1
|
Shi M, Wang C, Wang P, Yun F, Liu Z, Ye F, Wei L, Liao W. Role of methylation in vernalization and photoperiod pathway: a potential flowering regulator? HORTICULTURE RESEARCH 2023; 10:uhad174. [PMID: 37841501 PMCID: PMC10569243 DOI: 10.1093/hr/uhad174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 08/23/2023] [Indexed: 10/17/2023]
Abstract
Recognized as a pivotal developmental transition, flowering marks the continuation of a plant's life cycle. Vernalization and photoperiod are two major flowering pathways orchestrating numerous florigenic signals. Methylation, including histone, DNA and RNA methylation, is one of the recent foci in plant development. Considerable studies reveal that methylation seems to show an increasing potential regulatory role in plant flowering via altering relevant gene expression without altering the genetic basis. However, little has been reviewed about whether and how methylation acts on vernalization- and photoperiod-induced flowering before and after FLOWERING LOCUS C (FLC) reactivation, what role RNA methylation plays in vernalization- and photoperiod-induced flowering, how methylation participates simultaneously in both vernalization- and photoperiod-induced flowering, the heritability of methylation memory under the vernalization/photoperiod pathway, and whether and how methylation replaces vernalization/photoinduction to regulate flowering. Our review provides insight about the crosstalk among the genetic control of the flowering gene network, methylation (methyltransferases/demethylases) and external signals (cold, light, sRNA and phytohormones) in vernalization and photoperiod pathways. The existing evidence that RNA methylation may play a potential regulatory role in vernalization- and photoperiod-induced flowering has been gathered and represented for the first time. This review speculates about and discusses the possibility of substituting methylation for vernalization and photoinduction to promote flowering. Current evidence is utilized to discuss the possibility of future methylation reagents becoming flowering regulators at the molecular level.
Collapse
Affiliation(s)
- Meimei Shi
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Chunlei Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Peng Wang
- Vegetable and Flower Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fahong Yun
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhiya Liu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Fujin Ye
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Lijuan Wei
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
2
|
Ramakrishnan M, Zhang Z, Mullasseri S, Kalendar R, Ahmad Z, Sharma A, Liu G, Zhou M, Wei Q. Epigenetic stress memory: A new approach to study cold and heat stress responses in plants. FRONTIERS IN PLANT SCIENCE 2022; 13:1075279. [PMID: 36570899 PMCID: PMC9772030 DOI: 10.3389/fpls.2022.1075279] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/23/2022] [Indexed: 05/28/2023]
Abstract
Understanding plant stress memory under extreme temperatures such as cold and heat could contribute to plant development. Plants employ different types of stress memories, such as somatic, intergenerational and transgenerational, regulated by epigenetic changes such as DNA and histone modifications and microRNAs (miRNA), playing a key role in gene regulation from early development to maturity. In most cases, cold and heat stresses result in short-term epigenetic modifications that can return to baseline modification levels after stress cessation. Nevertheless, some of the modifications may be stable and passed on as stress memory, potentially allowing them to be inherited across generations, whereas some of the modifications are reactivated during sexual reproduction or embryogenesis. Several stress-related genes are involved in stress memory inheritance by turning on and off transcription profiles and epigenetic changes. Vernalization is the best example of somatic stress memory. Changes in the chromatin structure of the Flowering Locus C (FLC) gene, a MADS-box transcription factor (TF), maintain cold stress memory during mitosis. FLC expression suppresses flowering at high levels during winter; and during vernalization, B3 TFs, cold memory cis-acting element and polycomb repressive complex 1 and 2 (PRC1 and 2) silence FLC activation. In contrast, the repression of SQUAMOSA promoter-binding protein-like (SPL) TF and the activation of Heat Shock TF (HSFA2) are required for heat stress memory. However, it is still unclear how stress memory is inherited by offspring, and the integrated view of the regulatory mechanisms of stress memory and mitotic and meiotic heritable changes in plants is still scarce. Thus, in this review, we focus on the epigenetic regulation of stress memory and discuss the application of new technologies in developing epigenetic modifications to improve stress memory.
