1
|
State of the Art of the Molecular Biology of the Interaction between Cocoa and Witches’ Broom Disease: A Systematic Review. Int J Mol Sci 2023; 24:ijms24065684. [PMID: 36982760 PMCID: PMC10057015 DOI: 10.3390/ijms24065684] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/02/2022] [Accepted: 12/04/2022] [Indexed: 03/19/2023] Open
Abstract
Significant scientific advances to elucidate the Moniliophthora perniciosa pathosystem have been achieved in recent years, but the molecular biology of this pathogen-host interaction is still a field with many unanswered questions. In order to present insights at the molecular level, we present the first systematic review on the theme. All told, 1118 studies were extracted from public databases. Of these, 109 were eligible for the review, based on the inclusion and exclusion criteria. The results indicated that understanding the transition from the biotrophic-necrotrophic phase of the fungus is crucial for control of the disease. Proteins with strong biotechnological potential or that can be targets for pathosystem intervention were identified, but studies regarding possible applications are still limited. The studies identified revealed important genes in the M. perniciosa-host interaction and efficient molecular markers in the search for genetic variability and sources of resistance, with Theobroma cacao being the most common host. An arsenal of effectors already identified and not explored in the pathosystem were highlighted. This systematic review contributes to the understanding of the pathosystem at the molecular level, offering new insights and proposing different paths for the development of new strategies to control witches’ broom disease.
Collapse
|
2
|
Genome-wide association studies and genomic selection assays made in a large sample of cacao (Theobroma cacao L.) germplasm reveal significant marker-trait associations and good predictive value for improving yield potential. PLoS One 2022; 17:e0260907. [PMID: 36201531 PMCID: PMC9536643 DOI: 10.1371/journal.pone.0260907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 09/13/2022] [Indexed: 11/19/2022] Open
Abstract
A genome-wide association study (GWAS) was undertaken to unravel marker-trait associations (MTAs) between SNP markers and phenotypic traits. It involved a subset of 421 cacao accessions from the large and diverse collection conserved ex situ at the International Cocoa Genebank Trinidad. A Mixed Linear Model (MLM) in TASSEL was used for the GWAS and followed by confirmatory analyses using GAPIT FarmCPU. An average linkage disequilibrium (r2) of 0.10 at 5.2 Mb was found across several chromosomes. Seventeen significant (P ≤ 8.17 × 10-5 (-log10 (p) = 4.088)) MTAs of interest, including six that pertained to yield-related traits, were identified using TASSEL MLM. The latter accounted for 5 to 17% of the phenotypic variation expressed. The highly significant association (P ≤ 8.17 × 10-5) between seed length to width ratio and TcSNP 733 on chromosome 5 was verified with FarmCPU (P ≤ 1.12 × 10-8). Fourteen MTAs were common to both the TASSEL and FarmCPU models at P ≤ 0.003. The most significant yield-related MTAs involved seed number and seed length on chromosome 7 (P ≤ 1.15 × 10-14 and P ≤ 6.75 × 10-05, respectively) and seed number on chromosome 1 (P ≤ 2.38 × 10-05), based on the TASSEL MLM. It was noteworthy that seed length, seed length to width ratio and seed number were associated with markers at different loci, indicating their polygenic nature. Approximately 40 candidate genes that encode embryo and seed development, protein synthesis, carbohydrate transport and lipid biosynthesis and transport were identified in the flanking regions of the significantly associated SNPs and in linkage disequilibrium with them. A significant association of fruit surface anthocyanin intensity co-localised with MYB-related protein 308 on chromosome 4. Testing of a genomic selection approach revealed good predictive value (genomic estimated breeding values (GEBV)) for economic traits such as seed number (GEBV = 0.611), seed length (0.6199), seed width (0.5435), seed length to width ratio (0.5503), seed/cotyledon mass (0.6014) and ovule number (0.6325). The findings of this study could facilitate genomic selection and marker-assisted breeding of cacao thereby expediting improvement in the yield potential of cacao planting material.
