1
|
Cosgrove DJ. Building an extensible cell wall. PLANT PHYSIOLOGY 2022; 189:1246-1277. [PMID: 35460252 PMCID: PMC9237729 DOI: 10.1093/plphys/kiac184] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/21/2022] [Indexed: 05/15/2023]
Abstract
This article recounts, from my perspective of four decades in this field, evolving paradigms of primary cell wall structure and the mechanism of surface enlargement of growing cell walls. Updates of the structures, physical interactions, and roles of cellulose, xyloglucan, and pectins are presented. This leads to an example of how a conceptual depiction of wall structure can be translated into an explicit quantitative model based on molecular dynamics methods. Comparison of the model's mechanical behavior with experimental results provides insights into the molecular basis of complex mechanical behaviors of primary cell wall and uncovers the dominant role of cellulose-cellulose interactions in forming a strong yet extensible network.
Collapse
Affiliation(s)
- Daniel J Cosgrove
- Department of Biology, Penn State University, Pennsylvania 16802, USA
| |
Collapse
|
2
|
Karas BJ, Ross L, Novero M, Amyot L, Shrestha A, Inada S, Nakano M, Sakai T, Bonetta D, Sato S, Murray JD, Bonfante P, Szczyglowski K. Intragenic complementation at the Lotus japonicus CELLULOSE SYNTHASE-LIKE D1 locus rescues root hair defects. PLANT PHYSIOLOGY 2021; 186:2037-2050. [PMID: 34618101 PMCID: PMC8331140 DOI: 10.1093/plphys/kiab204] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/06/2021] [Indexed: 06/13/2023]
Abstract
Root hair cells form the primary interface of plants with the soil environment, playing key roles in nutrient uptake and plant defense. In legumes, they are typically the first cells to become infected by nitrogen-fixing soil bacteria during root nodule symbiosis. Here, we report a role for the CELLULOSE SYNTHASE-LIKE D1 (CSLD1) gene in root hair development in the legume species Lotus japonicus. CSLD1 belongs to the cellulose synthase protein family that includes cellulose synthases and cellulose synthase-like proteins, the latter thought to be involved in the biosynthesis of hemicellulose. We describe 11 Ljcsld1 mutant alleles that impose either short (Ljcsld1-1) or variable (Ljcsld1-2 to 11) root hair length phenotypes. Examination of Ljcsld1-1 and one variable-length root hair mutant, Ljcsld1-6, revealed increased root hair cell wall thickness, which in Ljcsld1-1 was significantly more pronounced and also associated with a strong defect in root nodule symbiosis. Lotus japonicus plants heterozygous for Ljcsld1-1 exhibited intermediate root hair lengths, suggesting incomplete dominance. Intragenic complementation was observed between alleles with mutations in different CSLD1 domains, suggesting CSLD1 function is modular and that the protein may operate as a homodimer or multimer during root hair development.
Collapse
Affiliation(s)
- Bogumil J Karas
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada, N6A 5C1
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, Canada, N5V 4T3
| | - Loretta Ross
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, Canada, N5V 4T3
| | - Mara Novero
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Lisa Amyot
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, Canada, N5V 4T3
| | - Arina Shrestha
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada, N6A 5C1
| | - Sayaka Inada
- RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Michiharu Nakano
- RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Tatsuya Sakai
- Graduate School of Science and Technology, Niigata University, 8050 Ikarashi-nino-cho, Nishiku, Niigata 950-2181, Japan
| | - Dario Bonetta
- Faculty of Science, Ontario Tech University, Oshawa, Ontario, Canada
| | - Sushei Sato
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
| | - Jeremy D Murray
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, Canada, N5V 4T3
- National Key Laboratory of Plant Molecular Genetics, CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), CAS Center for Excellence in Molecular and Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Paola Bonfante
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Krzysztof Szczyglowski
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, Canada, N5V 4T3
- Department of Biology, University of Western Ontario, London, Ontario, N6A 5B7 Canada
| |
Collapse
|
3
|
