1
|
Shakir AM, Geng M, Tian J, Wang R. Dissection of QTLs underlying the genetic basis of drought resistance in wheat: a meta-analysis. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2025; 138:25. [PMID: 39786445 DOI: 10.1007/s00122-024-04811-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 12/20/2024] [Indexed: 01/12/2025]
Abstract
Wheat (Triticum aestivum L.) is one of the most important cereal crops, with its grain serving as a predominant staple food source on a global scale. However, there are many biotic and abiotic stresses challenging the stability of wheat production. Among the abiotic stresses, drought is recognized as a significant stress and poses a substantial threat to food production and quality throughout the world. Raising drought tolerance of wheat varieties through genetic regulation is therefore considered as one of the most effective ways to combat the challenges caused by drought stress. Meta-QTL analysis has demonstrated its effectiveness in identifying consensus QTL regions in wheat drought resistance in numerous instances. In this study, we present a comprehensive meta-analysis aimed at unraveling the drought tolerance genetic basis associated with agronomic traits in bread wheat. Extracting data from 34 previously published studies, we aggregated a corpus of 1291 Quantitative Trait Loci (QTL) pertinent to wheat drought tolerance. Then, the translation of the consensus genetic map yielded a comprehensive compendium of 49 distinct MQTLs, each associated with diverse agronomic traits. Prominently featured among the MQTLs were MQTLs 1.1, 1.7, 1.8 (1D), 4.1 (4A), 4.6 (4D), 5.2 (5B), 6.6 (6B), and 7.2 (7B), distinguished as pivotal MQTLs offering significant potential for application in marker-assisted breeding endeavors. Altogether, a total of 66 putative candidate genes (CGs)-related drought tolerance were identified. This work illustrates a translational research approach in transferring information from published mapping studies to genomic regions hosting major QTLs governing key agronomical traits in wheat.
Collapse
Affiliation(s)
- Arif Mehmood Shakir
- College of Agronomy, Hebei Agricultural University, Baoding, 071000, Hebei, China
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agriculture University, Baoding, 071000, Hebei, China
| | - Miaomiao Geng
- College of Agronomy, Hebei Agricultural University, Baoding, 071000, Hebei, China
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agriculture University, Baoding, 071000, Hebei, China
| | - Jiahao Tian
- College of Agronomy, Hebei Agricultural University, Baoding, 071000, Hebei, China
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agriculture University, Baoding, 071000, Hebei, China
| | - Ruihui Wang
- College of Agronomy, Hebei Agricultural University, Baoding, 071000, Hebei, China.
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agriculture University, Baoding, 071000, Hebei, China.
| |
Collapse
|
2
|
Slawin C, Ajayi O, Mahalingam R. Association mapping unravels the genetic basis for drought related traits in different developmental stages of barley. Sci Rep 2024; 14:25121. [PMID: 39448604 PMCID: PMC11502909 DOI: 10.1038/s41598-024-73618-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/19/2024] [Indexed: 10/26/2024] Open
Abstract
Drought stress significantly reduces crop yields at all stages of plant development. Barley, known for its abiotic-stress adaptation among cereals was used to examine the genetic basis of drought tolerance. A population of 164 spring barley lines was subjected to polyethylene glycol (PEG) induced drought stress during germination and seedling development. Six traits were measured, including germination percentage and rate, seedling length and weight, and root-to-shoot ratios. Seedling area, volume, and root and shoot diameter was acquired with a flatbed scanner. This population was also subjected to short-term drought during the heading stage in the greenhouse. Root and shoot weight and grain yield data were collected from well watered and droughted plants. Significant variation within traits were observed and several of them exhibited strong correlations with each other. In this population, two genotypes had 100% germination under PEG-induced drought and drought tolerance throughout the heading stage of plant development. A genome-wide association scan (GWAS) revealed 64 significant marker-trait associations across all seven barley chromosomes. Candidate genes related to abiotic stress and germination were identified within a 0.5Mbp interval around these SNPs. In silico analysis indicated a high frequency of differential expression of the candidate genes in response to stress. This study enabled identification of barley lines useful for drought tolerance breeding and pinpointed candidate genes for enhancing drought resiliency in barley.
Collapse
Affiliation(s)
- Connor Slawin
- Cereal Crops Research Unit, USDA-ARS, 502 Walnut Street, Madison, WI, 53726, USA
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, 55108, USA
| | - Oyeyemi Ajayi
- Cereal Crops Research Unit, USDA-ARS, 502 Walnut Street, Madison, WI, 53726, USA
| | | |
Collapse
|
3
|
Devanna BN, Sucharita S, Sunitha NC, Anilkumar C, Singh PK, Pramesh D, Samantaray S, Behera L, Katara JL, Parameswaran C, Rout P, Sabarinathan S, Rajashekara H, Sharma TR. Refinement of rice blast disease resistance QTLs and gene networks through meta-QTL analysis. Sci Rep 2024; 14:16458. [PMID: 39013915 PMCID: PMC11252161 DOI: 10.1038/s41598-024-64142-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 06/05/2024] [Indexed: 07/18/2024] Open
Abstract
Rice blast disease is the most devastating disease constraining crop productivity. Vertical resistance to blast disease is widely studied despite its instability. Clusters of genes or QTLs conferring blast resistance that offer durable horizontal resistance are important in resistance breeding. In this study, we aimed to refine the reported QTLs and identify stable meta-QTLs (MQTLs) associated with rice blast resistance. A total of 435 QTLs were used to project 71 MQTLs across all the rice chromosomes. As many as 199 putative rice blast resistance genes were identified within 53 MQTL regions. The genes included 48 characterized resistance gene analogs and related proteins, such as NBS-LRR type, LRR receptor-like kinase, NB-ARC domain, pathogenesis-related TF/ERF domain, elicitor-induced defense and proteins involved in defense signaling. MQTL regions with clusters of RGA were also identified. Fifteen highly significant MQTLs included 29 candidate genes and genes characterized for blast resistance, such as Piz, Nbs-Pi9, pi55-1, pi55-2, Pi3/Pi5-1, Pi3/Pi5-2, Pikh, Pi54, Pik/Pikm/Pikp, Pb1 and Pb2. Furthermore, the candidate genes (42) were associated with differential expression (in silico) in compatible and incompatible reactions upon disease infection. Moreover, nearly half of the genes within the MQTL regions were orthologous to those in O. sativa indica, Z. mays and A. thaliana, which confirmed their significance. The peak markers within three significant MQTLs differentiated blast-resistant and susceptible lines and serve as potential surrogates for the selection of blast-resistant lines. These MQTLs are potential candidates for durable and broad-spectrum rice blast resistance and could be utilized in blast resistance breeding.
Collapse
Affiliation(s)
| | - Sumali Sucharita
- ICAR-National Rice Research Institute, Cuttack, Odisha, 753006, India
| | - N C Sunitha
- ICAR-National Rice Research Institute, Cuttack, Odisha, 753006, India
| | - C Anilkumar
- ICAR-National Rice Research Institute, Cuttack, Odisha, 753006, India
| | - Pankaj K Singh
- Department of Biotechnology, University Centre for Research and Development, Chandigarh University, Mohali, Punjab, 140413, India
| | - D Pramesh
- University of Agricultural Sciences, Raichur, Karnataka, India
| | | | - Lambodar Behera
- ICAR-National Rice Research Institute, Cuttack, Odisha, 753006, India
| | | | - C Parameswaran
- ICAR-National Rice Research Institute, Cuttack, Odisha, 753006, India
| | - Prachitara Rout
- ICAR-National Rice Research Institute, Cuttack, Odisha, 753006, India
| | | | | | - Tilak Raj Sharma
- Division of Crop Science, Indian Council of Agricultural Research, Krishi Bhavan, New Delhi, 110001, India.
| |
Collapse
|
4
|
Du B, Wu J, Wang Q, Sun C, Sun G, Zhou J, Zhang L, Xiong Q, Ren X, Lu B. Genome-wide screening of meta-QTL and candidate genes controlling yield and yield-related traits in barley (Hordeum vulgare L.). PLoS One 2024; 19:e0303751. [PMID: 38768114 PMCID: PMC11104655 DOI: 10.1371/journal.pone.0303751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 04/30/2024] [Indexed: 05/22/2024] Open
Abstract
Increasing yield is an important goal of barley breeding. In this study, 54 papers published from 2001-2022 on QTL mapping for yield and yield-related traits in barley were collected, which contained 1080 QTLs mapped to the barley high-density consensus map for QTL meta-analysis. These initial QTLs were integrated into 85 meta-QTLs (MQTL) with a mean confidence interval (CI) of 2.76 cM, which was 7.86-fold narrower than the CI of the initial QTL. Among these 85 MQTLs, 68 MQTLs were validated in GWAS studies, and 25 breeder's MQTLs were screened from them. Seventeen barley orthologs of yield-related genes in rice and maize were identified within the hcMQTL region based on comparative genomics strategy and were presumed to be reliable candidates for controlling yield-related traits. The results of this study provide useful information for molecular marker-assisted breeding and candidate gene mining of yield-related traits in barley.
Collapse
Affiliation(s)
- Binbin Du
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Jia Wu
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | | | - Chaoyue Sun
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Genlou Sun
- Biology Department, Saint Mary’s University, Halifax, Canada
| | - Jie Zhou
- Lu’an Academy of Agricultural Science, Lu’an, China
| | - Lei Zhang
- Lu’an Academy of Agricultural Science, Lu’an, China
| | | | - Xifeng Ren
- Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Baowei Lu
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| |
Collapse
|
5
|
Du B, Wu J, Wang M, Wu J, Sun C, Zhang X, Ren X, Wang Q. Detection of consensus genomic regions and candidate genes for quality traits in barley using QTL meta-analysis. FRONTIERS IN PLANT SCIENCE 2024; 14:1319889. [PMID: 38283973 PMCID: PMC10811794 DOI: 10.3389/fpls.2023.1319889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/26/2023] [Indexed: 01/30/2024]
Abstract
Improving barley grain quality is a major goal in barley breeding. In this study, a total of 35 papers focusing on quantitative trait loci (QTLs) mapping for barley quality traits published since 2000 were collected. Among the 454 QTLs identified in these studies, 349 of them were mapped onto high-density consensus maps, which were used for QTL meta-analysis. Through QTL meta-analysis, the initial QTLs were integrated into 41 meta-QTLs (MQTLs) with an average confidence interval (CI) of 1. 66 cM, which is 88.9% narrower than that of the initial QTLs. Among the 41 identified MQTLs, 25 were subsequently validated in publications using genome-wide association study (GWAS). From these 25 validated MQTLs, ten breeder's MQTLs were selected. Synteny analysis comparing barley and wheat MQTLs revealed orthologous relationships between eight breeder's MQTLs and 45 wheat MQTLs. Additionally, 17 barley homologs associated with rice quality traits were identified within the regions of the breeder's MQTLs through comparative analysis. The findings of this study provide valuable insights for molecular marker-assisted breeding and the identification of candidate genes related to quality traits in barley.
Collapse
Affiliation(s)
- Binbin Du
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu’an, Anhui, China
| | - Jindong Wu
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu’an, Anhui, China
| | - Meng Wang
- Xingtai Agriculture and Rural Bureau, Xingtai, Hebei, China
| | - Jia Wu
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu’an, Anhui, China
| | - Chaoyue Sun
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu’an, Anhui, China
| | - Xingen Zhang
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu’an, Anhui, China
| | - Xifeng Ren
- Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Qifei Wang
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Paul M, Tanskanen J, Jääskeläinen M, Chang W, Dalal A, Moshelion M, Schulman AH. Drought and recovery in barley: key gene networks and retrotransposon response. FRONTIERS IN PLANT SCIENCE 2023; 14:1193284. [PMID: 37377802 PMCID: PMC10291200 DOI: 10.3389/fpls.2023.1193284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/09/2023] [Indexed: 06/29/2023]
Abstract
Introduction During drought, plants close their stomata at a critical soil water content (SWC), together with making diverse physiological, developmental, and biochemical responses. Methods Using precision-phenotyping lysimeters, we imposed pre-flowering drought on four barley varieties (Arvo, Golden Promise, Hankkija 673, and Morex) and followed their physiological responses. For Golden Promise, we carried out RNA-seq on leaf transcripts before and during drought and during recovery, also examining retrotransposon BARE1expression. Transcriptional data were subjected to network analysis. Results The varieties differed by their critical SWC (ϴcrit), Hankkija 673 responding at the highest and Golden Promise at the lowest. Pathways connected to drought and salinity response were strongly upregulated during drought; pathways connected to growth and development were strongly downregulated. During recovery, growth and development pathways were upregulated; altogether, 117 networked genes involved in ubiquitin-mediated autophagy were downregulated. Discussion The differential response to SWC suggests adaptation to distinct rainfall patterns. We identified several strongly differentially expressed genes not earlier associated with drought response in barley. BARE1 transcription is strongly transcriptionally upregulated by drought and downregulated during recovery unequally between the investigated cultivars. The downregulation of networked autophagy genes suggests a role for autophagy in drought response; its importance to resilience should be further investigated.
Collapse
Affiliation(s)
- Maitry Paul
- HiLIFE Institute of Biotechnology, University of Helsinki, Helsinki, Finland
- Viikki Plant Science Centre (ViPS), University of Helsinki, Helsinki, Finland
| | - Jaakko Tanskanen
- HiLIFE Institute of Biotechnology, University of Helsinki, Helsinki, Finland
- Viikki Plant Science Centre (ViPS), University of Helsinki, Helsinki, Finland
- Production Systems, Natural Resources Institute Finland (LUKE), Helsinki, Finland
| | - Marko Jääskeläinen
- HiLIFE Institute of Biotechnology, University of Helsinki, Helsinki, Finland
- Viikki Plant Science Centre (ViPS), University of Helsinki, Helsinki, Finland
| | - Wei Chang
- HiLIFE Institute of Biotechnology, University of Helsinki, Helsinki, Finland
- Viikki Plant Science Centre (ViPS), University of Helsinki, Helsinki, Finland
| | - Ahan Dalal
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Menachem Moshelion
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Alan H. Schulman
- HiLIFE Institute of Biotechnology, University of Helsinki, Helsinki, Finland
- Viikki Plant Science Centre (ViPS), University of Helsinki, Helsinki, Finland
- Production Systems, Natural Resources Institute Finland (LUKE), Helsinki, Finland
| |
Collapse
|
7
|
Okunlola G, Badu-Apraku B, Ariyo O, Agre P, Offernedo Q, Ayo-Vaughan M. Genome-wide association studies of Striga resistance in extra-early maturing quality protein maize inbred lines. G3 (BETHESDA, MD.) 2023; 13:jkac237. [PMID: 36073937 PMCID: PMC9911053 DOI: 10.1093/g3journal/jkac237] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/03/2022] [Indexed: 11/14/2022]
Abstract
Identification of genes associated with Striga resistance is invaluable for accelerating genetic gains in breeding for Striga resistance in maize. We conducted a genome-wide association study to identify genomic regions associated with grain yield and other agronomic traits under artificial Striga field infestation. One hundred and forty-one extra-early quality protein maize inbred lines were phenotyped for key agronomic traits. The inbred lines were also genotyped using 49,185 DArTseq markers from which 8,143 were retained for population structure analysis and genome wide-association study. Cluster analysis and population structure revealed the presence of 3 well-defined genetic groups. Using the mixed linear model, 22 SNP markers were identified to be significantly associated with grain yield, Striga damage at 10 weeks after planting, number of emerged Striga plants at 8 and 10 weeks after planting and ear aspect. The identified SNP markers would be useful for breeders for marker-assisted selection to accelerate the genetic enhancement of maize for Striga resistance in sub-Saharan Africa after validation.