Collapse
|
3
|
Genome-Wide Association Study Reveals Novel Candidate Genes Associated with Productivity and Disease Resistance to Moniliophthora spp. in Cacao ( Theobroma cacao L.). G3-GENES GENOMES GENETICS 2020; 10:1713-1725. [PMID: 32169867 PMCID: PMC7202020 DOI: 10.1534/g3.120.401153] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Cacao (Theobroma cacao L.), the source of chocolate, is one of the most important commodity products worldwide that helps improve the economic livelihood of farmers. Diseases like frosty pod rot caused by Moniliophthora roreri and witches’ broom caused by Moniliophthora perniciosa limit the cacao productivity, this can be solved by using resistant varieties. In the current study, we sequenced 229 cacao accessions using genotyping-by-sequencing to examine the genetic diversity and population structure employing 9,003 and 8,131 single nucleotide polymorphisms recovered by mapping against two cacao genomes (Criollo B97-61/B2 v2 and Matina 1-6 v1.1). In the phenotypic evaluation, three promising accessions for productivity and 10 with good tolerance to the frosty pod rot and witches’ broom diseases were found. A genome-wide association study was performed on 102 accessions, discovering two genes associated with productivity and seven to disease resistance. The results enriched the knowledge of the genetic regions associated with important cacao traits that can have significant implications for conservation and breeding strategies like marker-assisted selection.
Collapse
|
4
|
Niu S, Koiwa H, Song Q, Qiao D, Chen J, Zhao D, Chen Z, Wang Y, Zhang T. Development of core-collections for Guizhou tea genetic resources and GWAS of leaf size using SNP developed by genotyping-by-sequencing. PeerJ 2020; 8:e8572. [PMID: 32206447 PMCID: PMC7075365 DOI: 10.7717/peerj.8572] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 01/15/2020] [Indexed: 11/20/2022] Open
Abstract
An accurate depiction of the genetic relationship, the development of core collection, and genome-wide association analysis (GWAS) are key for the effective exploitation and utilization of genetic resources. Here, genotyping-by-sequencing (GBS) was used to characterize 415 tea accessions mostly collected from the Guizhou region in China. A total of 30,282 high-quality SNPs was used to estimate the genetic relationships, develop core collections, and perform GWAS. We suggest 198 and 148 accessions to represent the core set and mini-core set, which consist of 47% and 37% of the whole collection, respectively, and contain 93–95% of the total SNPs. Furthermore, the frequencies of all alleles and genotypes in the whole set were very well retained in the core set and mini-core set. The 415 accessions were clustered into 14 groups and the core and the mini-core collections contain accessions from each group, species, cultivation status and growth habit. By analyzing the significant SNP markers associated with multiple traits, nine SNPs were found to be significantly associated with four leaf size traits, namely MLL, MLW, MLA and MLSI (P < 1.655E−06). This study characterized the genetic distance and relationship of tea collections, suggested the core collections, and established an efficient GWAS analysis of GBS result.
