan University; Biocontrol Engineering Research Center of Crop Diseases & Pests, Yunnan Province, Kunming 650091, China
| | - Meihui Fan
- School of Ecology and Environmental Sciences, Yunnan University; Biocontrol Engineering Research Center of Crop Diseases & Pests, Yunnan Province, Kunming 650091, China
| | - Shah Saud
- College of Life Science, Linyi University, Linyi, Shandong 276000, China
| | - Shah Fahad
- Department of Agronomy, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa 23200, Pakistan
| | - Suiyun Chen
- School of Ecology and Environmental Sciences, Yunnan University; Biocontrol Engineering Research Center of Crop Diseases & Pests, Yunnan Province, Kunming 650091, China
| |
Collapse
|
12
|
Furudate H, Manabe M, Oshikiri H, Matsushita A, Watanabe B, Waki T, Nakayama T, Kubo H, Takanashi K. A Polyphenol Oxidase Catalyzes Aurone Synthesis in Marchantia polymorpha. PLANT & CELL PHYSIOLOGY 2023; 64:637-645. [PMID: 36947436 DOI: 10.1093/pcp/pcad024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 03/21/2023] [Indexed: 06/16/2023]
Abstract
Aurones constitute one of the major classes of flavonoids, with a characteristic furanone structure that acts as the C-ring of flavonoids. Members of various enzyme families are involved in aurone biosynthesis in different higher plants, suggesting that during evolution plants acquired the ability to biosynthesize aurones independently and convergently. Bryophytes also produce aurones, but the biosynthetic pathways and enzymes involved have not been determined. The present study describes the identification and characterization of a polyphenol oxidase (PPO) that acts as an aureusidin synthase (MpAS1) in the model liverwort, Marchantia polymorpha. Crude enzyme assays using an M. polymorpha line overexpressing MpMYB14 with high accumulation of aureusidin showed that aureusidin was biosynthesized from naringenin chalcone and converted to riccionidin A. This activity was inhibited by N-phenylthiourea, an inhibitor specific to enzymes of the PPO family. Of the six PPOs highly induced in the line overexpressing MpMyb14, one, MpAS1, was found to biosynthesize aureusidin from naringenin chalcone when expressed in Saccharomyces cerevisiae. MpAS1 also recognized eriodictyol chalcone, isoliquiritigenin and butein, showing the highest activity for eriodictyol chalcone. Members of the PPO family in M. polymorpha evolved independently from PPOs in higher plants, indicating that aureusidin synthases evolved in parallel in land plants.
Collapse
Affiliation(s)
- Hiraku Furudate
- Department of Science, Graduate School of Science and Technology, Shinshu University, Asahi 3-1-1, Matsumoto, Nagano, 390-8621 Japan
| | - Misaki Manabe
- Department of Science, Graduate School of Science and Technology, Shinshu University, Asahi 3-1-1, Matsumoto, Nagano, 390-8621 Japan
| | - Haruka Oshikiri
- Department of Science, Graduate School of Science and Technology, Shinshu University, Asahi 3-1-1, Matsumoto, Nagano, 390-8621 Japan
| | - Ayako Matsushita
- Department of Biology, Faculty of Science, Shinshu University, Asahi 3-1-1, Matsumoto, Nagano, 390-8621 Japan
| | - Bunta Watanabe
- Chemistry Laboratory, The Jikei University School of Medicine, Kokuryo 8-3-1, Chofu, Tokyo, 182-8570 Japan
| | - Toshiyuki Waki
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aoba 6-6-11, Aramaki, Aoba, Sendai, Miyagi, 980-8579 Japan
| | - Toru Nakayama
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aoba 6-6-11, Aramaki, Aoba, Sendai, Miyagi, 980-8579 Japan
| | - Hiroyoshi Kubo
- Department of Science, Graduate School of Science and Technology, Shinshu University, Asahi 3-1-1, Matsumoto, Nagano, 390-8621 Japan
- Department of Biology, Faculty of Science, Shinshu University, Asahi 3-1-1, Matsumoto, Nagano, 390-8621 Japan
| | - Kojiro Takanashi
- Department of Science, Graduate School of Science and Technology, Shinshu University, Asahi 3-1-1, Matsumoto, Nagano, 390-8621 Japan
- Department of Biology, Faculty of Science, Shinshu University, Asahi 3-1-1, Matsumoto, Nagano, 390-8621 Japan
| |
Collapse
|
13
|
Ohno S, Yamada H, Maruyama K, Deguchi A, Kato Y, Yokota M, Tatsuzawa F, Hosokawa M, Doi M. A novel aldo-keto reductase gene is involved in 6'-deoxychalcone biosynthesis in dahlia (Dahlia variabilis). PLANTA 2022; 256:47. [PMID: 35871668 DOI: 10.1007/s00425-022-03958-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
A novel gene belonging to the aldo-keto reductase 13 family is involved in isoliquiritigenin biosynthesis in dahlia. The yellow pigments of dahlia flowers are derived from 6'-deoxychalcones, which are synthesized via a two-step process, involving the conversion of 3-malonyl-CoA and 4-coumaloyl-CoA into isoliquiritigenin in the first step, and the subsequent generation of butein from isoliquiritigenin. The first step reaction is catalyzed by chalcone synthase (CHS) and aldo-keto reductase (AKR). AKR has been implicated in the isoflavone biosynthesis in legumes, however, isolation of butein biosynthesis related AKR members are yet to be reported. A comparative RNA-seq analysis between two dahlia cultivars, 'Shukuhai' and its butein-deficient lateral mutant 'Rinka', was used in this study to identify a novel AKR gene involved in 6'-deoxychalcone biosynthesis. DvAKR1 encoded a AKR 13 sub-family protein with significant differential expression levels, and was phylogenetically distinct from the chalcone reductases, which belongs to the AKR 4A sub-family in legumes. DNA sequence variation and expression profiles of DvAKR1 gene were correlated with 6'-deoxychalcone accumulation in the tested dahlia cultivars. A single over-expression analysis of DvAKR1 was not sufficient to initiate the accumulation of isoliquiritigenin in tobacco, in contrast, its co-overexpression with a chalcone 4'-O-glucosyltransferase (Am4'CGT) from Antirrhinum majus and a MYB transcription factor, CaMYBA from Capsicum annuum successfully induced isoliquiritigenin accumulation. In addition, DvAKR1 homologous gene expression was detected in Coreopsideae species accumulating 6'-deoxychalcone, but not in Asteraceae species lacking 6'-deoxychalcone production. These results not only demonstrate the involvement of DvAKR1 in the biosynthesis of 6'-deoxychalcone in dahlia, but also show that 6'-deoxychalcone occurrence in Coreopsideae species developed evolutionarily independent from legume species.
Collapse
Affiliation(s)
- Sho Ohno
- Graduate School of Agriculture, Kyoto University, Kyoto, Kyoto, 606-8502, Japan.
| | - Haruka Yamada
- Graduate School of Agriculture, Kyoto University, Kyoto, Kyoto, 606-8502, Japan
| | - Kei Maruyama
- Graduate School of Agriculture, Kyoto University, Kyoto, Kyoto, 606-8502, Japan
| | - Ayumi Deguchi
- Graduate School of Agriculture, Kyoto University, Kyoto, Kyoto, 606-8502, Japan
- Chiba University, Chiba, 271-8510, Japan
| | - Yasunari Kato
- Graduate School of Agriculture, Kyoto University, Kyoto, Kyoto, 606-8502, Japan
| | - Mizuki Yokota
- Graduate School of Agriculture, Kyoto University, Kyoto, Kyoto, 606-8502, Japan
| | - Fumi Tatsuzawa
- Faculty of Agriculture, Iwate University, Iwate, Morioka, 020-8550, Japan
| | - Munetaka Hosokawa
- Graduate School of Agriculture, Kyoto University, Kyoto, Kyoto, 606-8502, Japan
- Kindai University, Nara, 631-0052, Japan
| | - Motoaki Doi
- Graduate School of Agriculture, Kyoto University, Kyoto, Kyoto, 606-8502, Japan
| |
Collapse
|
14
|
Kornpointner C, Scheibelreiter J, Halbwirth H. Snailase: A Promising Tool for the Enzymatic Hydrolysis of Flavonoid Glycosides From Plant Extracts. FRONTIERS IN PLANT SCIENCE 2022; 13:889184. [PMID: 35755698 PMCID: PMC9218754 DOI: 10.3389/fpls.2022.889184] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/13/2022] [Indexed: 05/11/2023]
Abstract
Plants typically contain a broad spectrum of flavonoids in varying concentrations. As a rule, several flavonoid classes occur in parallel, and, even for a single flavonoid, divergent glycosylation patterns are frequently observed, many of which are not commercially available. This can be challenging in studies in which the distribution between flavonoid classes, or features that are not affected by glycosylation patterns, are adressed. In addition, hydrolysis simplifies the quantification process by reducing peak interferences and improving the peak intensity due to the accumulation of the respective aglycone. Effective removal of glycose moieties can also be relevant for technological applications of flavonoid aglycones. Herein, we present a fast and reliable method for the enzymatic hydrolysis glycosides from plant extracts using the commercial enzyme mix snailase, which provided the highest aglycone yields across all investigated flavonoids (aurones: leptosidin, maritimetin, sulfuretin; chalcones: butein, lanceoletin, okanin, phloretin; dihydroflavonols: dihydrokaempferol; flavanones: eriodictyol, hesperetin; flavones: acacetin, apigenin, diosmetin, luteolin; flavonols: isorhamnetin, kaempferol, myricetin, quercetin; isoflavones: biochanin A, formononetin, genistein) from methanolic extracts of nine plants (Bidens ferulifolia, Coreopsis grandiflora, Fagus sylvatica, Malus × domestica, Mentha × piperita, Petunia × hybrida, Quercus robur, Robinia pseudoacacia, and Trifolium pratense) in comparison to four other enzymes (cellobiase, cellulase, β-glucosidase, and pectinase), as well as to acidic hydrolysis by hydrochloric acid.