Burak E, Quinton JN, Dodd IC. Root hairs are the most important root trait for rhizosheath formation of barley (Hordeum vulgare), maize (Zea mays) and Lotus japonicus (Gifu). ANNALS OF BOTANY 2021; 128:45-57. [PMID: 33631013 PMCID: PMC8318254 DOI: 10.1093/aob/mcab029] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 03/15/2021] [Indexed: 05/25/2023]
Abstract
BACKGROUND AND AIMS Rhizosheaths are defined as the soil adhering to the root system after it is extracted from the ground. Root hairs and mucilage (root exudates) are key root traits involved in rhizosheath formation, but to better understand the mechanisms involved their relative contributions should be distinguished. METHODS The ability of three species [barley (Hordeum vulgare), maize (Zea mays) and Lotus japonicus (Gifu)] to form a rhizosheath in a sandy loam soil was compared with that of their root-hairless mutants [bald root barley (brb), maize root hairless 3 (rth3) and root hairless 1 (Ljrhl1)]. Root hair traits (length and density) of wild-type (WT) barley and maize were compared along with exudate adhesiveness of both barley and maize genotypes. Furthermore, root hair traits and exudate adhesiveness from different root types (axile versus lateral) were compared within the cereal species. KEY RESULTS Per unit root length, rhizosheath size diminished in the order of barley > L. japonicus > maize in WT plants. Root hairs significantly increased rhizosheath formation of all species (3.9-, 3.2- and 1.8-fold for barley, L. japonicus and maize, respectively) but there was no consistent genotypic effect on exudate adhesiveness in the cereals. While brb exudates were more and rth3 exudates were less adhesive than their respective WTs, maize rth3 bound more soil than barley brb. Although both maize genotypes produced significantly more adhesive exudate than the barley genotypes, root hair development of WT barley was more extensive than that of WT maize. Thus, the greater density of longer root hairs in WT barley bound more soil than WT maize. Root type did not seem to affect rhizosheath formation, unless these types differed in root length. CONCLUSIONS When root hairs were present, greater root hair development better facilitated rhizosheath formation than root exudate adhesiveness. However, when root hairs were absent root exudate adhesiveness was a more dominant trait.
Collapse
Affiliation(s)
- Emma Burak
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - John N Quinton
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Ian C Dodd
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| |
Collapse
|
4
|
Canalejo D, Guadalupe Z, Martínez-Lapuente L, Ayestarán B, Pérez-Magariño S. Optimization of a method to extract polysaccharides from white grape pomace by-products. Food Chem 2021; 365:130445. [PMID: 34237579 DOI: 10.1016/j.foodchem.2021.130445] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 05/19/2021] [Accepted: 06/20/2021] [Indexed: 11/18/2022]
Abstract
The aim of this paper is to optimize a method to recover polysaccharides from white grape pomace (non-fermented), the main waste by-product of the food industry. Different conditions are tested and the polysaccharides extracted are analyzed by high performance size exclusion chromatography with refractive index detector (HPSEC-RID) and gas chromatography with mass detector (GC-MS). The extraction solvent did not show a significant effect on the polysaccharide extraction, acid pH yielded to higher efficiencies, and longer extraction times extracted more smaller polysaccharides (≤5.4 kg mol-1). The highest efficiencies were obtained with both solvents at pH 1 and 1:4 solid to liquid ratio. The optimum conditions selected (TA as solvent of extraction, 2.5 g L-1 solvent concentration, pH = 1, 1:4 solid to liquid ratio, and 18 h of extraction time) allow the extraction of polysaccharides rich in arabinose and galactose, rhamnogalacturonans, homogalacturonans and glucosyl polysaccharides, under efficient and food-safe conditions.
Collapse
Affiliation(s)
- Diego Canalejo
- Instituto de Ciencias de la Vid y del Vino (Universidad de la Rioja, Gobierno de La Rioja y CSIC), Finca La Grajera, Ctra. De Burgos Km 6, 26007 Logroño, La Rioja, Spain
| | - Zenaida Guadalupe
- Instituto de Ciencias de la Vid y del Vino (Universidad de la Rioja, Gobierno de La Rioja y CSIC), Finca La Grajera, Ctra. De Burgos Km 6, 26007 Logroño, La Rioja, Spain.