Collapse
Affiliation(s)
- Gbemisola Okunlola
- Maize Improvement Programme, International Institute of Tropical Agriculture, IITA, Oyo Road, Ibadan 200001, Oyo ,5320, Nigeria
- Department of Plant Breeding and Seed Technology, Federal University of Agriculture, Abeokuta 110124, Ogun, 2240, Nigeria
| | - Baffour Badu-Apraku
- Maize Improvement Programme, International Institute of Tropical Agriculture, IITA, Oyo Road, Ibadan 200001, Oyo ,5320, Nigeria
| | - Omolayo Ariyo
- Department of Plant Breeding and Seed Technology, Federal University of Agriculture, Abeokuta 110124, Ogun, 2240, Nigeria
| | - Paterne Agre
- Maize Improvement Programme, International Institute of Tropical Agriculture, IITA, Oyo Road, Ibadan 200001, Oyo ,5320, Nigeria
| | - Queen Offernedo
- Maize Improvement Programme, International Institute of Tropical Agriculture, IITA, Oyo Road, Ibadan 200001, Oyo ,5320, Nigeria
| | - Moninuola Ayo-Vaughan
- Department of Plant Breeding and Seed Technology, Federal University of Agriculture, Abeokuta 110124, Ogun, 2240, Nigeria
| |
Collapse
|
8
|
Zhu J, Zhou H, Fan Y, Guo Y, Zhang M, Shabala S, Zhao C, Lv C, Guo B, Wang F, Zhou M, Xu R. HvNCX, a prime candidate gene for the novel qualitative locus qS7.1 associated with salinity tolerance in barley. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:9. [PMID: 36656369 PMCID: PMC9852152 DOI: 10.1007/s00122-023-04267-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
A major QTL (qS7.1) for salinity damage score and Na+ exclusion was identified on chromosome 7H from a barley population derived from a cross between a cultivated variety and a wild accession. qS7.1 was fine-mapped to a 2.46 Mb physical interval and HvNCX encoding a sodium/calcium exchanger is most likely the candidate gene. Soil salinity is one of the major abiotic stresses affecting crop yield. Developing salinity-tolerant varieties is critical for minimizing economic penalties caused by salinity and providing solutions for global food security. Many genes/QTL for salt tolerance have been reported in barley, but only a few of them have been cloned. In this study, a total of 163 doubled haploid lines from a cross between a cultivated barley variety Franklin and a wild barley accession TAM407227 were used to map QTL for salinity tolerance. Four significant QTL were identified for salinity damage scores. One (qS2.1) was located on 2H, determining 7.5% of the phenotypic variation. Two (qS5.1 and qS5.2) were located on 5H, determining 5.3-11.7% of the phenotypic variation. The most significant QTL was found on 7H, explaining 27.8% of the phenotypic variation. Two QTL for Na+ content in leaves under salinity stress were detected on chromosomes 1H (qNa1.1) and 7H(qNa7.1). qS7.1 was fine-mapped to a 2.46 Mb physical interval using F4 recombinant inbred lines. This region contains 23 high-confidence genes, with HvNCX which encodes a sodium/calcium exchanger being most likely the candidate gene. HvNCX was highly induced by salinity stress and showed a greater expression level in the sensitive parent. Multiple nucleotide substitutions and deletions/insertions in the promoter sequence of HvNCX were found between the two parents. cDNA sequencing of the HvNCX revealed that the difference between the two parents is conferred by a single Ala77/Pro77 amino acid substitution, which is located on the transmembrane domain. These findings open new prospects for improving salinity tolerance in barley by targeting a previously unexplored trait.
Collapse
Affiliation(s)
- Juan Zhu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/ Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/ Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, 225009, China
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 1375, Prospect, TAS, 7250, Australia
| | - Hui Zhou
- Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/ Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/ Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, 225009, China
| | - Yun Fan
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 1375, Prospect, TAS, 7250, Australia
| | - Yu Guo
- Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/ Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/ Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, 225009, China
| | - Mengna Zhang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/ Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/ Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, 225009, China
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 1375, Prospect, TAS, 7250, Australia
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, 528000, China
- School of Biological Sciences, University of Western Australia, Perth, WA, 6009, Australia
| | - Chenchen Zhao
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 1375, Prospect, TAS, 7250, Australia
| | - Chao Lv
- Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/ Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/ Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, 225009, China
| | - Baojian Guo
- Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/ Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/ Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, 225009, China
| | - Feifei Wang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/ Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/ Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, 225009, China
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 1375, Prospect, TAS, 7250, Australia.
| | - Rugen Xu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/ Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/ Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
9
|
Arriagada O, Arévalo B, Cabeza RA, Carrasco B, Schwember AR. Meta-QTL Analysis for Yield Components in Common Bean ( Phaseolus vulgaris L.). PLANTS (BASEL, SWITZERLAND) 2022; 12:117. [PMID: 36616246 PMCID: PMC9824219 DOI: 10.3390/plants12010117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/15/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Common bean is one of the most important legumes produced and consumed worldwide because it is a highly valuable food for the human diet. However, its production is mainly carried out by small farmers, who obtain average grain yields below the potential yield of the species. In this sense, numerous mapping studies have been conducted to identify quantitative trait loci (QTL) associated with yield components in common bean. Meta-QTL (MQTL) analysis is a useful approach to combine data sets and for creating consensus positions for the QTL detected in independent studies. Consequently, the objective of this study was to perform a MQTL analysis to identify the most reliable and stable genomic regions associated with yield-related traits of common bean. A total of 667 QTL associated with yield-related traits reported in 21 different studies were collected. A total of 42 MQTL associated with yield-related traits were identified, in which the average confidence interval (CI) of the MQTL was 3.41 times lower than the CIs of the original QTL. Most of the MQTL (28) identified in this study contain QTL associated with yield and phenological traits; therefore, these MQTL can be useful in common bean breeding programs. Finally, a total of 18 candidate genes were identified and associated with grain yield within these MQTL, with functions related to ubiquitin ligase complex, response to auxin, and translation elongation factor activity.
Collapse
Affiliation(s)
- Osvin Arriagada
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Bárbara Arévalo
- Centro de Estudios en Alimentos Procesados, Talca 3460000, Chile
| | - Ricardo A. Cabeza
- Departamento de Producción Agrícola, Facultad de Ciencias Agrarias, Universidad de Talca, Talca 3460000, Chile
| | - Basilio Carrasco
- Centro de Estudios en Alimentos Procesados, Talca 3460000, Chile
| | - Andrés R. Schwember
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| |
Collapse
|
10
|
Wang S, Li H, Dong Z, Wang C, Wei X, Long Y, Wan X. Genetic structure and molecular mechanism underlying the stalk lodging traits in maize ( Zea mays L.). Comput Struct Biotechnol J 2022; 21:485-494. [PMID: 36618981 PMCID: PMC9803694 DOI: 10.1016/j.csbj.2022.12.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/03/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Stalk lodging seriously affects yield and quality of crops, and it can be caused by several factors, such as environments, developmental stages, and internal chemical components of plant stalks. Breeding of stalk lodging-resistant varieties is thus an important task for maize breeders. To better understand the genetic basis underlying stalk lodging resistance, several methods such as quantitative trait locus (QTL) mapping and genome-wide association study (GWAS) have been used to mine potential gene resources. Based on different types of genetic populations and mapping methods, many significant loci associated with stalk lodging resistance have been identified so far. However, few work has been performed to compare and integrate these reported genetic loci. In this study, we first collected hundreds of QTLs and quantitative trait nucleotides (QTNs) related to stalk lodging traits in maize. Then we mapped and integrated the QTLs and QTNs in maize genome to identify overlapped hotspot regions. Based on the genomic confidence intervals harboring these overlapped hotspot regions, we predicted candidate genes related to stalk lodging traits. Meanwhile, we mapped reported genes to these hotspot regions. Finally, we constructed molecular regulatory networks underlying stalk lodging resistance in maize. Collectively, this study provides not only useful genetic loci for deeply exploring molecular mechanisms of stalk lodging resistance traits, but also potential candidate genes and targeted strategies for improving stalk lodging resistance to increase crop yields in future.
Collapse
Affiliation(s)
- Shuai Wang
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Innovation School, Research Center of Biology and Agriculture, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Huangai Li
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Innovation School, Research Center of Biology and Agriculture, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Zhenying Dong
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Innovation School, Research Center of Biology and Agriculture, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Cheng Wang
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Innovation School, Research Center of Biology and Agriculture, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xun Wei
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Innovation School, Research Center of Biology and Agriculture, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Yan Long
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Innovation School, Research Center of Biology and Agriculture, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Xiangyuan Wan
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Innovation School, Research Center of Biology and Agriculture, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| |
Collapse
|
11
|
Aloryi KD, Okpala NE, Amo A, Bello SF, Akaba S, Tian X. A meta-quantitative trait loci analysis identified consensus genomic regions and candidate genes associated with grain yield in rice. FRONTIERS IN PLANT SCIENCE 2022; 13:1035851. [PMID: 36466247 PMCID: PMC9709451 DOI: 10.3389/fpls.2022.1035851] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/19/2022] [Indexed: 06/17/2023]
Abstract
Improving grain yield potential in rice is an important step toward addressing global food security challenges. The meta-QTL analysis offers stable and robust QTLs irrespective of the genetic background of mapping populations and phenotype environment and effectively narrows confidence intervals (CI) for candidate gene (CG) mining and marker-assisted selection improvement. To achieve these aims, a comprehensive bibliographic search for grain yield traits (spikelet fertility, number of grains per panicle, panicles number per plant, and 1000-grain weight) QTLs was conducted, and 462 QTLs were retrieved from 47 independent QTL research published between 2002 and 2022. QTL projection was performed using a reference map with a cumulative length of 2,945.67 cM, and MQTL analysis was conducted on 313 QTLs. Consequently, a total of 62 MQTLs were identified with reduced mean CI (up to 3.40 fold) compared to the mean CI of original QTLs. However, 10 of these MQTLs harbored at least six of the initial QTLs from diverse genetic backgrounds and environments and were considered the most stable and robust MQTLs. Also, MQTLs were compared with GWAS studies and resulted in the identification of 16 common significant loci modulating the evaluated traits. Gene annotation, gene ontology (GO) enrichment, and RNA-seq analyses of chromosome regions of the stable MQTLs detected 52 potential CGs including those that have been cloned in previous studies. These genes encode proteins known to be involved in regulating grain yield including cytochrome P450, zinc fingers, MADs-box, AP2/ERF domain, F-box, ubiquitin ligase domain protein, homeobox domain, DEAD-box ATP domain, and U-box domain. This study provides the framework for molecular dissection of grain yield in rice. Moreover, the MQTLs and CGs identified could be useful for fine mapping, gene cloning, and marker-assisted selection to improve rice productivity.
Collapse
Affiliation(s)
- Kelvin Dodzi Aloryi
- Hubei Collaborative Innovation Centre for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Nnaemeka Emmanuel Okpala
- Hubei Collaborative Innovation Centre for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Aduragbemi Amo
- Institute of Plant Breeding, Genetics and Genomics University of Georgia, Athens, GA, United States
| | - Semiu Folaniyi Bello
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Selorm Akaba
- School of Agriculture, University of Cape Coast, Cape Coast, Ghana
| | - Xiaohai Tian
- Hubei Collaborative Innovation Centre for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| |
Collapse
|
12
|
Akbari M, Sabouri H, Sajadi SJ, Yarahmadi S, Ahangar L, Abedi A, Katouzi M. Mega Meta-QTLs: A Strategy for the Production of Golden Barley (Hordeum vulgare L.) Tolerant to Abiotic Stresses. Genes (Basel) 2022; 13:genes13112087. [PMID: 36360327 PMCID: PMC9690463 DOI: 10.3390/genes13112087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
Abiotic stresses cause a significant decrease in productivity and growth in agricultural products, especially barley. Breeding has been considered to create resistance against abiotic stresses. Pyramiding genes for tolerance to abiotic stresses through selection based on molecular markers connected to Mega MQTLs of abiotic tolerance can be one of the ways to reach Golden Barley. In this study, 1162 original QTLs controlling 116 traits tolerant to abiotic stresses were gathered from previous research and mapped from various populations. A consensus genetic map was made, including AFLP, SSR, RFLP, RAPD, SAP, DArT, EST, CAPS, STS, RGA, IFLP, and SNP markers based on two genetic linkage maps and 26 individual linkage maps. Individual genetic maps were created by integrating individual QTL studies into the pre-consensus map. The consensus map covered a total length of 2124.43 cM with an average distance of 0.25 cM between markers. In this study, 585 QTLs and 191 effective genes related to tolerance to abiotic stresses were identified in MQTLs. The most overlapping QTLs related to tolerance to abiotic stresses were observed in MQTL6.3. Furthermore, three MegaMQTL were identified, which explained more than 30% of the phenotypic variation. MQTLs, candidate genes, and linked molecular markers identified are essential in barley breeding and breeding programs to develop produce cultivars resistant to abiotic stresses.