Collapse
Affiliation(s)
- Suzhen Niu
- Guiyang Station for DUS Testing Center of New Plant Varteties (MOA) / Institute of Tea, Guizhou Academy of Agricultural Sciences, Guiyang, China.,The Key Laboratory of Plant Resources Conservation and Germplasm Innovationin Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering / College of Tea Science, Guizhou University, Guiyang, China
| | - Hisashi Koiwa
- Vegetable and Fruit Improvement Center, Department of Horticultural Sciences, Molecular and Environmental Plant Sciences Program, Texas A&M University, College Station, Texas, USA
| | - Qinfei Song
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovationin Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering / College of Tea Science, Guizhou University, Guiyang, China
| | - Dahe Qiao
- Guiyang Station for DUS Testing Center of New Plant Varteties (MOA) / Institute of Tea, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Juan Chen
- Guiyang Station for DUS Testing Center of New Plant Varteties (MOA) / Institute of Tea, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Degang Zhao
- Guiyang Station for DUS Testing Center of New Plant Varteties (MOA) / Institute of Tea, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Zhengwu Chen
- Guiyang Station for DUS Testing Center of New Plant Varteties (MOA) / Institute of Tea, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Ying Wang
- Wuhan Benagen Tech Solutions Company Limited, Wuhan, China
| | - Tianyuan Zhang
- Wuhan Benagen Tech Solutions Company Limited, Wuhan, China
| |
Collapse
|
5
|
Vázquez-Ovando A, Escalona-Buendía H, Ovando-Medina I, Salvador-Figueroa M. Association Between SSR Molecular Markers and Chemical and Sensory Traits of Cacao Samples Using Multiple Regression Analysis. Biochem Genet 2018; 57:301-322. [PMID: 30284127 DOI: 10.1007/s10528-018-9891-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 09/25/2018] [Indexed: 11/26/2022]
Abstract
The sensory properties of cacao beans are linked to the chemical composition of the seeds, and both characteristics are the partial results of its allelic composition. Therefore, it is useful to search for molecular markers associated with these traits. We perform multiple regression analysis to associate previously generated data of alleles generated with 12 SSR (of cultivated cacao trees) with data obtained from chemical and sensory characterization (of beans) of plants grown in the southern region from Mexico. When the association was significant, the mathematical models for predictive purposes were proposed. All phenotypic traits evaluated showed equations with setting values R2 > 0.5. All chemical characters tested have a significant association with at least two alleles (P < 0.05). In addition, the fat content was associated with six molecular markers (mTcCIR03209, mTcCIR12188, mTcCIR19286, mTcCIR07150, mTcCIR19310). The most common allele was mTcCIR12188, which was associated with the contents of eicosanoic acid, moisture, fat and total polyphenols content. The mTcCIR28362 allele is associated with sensory characters bitterness, musty odor, and roasted odor. These alleles could be useful as molecular markers of chemical and sensory characteristics of cacao samples.
Collapse
Affiliation(s)
- Alfredo Vázquez-Ovando
- Instituto de Biociencias, Universidad Autónoma de Chiapas. Boulevard Príncipe Akishino sin número, Colonia Solidaridad 2000, C.P. 30798, Tapachula, Chiapas, Mexico
| | - Héctor Escalona-Buendía
- Departamento de Biotecnología, Universidad Autónoma Metropolitana, Unidad Iztapalapa, 09340, Ciudad de México, Mexico
| | - Isidro Ovando-Medina
- Instituto de Biociencias, Universidad Autónoma de Chiapas. Boulevard Príncipe Akishino sin número, Colonia Solidaridad 2000, C.P. 30798, Tapachula, Chiapas, Mexico
| | - Miguel Salvador-Figueroa
- Instituto de Biociencias, Universidad Autónoma de Chiapas. Boulevard Príncipe Akishino sin número, Colonia Solidaridad 2000, C.P. 30798, Tapachula, Chiapas, Mexico.
| |
Collapse
|
6
|
Zhang M, Zhou C, Song Z, Weng Q, Li M, Ji H, Mo X, Huang H, Lu W, Luo J, Li F, Gan S. The first identification of genomic loci in plants associated with resistance to galling insects: a case study in Eucalyptus L'Hér. (Myrtaceae). Sci Rep 2018; 8:2319. [PMID: 29396525 DOI: 10.1038/s41598-41018-20780-41599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 01/24/2018] [Indexed: 05/28/2023] Open
Abstract
Genomic loci related with resistance to gall-inducing insects have not been identified in any plants. Here, association mapping was used to identify molecular markers for resistance to the gall wasp Leptocybe invasa in two Eucalyptus species. A total of 86 simple sequence repeats (SSR) markers were screened out from 839 SSRs and used for association mapping in E. grandis. By applying the mixed linear model, seven markers were identified to be associated significantly (P ≤ 0.05) with the gall wasp resistance in E. grandis, including two validated with a correction of permutation test (P ≤ 0.008). The proportion of the variance in resistance explained by a significant marker ranged from 3.3% to 37.8%. Four out of the seven significant associations in E. grandis were verified and also validated (P ≤ 0.073 in a permutation test) in E. tereticornis, with the variation explained ranging from 24.3% to 48.5%. Favourable alleles with positive effect were also mined from the significant markers in both species. These results provide insight into the genetic control of gall wasp resistance in plants and have great potential for marker-assisted selection for resistance to L. invasa in the important tree genus Eucalyptus.