| | - Leticia Martínez-Lapuente
- Instituto de Ciencias de la Vid y del Vino (Universidad de la Rioja, Gobierno de La Rioja y CSIC), Finca La Grajera, Ctra. De Burgos Km 6, 26007 Logroño, La Rioja, Spain
| | - Belén Ayestarán
- Instituto de Ciencias de la Vid y del Vino (Universidad de la Rioja, Gobierno de La Rioja y CSIC), Finca La Grajera, Ctra. De Burgos Km 6, 26007 Logroño, La Rioja, Spain
| | - Silvia Pérez-Magariño
- Instituto Tecnológico Agrario de Castilla y León, Consejería de Agricultura y Ganadería, Ctra Burgos Km 119, 47071 Valladolid, Spain
| |
Collapse
|
5
|
Barnes WJ, Koj S, Black IM, Archer-Hartmann SA, Azadi P, Urbanowicz BR, Peña MJ, O'Neill MA. Protocols for isolating and characterizing polysaccharides from plant cell walls: a case study using rhamnogalacturonan-II. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:142. [PMID: 34158109 PMCID: PMC8218411 DOI: 10.1186/s13068-021-01992-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 06/10/2021] [Indexed: 06/10/2023]
Abstract
BACKGROUND In plants, a large diversity of polysaccharides comprise the cell wall. Each major type of plant cell wall polysaccharide, including cellulose, hemicellulose, and pectin, has distinct structures and functions that contribute to wall mechanics and influence plant morphogenesis. In recent years, pectin valorization has attracted much attention due to its expanding roles in biomass deconstruction, food and material science, and environmental remediation. However, pectin utilization has been limited by our incomplete knowledge of its structure. Herein, we present a workflow of principles relevant for the characterization of polysaccharide primary structure using nature's most complex polysaccharide, rhamnogalacturonan-II (RG-II), as a model. RESULTS We outline how to isolate RG-II from celery and duckweed cell walls and from red wine using chemical or enzymatic treatments coupled with size-exclusion chromatography. From there, we applied mass spectrometry (MS)-based techniques to determine the glycosyl residue and linkage compositions of the intact RG-II and derived oligosaccharides including special considerations for labile monosaccharides. In doing so, we demonstrated that in the duckweed Wolffiella repanda the arabinopyranosyl (Arap) residue of side chain B is substituted at O-2 with rhamnose. We used electrospray-MS techniques to identify non-glycosyl modifications including methyl-ethers, methyl-esters, and acetyl-esters on RG-II-derived oligosaccharides. We then showed the utility of proton nuclear magnetic resonance spectroscopy (1H-NMR) to investigate the structure of intact RG-II and to complement the RG-II dimerization studies performed using size-exclusion chromatography. CONCLUSIONS The complexity of pectic polysaccharide structures has hampered efforts aimed at their valorization. In this work, we used RG-II as a model to demonstrate the steps necessary to isolate and characterize polysaccharides using chromatographic, MS, and NMR techniques. The principles can be applied to the characterization of other saccharide structures and will help inform researchers on how saccharide structure relates to functional properties in the future.
Collapse
Affiliation(s)
- William J Barnes
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA
| | - Sabina Koj
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA
| | - Ian M Black
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA
| | | | - Parastoo Azadi
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA
| | - Breeanna R Urbanowicz
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA.
- The Department of Biochemistry and Molecular Biology, The University of Georgia, Athens, GA, 30602, USA.
| | - Maria J Peña
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA.
| | - Malcolm A O'Neill
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA.
| |
Collapse
|
6
|
Niraula PM, Zhang X, Jeremic D, Lawrence KS, Klink VP. Xyloglucan endotransglycosylase/hydrolase increases tightly-bound xyloglucan and chain number but decreases chain length contributing to the defense response that Glycine max has to Heterodera glycines. PLoS One 2021; 16:e0244305. [PMID: 33444331 PMCID: PMC7808671 DOI: 10.1371/journal.pone.0244305] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/07/2020] [Indexed: 12/20/2022] Open
Abstract
The Glycine max xyloglucan endotransglycosylase/hydrolase (EC 2.4.1.207), GmXTH43, has been identified through RNA sequencing of RNA isolated through laser microdissection of Heterodera glycines-parasitized root cells (syncytia) undergoing the process of defense. Experiments reveal that genetically increasing XTH43 transcript abundance in the H. glycines-susceptible genotype G. max[Williams 82/PI 518671] decreases parasitism. Experiments presented here show decreasing XTH43 transcript abundance through RNA interference (RNAi) in the H. glycines-resistant G. max[Peking/PI 548402] increases susceptibility, but it is unclear what role XTH43 performs. The experiments presented here show XTH43 overexpression decreases the relative length of xyloglucan (XyG) chains, however, there is an increase in the amount of those shorter chains. In contrast, XTH43 RNAi increases XyG chain length. The experiments show that XTH43 has the capability to function, when increased in its expression, to limit XyG chain extension. This outcome would likely impair the ability of the cell wall to expand. Consequently, XTH43 could provide an enzymatically-driven capability to the cell that would allow it to limit the ability of parasitic nematodes like H. glycines to develop a feeding structure that, otherwise, would facilitate parasitism. The experiments presented here provide experimentally-based proof that XTHs can function in ways that could be viewed as being able to limit the expansion of the cell wall.