Collapse
Affiliation(s)
- Mahjoubeh Akbari
- Department of Plant Production, Collage of Agriculture Science and Natural Resource, Gonbad Kavous University, Gonbad-e Kavus 4971799151, Iran
| | - Hossein Sabouri
- Department of Plant Production, Collage of Agriculture Science and Natural Resource, Gonbad Kavous University, Gonbad-e Kavus 4971799151, Iran
- Correspondence: (H.S.); (M.K.); Tel.: +98-9111438917 (H.S.); +41-779660486 (M.K.)
| | - Sayed Javad Sajadi
- Department of Plant Production, Collage of Agriculture Science and Natural Resource, Gonbad Kavous University, Gonbad-e Kavus 4971799151, Iran
| | - Saeed Yarahmadi
- Horticulture-Crops Reseaech Department, Golestan Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Gorgan 4969186951, Iran
| | - Leila Ahangar
- Department of Plant Production, Collage of Agriculture Science and Natural Resource, Gonbad Kavous University, Gonbad-e Kavus 4971799151, Iran
| | - Amin Abedi
- Department of Plant Biotechnology, Faculty of Agricultural Sciences, University of Guilan, Rasht 4199613776, Iran
| | - Mahnaz Katouzi
- Crop Génome Dynamics Group, Agroscope Changins, 1260 Nyon, Switzerland
- Correspondence: (H.S.); (M.K.); Tel.: +98-9111438917 (H.S.); +41-779660486 (M.K.)
| |
Collapse
|
13
|
Rahmanzadeh A, Khahani B, Taghavi SM, Khojasteh M, Osdaghi E. Genome-wide meta-QTL analyses provide novel insight into disease resistance repertoires in common bean. BMC Genomics 2022; 23:680. [PMID: 36192697 PMCID: PMC9531352 DOI: 10.1186/s12864-022-08914-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 09/27/2022] [Indexed: 11/02/2023] Open
Abstract
BACKGROUND Common bean (Phaseolus vulgaris) is considered a staple food in a number of developing countries. Several diseases attack the crop leading to substantial economic losses around the globe. However, the crop has rarely been investigated for multiple disease resistance traits using Meta-analysis approach. RESULTS AND CONCLUSIONS In this study, in order to identify the most reliable and stable quantitative trait loci (QTL) conveying disease resistance in common bean, we carried out a meta-QTL (MQTL) analysis using 152 QTLs belonging to 44 populations reported in 33 publications within the past 20 years. These QTLs were decreased into nine MQTLs and the average of confidence interval (CI) was reduced by 2.64 folds with an average of 5.12 cM in MQTLs. Uneven distribution of MQTLs across common bean genome was noted where sub-telomeric regions carry most of the corresponding genes and MQTLs. One MQTL was identified to be specifically associated with resistance to halo blight disease caused by the bacterial pathogen Pseudomonas savastanoi pv. phaseolicola, while three and one MQTLs were specifically associated with resistance to white mold and anthracnose caused by the fungal pathogens Sclerotinia sclerotiorum and Colletotrichum lindemuthianum, respectively. Furthermore, two MQTLs were detected governing resistance to halo blight and anthracnose, while two MQTLs were detected for resistance against anthracnose and white mold, suggesting putative genes governing resistance against these diseases at a shared locus. Comparative genomics and synteny analyses provide a valuable strategy to identify a number of well‑known functionally described genes as well as numerous putative novels candidate genes in common bean, Arabidopsis and soybean genomes.
Collapse
Affiliation(s)
- Asma Rahmanzadeh
- Department of Plant Protection, School of Agriculture, Shiraz University, Shiraz, 71441-65186, Iran
| | - Bahman Khahani
- Department of Plant Genetics and Production, College of Agriculture, Shiraz University, Shiraz, Iran
| | - S Mohsen Taghavi
- Department of Plant Protection, School of Agriculture, Shiraz University, Shiraz, 71441-65186, Iran
| | - Moein Khojasteh
- Department of Plant Protection, School of Agriculture, Shiraz University, Shiraz, 71441-65186, Iran.
| | - Ebrahim Osdaghi
- Department of Plant Protection, College of Agriculture, University of Tehran, Karaj, 31587-77871, Iran.
| |
Collapse
|
14
|
Pan R, Ding M, Feng Z, Zeng F, Medison MB, Hu H, Han Y, Xu L, Li C, Zhang W. HvGST4 enhances tolerance to multiple abiotic stresses in barley: Evidence from integrated meta-analysis to functional verification. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 188:47-59. [PMID: 35981439 DOI: 10.1016/j.plaphy.2022.07.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/18/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
Extreme weather events have become more frequent, increasing crop yield fluctuations in many regions and thus the risk to global food security. Breeding crop cultivars with improved tolerance to a combination of abiotic stresses is an effective solution to counter the adverse impact of climate change. The ever-increasing genomic data and analytical tools provide unprecedented opportunities to mine genes with tolerance to multiple abiotic stresses through bioinformatics analysis. We undertook an integrated meta-analysis using 260 transcriptome data of barley related to drought, salt, heat, cold, and waterlogging stresses. A total of 223 shared differentially expressed genes (DEGs) were identified in response to five abiotic stresses, and significantly enriched in 'glutathione metabolism' and 'monoterpenoid biosynthesis' pathways. Using weighted gene co-expression network analysis (WGCNA), we further identified 15 hub genes (e.g., MYB, WRKY, NADH, and GST4) and selected the GST4 gene for functional validation. HvGST4 overexpression in Arabidopsis thaliana enhanced the tolerance to multiple abiotic stresses, likely through increasing the content of glutathione to scavenge reactive oxygen species and alleviate cell membrane peroxidation. Furthermore, we showed that virus-induced gene silencing (VIGS) of HvGST4 in barley leaves exacerbated cell membrane peroxidation under five abiotic stresses, reducing tolerance to multiple abiotic stress. Our study provides a new solution for identifying genes with tolerance to multiple abiotic stresses based on meta-analysis, which could contribute to breeding new varieties adapted genetically to adverse environmental conditions.
Collapse
Affiliation(s)
- Rui Pan
- Research Center of Crop Stresses Resistance Technologies, Yangtze University, Jingzhou, 434025, China
| | - Minqiang Ding
- Research Center of Crop Stresses Resistance Technologies, Yangtze University, Jingzhou, 434025, China
| | - Zhenbao Feng
- Research Center of Crop Stresses Resistance Technologies, Yangtze University, Jingzhou, 434025, China
| | - Fanrong Zeng
- Research Center of Crop Stresses Resistance Technologies, Yangtze University, Jingzhou, 434025, China
| | - Milca Banda Medison
- Research Center of Crop Stresses Resistance Technologies, Yangtze University, Jingzhou, 434025, China
| | - Haifei Hu
- Western Crop Genetics Alliance, Western Australian State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, 6105, Australia
| | - Yong Han
- Western Crop Genetics Alliance, Western Australian State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, 6105, Australia
| | - Le Xu
- Research Center of Crop Stresses Resistance Technologies, Yangtze University, Jingzhou, 434025, China
| | - Chengdao Li
- Western Crop Genetics Alliance, Western Australian State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, 6105, Australia.
| | - Wenying Zhang
- Research Center of Crop Stresses Resistance Technologies, Yangtze University, Jingzhou, 434025, China.
| |
Collapse
|
15
|
Arriagada O, Gadaleta A, Marcotuli I, Maccaferri M, Campana M, Reveco S, Alfaro C, Matus I, Schwember AR. A comprehensive meta-QTL analysis for yield-related traits of durum wheat ( Triticum turgidum L. var. durum) grown under different water regimes. FRONTIERS IN PLANT SCIENCE 2022; 13:984269. [PMID: 36147234 PMCID: PMC9486101 DOI: 10.3389/fpls.2022.984269] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/18/2022] [Indexed: 05/13/2023]
Abstract
Abiotic stress strongly affects yield-related traits in durum wheat, in particular drought is one of the main environmental factors that have effect on grain yield and plant architecture. In order to obtain new genotypes well adapted to stress conditions, the highest number of desirable traits needs to be combined in the same genotype. In this context, hundreds of quantitative trait loci (QTL) have been identified for yield-related traits in different genetic backgrounds and environments. Meta-QTL (MQTL) analysis is a useful approach to combine data sets and for creating consensus positions for the QTL detected in independent studies for the reliability of their location and effects. MQTL analysis is a useful method to dissect the genetic architecture of complex traits, which provide an extensive allelic coverage, a higher mapping resolution and allow the identification of putative molecular markers useful for marker-assisted selection (MAS). In the present study, a complete and comprehensive MQTL analysis was carried out to identify genomic regions associated with grain-yield related traits in durum wheat under different water regimes. A total of 724 QTL on all 14 chromosomes (genomes A and B) were collected for the 19 yield-related traits selected, of which 468 were reported under rainfed conditions, and 256 under irrigated conditions. Out of the 590 QTL projected on the consensus map, 421 were grouped into 76 MQTL associated with yield components under both irrigated and rainfed conditions, 12 genomic regions containing stable MQTL on all chromosomes except 1A, 4A, 5A, and 6B. Candidate genes associated to MQTL were identified and an in-silico expression analysis was carried out for 15 genes selected among those that were differentially expressed under drought. These results can be used to increase durum wheat grain yields under different water regimes and to obtain new genotypes adapted to climate change.
Collapse
Affiliation(s)
- Osvin Arriagada
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Agata Gadaleta
- Department of Agricultural and Environmental Science, University of Bari Aldo Moro, Bari, Italy
| | - Ilaria Marcotuli
- Department of Agricultural and Environmental Science, University of Bari Aldo Moro, Bari, Italy
| | - Marco Maccaferri
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Matteo Campana
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Samantha Reveco
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Christian Alfaro
- Centro Regional Rayentue, Instituto de Investigaciones Agropecuarias (INIA), Rengo, Chile
| | - Iván Matus
- Centro Regional Quilamapu, Instituto de Investigaciones Agropecuarias (INIA), Chillán, Chile
| | - Andrés R. Schwember
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
16
|
Kong W, Deng X, Liao Z, Wang Y, Zhou M, Wang Z, Li Y. De novo assembly of two chromosome-level rice genomes and bin-based QTL mapping reveal genetic diversity of grain weight trait in rice. FRONTIERS IN PLANT SCIENCE 2022; 13:995634. [PMID: 36072319 PMCID: PMC9443666 DOI: 10.3389/fpls.2022.995634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Following the "green revolution," indica and japonica hybrid breeding has been recognized as a new breakthrough in further improving rice yields. However, heterosis-related grain weight QTLs and the basis of yield advantage among subspecies has not been well elucidated. We herein de novo assembled the chromosome level genomes of an indica/xian rice (Luohui 9) and a japonica/geng rice (RPY geng) and found that gene number differences and structural variations between these two genomes contribute to the differences in agronomic traits and also provide two different favorable allele pools to produce better derived recombinant inbred lines (RILs). In addition, we generated a high-generation (> F15) population of 272 RILs from the cross between Luohui 9 and RPY geng and two testcross hybrid populations derived from the crosses of RILs and two cytoplasmic male sterile lines (YTA, indica and Z7A, japonica). Based on three derived populations, we totally identified eight 1,000-grain weight (KGW) QTLs and eight KGW heterosis loci. Of QTLs, qKGW-6.1 and qKGW-8.1 were accepted as novel KGW QTLs that have not been reported previously. Interestingly, allele genotyping results revealed that heading date related gene (Ghd8) in qKGW-8.1 and qLH-KGW-8.1, can affect grain weight in RILs and rice core accessions and may also play an important role in grain weight heterosis. Our results provided two high-quality genomes and novel gene editing targets for grain weight for future rice yield improvement project.
Collapse
Affiliation(s)
- Weilong Kong
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiaoxiao Deng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhenyang Liao
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yibin Wang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mingao Zhou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhaohai Wang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of the People’s Republic of China, Nanchang, China
| | - Yangsheng Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
17
|
Tanin MJ, Saini DK, Sandhu KS, Pal N, Gudi S, Chaudhary J, Sharma A. Consensus genomic regions associated with multiple abiotic stress tolerance in wheat and implications for wheat breeding. Sci Rep 2022; 12:13680. [PMID: 35953529 PMCID: PMC9372038 DOI: 10.1038/s41598-022-18149-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/05/2022] [Indexed: 12/03/2022] Open
Abstract
In wheat, a meta-analysis was performed using previously identified QTLs associated with drought stress (DS), heat stress (HS), salinity stress (SS), water-logging stress (WS), pre-harvest sprouting (PHS), and aluminium stress (AS) which predicted a total of 134 meta-QTLs (MQTLs) that involved at least 28 consistent and stable MQTLs conferring tolerance to five or all six abiotic stresses under study. Seventy-six MQTLs out of the 132 physically anchored MQTLs were also verified with genome-wide association studies. Around 43% of MQTLs had genetic and physical confidence intervals of less than 1 cM and 5 Mb, respectively. Consequently, 539 genes were identified in some selected MQTLs providing tolerance to 5 or all 6 abiotic stresses. Comparative analysis of genes underlying MQTLs with four RNA-seq based transcriptomic datasets unravelled a total of 189 differentially expressed genes which also included at least 11 most promising candidate genes common among different datasets. The promoter analysis showed that the promoters of these genes include many stress responsiveness cis-regulatory elements, such as ARE, MBS, TC-rich repeats, As-1 element, STRE, LTR, WRE3, and WUN-motif among others. Further, some MQTLs also overlapped with as many as 34 known abiotic stress tolerance genes. In addition, numerous ortho-MQTLs among the wheat, maize, and rice genomes were discovered. These findings could help with fine mapping and gene cloning, as well as marker-assisted breeding for multiple abiotic stress tolerances in wheat.
Collapse
Affiliation(s)
- Mohammad Jafar Tanin
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India.
| | - Dinesh Kumar Saini
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Karansher Singh Sandhu
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99163, USA
| | - Neeraj Pal
- Department of Molecular Biology and Genetic Engineering, G. B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Santosh Gudi
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Jyoti Chaudhary
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, Uttar Pradesh, India
| | - Achla Sharma
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| |
Collapse
|
18
|
Tanin MJ, Saini DK, Sandhu KS, Pal N, Gudi S, Chaudhary J, Sharma A. Consensus genomic regions associated with multiple abiotic stress tolerance in wheat and implications for wheat breeding. Sci Rep 2022; 12:13680. [PMID: 35953529 DOI: 10.1101/2022.06.24.497482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/05/2022] [Indexed: 05/20/2023] Open
Abstract
In wheat, a meta-analysis was performed using previously identified QTLs associated with drought stress (DS), heat stress (HS), salinity stress (SS), water-logging stress (WS), pre-harvest sprouting (PHS), and aluminium stress (AS) which predicted a total of 134 meta-QTLs (MQTLs) that involved at least 28 consistent and stable MQTLs conferring tolerance to five or all six abiotic stresses under study. Seventy-six MQTLs out of the 132 physically anchored MQTLs were also verified with genome-wide association studies. Around 43% of MQTLs had genetic and physical confidence intervals of less than 1 cM and 5 Mb, respectively. Consequently, 539 genes were identified in some selected MQTLs providing tolerance to 5 or all 6 abiotic stresses. Comparative analysis of genes underlying MQTLs with four RNA-seq based transcriptomic datasets unravelled a total of 189 differentially expressed genes which also included at least 11 most promising candidate genes common among different datasets. The promoter analysis showed that the promoters of these genes include many stress responsiveness cis-regulatory elements, such as ARE, MBS, TC-rich repeats, As-1 element, STRE, LTR, WRE3, and WUN-motif among others. Further, some MQTLs also overlapped with as many as 34 known abiotic stress tolerance genes. In addition, numerous ortho-MQTLs among the wheat, maize, and rice genomes were discovered. These findings could help with fine mapping and gene cloning, as well as marker-assisted breeding for multiple abiotic stress tolerances in wheat.