Collapse
Affiliation(s)
| | | | - Heidi Halbwirth
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Vienna, Austria
| |
Collapse
|
15
|
Walliser B, Marinovic S, Kornpointner C, Schlosser C, Abouelnasr M, Hutabarat OS, Haselmair-Gosch C, Molitor C, Stich K, Halbwirth H. The (Bio)chemical Base of Flower Colour in Bidens ferulifolia. PLANTS (BASEL, SWITZERLAND) 2022; 11:1289. [PMID: 35631713 PMCID: PMC9145775 DOI: 10.3390/plants11101289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 11/16/2022]
Abstract
Bidens ferulifolia is a yellow flowering plant, originating from Mexico, which is increasingly popular as an ornamental plant. In the past few years, new colour combinations ranging from pure yellow over yellow-red, white-red, pure white and purple have emerged on the market. We analysed 16 Bidens ferulifolia genotypes to provide insight into the (bio)chemical base underlying the colour formation, which involves flavonoids, anthochlors and carotenoids. In all but purple and white genotypes, anthochlors were the prevalent pigments, primarily derivatives of okanin, a 6'-deoxychalcone carrying an unusual 2'3'4'-hydroxylation pattern in ring A. The presence of a cytochrome-P450-dependent monooxygenase introducing the additional hydroxyl group in position 3' of both isoliquiritigenin and butein was demonstrated for the first time. All genotypes accumulate considerable amounts of the flavone luteolin. Red and purple genotypes additionally accumulate cyanidin-type anthocyanins. Acyanic genotypes lack flavanone 3-hydroxylase and/or dihydroflavonol 4-reductase activity, which creates a bottleneck in the anthocyanin pathway. The carotenoid spectrum was analysed in two Bidens genotypes and showed strong variation between the two cultivars. In comparison to anthochlors, carotenoids were present in much lower concentrations. Carotenoid monoesters, as well as diesters, were determined for the first time in B. ferulifolia flower extracts.
Collapse
Affiliation(s)
- Benjamin Walliser
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, 1060 Vienna, Austria; (B.W.); (S.M.); (C.K.); (C.S.); (M.A.); (O.S.H.); (C.H.-G.); (C.M.); (K.S.)
| | - Silvija Marinovic
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, 1060 Vienna, Austria; (B.W.); (S.M.); (C.K.); (C.S.); (M.A.); (O.S.H.); (C.H.-G.); (C.M.); (K.S.)
| | - Christoph Kornpointner
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, 1060 Vienna, Austria; (B.W.); (S.M.); (C.K.); (C.S.); (M.A.); (O.S.H.); (C.H.-G.); (C.M.); (K.S.)
| | - Christopher Schlosser
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, 1060 Vienna, Austria; (B.W.); (S.M.); (C.K.); (C.S.); (M.A.); (O.S.H.); (C.H.-G.); (C.M.); (K.S.)
| | - Mustafa Abouelnasr
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, 1060 Vienna, Austria; (B.W.); (S.M.); (C.K.); (C.S.); (M.A.); (O.S.H.); (C.H.-G.); (C.M.); (K.S.)
| | - Olly Sanny Hutabarat
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, 1060 Vienna, Austria; (B.W.); (S.M.); (C.K.); (C.S.); (M.A.); (O.S.H.); (C.H.-G.); (C.M.); (K.S.)
- Department of Agricultural Technology, Hasanuddin University, Makassar 90245, Indonesia
| | - Christian Haselmair-Gosch
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, 1060 Vienna, Austria; (B.W.); (S.M.); (C.K.); (C.S.); (M.A.); (O.S.H.); (C.H.-G.); (C.M.); (K.S.)
| | - Christian Molitor
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, 1060 Vienna, Austria; (B.W.); (S.M.); (C.K.); (C.S.); (M.A.); (O.S.H.); (C.H.-G.); (C.M.); (K.S.)
| | - Karl Stich
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, 1060 Vienna, Austria; (B.W.); (S.M.); (C.K.); (C.S.); (M.A.); (O.S.H.); (C.H.-G.); (C.M.); (K.S.)
| | - Heidi Halbwirth
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, 1060 Vienna, Austria; (B.W.); (S.M.); (C.K.); (C.S.); (M.A.); (O.S.H.); (C.H.-G.); (C.M.); (K.S.)
| |
Collapse
|
16
|
Nakayama T. Biochemistry and regulation of aurone biosynthesis. Biosci Biotechnol Biochem 2022; 86:557-573. [PMID: 35259212 DOI: 10.1093/bbb/zbac034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/02/2022] [Indexed: 11/13/2022]
Abstract
Aurones are a group of flavonoids that confer a bright yellow coloration to certain ornamental flowers and are a promising structural target for the development of new therapeutic drugs. Since the first identification of the snapdragon aurone synthase as a polyphenol oxidase (PPO) in 2000, several important advances in the biochemistry and regulation of aurone biosynthesis have been achieved. For example, several other aurone synthases have been identified in distantly related plants, which not only include PPOs but also peroxidases. Elucidation of the subcellular localization of aurone biosynthesis in snapdragon led to the establishment of a method to genetically engineer novel yellow flowers. The crystal structure of an aurone-producing PPO was clarified and provided important insights into the structure-function relationship of aurone-producing PPOs. A locus (SULFUREA) that negatively regulates aurone biosynthesis in snapdragon was identified, illustrating the evolution of flower color pattern through selection on regulatory small RNAs.
Collapse
Affiliation(s)
- Toru Nakayama
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, Japan
| |
Collapse
|
17
|
Han Q, Liu F, Ni Y. Cloning, sequencing and structural analysis of membrane‐bound polyphenol oxidase from Granny Smith apples (
Malus
×
domestica
Borkh). Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Qian‐Yun Han
- College of Food Science and Nutritional Engineering China Agricultural University 17 Qinghua East Road Beijing 100083 China
- National Engineering Research Center for Fruits and Vegetables Processing Beijing 100083 China
- Key Laboratory of Fruits and Vegetables Processing Ministry of Agriculture Beijing 100083 China
| | - Fang Liu
- College of Food Science and Engineering Northwest A & F University Yang Ling Shaanxi 712100 China
| | - Yuan‐Ying Ni
- College of Food Science and Nutritional Engineering China Agricultural University 17 Qinghua East Road Beijing 100083 China
- National Engineering Research Center for Fruits and Vegetables Processing Beijing 100083 China
- Key Laboratory of Fruits and Vegetables Processing Ministry of Agriculture Beijing 100083 China
| |
Collapse
|
18
|
Mydy LS, Chigumba DN, Kersten RD. Plant Copper Metalloenzymes As Prospects for New Metabolism Involving Aromatic Compounds. FRONTIERS IN PLANT SCIENCE 2021; 12:692108. [PMID: 34925392 PMCID: PMC8672867 DOI: 10.3389/fpls.2021.692108] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 10/11/2021] [Indexed: 06/14/2023]
Abstract
Copper is an important transition metal cofactor in plant metabolism, which enables diverse biocatalysis in aerobic environments. Multiple classes of plant metalloenzymes evolved and underwent genetic expansions during the evolution of terrestrial plants and, to date, several representatives of these copper enzyme classes have characterized mechanisms. In this review, we give an updated overview of chemistry, structure, mechanism, function and phylogenetic distribution of plant copper metalloenzymes with an emphasis on biosynthesis of aromatic compounds such as phenylpropanoids (lignin, lignan, flavonoids) and cyclic peptides with macrocyclizations via aromatic amino acids. We also review a recent addition to plant copper enzymology in a copper-dependent peptide cyclase called the BURP domain. Given growing plant genetic resources, a large pool of copper biocatalysts remains to be characterized from plants as plant genomes contain on average more than 70 copper enzyme genes. A major challenge in characterization of copper biocatalysts from plant genomes is the identification of endogenous substrates and catalyzed reactions. We highlight some recent and future trends in filling these knowledge gaps in plant metabolism and the potential for genomic discovery of copper-based enzymology from plants.