Collapse
Affiliation(s)
- Miaomiao Zhang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Xiangshan Road, Beijing, 100091, China
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Longdong, Guangzhou, 510520, China
- College of Forestry, South China Agricultural University, 284 Block, Wushan Street, Guangzhou, 510642, China
| | - Changpin Zhou
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Xiangshan Road, Beijing, 100091, China
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Longdong, Guangzhou, 510520, China
| | - Zhijiao Song
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Xiangshan Road, Beijing, 100091, China
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Longdong, Guangzhou, 510520, China
- Baoshan University, Yuanzheng Road, Baoshan, 678000, China
| | - Qijie Weng
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Longdong, Guangzhou, 510520, China
| | - Mei Li
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Longdong, Guangzhou, 510520, China
| | - Hongxia Ji
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Longdong, Guangzhou, 510520, China
| | - Xiaoyong Mo
- College of Forestry, South China Agricultural University, 284 Block, Wushan Street, Guangzhou, 510642, China
| | - Huanhua Huang
- Guangdong Academy of Forestry, Longdong, Guangzhou, 510520, China
| | - Wanhong Lu
- China Eucalypt Research Centre, Zhanjiang, 524022, China
| | - Jianzhong Luo
- China Eucalypt Research Centre, Zhanjiang, 524022, China
| | - Fagen Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Xiangshan Road, Beijing, 100091, China.
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Longdong, Guangzhou, 510520, China.
| | - Siming Gan
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Xiangshan Road, Beijing, 100091, China.
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Longdong, Guangzhou, 510520, China.
| |
Collapse
|
7
|
Zhang M, Zhou C, Song Z, Weng Q, Li M, Ji H, Mo X, Huang H, Lu W, Luo J, Li F, Gan S. The first identification of genomic loci in plants associated with resistance to galling insects: a case study in Eucalyptus L'Hér. (Myrtaceae). Sci Rep 2018; 8:2319. [PMID: 29396525 PMCID: PMC5797152 DOI: 10.1038/s41598-018-20780-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 01/24/2018] [Indexed: 01/30/2023] Open
Abstract
Genomic loci related with resistance to gall-inducing insects have not been identified in any plants. Here, association mapping was used to identify molecular markers for resistance to the gall wasp Leptocybe invasa in two Eucalyptus species. A total of 86 simple sequence repeats (SSR) markers were screened out from 839 SSRs and used for association mapping in E. grandis. By applying the mixed linear model, seven markers were identified to be associated significantly (P ≤ 0.05) with the gall wasp resistance in E. grandis, including two validated with a correction of permutation test (P ≤ 0.008). The proportion of the variance in resistance explained by a significant marker ranged from 3.3% to 37.8%. Four out of the seven significant associations in E. grandis were verified and also validated (P ≤ 0.073 in a permutation test) in E. tereticornis, with the variation explained ranging from 24.3% to 48.5%. Favourable alleles with positive effect were also mined from the significant markers in both species. These results provide insight into the genetic control of gall wasp resistance in plants and have great potential for marker-assisted selection for resistance to L. invasa in the important tree genus Eucalyptus.