Collapse
Affiliation(s)
- Mohammad Jafar Tanin
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India.
| | - Dinesh Kumar Saini
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Karansher Singh Sandhu
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99163, USA
| | - Neeraj Pal
- Department of Molecular Biology and Genetic Engineering, G. B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Santosh Gudi
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Jyoti Chaudhary
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, Uttar Pradesh, India
| | - Achla Sharma
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| |
Collapse
|
19
|
Sheoran S, Gupta M, Kumari S, Kumar S, Rakshit S. Meta-QTL analysis and candidate genes identification for various abiotic stresses in maize ( Zea mays L.) and their implications in breeding programs. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:26. [PMID: 37309532 PMCID: PMC10248626 DOI: 10.1007/s11032-022-01294-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 03/26/2022] [Indexed: 06/14/2023]
Abstract
Global climate change leads to the concurrence of a number of abiotic stresses including moisture stress (drought, waterlogging), temperature stress (heat, cold), and salinity stress, which are the major factors affecting maize production. To develop abiotic stress tolerance in maize, many quantitative trait loci (QTL) have been identified, but very few of them have been utilized successfully in breeding programs. In this context, the meta-QTL analysis of the reported QTL will enable the identification of stable/real QTL which will pave a reliable way to introgress these QTL into elite cultivars through marker-assisted selection. In this study, a total of 542 QTL were summarized from 33 published studies for tolerance to different abiotic stresses in maize to conduct meta-QTL analysis using BiomercatorV4.2.3. Among those, only 244 major QTL with more than 10% phenotypic variance were preferably utilised to carry out meta-QTL analysis. In total, 32 meta-QTL possessing 1907 candidate genes were detected for different abiotic stresses over diverse genetic and environmental backgrounds. The MQTL2.1, 5.1, 5.2, 5.6, 7.1, 9.1, and 9.2 control different stress-related traits for combined abiotic stress tolerance. The candidate genes for important transcription factor families such as ERF, MYB, bZIP, bHLH, NAC, LRR, ZF, MAPK, HSP, peroxidase, and WRKY have been detected for different stress tolerances. The identified meta-QTL are valuable for future climate-resilient maize breeding programs and functional validation of candidate genes studies, which will help to deepen our understanding of the complexity of these abiotic stresses. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-022-01294-9.
Collapse
Affiliation(s)
- Seema Sheoran
- ICAR-Indian Institute of Maize Research, PAU Campus, Ludhiana, 141004 India
- Present Address: ICAR-Indian Agricultural Research Institute, Regional Station, Karnal, 132001 India
| | - Mamta Gupta
- ICAR-Indian Institute of Maize Research, PAU Campus, Ludhiana, 141004 India
| | - Shweta Kumari
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012 India
| | - Sandeep Kumar
- Present Address: ICAR-Indian Agricultural Research Institute, Regional Station, Karnal, 132001 India
- ICAR-Indian Institute of Pulses Research, Regional Station, Phanda, Bhopal, 462030 India
| | - Sujay Rakshit
- ICAR-Indian Institute of Maize Research, PAU Campus, Ludhiana, 141004 India
| |
Collapse
|
20
|
Prakash NR, Lokeshkumar BM, Rathor S, Warraich AS, Yadav S, Vinaykumar NM, Dushynthkumar BM, Krishnamurthy SL, Sharma PC. Meta-analysis and validation of genomic loci governing seedling and reproductive stage salinity tolerance in rice. PHYSIOLOGIA PLANTARUM 2022; 174:e13629. [PMID: 35040153 DOI: 10.1111/ppl.13629] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/29/2021] [Accepted: 01/13/2022] [Indexed: 05/24/2023]
Abstract
Identification of concurrent genomic regions contributing tolerance to salinity at the seedling and reproductive stages were done using 45 quantitative trait loci (QTL) mapping studies reporting 915 individual QTLs. The QTL-data were used to perform a meta-analysis to predict, validate and analyze the Meta-QTLs governing component traits contributing to salinity tolerance. We predicted a total of 65 and 49 Meta-QTLs distributed across the genome governing seedling and reproductive stage salinity tolerance, respectively. Salinity stress (EC ~10.0 dSm-1 ) was evaluated in a set of 32 genotypes grown hydroponically, from these eight extreme (highly tolerant and highly susceptible) genotypes were selected for validation of significant Meta-QTLs. Another set of eight previously known and reported (highly tolerant and highly susceptible) genotypes were evaluated under saline micro plot conditions (EC ~8.0 dSm-1 ) and used for validation of significant Meta-QTLs for reproductive stage salinity tolerance. The microsatellite marker "RM5635" linked to MSQTL4.2 (~295.43 kb) was able to clearly differentiate contrasting genotypes for seedling stage salinity tolerance, whereas at the reproductive stage, none of the markers were able to validate the predicted Meta-QTL for salinity tolerance. Earlier reported, gene expression studies were used for candidate gene analysis of validated MSQTL4.2, which indicated the down regulation of Os04g0423100, a gene encoding Mono-oxygenase-FAD binding domain containing protein. The traits associated with this Meta-QTL were root and shoot sodium and potassium concentration and leaf chlorophyll content. The identified and validated genomic region assumes a great significant role in seedling stage salinity tolerance in rice, and it can be used for marker-assisted backcross breeding programs.
Collapse
Affiliation(s)
| | | | - Suman Rathor
- ICAR-Central Soil Salinity Research Institute, Karnal, Haryana, India
| | | | - Satyendra Yadav
- ICAR-Central Soil Salinity Research Institute, Karnal, Haryana, India
| | | | | | | | - Parbodh C Sharma
- ICAR-Central Soil Salinity Research Institute, Karnal, Haryana, India
| |
Collapse
|
21
|
Miao Y, Jing F, Ma J, Liu Y, Zhang P, Chen T, Che Z, Yang D. Major Genomic Regions for Wheat Grain Weight as Revealed by QTL Linkage Mapping and Meta-Analysis. FRONTIERS IN PLANT SCIENCE 2022; 13:802310. [PMID: 35222467 PMCID: PMC8866663 DOI: 10.3389/fpls.2022.802310] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/06/2022] [Indexed: 05/21/2023]
Abstract
Grain weight is a key determinant for grain yield potential in wheat, which is highly governed by a type of quantitative genetic basis. The identification of major quantitative trait locus (QTL) and functional genes are urgently required for molecular improvements in wheat grain yield. In this study, major genomic regions and putative candidate genes for thousand grain weight (TGW) were revealed by integrative approaches with QTL linkage mapping, meta-analysis and transcriptome evaluation. Forty-five TGW QTLs were detected using a set of recombinant inbred lines, explaining 1.76-12.87% of the phenotypic variation. Of these, ten stable QTLs were identified across more than four environments. Meta-QTL (MQTL) analysis were performed on 394 initial TGW QTLs available from previous studies and the present study, where 274 loci were finally refined into 67 MQTLs. The average confidence interval of these MQTLs was 3.73-fold less than that of initial QTLs. A total of 134 putative candidate genes were mined within MQTL regions by combined analysis of transcriptomic and omics data. Some key putative candidate genes similar to those reported early for grain development and grain weight formation were further discussed. This finding will provide a better understanding of the genetic determinants of TGW and will be useful for marker-assisted selection of high yield in wheat breeding.
Collapse
Affiliation(s)
- Yongping Miao
- State Key Laboratory of Aridland Crop Science, Gansu, China
- College of Life Science and Technology, Gansu Agricultural University, Gansu, China
| | - Fanli Jing
- State Key Laboratory of Aridland Crop Science, Gansu, China
- College of Life Science and Technology, Gansu Agricultural University, Gansu, China
| | - Jingfu Ma
- State Key Laboratory of Aridland Crop Science, Gansu, China
- College of Life Science and Technology, Gansu Agricultural University, Gansu, China
| | - Yuan Liu
- State Key Laboratory of Aridland Crop Science, Gansu, China
- College of Life Science and Technology, Gansu Agricultural University, Gansu, China
| | - Peipei Zhang
- State Key Laboratory of Aridland Crop Science, Gansu, China
| | - Tao Chen
- State Key Laboratory of Aridland Crop Science, Gansu, China
- College of Life Science and Technology, Gansu Agricultural University, Gansu, China
| | - Zhuo Che
- Plant Seed Master Station of Gansu Province, Gansu, China
| | - Delong Yang
- State Key Laboratory of Aridland Crop Science, Gansu, China
- College of Life Science and Technology, Gansu Agricultural University, Gansu, China
- *Correspondence: Delong Yang,
| |
Collapse
|
22
|
Sandhu N, Pruthi G, Prakash Raigar O, Singh MP, Phagna K, Kumar A, Sethi M, Singh J, Ade PA, Saini DK. Meta-QTL Analysis in Rice and Cross-Genome Talk of the Genomic Regions Controlling Nitrogen Use Efficiency in Cereal Crops Revealing Phylogenetic Relationship. Front Genet 2021; 12:807210. [PMID: 34992638 PMCID: PMC8724540 DOI: 10.3389/fgene.2021.807210] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022] Open
Abstract
The phenomenal increase in the use of nitrogenous fertilizers coupled with poor nitrogen use efficiency is among the most important threats to the environment, economic, and social health. During the last 2 decades, a number of genomic regions associated with nitrogen use efficiency (NUE) and related traits have been reported by different research groups, but none of the stable and major effect QTL have been utilized in the marker-assisted introgression/pyramiding program. Compiling the data available in the literature could be very useful in identifying stable and major effect genomic regions associated with the root and NUE-related trait improving the rice grain yield. In the present study, we performed meta-QTL analysis on 1,330 QTL from 29 studies published in the past 2 decades. A total of 76 MQTL with a stable effect over different genetic backgrounds and environments were identified. The significant reduction in the confidence interval of the MQTL compared to the initial QTL resulted in the identification of annotated and putative candidate genes related to the traits considered in the present study. A hot spot region associated with correlated traits on chr 1, 4, and 8 and candidate genes associated with nitrate transporters, nitrogen content, and ammonium uptake on chromosomes 2, 4, 6, and 8 have been identified. The identified MQTL, putative candidate genes, and their orthologues were validated on our previous studies conducted on rice and wheat. The research-based interventions such as improving nitrogen use efficiency via identification of major genomic regions and candidate genes can be a plausible, simple, and low-cost solution to address the challenges of the crop improvement program.
Collapse
Affiliation(s)
| | | | | | | | - Kanika Phagna
- Indian Institute of Science Education and Research, Berhampur, India
| | - Aman Kumar
- Punjab Agricultural University, Ludhiana, India
| | - Mehak Sethi
- Punjab Agricultural University, Ludhiana, India
| | | | | | | |
Collapse
|
23
|
Zenda T, Liu S, Dong A, Li J, Wang Y, Liu X, Wang N, Duan H. Omics-Facilitated Crop Improvement for Climate Resilience and Superior Nutritive Value. FRONTIERS IN PLANT SCIENCE 2021; 12:774994. [PMID: 34925418 PMCID: PMC8672198 DOI: 10.3389/fpls.2021.774994] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/08/2021] [Indexed: 05/17/2023]
Abstract
Novel crop improvement approaches, including those that facilitate for the exploitation of crop wild relatives and underutilized species harboring the much-needed natural allelic variation are indispensable if we are to develop climate-smart crops with enhanced abiotic and biotic stress tolerance, higher nutritive value, and superior traits of agronomic importance. Top among these approaches are the "omics" technologies, including genomics, transcriptomics, proteomics, metabolomics, phenomics, and their integration, whose deployment has been vital in revealing several key genes, proteins and metabolic pathways underlying numerous traits of agronomic importance, and aiding marker-assisted breeding in major crop species. Here, citing several relevant examples, we appraise our understanding on the recent developments in omics technologies and how they are driving our quest to breed climate resilient crops. Large-scale genome resequencing, pan-genomes and genome-wide association studies are aiding the identification and analysis of species-level genome variations, whilst RNA-sequencing driven transcriptomics has provided unprecedented opportunities for conducting crop abiotic and biotic stress response studies. Meanwhile, single cell transcriptomics is slowly becoming an indispensable tool for decoding cell-specific stress responses, although several technical and experimental design challenges still need to be resolved. Additionally, the refinement of the conventional techniques and advent of modern, high-resolution proteomics technologies necessitated a gradual shift from the general descriptive studies of plant protein abundances to large scale analysis of protein-metabolite interactions. Especially, metabolomics is currently receiving special attention, owing to the role metabolites play as metabolic intermediates and close links to the phenotypic expression. Further, high throughput phenomics applications are driving the targeting of new research domains such as root system architecture analysis, and exploration of plant root-associated microbes for improved crop health and climate resilience. Overall, coupling these multi-omics technologies to modern plant breeding and genetic engineering methods ensures an all-encompassing approach to developing nutritionally-rich and climate-smart crops whose productivity can sustainably and sufficiently meet the current and future food, nutrition and energy demands.
Collapse
Affiliation(s)
- Tinashe Zenda
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, China
- Department of Crop Science, Faculty of Agriculture and Environmental Science, Bindura University of Science Education, Bindura, Zimbabwe
| | - Songtao Liu
- Academy of Agriculture and Forestry Sciences, Hebei North University, Zhangjiakou, China
| | - Anyi Dong
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Jiao Li
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Yafei Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Xinyue Liu
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Nan Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Huijun Duan
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, China
| |
Collapse
|
24
|
Pal N, Saini DK, Kumar S. Meta-QTLs, ortho-MQTLs and candidate genes for the traits contributing to salinity stress tolerance in common wheat ( Triticum aestivum L.). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:2767-2786. [PMID: 35035135 PMCID: PMC8720133 DOI: 10.1007/s12298-021-01112-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 12/04/2021] [Accepted: 12/07/2021] [Indexed: 05/20/2023]
Abstract
A meta-analysis of QTLs associated with the traits contributing to salinity tolerance was undertaken in wheat to detect consensus and robust meta-QTLs (MQTLs) using 844 known QTLs retrieved from 26 earlier studies. A consensus map with a total length of 4621.56 cM including 7710 markers was constructed using 21 individual linkage maps and three previously published integrated genetic maps. Out of 844 QTLs, 571 QTLs were projected on the consensus map which gave origin to 100 MQTLs. Interestingly, 49 MQTLs were co-located with marker-trait associations reported in wheat genome-wide association studies for the traits contributing to salinity stress tolerance. Five potential MQTLs associated with the major salinity-responsive traits were also identified to be utilized in the breeding programme. In the resulted MQTLs, the average confidence interval (CI, 3.58 cM) was reduced up to 4.16 folds compared to the mean CI of the initial QTLs. Furthermore, as many as 617 gene models including 81 most likely candidate genes (CGs) were identified in the high confidence MQTL regions. These most likely CGs encoded proteins mainly belonging to the following families: B-box-type zinc finger, cytochrome P450 protein, pentatricopeptide repeat, phospholipid/glycerol acyltransferase, F-box protein, small auxin-up RNA, UDP-glucosyltransferase, glutathione S-transferase protein, etc. In addition, ortho-MQTL analysis based on synteny among wheat, rice and barley was also performed which permitted the identification of six ortho-MQTLs among these three cereals. This meta-analysis defines a genome-wide landscape on the most stable and consistent loci associated with reliable molecular markers and candidate genes for salinity tolerance in wheat. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01112-0.