Collapse
Affiliation(s)
| | | | - Roland D. Kersten
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
19
|
Huang X, Ou S, Li Q, Luo Y, Lin H, Li J, Zhu M, Wang K. The R2R3 Transcription Factor CsMYB59 Regulates Polyphenol Oxidase Gene CsPPO1 in Tea Plants ( Camellia sinensis). FRONTIERS IN PLANT SCIENCE 2021; 12:739951. [PMID: 34804087 PMCID: PMC8600361 DOI: 10.3389/fpls.2021.739951] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
Polyphenol oxidase (PPO) plays a role in stress response, secondary metabolism, and other physiological processes during plant growth and development, and is also a critical enzyme in black tea production. However, the regulatory mechanisms of PPO genes and their activity in tea plants are still unclear. In this study, we measured PPO activity in two different tea cultivars, Taoyuandaye (TYDY) and Bixiangzao (BXZ), which are commonly used to produce black tea and green tea, respectively. The expression pattern of CsPPO1 was assessed and validated via transcriptomics and quantitative polymerase chain reaction in both tea varieties. In addition, we isolated and identified an R2R3-MYB transcription factor CsMYB59 that may regulate CsPPO1 expression. CsMYB59 was found to be a nuclear protein, and its expression in tea leaves was positively correlated with CsPPO1 expression and PPO activity. Transcriptional activity analysis showed that CsMYB59 was a transcriptional activator, and the dual-luciferase assay indicated that CsMYB59 could activate the expression of CsPPO1 in tobacco leaves. In summary, our study demonstrates that CsMYB59 represents a transcriptional activator in tea plants and may mediate the regulation of PPO activity by activating CsPPO1 expression. These findings provide novel insights into the regulatory mechanism of PPO gene in Camellia sinensis, which might help to breed tea cultivars with high PPO activity.
Collapse
Affiliation(s)
- Xiangxiang Huang
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Co-innovation Center for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
| | - Shuqiong Ou
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Co-innovation Center for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
| | - Qin Li
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Co-innovation Center for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
| | - Yong Luo
- School of Chemistry Biology and Environmental Engineering, Xiangnan University, Chenzhou, China
| | - Haiyan Lin
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Co-innovation Center for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
| | - Juan Li
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Co-innovation Center for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
| | - Mingzhi Zhu
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Co-innovation Center for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
| | - Kunbo Wang
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Co-innovation Center for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
| |
Collapse
|
20
|
Blaschek L, Pesquet E. Phenoloxidases in Plants-How Structural Diversity Enables Functional Specificity. FRONTIERS IN PLANT SCIENCE 2021; 12:754601. [PMID: 34659324 PMCID: PMC8517187 DOI: 10.3389/fpls.2021.754601] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/09/2021] [Indexed: 05/23/2023]
Abstract
The metabolism of polyphenolic polymers is essential to the development and response to environmental changes of organisms from all kingdoms of life, but shows particular diversity in plants. In contrast to other biopolymers, whose polymerisation is catalysed by homologous gene families, polyphenolic metabolism depends on phenoloxidases, a group of heterogeneous oxidases that share little beyond the eponymous common substrate. In this review, we provide an overview of the differences and similarities between phenoloxidases in their protein structure, reaction mechanism, substrate specificity, and functional roles. Using the example of laccases (LACs), we also performed a meta-analysis of enzyme kinetics, a comprehensive phylogenetic analysis and machine-learning based protein structure modelling to link functions, evolution, and structures in this group of phenoloxidases. With these approaches, we generated a framework to explain the reported functional differences between paralogs, while also hinting at the likely diversity of yet undescribed LAC functions. Altogether, this review provides a basis to better understand the functional overlaps and specificities between and within the three major families of phenoloxidases, their evolutionary trajectories, and their importance for plant primary and secondary metabolism.
Collapse
|
21
|
Kampatsikas I, Rompel A. Similar but Still Different: Which Amino Acid Residues Are Responsible for Varying Activities in Type-III Copper Enzymes? Chembiochem 2021; 22:1161-1175. [PMID: 33108057 PMCID: PMC8049008 DOI: 10.1002/cbic.202000647] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/25/2020] [Indexed: 12/23/2022]
Abstract
Type-III copper enzymes like polyphenol oxidases (PPOs) are ubiquitous among organisms and play a significant role in the formation of pigments. PPOs comprise different enzyme groups, including tyrosinases (TYRs) and catechol oxidases (COs). TYRs catalyze the o-hydroxylation of monophenols and the oxidation of o-diphenols to the corresponding o-quinones (EC 1.14.18.1). In contrast, COs only catalyze the oxidation of o-diphenols to the corresponding o-quinones (EC 1.10.3.1). To date (August 2020), 102 PDB entries encompassing 18 different proteins from 16 organisms and several mutants have been reported, identifying key residues for tyrosinase activity. The structural similarity between TYRs and COs, especially within and around the active center, complicates the elucidation of their modes of action on a structural basis. However, mutagenesis studies illuminate residues that influence the two activities and show that crystallography on its own cannot elucidate the enzymatic activity mode. Several amino acid residues around the dicopper active center have been proposed to play an essential role in the two different activities. Herein, we critically review the role of all residues identified so far that putatively affect the two activities of PPOs.
Collapse
Affiliation(s)
- Ioannis Kampatsikas
- Universität WienFakultät für ChemieInstitut für Biophysikalische ChemieAlthanstraße 141090WienAustria
| | - Annette Rompel
- Universität WienFakultät für ChemieInstitut für Biophysikalische ChemieAlthanstraße 141090WienAustria
| |
Collapse
|
22
|
Walliser B, Lucaciu CR, Molitor C, Marinovic S, Nitarska DA, Aktaş D, Rattei T, Kampatsikas I, Stich K, Haselmair-Gosch C, Halbwirth H. Dahlia variabilis cultivar 'Seattle' as a model plant for anthochlor biosynthesis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 159:193-201. [PMID: 33385702 DOI: 10.1016/j.plaphy.2020.12.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
We investigated the bi-colored dahlia cultivar 'Seattle', which exhibits bright yellow petals with white tips, for its potential use as a model system for studies of the anthochlor biosynthesis. The yellow base contained high amounts of the 6'-deoxychalcones and the structurally related 4-deoxyaurones, as well as flavones. In contrast, only traces of anthochlors and flavones were detected in the white tips. No anthocyanins, flavonols, flavanones or dihydroflavonols were found in the petals. Gene expression studies indicated that the absence of anthocyanins in the petals is caused by a lack of flavanone 3-hydroxylase (FHT) expression, which is accompanied by a lack of expression of the bHLH transcription factor IVS. Expression of other genes involved in anthocyanidin biosynthesis such as dihydroflavonol 4-reductase (DFR) and anthocyanidin synthase (ANS) was not affected. The yellow and white petal parts showed significant differences in the expression of chalcone synthase 2 (CHS2), which is sufficient to explain the absence of yellow pigments in the white tips. Transcriptomes of both petal parts were de novo assembled and three candidate genes for chalcone reductase (CHR) were identified. None of them showed a significantly higher expression in the yellow base compared to the white tips. In summary, it was shown that the bicolouration is most likely caused by a bottleneck in chalcone formation in the white tip. The relative prevalence of flavones compared to the anthochlors in the white tips could be an indication for the presence of a so far unknown differentially expressed CHR.