Collapse
Affiliation(s)
- Miaomiao Zhang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Xiangshan Road, Beijing, 100091, China
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Longdong, Guangzhou, 510520, China
- College of Forestry, South China Agricultural University, 284 Block, Wushan Street, Guangzhou, 510642, China
| | - Changpin Zhou
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Xiangshan Road, Beijing, 100091, China
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Longdong, Guangzhou, 510520, China
| | - Zhijiao Song
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Xiangshan Road, Beijing, 100091, China
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Longdong, Guangzhou, 510520, China
- Baoshan University, Yuanzheng Road, Baoshan, 678000, China
| | - Qijie Weng
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Longdong, Guangzhou, 510520, China
| | - Mei Li
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Longdong, Guangzhou, 510520, China
| | - Hongxia Ji
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Longdong, Guangzhou, 510520, China
| | - Xiaoyong Mo
- College of Forestry, South China Agricultural University, 284 Block, Wushan Street, Guangzhou, 510642, China
| | - Huanhua Huang
- Guangdong Academy of Forestry, Longdong, Guangzhou, 510520, China
| | - Wanhong Lu
- China Eucalypt Research Centre, Zhanjiang, 524022, China
| | - Jianzhong Luo
- China Eucalypt Research Centre, Zhanjiang, 524022, China
| | - Fagen Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Xiangshan Road, Beijing, 100091, China.
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Longdong, Guangzhou, 510520, China.
| | - Siming Gan
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Xiangshan Road, Beijing, 100091, China.
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Longdong, Guangzhou, 510520, China.
| |
Collapse
|
8
|
McElroy MS, Navarro AJR, Mustiga G, Stack C, Gezan S, Peña G, Sarabia W, Saquicela D, Sotomayor I, Douglas GM, Migicovsky Z, Amores F, Tarqui O, Myles S, Motamayor JC. Prediction of Cacao ( Theobroma cacao) Resistance to Moniliophthora spp. Diseases via Genome-Wide Association Analysis and Genomic Selection. FRONTIERS IN PLANT SCIENCE 2018; 9:343. [PMID: 29662497 PMCID: PMC5890178 DOI: 10.3389/fpls.2018.00343] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 02/28/2018] [Indexed: 05/21/2023]
Abstract
Cacao (Theobroma cacao) is a globally important crop, and its yield is severely restricted by disease. Two of the most damaging diseases, witches' broom disease (WBD) and frosty pod rot disease (FPRD), are caused by a pair of related fungi: Moniliophthora perniciosa and Moniliophthora roreri, respectively. Resistant cultivars are the most effective long-term strategy to address Moniliophthora diseases, but efficiently generating resistant and productive new cultivars will require robust methods for screening germplasm before field testing. Marker-assisted selection (MAS) and genomic selection (GS) provide two potential avenues for predicting the performance of new genotypes, potentially increasing the selection gain per unit time. To test the effectiveness of these two approaches, we performed a genome-wide association study (GWAS) and GS on three related populations of cacao in Ecuador genotyped with a 15K single nucleotide polymorphism (SNP) microarray for three measures of WBD infection (vegetative broom, cushion broom, and chirimoya pod), one of FPRD (monilia pod) and two productivity traits (total fresh weight of pods and % healthy pods produced). GWAS yielded several SNPs associated with disease resistance in each population, but none were significantly correlated with the same trait in other populations. Genomic selection, using one population as a training set to estimate the phenotypes of the remaining two (composed of different families), varied among traits, from a mean prediction accuracy of 0.46 (vegetative broom) to 0.15 (monilia pod), and varied between training populations. Simulations demonstrated that selecting seedlings using GWAS markers alone generates no improvement over selecting at random, but that GS improves the selection process significantly. Our results suggest that the GWAS markers discovered here are not sufficiently predictive across diverse germplasm to be useful for MAS, but that using all markers in a GS framework holds substantial promise in accelerating disease-resistance in cacao.