Collapse
Affiliation(s)
- Neeraj Pal
- Department of Molecular Biology and Genetic Engineering, G. B. Pant, University of Agriculture and Technology, Pantnagar, Uttarakhand 263145 India
| | - Dinesh Kumar Saini
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab 141004 India
| | - Sundip Kumar
- Department of Molecular Biology and Genetic Engineering, G. B. Pant, University of Agriculture and Technology, Pantnagar, Uttarakhand 263145 India
| |
Collapse
|
25
|
Shariatipour N, Heidari B, Ravi S, Stevanato P. Genomic analysis of ionome-related QTLs in Arabidopsis thaliana. Sci Rep 2021; 11:19194. [PMID: 34584138 PMCID: PMC8479127 DOI: 10.1038/s41598-021-98592-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 09/09/2021] [Indexed: 02/08/2023] Open
Abstract
Ionome contributes to maintain cell integrity and acts as cofactors for catalyzing regulatory pathways. Identifying ionome contributing genomic regions provides a practical framework to dissect the genetic architecture of ionomic traits for use in biofortification. Meta-QTL (MQTL) analysis is a robust method to discover stable genomic regions for traits regardless of the genetic background. This study used information of 483 QTLs for ionomic traits identified from 12 populations for MQTL analysis in Arabidopsis thaliana. The selected QTLs were projected onto the newly constructed genetic consensus map and 33 MQTLs distributed on A. thaliana chromosomes were identified. The average confidence interval (CI) of the drafted MQTLs was 1.30 cM, reduced eight folds from a mean CI of 10.88 cM for the original QTLs. Four MQTLs were considered as stable MQTLs over different genetic backgrounds and environments. In parallel to the gene density over the A. thaliana genome, the genomic distribution of MQTLs over the genetic and physical maps indicated the highest density at non- and sub-telomeric chromosomal regions, respectively. Several candidate genes identified in the MQTLs intervals were associated with ion transportation, tolerance, and homeostasis. The genomic context of the identified MQTLs suggested nine chromosomal regions for Zn, Mn, and Fe control. The QTLs for potassium (K) and phosphorus (P) were the most frequently co-located with Zn (78.3%), Mn (76.2%), and Fe (88.2% and 70.6%) QTLs. The current MQTL analysis demonstrates that meta-QTL analysis is cheaper than, and as informative as genome-wide association study (GWAS) in refining the known QTLs.
Collapse
Affiliation(s)
- Nikwan Shariatipour
- grid.412573.60000 0001 0745 1259Department of Plant Production and Genetics, School of Agriculture, Shiraz University, 7144165186 Shiraz, Iran
| | - Bahram Heidari
- grid.412573.60000 0001 0745 1259Department of Plant Production and Genetics, School of Agriculture, Shiraz University, 7144165186 Shiraz, Iran
| | - Samathmika Ravi
- grid.5608.b0000 0004 1757 3470Department of Agronomy, Animals, Natural Resources and Environment‐ DAFNAE, University of Padova, Legnaro, Padova Italy
| | - Piergiorgio Stevanato
- grid.5608.b0000 0004 1757 3470Department of Agronomy, Animals, Natural Resources and Environment‐ DAFNAE, University of Padova, Legnaro, Padova Italy
| |
Collapse
|
26
|
Wąsek I, Dyda M, Gołębiowska G, Tyrka M, Rapacz M, Szechyńska-Hebda M, Wędzony M. Quantitative trait loci and candidate genes associated with freezing tolerance of winter triticale (× Triticosecale Wittmack). J Appl Genet 2021; 63:15-33. [PMID: 34491554 PMCID: PMC8755666 DOI: 10.1007/s13353-021-00660-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/08/2021] [Accepted: 08/24/2021] [Indexed: 11/25/2022]
Abstract
Freezing tolerance of triticale is a major trait contributing to its winter hardiness. The identification of genomic regions — quantitative trait loci (QTL) and molecular markers associated with freezing tolerance in winter hexaploid triticale — was the aim of this study. For that purpose, a new genetic linkage map was developed for the population of 92 doubled haploid lines derived from ‘Hewo’ × ‘Magnat’ F1 hybrid. Those lines, together with parents were subjected to freezing tolerance test three times during two winter seasons. Plants were grown and cold-hardened under natural fall/winter conditions and then subjected to freezing in controlled conditions. Freezing tolerance was assessed as the plants recovery (REC), the electrolyte leakage (EL) from leaves and chlorophyll fluorescence parameters (JIP) after freezing. Three consistent QTL for several fluorescence parameters, electrolyte leakage, and the percentage of the survived plants were identified with composite interval mapping (CIM) and single marker analysis (SMA). The first locus Qfr.hm-7A.1 explained 9% of variation of both electrolyte leakage and plants recovery after freezing. Two QTL explaining up to 12% of variation in plants recovery and shared by selected chlorophyll fluorescence parameters were found on 4R and 5R chromosomes. Finally, main locus Qchl.hm-5A.1 was detected for chlorophyll fluorescence parameters that explained up to 19.6% of phenotypic variation. The co-located QTL on chromosomes 7A.1, 4R and 5R, clearly indicated physiological and genetic relationship of the plant survival after freezing with the ability to maintain optimal photochemical activity of the photosystem II and preservation of the cell membranes integrity. The genes located in silico within the identified QTL include those encoding BTR1-like protein, transmembrane helix proteins like potassium channel, and phosphoric ester hydrolase involved in response to osmotic stress as well as proteins involved in the regulation of the gene expression, chloroplast RNA processing, and pyrimidine salvage pathway. Additionally, our results confirm that the JIP test is a valuable tool to evaluate freezing tolerance of triticale under unstable winter environments.
Collapse
Affiliation(s)
- I Wąsek
- Institute of Biology, Pedagogical University of Cracow, Podchorążych 2, 30-084, Kraków, Poland
| | - M Dyda
- Institute of Biology, Pedagogical University of Cracow, Podchorążych 2, 30-084, Kraków, Poland
| | - G Gołębiowska
- Institute of Biology, Pedagogical University of Cracow, Podchorążych 2, 30-084, Kraków, Poland.
| | - M Tyrka
- Department of Biotechnology and Bioinformatics, Faculty of Chemistry, Rzeszow University of Technology, Powstańców Warszawy 6, 35-959, Rzeszow, Poland
| | - M Rapacz
- Department of Plant Breeding, Physiology and Seed Science, University of Agriculture in Kraków, Podłużna 3, 30-239, Krakow, Poland
| | - M Szechyńska-Hebda
- Plant Breeding and Acclimatization Institute, National Research Institute, 05-870, Radzików, Błonie, Poland.,The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Krakow, Poland
| | - M Wędzony
- Institute of Biology, Pedagogical University of Cracow, Podchorążych 2, 30-084, Kraków, Poland
| |
Collapse
|
27
|
Yang Y, Amo A, Wei D, Chai Y, Zheng J, Qiao P, Cui C, Lu S, Chen L, Hu YG. Large-scale integration of meta-QTL and genome-wide association study discovers the genomic regions and candidate genes for yield and yield-related traits in bread wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:3083-3109. [PMID: 34142166 DOI: 10.1007/s00122-021-03881-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 06/02/2021] [Indexed: 05/20/2023]
Abstract
Based on the large-scale integration of meta-QTL and Genome-Wide Association Study, 76 high-confidence MQTL regions and 237 candidate genes that affected wheat yield and yield-related traits were discovered. Improving yield and yield-related traits are key goals in wheat breeding program. The integration of accumulated wheat genetic resources provides an opportunity to uncover important genomic regions and candidate genes that affect wheat yield. Here, a comprehensive meta-QTL analysis was conducted on 2230 QTL of yield-related traits obtained from 119 QTL studies. These QTL were refined into 145 meta-QTL (MQTL), and 89 MQTL were verified by GWAS with different natural populations. The average confidence interval (CI) of these MQTL was 2.92 times less than that of the initial QTL. Furthermore, 76 core MQTL regions with a physical distance less than 25 Mb were detected. Based on the homology analysis and expression patterns, 237 candidate genes in the MQTL involved in photoperiod response, grain development, multiple plant growth regulator pathways, carbon and nitrogen metabolism and spike and flower organ development were determined. A novel candidate gene TaKAO-4A was confirmed to be significantly associated with grain size, and a CAPS marker was developed based on its dominant haplotype. In summary, this study clarified a method based on the integration of meta-QTL, GWAS and homology comparison to reveal the genomic regions and candidate genes that affect important yield-related traits in wheat. This work will help to lay a foundation for the identification, transfer and aggregation of these important QTL or candidate genes in wheat high-yield breeding.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Aduragbemi Amo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Di Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Yongmao Chai
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Jie Zheng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Pengfang Qiao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Chunge Cui
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Shan Lu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Liang Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China.
| | - Yin-Gang Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China.
- Institute of Water Saving Agriculture in Arid Regions of China, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
28
|
Miricescu A, Byrne T, Doorly CM, Ng CKY, Barth S, Graciet E. Experimental comparison of two methods to study barley responses to partial submergence. PLANT METHODS 2021; 17:40. [PMID: 33849604 PMCID: PMC8045378 DOI: 10.1186/s13007-021-00742-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 03/31/2021] [Indexed: 05/08/2023]
Abstract
BACKGROUND Crop yield is dependent on climate conditions, which are becoming both more variable and extreme in some areas of the world as a consequence of global climate change. Increased precipitation and flooding events are the cause of important yield losses due to waterlogging or (partial) submergence of crops in the field. Our ability to screen efficiently and quickly for varieties that have increased tolerance to waterlogging or (partial) submergence is important. Barley, a staple crop worldwide, is particularly sensitive to waterlogging. Screening for waterlogging tolerant barley varieties has been ongoing for many years, but methods used to screen vary greatly, from the type of soil used to the time at which the treatment is applied. This variation makes it difficult to cross-compare results. RESULTS Here, we have devised a scoring system to assess barley tolerance to waterlogging and compare two different methods when partial submergence is applied with either water or a starch solution at an early developmental stage, which is particularly sensitive to waterlogging or partial submergence. The use of a starch solution has been previously shown to result in more reducing soil conditions and has been used to screen for waterlogging tolerance. CONCLUSIONS Our results show that the two methods provide similar results to qualitatively rank varieties as tolerant or sensitive, while also affecting plants differently, in that application of a starch solution results in stronger and earlier symptoms than applying partial submergence with water.
Collapse
Affiliation(s)
| | - Tomás Byrne
- Crop Science Department, Teagasc Crops, Environment and Land Use Program, Oak Park, Carlow, R93XE12, Ireland
| | - Catherine M Doorly
- Department of Biology, Maynooth University, Maynooth, Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Kildare, Ireland
| | - Carl K Y Ng
- School of Biology and Environmental Science, Centre for Plant Science, UCD Earth Institute, O'Brien Centre for Science West, University College Dublin, Belfield, Dublin, D04 N2E5, Ireland.
| | - Susanne Barth
- Crop Science Department, Teagasc Crops, Environment and Land Use Program, Oak Park, Carlow, R93XE12, Ireland.
| | - Emmanuelle Graciet
- Department of Biology, Maynooth University, Maynooth, Kildare, Ireland.
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Kildare, Ireland.
| |
Collapse
|
29
|
Meta-Analysis of Quantitative Traits Loci (QTL) Identified in Drought Response in Rice ( Oryza sativa L.). PLANTS 2021; 10:plants10040716. [PMID: 33917162 PMCID: PMC8067883 DOI: 10.3390/plants10040716] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/30/2021] [Accepted: 04/02/2021] [Indexed: 11/17/2022]
Abstract
Rice is an important grain that is the staple food for most of the world's population. Drought is one of the major stresses that negatively affects rice yield. The nature of drought tolerance in rice is complex as it is determined by various components and has low heritability. Therefore, to ensure success in breeding programs for drought tolerant rice, QTLs (quantitative trait loci) of interest must be stable in a variety of plant genotypes and environments. This study identified stable QTLs in rice chromosomes in a variety of backgrounds and environments and conducted a meta-QTL analysis of stable QTLs that have been reported by previous research for use in breeding programs. A total of 653 QTLs for drought tolerance in rice from 27 genetic maps were recorded for analysis. The QTLs recorded were related to 13 traits in rice that respond to drought. Through the use of BioMercartor V4.2, a consensus map containing QTLs and molecular markers were generated using 27 genetic maps that were extracted from the previous 20 studies and meta-QTL analysis was conducted on the consensus map. A total of 70 MQTLs were identified and a total of 453 QTLs were mapped into the meta-QTL areas. Five meta-QTLs from chromosome 1 (MQTL 1.5 and MQTL 1.6), chromosome 2 (MQTL2.1 and MQTL 2.2) and chromosome 3 (MQTL 3.1) were selected for functional annotation as these regions have high number of QTLs and include many traits in rice that respond to drought. A number of genes in MQTL1.5 (268 genes), MQTL1.6 (640 genes), MQTL 2.1 (319 genes), MQTL 2.2 (19 genes) and MQTL 3.1 (787 genes) were annotated through Blast2GO. Few major proteins that respond to drought stress were identified in the meta-QTL areas which are Abscisic Acid-Insensitive Protein 5 (ABI5), the G-box binding factor 4 (GBF4), protein kinase PINOID (PID), histidine kinase 2 (AHK2), protein related to autophagy 18A (ATG18A), mitochondrial transcription termination factor (MTERF), aquaporin PIP 1-2, protein detoxification 48 (DTX48) and inositol-tetrakisphosphate 1-kinase 2 (ITPK2). These proteins are regulatory proteins involved in the regulation of signal transduction and gene expression that respond to drought stress. The meta-QTLs derived from this study and the genes that have been identified can be used effectively in molecular breeding and in genetic engineering for drought resistance/tolerance in rice.
Collapse
|
30
|
Aliakbari M, Cohen SP, Lindlöf A, Shamloo-Dashtpagerdi R. Rubisco activase A (RcaA) is a central node in overlapping gene network of drought and salinity in Barley (Hordeum vulgare L.) and may contribute to combined stress tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 161:248-258. [PMID: 33652257 DOI: 10.1016/j.plaphy.2021.02.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/16/2021] [Indexed: 06/12/2023]
Abstract
Co-occurrence of abiotic stresses, especially drought and salinity, is a natural phenomenon in field conditions and is worse for crop production than any single stress. Nowadays, rigorous methods of meta-analysis and systems biology have made it possible to perform cross-study comparisons of single stress experiments, which can uncover main overlapping mechanisms underlying tolerance to combined stress. In this study, a meta-analysis of RNA-Seq data was conducted to obtain the overlapping gene network of drought and salinity stresses in barley (Hordeum vulgare L.), which identified Rubisco activase A (RcaA) as a hub gene in the dual-stress response. Thereafter, a greenhouse experiment was carried out using two barley genotypes with different abiotic stress tolerance and evaluated several physiochemical properties as well as the expression profile and protein activity of RcaA. Finally, machine learning analysis was applied to uncover relationships among combined stress tolerance and evaluated properties. We identified 441 genes which were differentially expressed under both drought and salinity stress. Results revealed that the photosynthesis pathway and, in particular, the RcaA gene are major components of the dual-stress responsive transcriptome. Comparative physiochemical and molecular evaluations further confirmed that enhanced photosynthesis capability, mainly through regulation of RcaA expression and activity as well as accumulation of proline content, have a significant association with combined drought and salinity stress tolerance in barley. Overall, our results clarify the importance of RcaA in combined stress tolerance and may provide new insights for future investigations.