Collapse
Affiliation(s)
- Benjamin Walliser
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, 1060, Vienna, Austria
| | - Calin Rares Lucaciu
- Department of Microbiology and Ecosystem Science, University of Vienna, 1090, Vienna, Austria
| | - Christian Molitor
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, 1060, Vienna, Austria
| | - Silvija Marinovic
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, 1060, Vienna, Austria
| | - Daria Agata Nitarska
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, 1060, Vienna, Austria
| | - Didem Aktaş
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, 1060, Vienna, Austria
| | - Thomas Rattei
- Department of Microbiology and Ecosystem Science, University of Vienna, 1090, Vienna, Austria
| | - Ioannis Kampatsikas
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, 1060, Vienna, Austria
| | - Karl Stich
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, 1060, Vienna, Austria
| | - Christian Haselmair-Gosch
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, 1060, Vienna, Austria
| | - Heidi Halbwirth
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, 1060, Vienna, Austria.
| |
Collapse
|
23
|
Wei Y, Yu N, Zhu Y, Hao J, Shi J, Lei Y, Gan Z, Jia G, Ma C, Sun A. Exploring the biochemical properties of three polyphenol oxidases from blueberry (Vaccinium corymbosum L.). Food Chem 2020; 344:128678. [PMID: 33267982 DOI: 10.1016/j.foodchem.2020.128678] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/21/2020] [Accepted: 11/15/2020] [Indexed: 10/23/2022]
Abstract
Purification of blueberry polyphenol oxidase (PPO) has not been substantially progressed for a long time, which leads to little further study. We purified three PPOs from blueberries for the first time by modified Native-Page. The PPO-2 consists of two subunits (68 and 36 kDa), whereas PPO-3 and PPO-4 contain only one subunit (36 kDa). The optimum pH and temperature of PPO-2, PPO-3, and PPO-4 were 5.8-6.2 and 40 °C-45 °C with catechol as a substrate. The optimal substrates for them were all catechol (Km = 14.91, 7.19, and 11.20, respectively). High-pressure processing (HPP) had a limited inhibitory effect on the three PPOs. The activities of PPO-2, PPO-3, and PPO-4 were significantly reduced with increased SDS concentration. The binding of substrate to catalytic cavity is related to the residues His76, His209, His213, Gly228, and Phe230. The carbonyl group of residue Gly228 is one of the key sites for screening substrates.
Collapse
Affiliation(s)
- Yulong Wei
- Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Ning Yu
- Agro-product Safety Research Center, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Yue Zhu
- Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Jingyi Hao
- Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Junyan Shi
- Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Yuqing Lei
- Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Zhilin Gan
- Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Guoliang Jia
- Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Chao Ma
- Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Aidong Sun
- Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
24
|
Kampatsikas I, Pretzler M, Rompel A. Die Erzeugung von Tyrosinaseaktivität in einer Catecholoxidase erlaubt die Identifizierung der für die C‐H‐Aktivierung in Typ‐III‐Kupferenzymen verantwortlichen Aminosäurereste. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ioannis Kampatsikas
- Universität Wien Fakultät für Chemie Institut für Biophysikalische Chemie Althanstraße 14 1090 Wien Österreich
| | - Matthias Pretzler
- Universität Wien Fakultät für Chemie Institut für Biophysikalische Chemie Althanstraße 14 1090 Wien Österreich
| | - Annette Rompel
- Universität Wien Fakultät für Chemie Institut für Biophysikalische Chemie Althanstraße 14 1090 Wien Österreich
| |
Collapse
|
25
|
Kampatsikas I, Pretzler M, Rompel A. Identification of Amino Acid Residues Responsible for C-H Activation in Type-III Copper Enzymes by Generating Tyrosinase Activity in a Catechol Oxidase. Angew Chem Int Ed Engl 2020; 59:20940-20945. [PMID: 32701181 PMCID: PMC7693034 DOI: 10.1002/anie.202008859] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Indexed: 12/12/2022]
Abstract
Tyrosinases (TYRs) catalyze the hydroxylation of phenols and the oxidation of the resulting o-diphenols to o-quinones, while catechol oxidases (COs) exhibit only the latter activity. Aurone synthase (AUS) is not able to react with classical tyrosinase substrates, such as tyramine and l-tyrosine, while it can hydroxylate its natural substrate isoliquiritigenin. The structural difference of TYRs, COs, and AUS at the heart of their divergent catalytic activities is still a puzzle. Therefore, a library of 39 mutants of AUS from Coreopsis grandiflora (CgAUS) was generated and the activity studies showed that the reactivity of the three conserved histidines (HisA2 , HisB1 , and HisB2 ) is tuned by their adjacent residues (HisB1 +1, HisB2 +1, and waterkeeper residue) either to react as stronger bases or / and to stabilize a position permissive for substrate proton shuffling. This provides the understanding for C-H activation based on the type-III copper center to be used in future biotechnological processes.
Collapse
Affiliation(s)
- Ioannis Kampatsikas
- Universität WienFakultät für ChemieInstitut für Biophysikalische ChemieAlthanstraße 141090WienAustria
| | - Matthias Pretzler
- Universität WienFakultät für ChemieInstitut für Biophysikalische ChemieAlthanstraße 141090WienAustria
| | - Annette Rompel
- Universität WienFakultät für ChemieInstitut für Biophysikalische ChemieAlthanstraße 141090WienAustria
| |
Collapse
|
26
|
Exploring Aurone Derivatives as Potential Human Pancreatic Lipase Inhibitors through Molecular Docking and Molecular Dynamics Simulations. MOLECULES (BASEL, SWITZERLAND) 2020; 25:molecules25204657. [PMID: 33066044 PMCID: PMC7587340 DOI: 10.3390/molecules25204657] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/04/2020] [Accepted: 10/06/2020] [Indexed: 02/07/2023]
Abstract
Inhibition of human pancreatic lipase, a crucial enzyme in dietary fat digestion and absorption, is a potent therapeutic approach for obesity treatment. In this study, human pancreatic lipase inhibitory activity of aurone derivatives was explored by molecular modeling approaches. The target protein was human pancreatic lipase (PDB ID: 1LPB). The 3D structures of 82 published bioactive aurone derivatives were docked successfully into the protein catalytic active site, using AutoDock Vina 1.5.7.rc1. Of them, 62 compounds interacted with the key residues of catalytic trial Ser152-Asp176-His263. The top hit compound (A14), with a docking score of −10.6 kcal⋅mol−1, was subsequently submitted to molecular dynamics simulations, using GROMACS 2018.01. Molecular dynamics simulation results showed that A14 formed a stable complex with 1LPB protein via hydrogen bonds with important residues in regulating enzyme activity (Ser152 and Phe77). Compound A14 showed high potency for further studies, such as the synthesis, in vitro and in vivo tests for pancreatic lipase inhibitory activity.
Collapse
|
27
|
Affiliation(s)
| | - Ivanhoe K. H. Leung
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
- Centre for Green Chemical Science, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
28
|
Biundo A, Braunschmid V, Pretzler M, Kampatsikas I, Darnhofer B, Birner-Gruenberger R, Rompel A, Ribitsch D, Guebitz GM. Polyphenol oxidases exhibit promiscuous proteolytic activity. Commun Chem 2020; 3:62. [PMID: 36703476 PMCID: PMC9814219 DOI: 10.1038/s42004-020-0305-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/16/2020] [Indexed: 01/29/2023] Open
Abstract
Tyrosinases catalyse both the cresolase and catecholase reactions for the formation of reactive compounds which are very important for industrial applications. In this study, we describe a proteolytic activity of tyrosinases. Two different tyrosinases originating from mushroom and apple are able to cleave the carboxylesterase EstA. The cleavage reaction correlates with the integrity of the active site of tyrosinase and is independent of other possible influencing factors, which could be present in the reaction. Therefore, the cleavage of EstA represents a novel functionality of tyrosinases. EstA was previously reported to degrade synthetic polyesters, albeit slowly. However, the EstA truncated by tyrosinase shows higher degradation activity on the non-biodegradable polyester polyethylene terephthalate (PET), which is a well-established environmental threat.
Collapse
Affiliation(s)
- A Biundo
- Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences (BOKU), Konrad Lorenz Straße 22, 3430, Tulln, Austria
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Via Edoardo Orabona, 70125, Bari, Italy
| | - V Braunschmid
- Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences (BOKU), Konrad Lorenz Straße 22, 3430, Tulln, Austria
- Austrian Centre for Industrial Biotechnology (ACIB), Konrad Lorenz Straße 22, 3430 Tulln, Austria and Petersgasse 14, 8010, Graz, Austria
| | - M Pretzler
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Althanstraße 14, 1090, Wien, Austria
| | - I Kampatsikas
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Althanstraße 14, 1090, Wien, Austria
| | - B Darnhofer
- Austrian Centre for Industrial Biotechnology (ACIB), Konrad Lorenz Straße 22, 3430 Tulln, Austria and Petersgasse 14, 8010, Graz, Austria
- Medical University of Graz, Diagnostic and Research Institute of Pathology, Neue Stiftingtalstraße 6, 8010, Graz, Austria
- BioTechMed-Graz, Mozartgasse 12/II, 8010, Graz, Austria
| | - R Birner-Gruenberger
- Medical University of Graz, Diagnostic and Research Institute of Pathology, Neue Stiftingtalstraße 6, 8010, Graz, Austria
- BioTechMed-Graz, Mozartgasse 12/II, 8010, Graz, Austria
- Vienna University of Technology, Institute for Chemical Technologies and Analytics, Getreidemarkt 9/164, 1060, Vienna, Austria
| | - A Rompel
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Althanstraße 14, 1090, Wien, Austria
| | - D Ribitsch
- Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences (BOKU), Konrad Lorenz Straße 22, 3430, Tulln, Austria.