Collapse
Affiliation(s)
- Prakash M. Niraula
- Department of Biological Sciences, Mississippi State University, Starkville, Mississippi State, United States of America
| | - Xuefeng Zhang
- Department of Sustainable Bioproducts, Mississippi State University, Starkville, Mississippi State, United States of America
| | - Dragica Jeremic
- Department of Sustainable Bioproducts, Mississippi State University, Starkville, Mississippi State, United States of America
| | - Katherine S. Lawrence
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, United States of America
| | - Vincent P. Klink
- Department of Biological Sciences, Mississippi State University, Starkville, Mississippi State, United States of America
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, Mississippi State, United States of America
- Center for Computational Sciences High Performance Computing Collaboratory, Starkville, Mississippi State, United States of America
| |
Collapse
|
7
|
Tingley JP, Low KE, Xing X, Abbott DW. Combined whole cell wall analysis and streamlined in silico carbohydrate-active enzyme discovery to improve biocatalytic conversion of agricultural crop residues. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:16. [PMID: 33422151 PMCID: PMC7797155 DOI: 10.1186/s13068-020-01869-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/24/2020] [Indexed: 05/08/2023]
Abstract
The production of biofuels as an efficient source of renewable energy has received considerable attention due to increasing energy demands and regulatory incentives to reduce greenhouse gas emissions. Second-generation biofuel feedstocks, including agricultural crop residues generated on-farm during annual harvests, are abundant, inexpensive, and sustainable. Unlike first-generation feedstocks, which are enriched in easily fermentable carbohydrates, crop residue cell walls are highly resistant to saccharification, fermentation, and valorization. Crop residues contain recalcitrant polysaccharides, including cellulose, hemicelluloses, pectins, and lignin and lignin-carbohydrate complexes. In addition, their cell walls can vary in linkage structure and monosaccharide composition between plant sources. Characterization of total cell wall structure, including high-resolution analyses of saccharide composition, linkage, and complex structures using chromatography-based methods, nuclear magnetic resonance, -omics, and antibody glycome profiling, provides critical insight into the fine chemistry of feedstock cell walls. Furthermore, improving both the catalytic potential of microbial communities that populate biodigester reactors and the efficiency of pre-treatments used in bioethanol production may improve bioconversion rates and yields. Toward this end, knowledge and characterization of carbohydrate-active enzymes (CAZymes) involved in dynamic biomass deconstruction is pivotal. Here we overview the use of common "-omics"-based methods for the study of lignocellulose-metabolizing communities and microorganisms, as well as methods for annotation and discovery of CAZymes, and accurate prediction of CAZyme function. Emerging approaches for analysis of large datasets, including metagenome-assembled genomes, are also discussed. Using complementary glycomic and meta-omic methods to characterize agricultural residues and the microbial communities that digest them provides promising streams of research to maximize value and energy extraction from crop waste streams.
Collapse
Affiliation(s)
- Jeffrey P Tingley
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403-1st Avenue South, Lethbridge, AB, T1J 4B1, Canada
- Department of Biochemistry, University of Lethbridge, Lethbridge, AB, T1K 6T5, Canada
| | - Kristin E Low
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403-1st Avenue South, Lethbridge, AB, T1J 4B1, Canada
| | - Xiaohui Xing
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403-1st Avenue South, Lethbridge, AB, T1J 4B1, Canada
| | - D Wade Abbott
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403-1st Avenue South, Lethbridge, AB, T1J 4B1, Canada.