Collapse
Affiliation(s)
- Massume Aliakbari
- Department of Crop Production and Plant Breeding, Shiraz University, Shiraz, Iran
| | - Stephen P Cohen
- Department of Plant Pathology, The Ohio State University, OH, 43210, USA
| | | | | |
Collapse
|
31
|
Meta-QTL and ortho-MQTL analyses identified genomic regions controlling rice yield, yield-related traits and root architecture under water deficit conditions. Sci Rep 2021; 11:6942. [PMID: 33767323 PMCID: PMC7994909 DOI: 10.1038/s41598-021-86259-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 03/11/2021] [Indexed: 02/01/2023] Open
Abstract
Meta-QTL (MQTL) analysis is a robust approach for genetic dissection of complex quantitative traits. Rice varieties adapted to non-flooded cultivation are highly desirable in breeding programs due to the water deficit global problem. In order to identify stable QTLs for major agronomic traits under water deficit conditions, we performed a comprehensive MQTL analysis on 563 QTLs from 67 rice populations published from 2001 to 2019. Yield and yield-related traits including grain weight, heading date, plant height, tiller number as well as root architecture-related traits including root dry weight, root length, root number, root thickness, the ratio of deep rooting and plant water content under water deficit condition were investigated. A total of 61 stable MQTLs over different genetic backgrounds and environments were identified. The average confidence interval of MQTLs was considerably refined compared to the initial QTLs, resulted in the identification of some well-known functionally characterized genes and several putative novel CGs for investigated traits. Ortho-MQTL mining based on genomic collinearity between rice and maize allowed identification of five ortho-MQTLs between these two cereals. The results can help breeders to improve yield under water deficit conditions.
Collapse
|
32
|
Development and use of miRNA-derived SSR markers for the study of genetic diversity, population structure, and characterization of genotypes for breeding heat tolerant wheat varieties. PLoS One 2021; 16:e0231063. [PMID: 33539339 PMCID: PMC7861453 DOI: 10.1371/journal.pone.0231063] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 01/13/2021] [Indexed: 12/12/2022] Open
Abstract
Heat stress is an important abiotic factor that limits wheat production globally, including south-east Asia. The importance of micro (mi) RNAs in gene expression under various biotic and abiotic stresses is well documented. Molecular markers, specifically simple sequence repeats (SSRs), play an important role in the wheat improvement breeding programs. Given the role of miRNAs in heat stress-induced transcriptional regulation and acclimatization, the development of miRNA-derived SSRs would prove useful in studying the allelic diversity at the heat-responsive miRNA-genes in wheat. In the present study, efforts have been made to identify SSRs from 96 wheat heat-responsive miRNA-genes and their characterization using a panel of wheat genotypes with contrasting reactions (tolerance/susceptible) to heat stress. A set of 13 miRNA-derived SSR markers were successfully developed as an outcome. These miRNA-SSRs are located on 11 different common wheat chromosomes (2A, 3A, 3B, 3D, 4D, 5A, 5B, 5D, 6A, 6D, and 7A). Among 13 miRNA-SSRs, seven were polymorphic on a set of 37 selected wheat genotypes. Within these polymorphic SSRs, three makers, namely HT-169j, HT-160a, and HT-160b, were found promising as they could discriminate heat-tolerant and heat-susceptible genotypes. This is the first report of miRNA-SSR development in wheat and their deployment in genetic diversity and population structure studies and characterization of trait-specific germplasm. The study suggests that this new class of molecular makers has great potential in the marker-assisted breeding (MAB) programs targeted at improving heat tolerance and other adaptability or developmental traits in wheat and other crops.
Collapse
|
33
|
Liu H, Mullan D, Zhang C, Zhao S, Li X, Zhang A, Lu Z, Wang Y, Yan G. Major genomic regions responsible for wheat yield and its components as revealed by meta-QTL and genotype-phenotype association analyses. PLANTA 2020; 252:65. [PMID: 32970252 DOI: 10.1007/s00425-020-03466-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 09/12/2020] [Indexed: 12/17/2022]
Abstract
Meta-QTL (MQTL) analysis was done for yield-related traits in wheat. Candidate genes were identified within the refined MQTL and further validated by genotype-phenotype association analysis. Extensive studies have been undertaken on quantitative trait locus/loci (QTL) for wheat yield and its component traits. This study conducted a meta-analysis of 381 QTL related to wheat yield under various environments, including irrigated, drought- and/or heat-stressed conditions. Markers flanking meta-QTL (MQTL) were mapped on the wheat reference genome for their physical positions. Putative candidate genes were examined for MQTL with a physical interval of less than 20 Mbp. A total of 86 MQTL were identified as responsible for yield, of which 34 were for irrigated environments, 39 for drought-stressed environments, 36 for heat-stressed environments, and 23 for both drought- and heat-stressed environments. The high-confidence genes within the physical positions of the MQTL flanking markers were screened in the reference genome RefSeq V1.0, which identified 210 putative candidate genes. The phenotypic data for 14 contrasting genotypes with either high or low yield performance-according to the Australian National Variety Trials-were associated with their genotypic data obtained through ddRAD sequencing, which validated 18 genes or gene clusters associated with MQTL that had important roles for wheat yield. The detected and refined MQTL and candidate genes will be useful for marker-assisted selection of high yield in wheat breeding.
Collapse
Affiliation(s)
- Hui Liu
- School of Plant Biology, Faculty of Science and The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia
| | - Daniel Mullan
- InterGrain Pty Ltd, 19 Ambitious Link, Bibra Lake, WA, 6163, Australia
| | - Chi Zhang
- Beijing Genomics Institute, Shenzhen, 518053, China
| | - Shancen Zhao
- Beijing Genomics Institute, Shenzhen, 518053, China
| | - Xin Li
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chicness Academy of Sciences, Beijing, 100101, China
| | - Aimin Zhang
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chicness Academy of Sciences, Beijing, 100101, China
| | - Zhanyuan Lu
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, No. 22, Yuquan Qu Zhaojun Lu, Hohhot, Inner Mongolia Autonomous Region, China
| | - Yong Wang
- Wheat Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, China
| | - Guijun Yan
- School of Plant Biology, Faculty of Science and The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia.
| |
Collapse
|
34
|
Burke R, Schwarze J, Sherwood OL, Jnaid Y, McCabe PF, Kacprzyk J. Stressed to Death: The Role of Transcription Factors in Plant Programmed Cell Death Induced by Abiotic and Biotic Stimuli. FRONTIERS IN PLANT SCIENCE 2020; 11:1235. [PMID: 32903426 PMCID: PMC7434935 DOI: 10.3389/fpls.2020.01235] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/28/2020] [Indexed: 05/20/2023]
Abstract
Programmed cell death (PCD) is a genetically controlled pathway that plants can use to selectively eliminate redundant or damaged cells. In addition to its fundamental role in plant development, PCD can often be activated as an essential defense response when dealing with biotic and abiotic stresses. For example, localized, tightly controlled PCD can promote plant survival by restricting pathogen growth, driving the development of morphological traits for stress tolerance such as aerenchyma, or triggering systemic pro-survival responses. Relatively little is known about the molecular control of this essential process in plants, especially in comparison to well-described cell death models in animals. However, the networks orchestrating transcriptional regulation of plant PCD are emerging. Transcription factors (TFs) regulate the clusters of stimuli inducible genes and play a fundamental role in plant responses, such as PCD, to abiotic and biotic stresses. Here, we discuss the roles of different classes of transcription factors, including members of NAC, ERF and WRKY families, in cell fate regulation in response to environmental stresses. The role of TFs in stress-induced mitochondrial retrograde signaling is also reviewed in the context of life-and-death decisions of the plant cell and future research directions for further elucidation of TF-mediated control of stress-induced PCD events are proposed. An increased understanding of these complex signaling networks will inform and facilitate future breeding strategies to increase crop tolerance to disease and/or abiotic stresses.
Collapse
Affiliation(s)
| | | | | | | | | | - Joanna Kacprzyk
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
35
|
Liu K, Harrison MT, Ibrahim A, Manik SMN, Johnson P, Tian X, Meinke H, Zhou M. Genetic factors increasing barley grain yields under soil waterlogging. Food Energy Secur 2020. [DOI: 10.1002/fes3.238] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Ke Liu
- Hubei Collaborative Innovation Centre for Grain Industry/College of Agriculture Yangtze University Jingzhou China
- Tasmanian Institute of Agriculture University of Tasmania Launceston TAS Australia
| | - Matthew Tom Harrison
- Tasmanian Institute of Agriculture University of Tasmania Launceston TAS Australia
| | - Ahmed Ibrahim
- Tasmanian Institute of Agriculture University of Tasmania Launceston TAS Australia
| | | | - Peter Johnson
- Tasmanian Institute of Agriculture University of Tasmania Launceston TAS Australia
| | - Xiaohai Tian
- Hubei Collaborative Innovation Centre for Grain Industry/College of Agriculture Yangtze University Jingzhou China
| | - Holger Meinke
- Tasmanian Institute of Agriculture University of Tasmania Launceston TAS Australia
| | - Meixue Zhou
- Hubei Collaborative Innovation Centre for Grain Industry/College of Agriculture Yangtze University Jingzhou China
- Tasmanian Institute of Agriculture University of Tasmania Launceston TAS Australia
| |
Collapse
|
36
|
Zhang X, Ovenden B, Milgate A. Recent insights into barley and Rhynchosporium commune interactions. MOLECULAR PLANT PATHOLOGY 2020; 21:1111-1128. [PMID: 32537933 PMCID: PMC7368125 DOI: 10.1111/mpp.12945] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/18/2020] [Accepted: 04/23/2020] [Indexed: 06/11/2023]
Abstract
Rhynchosporium commune is the causal pathogen of scald in barley (Hordeum vulgare), a foliar disease that can reduce yield by up to 40% in susceptible cultivars. R. commune is found worldwide in all temperate growing regions and is regarded as one of the most economically important barley pathogens. It is a polycyclic pathogen with the ability to rapidly evolve new virulent strains in response to resistance genes deployed in commercial cultivars. Hence, introgression and pyramiding of different loci for resistance (qualitative or quantitative) through marker-assisted selection is an effective way to improve scald resistance in barley. This review summarizes all 148 resistance quantitative trait loci reported at the date of submission of this review and projects them onto the barley physical map, where it is clear many loci co-locate on chromosomes 3H and 7H. We have summarized the major named resistance loci and reiterated the renaming of Rrs15 (CI8288) to Rrs17. This review provides a comprehensive resource for future discovery and breeding efforts of qualitative and quantitative scald resistance loci.
Collapse
Affiliation(s)
- Xuechen Zhang
- NSW Department of Primary IndustriesWagga Wagga Agricultural InstituteWagga WaggaNSWAustralia
| | - Ben Ovenden
- NSW Department of Primary IndustriesWagga Wagga Agricultural InstituteWagga WaggaNSWAustralia
| | - Andrew Milgate
- NSW Department of Primary IndustriesWagga Wagga Agricultural InstituteWagga WaggaNSWAustralia
| |
Collapse
|
37
|
Genome wide screening and comparative genome analysis for Meta-QTLs, ortho-MQTLs and candidate genes controlling yield and yield-related traits in rice. BMC Genomics 2020; 21:294. [PMID: 32272882 PMCID: PMC7146888 DOI: 10.1186/s12864-020-6702-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 03/25/2020] [Indexed: 11/29/2022] Open
Abstract
Background Improving yield and yield-related traits is the crucial goal in breeding programmes of cereals. Meta-QTL (MQTL) analysis discovers the most stable QTLs regardless of populations genetic background and field trial conditions and effectively narrows down the confidence interval (CI) for identification of candidate genes (CG) and markers development. Results A comprehensive MQTL analysis was implemented on 1052 QTLs reported for yield (YLD), grain weight (GW), heading date (HD), plant height (PH) and tiller number (TN) in 122 rice populations evaluated under normal condition from 1996 to 2019. Consequently, these QTLs were confined into 114 MQTLs and the average CI was reduced up to 3.5 folds in compare to the mean CI of the original QTLs with an average of 4.85 cM CI in the resulted MQTLs. Among them, 27 MQTLs with at least five initial QTLs from independent studies were considered as the most stable QTLs over different field trials and genetic backgrounds. Furthermore, several known and novel CGs were detected in the high confident MQTLs intervals. The genomic distribution of MQTLs indicated the highest density at subtelomeric chromosomal regions. Using the advantage of synteny and comparative genomics analysis, 11 and 15 ortho-MQTLs were identified at co-linear regions between rice with barley and maize, respectively. In addition, comparing resulted MQTLs with GWAS studies led to identification of eighteen common significant chromosomal regions controlling the evaluated traits. Conclusion This comprehensive analysis defines a genome wide landscape on the most stable loci associated with reliable genetic markers and CGs for yield and yield-related traits in rice. Our findings showed that some of these information are transferable to other cereals that lead to improvement of their breeding programs.
Collapse
|
38
|
Borrego-Benjumea A, Carter A, Tucker JR, Yao Z, Xu W, Badea A. Genome-Wide Analysis of Gene Expression Provides New Insights into Waterlogging Responses in Barley ( Hordeum vulgare L.). PLANTS 2020; 9:plants9020240. [PMID: 32069892 PMCID: PMC7076447 DOI: 10.3390/plants9020240] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 12/13/2022]
Abstract
Waterlogging is a major abiotic stress causing oxygen depletion and carbon dioxide accumulation in the rhizosphere. Barley is more susceptible to waterlogging stress than other cereals. To gain a better understanding, the genome-wide gene expression responses in roots of waterlogged barley seedlings of Yerong and Deder2 were analyzed by RNA-Sequencing. A total of 6736, 5482, and 4538 differentially expressed genes (DEGs) were identified in waterlogged roots of Yerong at 72 h and Deder2 at 72 and 120 h, respectively, compared with the non-waterlogged control. Gene Ontology (GO) enrichment analyses showed that the most significant changes in GO terms, resulted from these DEGs observed under waterlogging stress, were related to primary and secondary metabolism, regulation, and oxygen carrier activity. In addition, more than 297 transcription factors, including members of MYB, AP2/EREBP, NAC, WRKY, bHLH, bZIP, and G2-like families, were identified as waterlogging responsive. Tentative important contributors to waterlogging tolerance in Deder2 might be the highest up-regulated DEGs: Trichome birefringence, α/β-Hydrolases, Xylanase inhibitor, MATE efflux, serine carboxypeptidase, and SAUR-like auxin-responsive protein. The study provides insights into the molecular mechanisms underlying the response to waterlogging in barley, which will be of benefit for future studies of molecular responses to waterlogging and will greatly assist barley genetic research and breeding.