- Austrian Centre for Industrial Biotechnology (ACIB), Konrad Lorenz Straße 22, 3430 Tulln, Austria and Petersgasse 14, 8010, Graz, Austria.
| | - G M Guebitz
- Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences (BOKU), Konrad Lorenz Straße 22, 3430, Tulln, Austria
- Austrian Centre for Industrial Biotechnology (ACIB), Konrad Lorenz Straße 22, 3430 Tulln, Austria and Petersgasse 14, 8010, Graz, Austria
| |
Collapse
|
29
|
Davies KM, Jibran R, Zhou Y, Albert NW, Brummell DA, Jordan BR, Bowman JL, Schwinn KE. The Evolution of Flavonoid Biosynthesis: A Bryophyte Perspective. FRONTIERS IN PLANT SCIENCE 2020; 11:7. [PMID: 32117358 PMCID: PMC7010833 DOI: 10.3389/fpls.2020.00007] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/07/2020] [Indexed: 05/04/2023]
Abstract
The flavonoid pathway is one of the best characterized specialized metabolite pathways of plants. In angiosperms, the flavonoids have varied roles in assisting with tolerance to abiotic stress and are also key for signaling to pollinators and seed dispersal agents. The pathway is thought to be specific to land plants and to have arisen during the period of land colonization around 550-470 million years ago. In this review we consider current knowledge of the flavonoid pathway in the bryophytes, consisting of the liverworts, hornworts, and mosses. The pathway is less characterized for bryophytes than angiosperms, and the first genetic and molecular studies on bryophytes are finding both commonalities and significant differences in flavonoid biosynthesis and pathway regulation between angiosperms and bryophytes. This includes biosynthetic pathway branches specific to each plant group and the apparent complete absence of flavonoids from the hornworts.
Collapse
Affiliation(s)
- Kevin M. Davies
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| | - Rubina Jibran
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| | - Yanfei Zhou
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| | - Nick W. Albert
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| | - David A. Brummell
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| | - Brian R. Jordan
- Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch, New Zealand
| | - John L. Bowman
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia
| | - Kathy E. Schwinn
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| |
Collapse
|
30
|
Panis F, Kampatsikas I, Bijelic A, Rompel A. Conversion of walnut tyrosinase into a catechol oxidase by site directed mutagenesis. Sci Rep 2020; 10:1659. [PMID: 32015350 PMCID: PMC6997208 DOI: 10.1038/s41598-020-57671-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 12/30/2019] [Indexed: 12/18/2022] Open
Abstract
Polyphenol oxidases (PPOs) comprise tyrosinases (TYRs) and catechol oxidases (COs), which catalyse the initial reactions in the biosynthesis of melanin. TYRs hydroxylate monophenolic (monophenolase activity) and oxidize diphenolic (diphenolase activity) substrates, whereas COs react only with diphenols. In order to elucidate the biochemical basis for the different reactions in PPOs, cDNA from walnut leaves was synthesized, the target gene encoding the latent walnut tyrosinase (jrPPO1) was cloned, and the enzyme was heterologously expressed in Escherichia coli. Mutations targeting the two activity controller residues (Asn240 and Leu244) as well as the gatekeeper residue (Phe260) were designed to impair monophenolase activity of jrPPO1. For the first time, monophenolase activity of jrPPO1 towards L-tyrosine was blocked in two double mutants (Asn240Lys/Leu244Arg and Asn240Thr/Leu244Arg) while its diphenolase activity was partially preserved, thereby converting jrPPO1 into a CO. Kinetic data show that recombinant jrPPO1 resembles the natural enzyme, and spectrophotometric investigations proved that the copper content remains unaffected by the mutations. The results presented herein provide experimental evidence that a precisely tuned interplay between the amino acids located around the active center controls the substrate specificity and therewith the mono- versus diphenolase activity in the type-III copper enzyme jrPPO1.
Collapse
Affiliation(s)
- Felix Panis
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Wien, Austria
| | - Ioannis Kampatsikas
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Wien, Austria
| | - Aleksandar Bijelic
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Wien, Austria
| | - Annette Rompel
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Wien, Austria.
| |
Collapse
|
31
|
Derardja AE, Pretzler M, Kampatsikas I, Barkat M, Rompel A. Inhibition of apricot polyphenol oxidase by combinations of plant proteases and ascorbic acid. Food Chem X 2019; 4:100053. [PMID: 31650127 PMCID: PMC6804514 DOI: 10.1016/j.fochx.2019.100053] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 12/19/2022] Open
Abstract
The present research investigates the long term inhibition of enzymatic browning by inactivating the polyphenol oxidase (PPO) of apricot, using combinations of plant proteases and ascorbic acid (AA). The selected proteases were able to inactivate PPO at pH 4.5, with the degree of inactivation proportional to incubation time and protease concentration. Papain was the most effective protease, with 50 μg completely inactivating PPO in less than one hour. AA prevented browning reactions that occur before or during PPO inactivation by protease. The combinations of AA/proteases were highly effective in vitro, where 2 mM AA/500 μg proteases inhibited PPO activity completely over 24 h. The combination of AA/proteases was also effective in vivo, as treated apricot purees preserved their color (p < 0.0001, compared to untreated samples after 10 days of storage). The results demonstrate that AA/proteases combinations constitute a promising practical anti-browning method with feasible application in the food industry.
Collapse
Affiliation(s)
- Ala eddine Derardja
- Universitat Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Althanstraße 14, 1090 Wien, Austria1
- Laboratoire Bioqual, INATAA, Université Frères Mentouri Constantine1, Route de Ain El-Bey, 25000 Constantine, Algeria
| | - Matthias Pretzler
- Universitat Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Althanstraße 14, 1090 Wien, Austria1
| | - Ioannis Kampatsikas
- Universitat Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Althanstraße 14, 1090 Wien, Austria1
| | - Malika Barkat
- Laboratoire Bioqual, INATAA, Université Frères Mentouri Constantine1, Route de Ain El-Bey, 25000 Constantine, Algeria
| | - Annette Rompel
- Universitat Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Althanstraße 14, 1090 Wien, Austria1
| |
Collapse
|
32
|
Berland H, Albert NW, Stavland A, Jordheim M, McGhie TK, Zhou Y, Zhang H, Deroles SC, Schwinn KE, Jordan BR, Davies KM, Andersen ØM. Auronidins are a previously unreported class of flavonoid pigments that challenges when anthocyanin biosynthesis evolved in plants. Proc Natl Acad Sci U S A 2019; 116:20232-20239. [PMID: 31527265 PMCID: PMC6778211 DOI: 10.1073/pnas.1912741116] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Anthocyanins are key pigments of plants, providing color to flowers, fruit, and foliage and helping to counter the harmful effects of environmental stresses. It is generally assumed that anthocyanin biosynthesis arose during the evolutionary transition of plants from aquatic to land environments. Liverworts, which may be the closest living relatives to the first land plants, have been reported to produce red cell wall-bound riccionidin pigments in response to stresses such as UV-B light, drought, and nutrient deprivation, and these have been proposed to correspond to the first anthocyanidins present in early land plant ancestors. Taking advantage of the liverwort model species Marchantia polymorpha, we show that the red pigments of Marchantia are formed by a phenylpropanoid biosynthetic branch distinct from that leading to anthocyanins. They constitute a previously unreported flavonoid class, for which we propose the name "auronidin," with similar colors as anthocyanin but different chemistry, including strong fluorescence. Auronidins might contribute to the remarkable ability of liverworts to survive in extreme environments on land, and their discovery calls into question the possible pigment status of the first land plants.