Collapse
Affiliation(s)
- Michel S. McElroy
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS, Canada
| | - Alberto J. R. Navarro
- MARS, Incorporated c/o United States Department of Agriculture – Agricultural Research Service, Miami, FL, United States
| | - Guiliana Mustiga
- MARS, Incorporated c/o United States Department of Agriculture – Agricultural Research Service, Miami, FL, United States
| | - Conrad Stack
- MARS, Incorporated c/o United States Department of Agriculture – Agricultural Research Service, Miami, FL, United States
| | - Salvador Gezan
- School of Forest Resources and Conservation, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL, United States
| | - Geover Peña
- Instituto Nacional de Investigaciones Agropecuarias, Quito, Ecuador
| | - Widem Sarabia
- Instituto Nacional de Investigaciones Agropecuarias, Quito, Ecuador
| | - Diego Saquicela
- Instituto Nacional de Investigaciones Agropecuarias, Quito, Ecuador
| | | | - Gavin M. Douglas
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Zoë Migicovsky
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS, Canada
| | - Freddy Amores
- Facultad de Ciencias Agrarias, Universidad Técnica Estatal de Quevedo, Quevedo, Ecuador
| | - Omar Tarqui
- Instituto Nacional de Investigaciones Agropecuarias, Quito, Ecuador
| | - Sean Myles
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS, Canada
| | - Juan C. Motamayor
- MARS, Incorporated c/o United States Department of Agriculture – Agricultural Research Service, Miami, FL, United States
- *Correspondence: Juan C. Motamayor,
| |
Collapse
|
9
|
Wickramasuriya AM, Dunwell JM. Cacao biotechnology: current status and future prospects. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:4-17. [PMID: 28985014 PMCID: PMC5785363 DOI: 10.1111/pbi.12848] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 09/25/2017] [Accepted: 09/28/2017] [Indexed: 05/03/2023]
Abstract
Theobroma cacao-The Food of the Gods, provides the raw material for the multibillion dollar chocolate industry and is also the main source of income for about 6 million smallholders around the world. Additionally, cocoa beans have a number of other nonfood uses in the pharmaceutical and cosmetic industries. Specifically, the potential health benefits of cocoa have received increasing attention as it is rich in polyphenols, particularly flavonoids. At present, the demand for cocoa and cocoa-based products in Asia is growing particularly rapidly and chocolate manufacturers are increasing investment in this region. However, in many Asian countries, cocoa production is hampered due to many reasons including technological, political and socio-economic issues. This review provides an overview of the present status of global cocoa production and recent advances in biotechnological applications for cacao improvement, with special emphasis on genetics/genomics, in vitro embryogenesis and genetic transformation. In addition, in order to obtain an insight into the latest innovations in the commercial sector, a survey was conducted on granted patents relating to T. cacao biotechnology.
Collapse
Affiliation(s)
| | - Jim M. Dunwell
- School of Agriculture, Policy and DevelopmentUniversity of ReadingReadingUK
| |
Collapse
|
10
|
Livingstone D, Stack C, Mustiga GM, Rodezno DC, Suarez C, Amores F, Feltus FA, Mockaitis K, Cornejo OE, Motamayor JC. A Larger Chocolate Chip-Development of a 15K Theobroma cacao L. SNP Array to Create High-Density Linkage Maps. FRONTIERS IN PLANT SCIENCE 2017; 8:2008. [PMID: 29259608 PMCID: PMC5723429 DOI: 10.3389/fpls.2017.02008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 11/10/2017] [Indexed: 05/30/2023]
Abstract
Cacao (Theobroma cacao L.) is an important cash crop in tropical regions around the world and has a rich agronomic history in South America. As a key component in the cosmetic and confectionary industries, millions of people worldwide use products made from cacao, ranging from shampoo to chocolate. An Illumina Infinity II array was created using 13,530 SNPs identified within a small diversity panel of cacao. Of these SNPs, 12,643 derive from variation within annotated cacao genes. The genotypes of 3,072 trees were obtained, including two mapping populations from Ecuador. High-density linkage maps for these two populations were generated and compared to the cacao genome assembly. Phenotypic data from these populations were combined with the linkage maps to identify the QTLs for yield and disease resistance.