- Department of Biochemistry, University of Lethbridge, Lethbridge, AB, T1K 6T5, Canada.
| |
Collapse
|
8
|
O'Neill MA, Black I, Urbanowicz B, Bharadwaj V, Crowley M, Koj S, Peña MJ. Locating Methyl-Etherified and Methyl-Esterified Uronic Acids in the Plant Cell Wall Pectic Polysaccharide Rhamnogalacturonan II. SLAS Technol 2020; 25:329-344. [PMID: 32468908 DOI: 10.1177/2472630320923321] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Rhamnogalacturonan II (RG-II) is a structurally complex pectic polysaccharide that exists as a borate ester cross-linked dimer in the cell walls of all vascular plants. The glycosyl sequence of RG-II is largely conserved, but there is evidence that galacturonic acid (GalA) methyl etherification and glucuronic acid (GlcA) methyl esterification vary in the A sidechain across plant species. Methyl esterification of the galacturonan backbone has also been reported but not confirmed. Here we describe a new procedure, utilizing aq. sodium borodeuteride (NaBD4)-reduced RG-II, to identify the methyl esterification status of backbone GalAs. Our data suggest that up to two different GalAs are esterified in the RG-II backbone. We also adapted a procedure based on methanolysis and NaBD4 reduction to identify 3-, 4-, and 3,4-O-methyl GalA in RG-II. These data, together with matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF) MS analysis of sidechain A generated from selected RG-IIs and their NaBD4-reduced counterparts, suggest that methyl etherification of the β-linked GalA and methyl esterification of the GlcA are widespread. Nevertheless, the extent of these modifications varies between plant species. Our analysis of the sidechain B glycoforms in RG-II from different dicots and nonpoalean monocots suggests that this sidechain has a minimum structure of an O-acetylated hexasaccharide (Ara-[MeFuc]-Gal-AceA-Rha-Api-). To complement these studies, we provide further evidence showing that dimer formation and stability in vitro is cation and borate dependent. Taken together, our data further refine the primary sequence and sequence variation of RG-II and provide additional insight into dimer stability and factors controlling dimer self-assembly.
Collapse
Affiliation(s)
- Malcolm A O'Neill
- Complex Carbohydrate Research Center, The University of Georgia, Athens, GA, USA
| | - Ian Black
- Complex Carbohydrate Research Center, The University of Georgia, Athens, GA, USA
| | - Breeanna Urbanowicz
- Complex Carbohydrate Research Center, The University of Georgia, Athens, GA, USA
| | | | - Mike Crowley
- National Renewable Energy Laboratory, Golden, CO, USA
| | - Sabina Koj
- Complex Carbohydrate Research Center, The University of Georgia, Athens, GA, USA
| | - Maria J Peña
- Complex Carbohydrate Research Center, The University of Georgia, Athens, GA, USA
| |
Collapse
|
9
|
Legumes display common and host-specific responses to the rhizobial cellulase CelC2 during primary symbiotic infection. Sci Rep 2019; 9:13907. [PMID: 31554862 PMCID: PMC6761101 DOI: 10.1038/s41598-019-50337-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 09/02/2019] [Indexed: 01/08/2023] Open
Abstract
Primary infection of legumes by rhizobia involves the controlled localized enzymatic breakdown of cell walls at root hair tips. Previous studies determined the role of rhizobial CelC2 cellulase in different steps of the symbiotic interaction Rhizobium leguminosarum-Trifolium repens. Recent findings also showed that CelC2 influences early signalling events in the Ensifer meliloti-Medicago truncatula interaction. Here, we have monitored the root hair phenotypes of two legume plants, T. repens and M. sativa, upon inoculation with strains of their cognate and non-cognate rhizobial species, R. leguminosarum bv trifolii and E. meliloti, (over)expressing the CelC2 coding gene, celC. Regardless of the host, CelC2 specifically elicited ‘hole-on-the-tip’ events (Hot phenotype) in the root hair apex, consistent with the role of this endoglucanase in eroding the noncrystalline cellulose found in polarly growing cell walls. Overproduction of CelC2 also increased root hair tip redirections (RaT phenotype) events in both cognate and non-cognate hosts. Interestingly, heterologous celC expression also induced non-canonical alterations in ROS (Reactive Oxygen Species) homeostasis at root hair tips of Trifolium and Medicago. These results suggest the concurrence of shared unspecific and host-related plant responses to CelC2 during early steps of symbiotic rhizobial infection. Our data thus identify CelC2 cellulase as an important determinant of events underlying early infection of the legume host by rhizobia.