Collapse
Affiliation(s)
- Helge Berland
- Department of Chemistry, University of Bergen, 5007 Bergen, Norway
| | - Nick W Albert
- New Zealand Institute for Plant and Food Research Limited, Palmerston North 4410, New Zealand
| | - Anne Stavland
- Department of Chemistry, University of Bergen, 5007 Bergen, Norway
| | - Monica Jordheim
- Department of Chemistry, University of Bergen, 5007 Bergen, Norway
| | - Tony K McGhie
- New Zealand Institute for Plant and Food Research Limited, Palmerston North 4410, New Zealand
| | - Yanfei Zhou
- New Zealand Institute for Plant and Food Research Limited, Palmerston North 4410, New Zealand
| | - Huaibi Zhang
- New Zealand Institute for Plant and Food Research Limited, Palmerston North 4410, New Zealand
| | - Simon C Deroles
- New Zealand Institute for Plant and Food Research Limited, Palmerston North 4410, New Zealand
| | - Kathy E Schwinn
- New Zealand Institute for Plant and Food Research Limited, Palmerston North 4410, New Zealand
| | - Brian R Jordan
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| | - Kevin M Davies
- New Zealand Institute for Plant and Food Research Limited, Palmerston North 4410, New Zealand;
| | | |
Collapse
|
33
|
Li Y, McLarin MA, Middleditch MJ, Morrow SJ, Kilmartin PA, Leung IK. An approach to recombinantly produce mature grape polyphenol oxidase. Biochimie 2019; 165:40-47. [DOI: 10.1016/j.biochi.2019.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/04/2019] [Indexed: 01/30/2023]
|
34
|
Prexler SM, Frassek M, Moerschbacher BM, Dirks‐Hofmeister ME. Catechol Oxidase versus Tyrosinase Classification Revisited by Site‐Directed Mutagenesis Studies. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201902846] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Sarah M. Prexler
- Institut für Biologie und Biotechnologie der PflanzenWestfälische Wilhelms-Universität (WWU) Schlossplatz 8 48143 Münster Germany
| | - Martin Frassek
- Institut für Biologie und Biotechnologie der PflanzenWestfälische Wilhelms-Universität (WWU) Schlossplatz 8 48143 Münster Germany
| | - Bruno M. Moerschbacher
- Institut für Biologie und Biotechnologie der PflanzenWestfälische Wilhelms-Universität (WWU) Schlossplatz 8 48143 Münster Germany
| | | |
Collapse
|
35
|
Prexler SM, Frassek M, Moerschbacher BM, Dirks‐Hofmeister ME. Catechol Oxidase versus Tyrosinase Classification Revisited by Site‐Directed Mutagenesis Studies. Angew Chem Int Ed Engl 2019; 58:8757-8761. [DOI: 10.1002/anie.201902846] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Sarah M. Prexler
- Institut für Biologie und Biotechnologie der PflanzenWestfälische Wilhelms-Universität (WWU) Schlossplatz 8 48143 Münster Germany
| | - Martin Frassek
- Institut für Biologie und Biotechnologie der PflanzenWestfälische Wilhelms-Universität (WWU) Schlossplatz 8 48143 Münster Germany
| | - Bruno M. Moerschbacher
- Institut für Biologie und Biotechnologie der PflanzenWestfälische Wilhelms-Universität (WWU) Schlossplatz 8 48143 Münster Germany
| | | |
Collapse
|
36
|
Kampatsikas I, Bijelic A, Pretzler M, Rompel A. A Peptide-Induced Self-Cleavage Reaction Initiates the Activation of Tyrosinase. Angew Chem Int Ed Engl 2019; 58:7475-7479. [PMID: 30825403 PMCID: PMC6563526 DOI: 10.1002/anie.201901332] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/26/2019] [Indexed: 01/11/2023]
Abstract
The conversion of inactive pro-polyphenol oxidases (pro-PPOs) into the active enzyme results from the proteolytic cleavage of its C-terminal domain. Herein, a peptide-mediated cleavage process that activates pro-MdPPO1 (Malus domestica) is reported. Mass spectrometry, mutagenesis studies, and X-ray crystal-structure analysis of pro-MdPPO1 (1.35 Å) and two separated C-terminal domains, one obtained upon self-cleavage of pro-MdPPO1 and the other one produced independently, were applied to study the observed self-cleavage. The sequence Lys 355-Val 370 located in the linker between the active and the C-terminal domain is indispensable for the self-cleavage. Partial introduction (Lys 352-Ala 360) of this peptide into the sequence of two other PPOs, MdPPO2 and aurone synthase (CgAUS1), triggered self-cleavage in the resulting mutants. This is the first experimental proof of a self-cleavage-inducing peptide in PPOs, unveiling a new mode of activation for this enzyme class that is independent of any external protease.
Collapse
Affiliation(s)
- Ioannis Kampatsikas
- Universität WienFakultät für ChemieInstitut für Biophysikalische ChemieAlthanstraße 141090WienAustria
| | - Aleksandar Bijelic
- Universität WienFakultät für ChemieInstitut für Biophysikalische ChemieAlthanstraße 141090WienAustria
| | - Matthias Pretzler
- Universität WienFakultät für ChemieInstitut für Biophysikalische ChemieAlthanstraße 141090WienAustria
| | - Annette Rompel
- Universität WienFakultät für ChemieInstitut für Biophysikalische ChemieAlthanstraße 141090WienAustria
| |
Collapse
|
37
|
Kampatsikas I, Bijelic A, Pretzler M, Rompel A. Eine peptidvermittelte Selbstspaltungsreaktion initiiert die Tyrosinaseaktivierung. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ioannis Kampatsikas
- Universität WienFakultät für ChemieInstitut für Biophysikalische Chemie Althanstraße 14 1090 Wien Österreich
| | - Aleksandar Bijelic
- Universität WienFakultät für ChemieInstitut für Biophysikalische Chemie Althanstraße 14 1090 Wien Österreich
| | - Matthias Pretzler
- Universität WienFakultät für ChemieInstitut für Biophysikalische Chemie Althanstraße 14 1090 Wien Österreich
| | - Annette Rompel
- Universität WienFakultät für ChemieInstitut für Biophysikalische Chemie Althanstraße 14 1090 Wien Österreich
| |
Collapse
|
38
|
Kampatsikas I, Bijelic A, Rompel A. Biochemical and structural characterization of tomato polyphenol oxidases provide novel insights into their substrate specificity. Sci Rep 2019; 9:4022. [PMID: 30858490 PMCID: PMC6411738 DOI: 10.1038/s41598-019-39687-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 01/28/2019] [Indexed: 11/09/2022] Open
Abstract
Polyphenol oxidases (PPOs) contain the structurally similar enzymes tyrosinases (TYRs) and catechol oxidases (COs). Two cDNAs encoding pro-PPOs from tomato (Solanum lycopersicum) were cloned and heterologously expressed in Escherichia coli. The two pro-PPOs (SlPPO1-2) differ remarkably in their activity as SlPPO1 reacts with the monophenols tyramine (kcat = 7.94 s-1) and phloretin (kcat = 2.42 s-1) and was thus characterized as TYR, whereas SlPPO2 accepts only diphenolic substrates like dopamine (kcat = 1.99 s-1) and caffeic acid (kcat = 20.33 s-1) rendering this enzyme a CO. This study, for the first time, characterizes a plant TYR and CO originating from the same organism. Moreover, X-ray structure analysis of the latent holo- and apo-SlPPO1 (PDB: 6HQI and 6HQJ) reveals an unprecedented high flexibility of the gatekeeper residue phenylalanine (Phe270). Docking studies showed that depending on its orientation the gatekeeper residue could either stabilize and correctly position incoming substrates or hinder their entrance into the active site. Furthermore, phloretin, a substrate of SIPPO1 (Km = 0.11 mM), is able to approach the active centre of SlPPO1 with both phenolic rings. Kinetic and structural results indicate that phloretin could act as a natural substrate and connote the participation of PPOs in flavonoid-biosynthesis.
Collapse
Affiliation(s)
- Ioannis Kampatsikas
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Wien, Austria
| | - Aleksandar Bijelic
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Wien, Austria
| | - Annette Rompel
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Wien, Austria.
| |
Collapse
|
39
|
A novel thermophilic laccase-like multicopper oxidase from Thermothelomyces thermophila and its application in the oxidative cyclization of 2′,3,4-trihydroxychalcone. N Biotechnol 2019; 49:10-18. [DOI: 10.1016/j.nbt.2018.12.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 12/02/2018] [Accepted: 12/04/2018] [Indexed: 01/03/2023]
|
40
|
What causes the different functionality in type-III-copper enzymes? A state of the art perspective. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2017.04.041] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
41
|
Meng S, Tang GL, Pan HX. Enzymatic Formation of Oxygen-Containing Heterocycles in Natural Product Biosynthesis. Chembiochem 2018; 19:2002-2022. [PMID: 30039582 DOI: 10.1002/cbic.201800225] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Indexed: 01/12/2023]
Abstract
Oxygen-containing heterocycles are widely encountered in natural products that display diverse pharmacological properties and have potential benefits to human health. The formation of O-heterocycles catalyzed by different types of enzymes in the biosynthesis of natural products not only contributes to the structural diversity of these compounds, but also enriches our understanding of nature's ability to construct complex molecules. This minireview focuses on the various modes of enzymatic O-heterocyclization identified in natural product biosynthesis and summarizes the possible mechanisms involved in ring closure.
Collapse
Affiliation(s)
- Song Meng
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, University of the Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Gong-Li Tang
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, University of the Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Hai-Xue Pan
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, University of the Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| |
Collapse
|
42
|
Nguyen KK, Cuellar C, Mavi PS, LeDuc D, Bañuelos G, Sommerhalter M. Two Poplar Hybrid Clones Differ in Phenolic Antioxidant Levels and Polyphenol Oxidase Activity in Response to High Salt and Boron Irrigation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:7256-7264. [PMID: 29924601 DOI: 10.1021/acs.jafc.8b01106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Poplar hybrids can be used for selenium (Se) and boron (B) phytoremediation under saline conditions. The phenolic antioxidant stress response of two salt and B tolerant poplar hybrids of parentage Populus trichocarpa × nigra × deltoides was studied using high-performance liquid chromatography (HPLC) and absorption-based assays to determine the antioxidant capacity, total phenolic content, hydroxycinnamic acid levels, and the enzyme activity of l-phenylalanine ammonia lyase (PAL), polyphenol oxidase (PPO), phenol peroxidase (POD), and laccase. Most remarkable was the contrasting response of the two poplar clones for PPO activity and phenolic levels to irrigation with high salt/B water. To cope with stressful growing conditions, only one clone increased its phenolic antioxidant level, and each clone displayed different PPO isoform patterns. Our study shows that poplar hybrids of the same parentage can differ in their salt/B stress coping mechanism.