Collapse
Affiliation(s)
| | | | | | | | - Carmen Suarez
- Estación Experimental Tropical Pichilingue, National Institute of Agricultural Research, Quevedo, Ecuador
- Agricultural Faculty, Technical University of Quevedo, Quevedo, Ecuador
| | - Freddy Amores
- Estación Experimental Tropical Pichilingue, National Institute of Agricultural Research, Quevedo, Ecuador
- Universidad Técnica Estatal Quevedo (UTEQ), Quevedo, Ecuador
| | - Frank A. Feltus
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, United States
| | - Keithanne Mockaitis
- Department of Biology and Pervasive Technology Institute, Indiana University Bloomington, Bloomington, IN, United States
| | - Omar E. Cornejo
- School of Biological Sciences, Washington State University, Pullman, WA, United States
| | | |
Collapse
|
11
|
Osorio-Guarín JA, Berdugo-Cely J, Coronado RA, Zapata YP, Quintero C, Gallego-Sánchez G, Yockteng R. Colombia a Source of Cacao Genetic Diversity As Revealed by the Population Structure Analysis of Germplasm Bank of Theobroma cacao L. FRONTIERS IN PLANT SCIENCE 2017; 8:1994. [PMID: 29209353 PMCID: PMC5702303 DOI: 10.3389/fpls.2017.01994] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/06/2017] [Indexed: 05/17/2023]
Abstract
Beans of the species Theobroma cacao L., also known as cacao, are the raw material to produce chocolate. Colombian cacao has been classified as a fine flavor cacao that represents the 5% of cacao world's production. Colombian genetic resources from this species are conserved in ex situ and in-field germplasm banks, since T. cacao has recalcitrant seeds to desication and long-term storage. Currently, the collection of T. cacao of the Colombian Corporation of Agricultural Research (CORPOICA) has approximately 700 germplasm accessions. We conducted a molecular analysis of Corpoica's cacao collection and a morphological characterization of some accessions with the goal to study its genetic diversity and population structure and, to select interesting accessions for the cacao's breeding program. Phenotypic evaluation was performed based on 18 morphological traits and 4 biochemical traits. PCA analysis of morphological traits explained 60.6% of the total variation in seven components and 100% of the total variation of biochemical traits in four components, grouping the collection in 4 clusters for both variables. We explored 565 accessions from Corpoica's germplasm and 252 accessions from reference populations using 96 single nucleotide polymorphism (SNP) molecular markers. Molecular patterns of cacao Corpoica's collection were obtained amplifying specific alleles in a Fluidigm platform that used integrated circuits of fluids. Corpoica's collection showed highest genetic diversity [Expected Heterozygosity (HE = 0.314), Observed Heterozygosity (HO = 0.353)] that is reduced when reference populations were included in the dataset (HE = 0.294, HO = 0.261). The collection was divided into four clusters based on population structure analysis. Cacao accessions from distinct groups showed some taxonomic concordance and reflected their geographic origins. For instance, accessions classified as Criollo were clearly differentiated in one group and we identified two new Colombian genetic groups. Using a number of allelic variations based on 87 SNP markers and 22 different morphological/biochemical traits, a core collection with a total of 232 accessions was selected as a primary genetic resource for cacao breeders.
Collapse
Affiliation(s)
- Jaime A. Osorio-Guarín
- Centro de Investigación Tibaitatá, Corporación Colombiana de Investigación Agropecuaria – Corpoica, Cundinamarca, Colombia
| | - Jhon Berdugo-Cely
- Centro de Investigación Tibaitatá, Corporación Colombiana de Investigación Agropecuaria – Corpoica, Cundinamarca, Colombia
| | - Roberto Antonio Coronado
- Centro de Investigación Tibaitatá, Corporación Colombiana de Investigación Agropecuaria – Corpoica, Cundinamarca, Colombia
| | | | | | | | - Roxana Yockteng
- Centro de Investigación Tibaitatá, Corporación Colombiana de Investigación Agropecuaria – Corpoica, Cundinamarca, Colombia
- Institut de Systématique, Evolution, Biodiversité-UMR-CNRS 7205, National Museum of Natural History, Paris, France
| |
Collapse
|