Collapse
|
10
|
Milewska-Hendel A, Witek W, Rypień A, Zubko M, Baranski R, Stróż D, Kurczyńska EU. The development of a hairless phenotype in barley roots treated with gold nanoparticles is accompanied by changes in the symplasmic communication. Sci Rep 2019; 9:4724. [PMID: 30886208 PMCID: PMC6423127 DOI: 10.1038/s41598-019-41164-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 02/26/2019] [Indexed: 11/09/2022] Open
Abstract
Uptake of water and nutrients by roots affects the ontogenesis of the whole plant. Nanoparticles, e.g. gold nanoparticles, have a broad range of applications in many fields which leads to the transfer of these materials into the environment. Thus, the understanding of their impact on the growth and development of the root system is an emerging issue. During our studies on the effect of positively charged gold nanoparticles on the barley roots, a hairless phenotype was found. We investigated whether this phenotype correlates with changes in symplasmic communication, which is an important factor that regulates, among others, differentiation of the rhizodermis into hair and non-hair cells. The results showed no restriction in symplasmic communication in the treated roots, in contrast to the control roots, in which the trichoblasts and atrichoblasts were symplasmically isolated during their differentiation. Moreover, differences concerning the root morphology, histology, ultrastructure and the cell wall composition were detected between the control and the treated roots. These findings suggest that the harmful effect of nanoparticles on plant growth may, among others, consist in disrupting the symplasmic communication/isolation, which leads to the development of a hairless root phenotype, thus limiting the functioning of the roots.
Collapse
Affiliation(s)
- Anna Milewska-Hendel
- Department of Cell Biology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, 28 Jagiellońska Street, 40-032, Katowice, Poland.
| | - Weronika Witek
- Department of Cell Biology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, 28 Jagiellońska Street, 40-032, Katowice, Poland
| | - Aleksandra Rypień
- Laboratory of Microscopy Techniques, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, 28 Jagiellońska Street, 40-032, Katowice, Poland
| | - Maciej Zubko
- Institute of Materials Science, Faculty of Computer Science and Materials Science, University of Silesia in Katowice, 75 Pułku Piechoty Street 1a, Chorzów, 41-500, Poland
- Department of Physics, University of Hradec Králové, Hradec Králové, Czech Republic
| | - Rafal Baranski
- Institute of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. 29 Listopada 54, 31-425, Krakow, Poland
| | - Danuta Stróż
- Institute of Materials Science, Faculty of Computer Science and Materials Science, University of Silesia in Katowice, 75 Pułku Piechoty Street 1a, Chorzów, 41-500, Poland
| | - Ewa U Kurczyńska
- Department of Cell Biology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, 28 Jagiellońska Street, 40-032, Katowice, Poland.
| |
Collapse
|
11
|
Libault M. Transcriptional Reprogramming of Legume Genomes: Perspective and Challenges Associated With Single-Cell and Single Cell-Type Approaches During Nodule Development. FRONTIERS IN PLANT SCIENCE 2018; 9:1600. [PMID: 30467509 PMCID: PMC6237103 DOI: 10.3389/fpls.2018.01600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 10/17/2018] [Indexed: 05/11/2023]
Abstract
Transcriptomic approaches revealed thousands of genes differentially or specifically expressed during nodulation, a biological process resulting from the symbiosis between leguminous plant roots and rhizobia, atmospheric nitrogen-fixing symbiotic bacteria. Ultimately, nodulation will lead to the development of a new root organ, the nodule. Through functional genomic studies, plant transcriptomes have been used by scientists to reveal plant genes potentially controlling nodulation. However, it is important to acknowledge that the physiology, transcriptomic programs, and biochemical properties of the plant cells involved in nodulation are continuously regulated. They also differ between the different cell-types composing the nodules. To generate a more accurate picture of the transcriptome, epigenome, proteome, and metabolome of the cells infected by rhizobia and cells composing the nodule, there is a need to implement plant single-cell and single cell-types strategies and methods. Accessing such information would allow a better understanding of the infection of plant cells by rhizobia and will help understanding the complex interactions existing between rhizobia and the plant cells. In this mini-review, we are reporting the current knowledge on legume nodulation gained by plant scientists at the level of single cell-types, and provide perspectives on single cell/single cell-type approaches when applied to legume nodulation.