Collapse
Affiliation(s)
- Khanh K Nguyen
- Department of Chemistry and Biochemistry , CSU East Bay , 25800 Carlos Bee Blvd , Hayward , California 94542 , United States
| | - Carlos Cuellar
- Department of Chemistry and Biochemistry , CSU East Bay , 25800 Carlos Bee Blvd , Hayward , California 94542 , United States
| | - Prabhjot Sandy Mavi
- Department of Chemistry and Biochemistry , CSU East Bay , 25800 Carlos Bee Blvd , Hayward , California 94542 , United States
| | - Danika LeDuc
- Department of Chemistry and Biochemistry , CSU East Bay , 25800 Carlos Bee Blvd , Hayward , California 94542 , United States
| | - Gary Bañuelos
- USDA, Agricultural Research Service , San Joaquin Valley Agricultural Sciences Center , 9611 S. Riverbend Avenue , Parlier , California 93648 , United States
| | - Monika Sommerhalter
- Department of Chemistry and Biochemistry , CSU East Bay , 25800 Carlos Bee Blvd , Hayward , California 94542 , United States
| |
Collapse
|
43
|
Yatabe T, Jin X, Mizuno N, Yamaguchi K. Unusual Olefinic C–H Functionalization of Simple Chalcones toward Aurones Enabled by the Rational Design of a Function-Integrated Heterogeneous Catalyst. ACS Catal 2018. [DOI: 10.1021/acscatal.8b00727] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
44
|
Prexler SM, Singh R, Moerschbacher BM, Dirks-Hofmeister ME. A specific amino acid residue in the catalytic site of dandelion polyphenol oxidases acts as 'selector' for substrate specificity. PLANT MOLECULAR BIOLOGY 2018; 96:151-164. [PMID: 29218491 DOI: 10.1007/s11103-017-0686-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 11/27/2017] [Indexed: 06/07/2023]
Abstract
Successful site-directed mutagenesis combined with in silico modeling and docking studies for the first time offers experimental proof of the role of the 'substrate selector' residue in plant polyphenol oxidases. The plant and fungi enzymes responsible for tissue browning are called polyphenol oxidases (PPOs). In plants, PPOs often occur as families of isoenzymes which are differentially expressed, but little is known about their physiological roles or natural substrates. In a recent study that explored these structure-function relationships, the eleven known dandelion (Taraxacum officinale) PPOs were shown to separate into two different phylogenetic groups differing in catalytic cavity architecture, kinetic parameters, and substrate range. The same study proposed that the PPOs' substrate specificity is controlled by one specific amino acid residue positioned at the entrance to the catalytic site: whereas group 1 dandelion PPOs possess a hydrophobic isoleucine (I) at position HB2+1, group 2 PPOs exhibit a larger, positively charged arginine (R). However, this suggestion was only based on bioinformatic analyses, not experiments. To experimentally investigate this hypothesis, we converted group 1 ToPPO-2 and group 2 ToPPO-6 into PPO-2-I244R and PPO-6-R254I, respectively, and expressed them in E. coli. By performing detailed kinetic characterization and in silico docking studies, we found that replacing this single amino acid significantly changed the PPO's substrate specificity. Our findings therefore proof the role of the 'substrate selector' in plant PPOs.
Collapse
Affiliation(s)
- Sarah M Prexler
- Institute for Biology and Biotechnology of Plants, University of Münster, Schlossplatz 8, 48143, Münster, Germany
| | - Ratna Singh
- Institute for Biology and Biotechnology of Plants, University of Münster, Schlossplatz 8, 48143, Münster, Germany
| | - Bruno M Moerschbacher
- Institute for Biology and Biotechnology of Plants, University of Münster, Schlossplatz 8, 48143, Münster, Germany.
| | - Mareike E Dirks-Hofmeister
- Institute for Biology and Biotechnology of Plants, University of Münster, Schlossplatz 8, 48143, Münster, Germany
- WeissBioTech GmbH, An der Hansalinie 48-50, 59387, Ascheberg, Germany
| |
Collapse
|
45
|
Molitor C, Bijelic A, Rompel A. The potential of hexatungstotellurate(VI) to induce a significant entropic gain during protein crystallization. IUCRJ 2017; 4:734-740. [PMID: 29123675 PMCID: PMC5668858 DOI: 10.1107/s2052252517012349] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 08/25/2017] [Indexed: 06/01/2023]
Abstract
The limiting factor in protein crystallography is still the production of high-quality crystals. In this regard, the authors have recently introduced hexatungstotellurate(VI) (TEW) as a new crystallization additive, which proved to be successful within the liquid-liquid phase separation (LLPS) zone. Presented here are comparative crystal structure analyses revealing that protein-TEW binding not only induces and stabilizes crystal contacts, but also exhibits a significant impact on the solvent-driven crystallization entropy, which is the driving force for the crystallization process. Upon the formation of TEW-mediated protein-protein contacts, the release of water molecules from the hydration shells of both molecules, i.e. TEW and the protein, causes a reduced solvent-accessible surface area, leading to a significant gain in solvent entropy. Based on the crystal structures of aurone synthase (in the presence and absence of TEW), insights have also been provided into the formation of a metastable LLPS, which is caused by the formation of protein clusters, representing an ideal starting point in protein crystallization. The results strongly encourage the classification of TEW as a valuable crystallization additive.
Collapse
Affiliation(s)
- Christian Molitor
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Althanstrasse 14, Wien 1090, Austria
| | - Aleksandar Bijelic
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Althanstrasse 14, Wien 1090, Austria
| | - Annette Rompel
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Althanstrasse 14, Wien 1090, Austria
| |
Collapse
|
46
|
Boucherle B, Peuchmaur M, Boumendjel A, Haudecoeur R. Occurrences, biosynthesis and properties of aurones as high-end evolutionary products. PHYTOCHEMISTRY 2017; 142:92-111. [PMID: 28704688 DOI: 10.1016/j.phytochem.2017.06.017] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/22/2017] [Accepted: 06/30/2017] [Indexed: 05/06/2023]
Abstract
Recent years have witnessed a considerable renewed interest for the uncommon flavonoid class of aurones. The characterization of two major biosynthetic machineries involved in their biosynthesis in flowers has encouraged the revival of phytochemical studies and identification of original structures, a process started almost seventy-five years ago. This review draws up an exhaustive map of natural occurrences of aurones their biosynthetic pathways and roles, with the aim to link their original structural properties among flavonoids to their place in evolution and the selective advantages they bring to some of the most advanced taxa in the plant kingdom.
Collapse
Affiliation(s)
- Benjamin Boucherle
- Univ. Grenoble-Alpes, CNRS, DPM UMR 5063, CS 40700, 38058, Grenoble, France
| | - Marine Peuchmaur
- Univ. Grenoble-Alpes, CNRS, DPM UMR 5063, CS 40700, 38058, Grenoble, France
| | - Ahcène Boumendjel
- Univ. Grenoble-Alpes, CNRS, DPM UMR 5063, CS 40700, 38058, Grenoble, France
| | - Romain Haudecoeur
- Univ. Grenoble-Alpes, CNRS, DPM UMR 5063, CS 40700, 38058, Grenoble, France.
| |
Collapse
|
47
|
Derardja AE, Pretzler M, Kampatsikas I, Barkat M, Rompel A. Purification and Characterization of Latent Polyphenol Oxidase from Apricot (Prunus armeniaca L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:8203-8212. [PMID: 28812349 PMCID: PMC5609118 DOI: 10.1021/acs.jafc.7b03210] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Polyphenol oxidase from apricot (Prunus armeniaca) (PaPPO) was purified in its latent form (L-PaPPO), and the molecular weight was determined to be 63 kDa by SDS-PAGE. L-PaPPO was activated in the presence of substrate at low pH. The activity was enhanced by CuSO4 and low concentrations (≤ 2 mM) of SDS. PaPPO has its pH and temperature optimum at pH 4.5 and 45 °C for catechol as substrate. It showed diphenolase activity and highest affinity toward 4-methylcatechol (KM = 2.0 mM) and chlorogenic acid (KM = 2.7 mM). L-PaPPO was found to be spontaneously activated during storage at 4 °C, creating a new band at 38 kDa representing the activated form (A-PaPPO). The mass of A-PaPPO was determined by mass spectrometry as 37 455.6 Da (Asp102 → Leu429). Both L-PaPPO and A-PaPPO were identified as polyphenol oxidase corresponding to the known PaPPO sequence (UniProt O81103 ) by means of peptide mass fingerprinting.