Collapse
Affiliation(s)
- Ana Borrego-Benjumea
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, 2701 Grand Valley Road, Brandon, MB R7A 5Y3, Canada; (A.B.-B.); (A.C.); (J.R.T.)
| | - Adam Carter
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, 2701 Grand Valley Road, Brandon, MB R7A 5Y3, Canada; (A.B.-B.); (A.C.); (J.R.T.)
| | - James R. Tucker
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, 2701 Grand Valley Road, Brandon, MB R7A 5Y3, Canada; (A.B.-B.); (A.C.); (J.R.T.)
| | - Zhen Yao
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, 101 Route 100, Morden, MB R6M 1Y5, Canada; (Z.Y.); (W.X.)
| | - Wayne Xu
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, 101 Route 100, Morden, MB R6M 1Y5, Canada; (Z.Y.); (W.X.)
| | - Ana Badea
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, 2701 Grand Valley Road, Brandon, MB R7A 5Y3, Canada; (A.B.-B.); (A.C.); (J.R.T.)
- Correspondence: ; Tel.: +1-204-578-6573
| |
Collapse
|
39
|
Fang Y, Zhang X, Zhang X, Tong T, Zhang Z, Wu G, Hou L, Zheng J, Niu C, Li J, Wang W, Wang H, Xue D. A High-Density Genetic Linkage Map of SLAFs and QTL Analysis of Grain Size and Weight in Barley ( Hordeum vulgare L.). FRONTIERS IN PLANT SCIENCE 2020; 11:620922. [PMID: 33424912 PMCID: PMC7793689 DOI: 10.3389/fpls.2020.620922] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 11/26/2020] [Indexed: 05/12/2023]
Abstract
Grain size is an important agronomic trait determines yield in barley, and a high-density genetic map is helpful to accurately detect quantitative trait loci (QTLs) related to grain traits. Using specific-locus amplified fragment sequencing (SLAF-seq) technology, a high-density genetic map was constructed with a population of 134 recombinant inbred lines (RILs) deriving from a cross between Golden Promise (GP) and H602, which contained 12,635 SLAFs with 26,693 SNPs, and spanned 896.74 cM with an average interval of 0.07 cM on seven chromosomes. Based on the map, a total of 16 QTLs for grain length (GL), grain width and thousand-grain weight were detected on 1H, 2H, 4H, 5H, and 6H. Among them, a major QTL locus qGL1, accounting for the max phenotypic variance of 16.7% was located on 1H, which is a new unreported QTL affecting GL. In addition, the other two QTLs, qGL5 and qTGW5, accounting for the max phenotypic variances of 20.7 and 21.1%, respectively, were identified in the same region, and sequencing results showed they are identical to HvDep1 gene. These results indicate that it is a feasible approach to construct a high-quality genetic map for QTL mapping by using SLAF markers, and the detected major QTLs qGL1, qGL5, and qTGW5 are useful for marker-assisted selection (MAS) of grain size in barley breeding.
Collapse
Affiliation(s)
- Yunxia Fang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Xiaoqin Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Xian Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Tao Tong
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Ziling Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Gengwei Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Linlin Hou
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Junjun Zheng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Chunyu Niu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Jia Li
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Wenjia Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Hua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- *Correspondence: Hua Wang,
| | - Dawei Xue
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- Dawei Xue,
| |
Collapse
|
40
|
Raza Q, Riaz A, Sabar M, Atif RM, Bashir K. Meta-analysis of grain iron and zinc associated QTLs identified hotspot chromosomal regions and positional candidate genes for breeding biofortified rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 288:110214. [PMID: 31521222 DOI: 10.1016/j.plantsci.2019.110214] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/13/2019] [Accepted: 08/06/2019] [Indexed: 05/09/2023]
Abstract
Biofortification of staple crops with essential micronutrients is the sustainable way to overcome the hidden hunger. A large number of quantitative trait loci (QTL) linked with grain micronutrient contents have been reported in different mapping studies. Identification of consistent QTLs across diverse genetic backgrounds is useful for candidate gene analysis and marker assisted selection of target traits. In this study, an up to date meta-analysis of grain iron and zinc associated QTLs was performed and 48 meta-QTLs (MQTLs) distributed across 12 rice chromosomes were identified. The 95% confidence intervals of identified genomic regions were significantly narrower than the average of their corresponding original QTLs. A total of 9308 genes/transcripts physically located within or near MQTL regions were retrieved and through prioritization of candidate genes (CGs) 663 non-redundant iron and zinc CGs were selected and studied in detailed. Several functionally characterized iron and zinc homoeostasis related genes e.g OsATM3, OsDMAS1, OsFRO2, OsNAS1-3, OsVIT2, OsYSL16, OsZIP3 and OsZIP7 were also included in our MQTL analysis. More than 64% genes were enriched with zinc and iron binding gene ontology terms and were involved in oxidation reduction process, carbohydrate metabolic process, regulation of transcription, trans-membrane transport, response to oxidative stress, cell redox homeostasis and proteolysis etc. In-silico transcriptomic analysis of rice identified 260 CGs which were regulated in response to iron and zinc stresses. We also identified at least 37 genes which were differentially expressed under both stress conditions and majority of these have not been studied in detailed before. Our results strongly indicate that majority of the MQTLs identified in this study are hotspots for grain iron and zinc concentration and are worth of intensive functional studies in near future.
Collapse
Affiliation(s)
- Qasim Raza
- Molecular Breeding Laboratory, Division of Plant Breeding and Genetics, Rice Research Institute, Kala Shah Kaku, Sheikhupura, Pakistan.
| | - Awais Riaz
- Molecular Breeding Laboratory, Division of Plant Breeding and Genetics, Rice Research Institute, Kala Shah Kaku, Sheikhupura, Pakistan
| | - Muhammad Sabar
- Molecular Breeding Laboratory, Division of Plant Breeding and Genetics, Rice Research Institute, Kala Shah Kaku, Sheikhupura, Pakistan
| | - Rana Muhammad Atif
- Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Pakistan; US-Pak Centre for Advanced Studies in Food and Agricultural Security, University of Agriculture Faisalabad, Pakistan
| | - Khurram Bashir
- Plant Genomic Network Research Team, Center for Sustainable Resource Science, RIKEN, Yokohama Campus, Yokohama, Japan.
| |
Collapse
|
41
|
Fukao T, Barrera-Figueroa BE, Juntawong P, Peña-Castro JM. Submergence and Waterlogging Stress in Plants: A Review Highlighting Research Opportunities and Understudied Aspects. FRONTIERS IN PLANT SCIENCE 2019; 10:340. [PMID: 30967888 PMCID: PMC6439527 DOI: 10.3389/fpls.2019.00340] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 03/05/2019] [Indexed: 05/20/2023]
Abstract
Soil flooding creates composite and complex stress in plants known as either submergence or waterlogging stress depending on the depth of the water table. In nature, these stresses are important factors dictating the species composition of the ecosystem. On agricultural land, they cause economic damage associated with long-term social consequences. The understanding of the plant molecular responses to these two stresses has benefited from research studying individual components of the stress, in particular low-oxygen stress. To a lesser extent, other associated stresses and plant responses have been incorporated into the molecular framework, such as ion and ROS signaling, pathogen susceptibility, and organ-specific expression and development. In this review, we aim to highlight known or suspected components of submergence/waterlogging stress that have not yet been thoroughly studied at the molecular level in this context, such as miRNA and retrotransposon expression, the influence of light/dark cycles, protein isoforms, root architecture, sugar sensing and signaling, post-stress molecular events, heavy-metal and salinity stress, and mRNA dynamics (splicing, sequestering, and ribosome loading). Finally, we explore biotechnological strategies that have applied this molecular knowledge to develop cultivars resistant to flooding or to offer alternative uses of flooding-prone soils, like bioethanol and biomass production.
Collapse
Affiliation(s)
- Takeshi Fukao
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
| | | | - Piyada Juntawong
- Center for Advanced Studies in Tropical Natural Resources, National Research University – Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Julián Mario Peña-Castro
- Laboratorio de Biotecnología Vegetal, Instituto de Biotecnología, Universidad del Papaloapan, Tuxtepec, Mexico
| |
Collapse
|
42
|
Nguyen KL, Grondin A, Courtois B, Gantet P. Next-Generation Sequencing Accelerates Crop Gene Discovery. TRENDS IN PLANT SCIENCE 2019; 24:263-274. [PMID: 30573308 DOI: 10.1016/j.tplants.2018.11.008] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/20/2018] [Accepted: 11/22/2018] [Indexed: 05/22/2023]
Abstract
The identification and isolation of genes underlying quantitative trait loci (QTLs) associated with agronomic traits in crops have been recently accelerated thanks to next-generation sequencing (NGS)-based technologies combined with plant genetics. With NGS, various revisited genetic approaches, which benefited from higher marker density, have been elaborated. These approaches improved resolution in QTL position and assisted in determining functional causative variations in genes. Examples of QTLs/genes associated with agronomic traits in crops and identified using different strategies based on whole-genome sequencing (WGS)/whole-genome resequencing (WGR) or RNA-seq are presented and discussed in this review. More specifically, we summarize and illustrate how NGS boosted bulk-segregant analysis (BSA), expression profiling, and the construction of polymorphism databases to facilitate the detection of QTLs and causative genes.
Collapse
Affiliation(s)
- Khanh Le Nguyen
- Université de Montpellier, Institut de Recherche pour le Développement, UMR DIADE, 911 Avenue Agropolis, 34394 Montpellier cedex 5, France; LMI RICE 2, AGI, Km2 Pham Van Dong, Tu Liem, Hanoi, Vietnam
| | - Alexandre Grondin
- Université de Montpellier, Institut de Recherche pour le Développement, UMR DIADE, 911 Avenue Agropolis, 34394 Montpellier cedex 5, France
| | - Brigitte Courtois
- CIRAD, UMR AGAP, F-34398 Montpellier, France; Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Pascal Gantet
- Université de Montpellier, Institut de Recherche pour le Développement, UMR DIADE, 911 Avenue Agropolis, 34394 Montpellier cedex 5, France; Centre of the Region Haná for Biotechnological and Agricultural Research, Dept. of Molecular Biology, Faculty of Science, Palacký University, Olomouc, Czech Republic.
| |
Collapse
|
43
|
Zhang M, Fu MM, Qiu CW, Cao F, Chen ZH, Zhang G, Wu F. Response of Tibetan Wild Barley Genotypes to Drought Stress and Identification of Quantitative Trait Loci by Genome-Wide Association Analysis. Int J Mol Sci 2019; 20:E791. [PMID: 30759829 PMCID: PMC6387302 DOI: 10.3390/ijms20030791] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/06/2019] [Accepted: 02/07/2019] [Indexed: 11/23/2022] Open
Abstract
Tibetan wild barley has been identified to show large genetic variation and stress tolerance. A genome-wide association (GWA) analysis was performed to detect quantitative trait loci (QTLs) for drought tolerance using 777 Diversity Array Technology (DArT) markers and morphological and physiological traits of 166 Tibetan wild barley accessions in both hydroponic and pot experiments. Large genotypic variation for these traits was found; and population structure and kinship analysis identified three subpopulations among these barley genotypes. The average LD (linkage disequilibrium) decay distance was 5.16 cM, with the minimum on 6H (0.03 cM) and the maximum on 4H (23.48 cM). A total of 91 DArT markers were identified to be associated with drought tolerance-related traits, with 33, 26, 16, 1, 3, and 12 associations for morphological traits, H⁺K⁺-ATPase activity, antioxidant enzyme activities, malondialdehyde (MDA) content, soluble protein content, and potassium concentration, respectively. Furthermore, 7 and 24 putative candidate genes were identified based on the reference Meta-QTL map and by searching the Barleymap. The present study implicated that Tibetan annual wild barley from Qinghai⁻Tibet Plateau is rich in genetic variation for drought stress. The QTLs detected by genome-wide association analysis could be used in marker-assisting breeding for drought-tolerant barley genotypes and provide useful information for discovery and functional analysis of key genes in the future.
Collapse
Affiliation(s)
- Mian Zhang
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China.
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, China.
| | - Man-Man Fu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China.
| | - Cheng-Wei Qiu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China.
| | - Fangbin Cao
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China.
| | - Zhong-Hua Chen
- School of Science and Health, Hawkesbury Campus, University of Western Sydney, Penrith, NSW 2751, Australia.
| | - Guoping Zhang
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China.
| | - Feibo Wu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China.
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
44
|
Gill MB, Zeng F, Shabala L, Zhang G, Yu M, Demidchik V, Shabala S, Zhou M. Identification of QTL Related to ROS Formation under Hypoxia and Their Association with Waterlogging and Salt Tolerance in Barley. Int J Mol Sci 2019; 20:E699. [PMID: 30736310 PMCID: PMC6387252 DOI: 10.3390/ijms20030699] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/01/2019] [Accepted: 02/04/2019] [Indexed: 01/19/2023] Open
Abstract
Waterlogging is a serious environmental problem that limits agricultural production in low-lying rainfed areas around the world. The major constraint that plants face in a waterlogging situation is the reduced oxygen availability. Accordingly, all previous efforts of plant breeders focused on traits providing adequate supply of oxygen to roots under waterlogging conditions, such as enhanced aerenchyma formation or reduced radial oxygen loss. However, reduced oxygen concentration in waterlogged soils also leads to oxygen deficiency in plant tissues, resulting in an excessive accumulation of reactive oxygen species (ROS) in plants. To the best of our knowledge, this trait has never been targeted in breeding programs and thus represents an untapped resource for improving plant performance in waterlogged soils. To identify the quantitative trait loci (QTL) for ROS tolerance in barley, 187 double haploid (DH) lines from a cross between TX9425 and Naso Nijo were screened for superoxide anion (O₂•-) and hydrogen peroxide (H₂O₂)-two major ROS species accumulated under hypoxia stress. We show that quantifying ROS content after 48 h hypoxia could be a fast and reliable approach for the selection of waterlogging tolerant barley genotypes. The same QTL on chromosome 2H was identified for both O₂•- (QSO.TxNn.2H) and H₂O₂ (QHP.TxNn.2H) contents. This QTL was located at the same position as the QTL for the overall waterlogging and salt tolerance reported in previous studies, explaining 23% and 24% of the phenotypic variation for O₂•- and H₂O2 contents, respectively. The analysis showed a causal association between ROS production and both waterlogging and salt stress tolerance. Waterlogging and salinity are two major abiotic factors affecting crop production around the globe and frequently occur together. The markers associated with this QTL could potentially be used in future breeding programs to improve waterlogging and salinity tolerance.
Collapse
Affiliation(s)
- Muhammad Bilal Gill
- International Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China.