Collapse
Affiliation(s)
- Marc Libault
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, United States
- Centre for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, United States
- Center for Root and Rhizobiome Innovation, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
12
|
Cole RA, Peremyslov VV, Van Why S, Moussaoui I, Ketter A, Cool R, Moreno MA, Vejlupkova Z, Dolja VV, Fowler JE. A broadly conserved NERD genetically interacts with the exocyst to affect root growth and cell expansion. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3625-3637. [PMID: 29722827 PMCID: PMC6022600 DOI: 10.1093/jxb/ery162] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 04/24/2018] [Indexed: 05/10/2023]
Abstract
The exocyst, a conserved, octameric protein complex, helps mediate secretion at the plasma membrane, facilitating specific developmental processes that include control of root meristem size, cell elongation, and tip growth. A genetic screen for second-site enhancers in Arabidopsis identified NEW ENHANCER of ROOT DWARFISM1 (NERD1) as an exocyst interactor. Mutations in NERD1 combined with weak exocyst mutations in SEC8 and EXO70A1 result in a synergistic reduction in root growth. Alone, nerd1 alleles modestly reduce primary root growth, both by shortening the root meristem and by reducing cell elongation, but also result in a slight increase in root hair length, bulging, and rupture. NERD1 was identified molecularly as At3g51050, which encodes a transmembrane protein of unknown function that is broadly conserved throughout the Archaeplastida. A functional NERD1-GFP fusion localizes to the Golgi, in a pattern distinct from the plasma membrane-localized exocyst, arguing against a direct NERD1-exocyst interaction. Structural modeling suggests the majority of the protein is positioned in the lumen, in a β-propeller-like structure that has some similarity to proteins that bind polysaccharides. We suggest that NERD1 interacts with the exocyst indirectly, possibly affecting polysaccharides destined for the cell wall, and influencing cell wall characteristics in a developmentally distinct manner.
Collapse
Affiliation(s)
- Rex A Cole
- Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, USA
| | - Valera V Peremyslov
- Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, USA
| | - Savannah Van Why
- Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, USA
| | - Ibrahim Moussaoui
- Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, USA
| | - Ann Ketter
- Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, USA
| | - Renee Cool
- Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, USA
| | - Matthew Andres Moreno
- Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, USA
| | - Zuzana Vejlupkova
- Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, USA
| | - Valerian V Dolja
- Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, USA
| | - John E Fowler
- Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, USA
- Correspondence:
| |
Collapse
|
13
|
Avci U, Peña MJ, O'Neill MA. Changes in the abundance of cell wall apiogalacturonan and xylogalacturonan and conservation of rhamnogalacturonan II structure during the diversification of the Lemnoideae. PLANTA 2018; 247:953-971. [PMID: 29288327 DOI: 10.1007/s00425-017-2837-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 12/18/2017] [Indexed: 06/07/2023]
Abstract
The diversification of the Lemnoideae was accompanied by a reduction in the abundance of cell wall apiogalacturonan and an increase in xylogalacturonan whereas rhamnogalacturonan II structure and cross-linking are conserved. The subfamily Lemnoideae is comprised of five genera and 38 species of small, fast-growing aquatic monocots. Lemna minor and Spirodela polyrhiza belong to this subfamily and have primary cell walls that contain large amounts of apiogalacturonan and thus are distinct from the primary walls of most other flowering plants. However, the pectins in the cell walls of other members of the Lemnoideae have not been investigated. Here, we show that apiogalacturonan decreased substantially as the Lemnoideae diversified since Wolffiella and Wolffia walls contain between 63 and 88% less apiose than Spirodela, Landoltia, and Lemna walls. In Wolffia, the most derived genus, xylogalacturonan is far more abundant than apiogalacturonan, whereas in Wolffiella pectic polysaccharides have a high arabinose content, which may arise from arabinan sidechains of RG I. The apiose-containing pectin rhamnogalacturonan II (RG-II) exists in Lemnoideae walls as a borate cross-linked dimer and has a glycosyl sequence similar to RG-II from terrestrial plants. Nevertheless, species-dependent variations in the extent of methyl-etherification of RG-II sidechain A and arabinosylation of sidechain B are discernible. Immunocytochemical studies revealed that pectin methyl-esterification is higher in developing daughter frond walls than in mother frond walls, indicating that methyl-esterification is associated with expanding cells. Our data support the notion that a functional cell wall requires conservation of RG-II structure and cross-linking but can accommodate structural changes in other pectins. The Lemnoideae provide a model system to study the mechanisms by which wall structure and composition has changed in closely related plants with similar growth habits.
Collapse
Affiliation(s)
- Utku Avci
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
- Faculty of Engineering, Bioengineering Department, Recep Tayyip Erdogan University, 53100, Rize, Turkey
| | - Maria J Peña
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Malcolm A O'Neill
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|