Collapse
Affiliation(s)
- Ala eddine Derardja
- Universität
Wien, Fakultät für Chemie,
Institut für Biophysikalische Chemie, Althanstraße 14, 1090 Wien, Austria
- Laboratoire
Bioqual, INATAA, Université des Frères
Mentouri, Constantine
1, Route de Ain El-Bey, 25000 Constantine, Algeria
| | - Matthias Pretzler
- Universität
Wien, Fakultät für Chemie,
Institut für Biophysikalische Chemie, Althanstraße 14, 1090 Wien, Austria
| | - Ioannis Kampatsikas
- Universität
Wien, Fakultät für Chemie,
Institut für Biophysikalische Chemie, Althanstraße 14, 1090 Wien, Austria
| | - Malika Barkat
- Laboratoire
Bioqual, INATAA, Université des Frères
Mentouri, Constantine
1, Route de Ain El-Bey, 25000 Constantine, Algeria
| | - Annette Rompel
- Universität
Wien, Fakultät für Chemie,
Institut für Biophysikalische Chemie, Althanstraße 14, 1090 Wien, Austria
- Fax: +43-1-4277-852502. Tel: +43-1-4277-52502. E-mail:
| |
Collapse
|
48
|
Kampatsikas I, Bijelic A, Pretzler M, Rompel A. Three recombinantly expressed apple tyrosinases suggest the amino acids responsible for mono- versus diphenolase activity in plant polyphenol oxidases. Sci Rep 2017; 7:8860. [PMID: 28821733 PMCID: PMC5562730 DOI: 10.1038/s41598-017-08097-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 07/04/2017] [Indexed: 02/03/2023] Open
Abstract
Tyrosinases and catechol oxidases belong to the polyphenol oxidase (PPO) enzyme family, which is mainly responsible for the browning of fruits. Three cDNAs encoding PPO pro-enzymes have been cloned from leaves of Malus domestica (apple, MdPPO). The three pro-enzymes MdPPO1-3 were heterologously expressed in E. coli yielding substantial amounts of protein and have been characterized with regard to their optimum of activity resulting from SDS, acidic and proteolytic activation. Significant differences were found in the kinetic characterization of MdPPO1-3 when applying different mono- and diphenolic substrates. All three enzymes have been classified as tyrosinases, where MdPPO1 exhibits the highest activity with tyramine (kcat = 9.5 s-1) while MdPPO2 and MdPPO3 are also clearly active on this monophenolic substrate (kcat = 0.92 s-1 and kcat = 1.0 s-1, respectively). Based on the activity, sequence data and homology modelling it is proposed that the monophenolase and diphenolase activity of PPOs can be manipulated by the appropriate combination of two amino acids, which are located within the active site cleft and were therefore named "activity controllers".
Collapse
Affiliation(s)
- Ioannis Kampatsikas
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Althanstraße 14, 1090, Wien, Austria
| | - Aleksandar Bijelic
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Althanstraße 14, 1090, Wien, Austria
| | - Matthias Pretzler
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Althanstraße 14, 1090, Wien, Austria
| | - Annette Rompel
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Althanstraße 14, 1090, Wien, Austria.
| |
Collapse
|
49
|
Kampatsikas I, Bijelic A, Pretzler M, Rompel A. In crystallo activity tests with latent apple tyrosinase and two mutants reveal the importance of the mutated sites for polyphenol oxidase activity. Acta Crystallogr F Struct Biol Commun 2017; 73:491-499. [PMID: 28777094 PMCID: PMC5544008 DOI: 10.1107/s2053230x17010822] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 07/24/2017] [Indexed: 11/11/2022] Open
Abstract
Tyrosinases are type 3 copper enzymes that belong to the polyphenol oxidase (PPO) family and are able to catalyze both the ortho-hydroxylation of monophenols and their subsequent oxidation to o-quinones, which are precursors for the biosynthesis of colouring substances such as melanin. The first plant pro-tyrosinase from Malus domestica (MdPPO1) was recombinantly expressed in its latent form (56.4 kDa) and mutated at four positions around the catalytic pocket which are believed to influence the activity of the enzyme. Mutating the amino acids, which are known as activity controllers, yielded the mutants MdPPO1-Ala239Thr and MdPPO1-Leu243Arg, whereas mutation of the so-called water-keeper and gatekeeper residues resulted in the mutants MdPPO1-Glu234Ala and MdPPO1-Phe259Ala, respectively. The wild-type enzyme and two of the mutants, MdPPO1-Ala239Thr and MdPPO1-Phe259Ala, were successfully crystallized, leading to single crystals that diffracted to 1.35, 1.55 and 1.70 Å resolution, respectively. All crystals belonged to space group P212121, exhibiting similar unit-cell parameters: a = 50.70, b = 80.15, c = 115.96 Å for the wild type, a = 50.58, b = 79.90, c = 115.76 Å for MdPPO1-Ala239Thr and a = 50.53, b = 79.76, c = 116.07 Å for MdPPO1-Phe259Ala. In crystallo activity tests with the crystals of the wild type and the two mutants were performed by adding the monophenolic substrate tyramine and the diphenolic substrate dopamine to crystal-containing drops. The effects of the mutation on the activity of the enzyme were observed by colour changes of the crystals owing to the conversion of the substrates to dark chromophore products.
Collapse
Affiliation(s)
- Ioannis Kampatsikas
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Althanstrasse 14, 1090 Wien, Austria
| | - Aleksandar Bijelic
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Althanstrasse 14, 1090 Wien, Austria
| | - Matthias Pretzler
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Althanstrasse 14, 1090 Wien, Austria
| | - Annette Rompel
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Althanstrasse 14, 1090 Wien, Austria
| |
Collapse
|
50
|
Bijelic A, Rompel A. Ten Good Reasons for the Use of the Tellurium-Centered Anderson-Evans Polyoxotungstate in Protein Crystallography. Acc Chem Res 2017; 50:1441-1448. [PMID: 28562014 PMCID: PMC5480232 DOI: 10.1021/acs.accounts.7b00109] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Indexed: 12/13/2022]
Abstract
Protein crystallography represents at present the most productive and most widely used method to obtain structural information on target proteins and protein-ligand complexes within the atomic resolution range. The knowledge obtained in this way is essential for understanding the biology, chemistry, and biochemistry of proteins and their functions but also for the development of compounds of high pharmacological and medicinal interest. Here, we address the very central problem in protein crystallography: the unpredictability of the crystallization process. Obtaining protein crystals that diffract to high resolutions represents the essential step to perform any structural study by X-ray crystallography; however, this method still depends basically on trial and error making it a very time- and resource-consuming process. The use of additives is an established process to enable or improve the crystallization of proteins in order to obtain high quality crystals. Therefore, a more universal additive addressing a wider range of proteins is desirable as it would represent a huge advance in protein crystallography and at the same time drastically impact multiple research fields. This in turn could add an overall benefit for the entire society as it profits from the faster development of novel or improved drugs and from a deeper understanding of biological, biochemical, and pharmacological phenomena. With this aim in view, we have tested several compounds belonging to the emerging class of polyoxometalates (POMs) for their suitability as crystallization additives and revealed that the tellurium-centered Anderson-Evans polyoxotungstate [TeW6O24]6- (TEW) was the most suitable POM-archetype. After its first successful application as a crystallization additive, we repeatedly reported on TEW's positive effects on the crystallization behavior of proteins with a particular focus on the protein-TEW interactions. As electrostatic interactions are the main force for TEW binding to proteins, TEW with its highly negative charge addresses in principle all proteins possessing positively charged patches. Furthermore, due to its high structural and chemical diversity, TEW exhibits major advantages over some commonly used crystallization additives. Therefore, we summarized all features of TEW, which are beneficial for protein crystallization, and present ten good reasons to promote the use of TEW in protein crystallography as a powerful additive. Our results demonstrate that TEW is a compound that is, in many respects, predestined as a crystallization additive. We assume that many crystallographers and especially researchers, who are not experts in this field but willing to crystallize their structurally unknown target protein, could benefit from the use of TEW as it is able to promote both the crystallization process itself and the subsequent structure elucidation by providing valuable anomalous signals, which are helpful for the phasing step.
Collapse
Affiliation(s)
- Aleksandar Bijelic
- University of Vienna, Faculty of Chemistry, Department of Biophysical Chemistry, Althanstraße 14, 1090 Vienna, Austria
| | - Annette Rompel
- University of Vienna, Faculty of Chemistry, Department of Biophysical Chemistry, Althanstraße 14, 1090 Vienna, Austria
| |
Collapse
|