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Hobart, Tas 7005, Australia.
| | - Fanrong Zeng
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Lana Shabala
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Hobart, Tas 7005, Australia.
| | - Guoping Zhang
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Min Yu
- International Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China.
| | - Vadim Demidchik
- International Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China.
- Department of Plant Cell Biology and Bioengineering, Biological Faculty, Belarusian State University, 222030 Minsk, Belarus.
| | - Sergey Shabala
- International Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China.
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Hobart, Tas 7005, Australia.
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Hobart, Tas 7005, Australia.
| |
Collapse
|
45
|
Yao X, Wu K, Yao Y, Bai Y, Ye J, Chi D. Construction of a high-density genetic map: genotyping by sequencing (GBS) to map purple seed coat color ( Psc) in hulless barley. Hereditas 2018; 155:37. [PMID: 30473656 PMCID: PMC6240233 DOI: 10.1186/s41065-018-0072-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/18/2018] [Indexed: 01/24/2023] Open
Abstract
Background Colored hulless barley are more suitable in food processing compared to normal (yellow) varieties because it is rich in bioactive compounds and produces higher extraction pearling fractions. Therefore, seed coat color is an important agronomic trait for the breeding and study of hulless barley. Results Genotyping-by-sequencing single-nucleotide polymorphism (GBS-SNP) analysis of a doubled haploid (DH) mapping population (Nierumuzha × Kunlun10) was conducted to map the purple seed coat color genes (Psc). A high-density genetic map of hulless barley was constructed, which contains 3662 efficient SNP markers with 1129 bin markers. Seven linkage groups were resolved, which had a total length of 645.56 cM. Chromosome length ranged from 60.21 cM to 127.21 cM, with average marker density of 0.57 cM. A total of five loci accounting for 3.79% to 23.86% of the observed phenotypic variation for Psc were detected using this high-density map. Five structural candidate genes (F3’M, HID, UF3GT, UFGT and 5MAT) and one regulatory factor (Ant1) related to flavonoid or anthocyanin biosynthesis were identified.. Conclusions Five structural candidate genes and one regulatory factor related to flavonoid or anthocyanin biosynthesis have been identified using a high-density genetic map of hulless barley. This study lays the foundation for map-based cloning of Psc but provides a valuable tool for studying marker-trait associations and its application to marker-assisted breeding of hulless barley. Electronic supplementary material The online version of this article (10.1186/s41065-018-0072-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaohua Yao
- 1State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016 China.,2Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016 China.,Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, 810016 China.,Qinghai Subcenter of National Hulless Barley Improvement, Xining, 810016 China
| | - Kunlun Wu
- 1State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016 China.,2Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016 China.,Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, 810016 China.,Qinghai Subcenter of National Hulless Barley Improvement, Xining, 810016 China
| | - Youhua Yao
- 1State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016 China.,2Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016 China.,Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, 810016 China.,Qinghai Subcenter of National Hulless Barley Improvement, Xining, 810016 China
| | - Yixiong Bai
- 1State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016 China.,2Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016 China.,Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, 810016 China.,Qinghai Subcenter of National Hulless Barley Improvement, Xining, 810016 China
| | - Jingxiu Ye
- 1State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016 China.,2Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016 China
| | - Dezhao Chi
- 1State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016 China.,2Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016 China.,Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, 810016 China.,Qinghai Subcenter of National Hulless Barley Improvement, Xining, 810016 China
| |
Collapse
|
46
|
Abstract
A major problem of climate change is the increasing duration and frequency of heavy rainfall events. This leads to soil flooding that negatively affects plant growth, eventually leading to death of plants if the flooding persists for several days. Most crop plants are very sensitive to flooding, and dramatic yield losses occur due to flooding each year. This review summarizes recent progress and approaches to enhance crop resistance to flooding. Most experiments have been done on maize, barley, and soybean. Work on other crops such as wheat and rape has only started. The most promising traits that might enhance crop flooding tolerance are anatomical adaptations such as aerenchyma formation, the formation of a barrier against radial oxygen loss, and the growth of adventitious roots. Metabolic adaptations might be able to improve waterlogging tolerance as well, but more studies are needed in this direction. Reasonable approaches for future studies are quantitative trait locus (QTL) analyses or genome-wide association (GWA) studies in combination with specific tolerance traits that can be easily assessed. The usage of flooding-tolerant relatives or ancestral cultivars of the crop of interest in these experiments might enhance the chances of finding useful tolerance traits to be used in breeding.
Collapse
|
47
|
Yin Z, Qi H, Mao X, Wang J, Hu Z, Wu X, Liu C, Xin D, Zuo X, Chen Q, Qi Z. QTL mapping of soybean node numbers on the main stem and meta-analysis for mining candidate genes. BIOTECHNOL BIOTEC EQ 2018. [DOI: 10.1080/13102818.2018.1475253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Zhengong Yin
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China
- Department of Soybean Research, Crop Breeding Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, Heilongjiang, PR China
| | - Huidong Qi
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China
| | - Xinrui Mao
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China
| | - Jingxin Wang
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China
| | - Zhenbang Hu
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiaoxia Wu
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China
| | - Chunyan Liu
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China
| | - Dawei Xin
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China
| | - Xin Zuo
- Department of Soybean Research, Rural Energy Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, Heilongjiang, PR China
| | - Qingshan Chen
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China
| | - Zhaoming Qi
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China
| |
Collapse
|
48
|
Luan H, Shen H, Pan Y, Guo B, Lv C, Xu R. Elucidating the hypoxic stress response in barley (Hordeum vulgare L.) during waterlogging: A proteomics approach. Sci Rep 2018; 8:9655. [PMID: 29941955 PMCID: PMC6018542 DOI: 10.1038/s41598-018-27726-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 06/08/2018] [Indexed: 12/25/2022] Open
Abstract
Waterlogging is one of the major abiotic stresses that affects barley production and yield quality. Proteomics techniques have been widely utilized to explore the mechanisms involved in the responses to abiotic stress. In this study, two barley genotypes with contrasting responses to waterlogging stress were analyzed with proteomic technology. The waterlogging treatment caused a greater reduction in biomass and photosynthetic performance in the waterlogging-sensitive genotype TF57 than that in the waterlogging-tolerant genotype TF58. Under waterlogging stress, 30, 30, 20 and 20 differentially expressed proteins were identified through tandem mass spectrometry analysis in the leaves, adventitious roots, nodal roots and seminal roots, respectively. Among these proteins, photosynthesis-, metabolism- and energy-related proteins were differentially expressed in the leaves, with oxygen-evolving enhancer protein 1, ATP synthase subunit and heat shock protein 70 being up-regulated in TF58. Pyruvate decarboxylase (PDC), 1-amino cyclopropane 1-carboxylic acid oxidase (ACO), glutamine synthetase (GS), glutathione S-transferases (GST) and beta-1, 3-glucanase in adventitious, nodal and seminal roots were more abundant in TF58 than those in TF57 under waterlogging stress. Ten representative genes were selected for validation by qRT-PCR in different genotypes with known waterlogging tolerance, and the expression levels of three candidate genes (PDC, ACO and GST) increased in the roots of all genotypes in response to the waterlogging stress. These three genes might play a significant role in the adaptation process of barley under waterlogging stress. The current results partially determined the mechanisms of waterlogging tolerance and provided valuable information for the breeding of barley with enhanced tolerance to waterlogging.
Collapse
Affiliation(s)
- Haiye Luan
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Barley Research Institution of Yangzhou University, Yangzhou University, Yangzhou, 225009, China
- Institute of Agricultural Science in Jiangsu Coastal Areas, Yancheng, 224002, China
| | - Huiquan Shen
- Institute of Agricultural Science in Jiangsu Coastal Areas, Yancheng, 224002, China
| | - Yuhan Pan
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Barley Research Institution of Yangzhou University, Yangzhou University, Yangzhou, 225009, China
| | - Baojian Guo
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Barley Research Institution of Yangzhou University, Yangzhou University, Yangzhou, 225009, China
| | - Chao Lv
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Barley Research Institution of Yangzhou University, Yangzhou University, Yangzhou, 225009, China
| | - Rugen Xu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Barley Research Institution of Yangzhou University, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
49
|
Gudys K, Guzy-Wrobelska J, Janiak A, Dziurka MA, Ostrowska A, Hura K, Jurczyk B, Żmuda K, Grzybkowska D, Śróbka J, Urban W, Biesaga-Koscielniak J, Filek M, Koscielniak J, Mikołajczak K, Ogrodowicz P, Krystkowiak K, Kuczyńska A, Krajewski P, Szarejko I. Prioritization of Candidate Genes in QTL Regions for Physiological and Biochemical Traits Underlying Drought Response in Barley ( Hordeum vulgare L.). FRONTIERS IN PLANT SCIENCE 2018; 9:769. [PMID: 29946328 PMCID: PMC6005862 DOI: 10.3389/fpls.2018.00769] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 05/18/2018] [Indexed: 05/27/2023]
Abstract
Drought is one of the most adverse abiotic factors limiting growth and productivity of crops. Among them is barley, ranked fourth cereal worldwide in terms of harvested acreage and production. Plants have evolved various mechanisms to cope with water deficit at different biological levels, but there is an enormous challenge to decipher genes responsible for particular complex phenotypic traits, in order to develop drought tolerant crops. This work presents a comprehensive approach for elucidation of molecular mechanisms of drought tolerance in barley at the seedling stage of development. The study includes mapping of QTLs for physiological and biochemical traits associated with drought tolerance on a high-density function map, projection of QTL confidence intervals on barley physical map, and the retrievement of positional candidate genes (CGs), followed by their prioritization based on Gene Ontology (GO) enrichment analysis. A total of 64 QTLs for 25 physiological and biochemical traits that describe plant water status, photosynthetic efficiency, osmoprotectant and hormone content, as well as antioxidant activity, were positioned on a consensus map, constructed using RIL populations developed from the crosses between European and Syrian genotypes. The map contained a total of 875 SNP, SSR and CGs, spanning 941.86 cM with resolution of 1.1 cM. For the first time, QTLs for ethylene, glucose, sucrose, maltose, raffinose, α-tocopherol, γ-tocotrienol content, and catalase activity, have been mapped in barley. Based on overlapping confidence intervals of QTLs, 11 hotspots were identified that enclosed more than 60% of mapped QTLs. Genetic and physical map integration allowed the identification of 1,101 positional CGs within the confidence intervals of drought response-specific QTLs. Prioritization resulted in the designation of 143 CGs, among them were genes encoding antioxidants, carboxylic acid biosynthesis enzymes, heat shock proteins, small auxin up-regulated RNAs, nitric oxide synthase, ATP sulfurylases, and proteins involved in regulation of flowering time. This global approach may be proposed for identification of new CGs that underlies QTLs responsible for complex traits.
Collapse
Affiliation(s)
- Kornelia Gudys
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
- Department of Botany and Nature Protection, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
| | - Justyna Guzy-Wrobelska
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
| | - Agnieszka Janiak
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
| | - Michał A. Dziurka
- Department of Developmental Biology, Institute of Plant Physiology, Polish Academy of Sciences, Krakow, Poland
| | - Agnieszka Ostrowska
- Department of Developmental Biology, Institute of Plant Physiology, Polish Academy of Sciences, Krakow, Poland
| | - Katarzyna Hura
- Department of Plant Physiology, Faculty of Agriculture and Economics, University of Agriculture, Krakow, Poland
| | - Barbara Jurczyk
- Department of Plant Physiology, Faculty of Agriculture and Economics, University of Agriculture, Krakow, Poland
| | - Katarzyna Żmuda
- Department of Plant Physiology, Faculty of Agriculture and Economics, University of Agriculture, Krakow, Poland
| | - Daria Grzybkowska
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
| | - Joanna Śróbka
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
| | - Wojciech Urban
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
| | - Jolanta Biesaga-Koscielniak
- Department of Developmental Biology, Institute of Plant Physiology, Polish Academy of Sciences, Krakow, Poland
| | - Maria Filek
- Department of Developmental Biology, Institute of Plant Physiology, Polish Academy of Sciences, Krakow, Poland
| | - Janusz Koscielniak
- Department of Plant Physiology, Faculty of Agriculture and Economics, University of Agriculture, Krakow, Poland
| | - Krzysztof Mikołajczak
- Department of Biotechnology, Institute of Plant Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Piotr Ogrodowicz
- Department of Biotechnology, Institute of Plant Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Karolina Krystkowiak
- Department of Biotechnology, Institute of Plant Genetics, Polish Academy of Sciences, Poznan, Poland
- Department of Plant Functional Metabolomics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Anetta Kuczyńska
- Department of Biotechnology, Institute of Plant Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Paweł Krajewski
- Department of Biometry and Bioinformatics, Institute of Plant Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Iwona Szarejko
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
| |
Collapse
|
50
|
Gill MB, Zeng F, Shabala L, Zhang G, Fan Y, Shabala S, Zhou M. Cell-Based Phenotyping Reveals QTL for Membrane Potential Maintenance Associated with Hypoxia and Salinity Stress Tolerance in Barley. FRONTIERS IN PLANT SCIENCE 2017; 8:1941. [PMID: 29201033 PMCID: PMC5696338 DOI: 10.3389/fpls.2017.01941] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 10/27/2017] [Indexed: 05/18/2023]
Abstract
Waterlogging and salinity are two major abiotic stresses that hamper crop production world-wide resulting in multibillion losses. Plant abiotic stress tolerance is conferred by many interrelated mechanisms. Amongst these, the cell's ability to maintain membrane potential (MP) is considered to be amongst the most crucial traits, a positive relationship between the ability of plants to maintain highly negative MP and its tolerance to both salinity and waterlogging stress. However, no attempts have been made to identify quantitative trait loci (QTL) conferring this trait. In this study, the microelectrode MIFE technique was used to measure the plasma membrane potential of epidermal root cells of 150 double haploid (DH) lines of barley (Hordeum vulgare L.) from a cross between a Chinese landrace TX9425 and Japanese malting cultivar Naso Nijo under hypoxic conditions. A major QTL for the MP in the epidermal root cells in hypoxia-exposed plants was identified. This QTL was located on 2H, at a similar position to the QTL for waterlogging and salinity tolerance reported in previous studies. Further analysis confirmed that MP showed a significant contribution to both waterlogging and salinity tolerance. The fact that the QTL for MP was controlled by a single major QTL illustrates the power of the single-cell phenotyping approach and opens prospects for fine mapping this QTL and thus being more effective in marker assisted selection.
Collapse
Affiliation(s)
- Muhammad B. Gill
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- School of Land and Food, University of Tasmania, Hobart, TAS, Australia
| | - Fanrong Zeng
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Lana Shabala
- School of Land and Food, University of Tasmania, Hobart, TAS, Australia
| | - Guoping Zhang
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yun Fan
- School of Land and Food, University of Tasmania, Hobart, TAS, Australia
| | - Sergey Shabala
- School of Land and Food, University of Tasmania, Hobart, TAS, Australia
| | - Meixue Zhou
- School of Land and Food, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|