Collapse
Affiliation(s)
- Muthusamy Ramakrishnan
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Zhijun Zhang
- Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, Zhejiang, China
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Sileesh Mullasseri
- Department of Zoology, St. Albert’s College (Autonomous), Kochi, Kerala, India
| | - Ruslan Kalendar
- Helsinki Institute of Life Science HiLIFE, Biocenter 3, University of Helsinki, Helsinki, Finland
- National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Zishan Ahmad
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Anket Sharma
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Guohua Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Mingbing Zhou
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-Efficiency Utilization, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Qiang Wei
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu, China
| |
Collapse
|
3
|
The Dynamism of Transposon Methylation for Plant Development and Stress Adaptation. Int J Mol Sci 2021; 22:ijms222111387. [PMID: 34768817 PMCID: PMC8583499 DOI: 10.3390/ijms222111387] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 02/06/2023] Open
Abstract
Plant development processes are regulated by epigenetic alterations that shape nuclear structure, gene expression, and phenotypic plasticity; these alterations can provide the plant with protection from environmental stresses. During plant growth and development, these processes play a significant role in regulating gene expression to remodel chromatin structure. These epigenetic alterations are mainly regulated by transposable elements (TEs) whose abundance in plant genomes results in their interaction with genomes. Thus, TEs are the main source of epigenetic changes and form a substantial part of the plant genome. Furthermore, TEs can be activated under stress conditions, and activated elements cause mutagenic effects and substantial genetic variability. This introduces novel gene functions and structural variation in the insertion sites and primarily contributes to epigenetic modifications. Altogether, these modifications indirectly or directly provide the ability to withstand environmental stresses. In recent years, many studies have shown that TE methylation plays a major role in the evolution of the plant genome through epigenetic process that regulate gene imprinting, thereby upholding genome stability. The induced genetic rearrangements and insertions of mobile genetic elements in regions of active euchromatin contribute to genome alteration, leading to genomic stress. These TE-mediated epigenetic modifications lead to phenotypic diversity, genetic variation, and environmental stress tolerance. Thus, TE methylation is essential for plant evolution and stress adaptation, and TEs hold a relevant military position in the plant genome. High-throughput techniques have greatly advanced the understanding of TE-mediated gene expression and its associations with genome methylation and suggest that controlled mobilization of TEs could be used for crop breeding. However, development application in this area has been limited, and an integrated view of TE function and subsequent processes is lacking. In this review, we explore the enormous diversity and likely functions of the TE repertoire in adaptive evolution and discuss some recent examples of how TEs impact gene expression in plant development and stress adaptation.
Collapse
|
4
|
Tan C, Ren J, Wang L, Ye X, Fu W, Zhang J, Qi M, Feng H, Liu Z. A single amino acid residue substitution in BraA04g017190.3C, a histone methyltransferase, results in premature bolting in Chinese cabbage (Brassica rapa L. ssp. Pekinensis). BMC PLANT BIOLOGY 2021; 21:373. [PMID: 34388969 PMCID: PMC8361648 DOI: 10.1186/s12870-021-03153-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Flowering is an important inflection point in the transformation from vegetative to reproductive growth, and premature bolting severely decreases crop yield and quality. RESULTS In this study, a stable early-bolting mutant, ebm3, was identified in an ethyl methanesulfonate (EMS)-mutagenized population of a Chinese cabbage doubled haploid (DH) line 'FT'. Compared with 'FT', ebm3 showed early bolting under natural cultivation in autumn, and curled leaves. Genetic analysis showed that the early-bolting phenotype was controlled by a single recessive nuclear gene. Modified MutMap sequencing, genotyping analyses and allelism test provide strong evidence that BrEBM3 (BraA04g017190.3 C), encoding the histone methyltransferase CURLY LEAF (CLF), was the strongly candidate gene of the emb3. A C to T base substitution in the 14th exon of BrEBM3 resulted in an amino acid change (S to F) and the early-bolting phenotype of emb3. The mutation occurred in the SET domain (Suppressor of protein-effect variegation 3-9, Enhancer-of-zeste, Trithorax), which catalyzes site- and state-specific lysine methylation in histones. Tissue-specific expression analysis showed that BrEBM3 was highly expressed in the flower and bud. Promoter activity assay confirmed that BrEBM3 promoter was active in inflorescences. Subcellular localization analysis revealed that BrEBM3 localized in the nucleus. Transcriptomic studies supported that BrEBM3 mutation might repress H3K27me3 deposition and activate expression of the AGAMOUS (AG) and AGAMOUS-like (AGL) loci, resulting in early flowering. CONCLUSIONS Our study revealed that an EMS-induced early-bolting mutant ebm3 in Chinese cabbage was caused by a nonsynonymous mutation in BraA04g017190.3 C, encoding the histone methyltransferase CLF. These results improve our knowledge of the genetic and genomic resources of bolting and flowering, and may be beneficial to the genetic improvement of Chinese cabbage.
Collapse
Affiliation(s)
- Chong Tan
- Liaoning Key Laboratory of Genetics and Breeding for Cruciferous Vegetable Crops, Department of Horticulture, Shenyang Agricultural University, 110866, Shenyang, People's Republic of China
| | - Jie Ren
- Liaoning Key Laboratory of Genetics and Breeding for Cruciferous Vegetable Crops, Department of Horticulture, Shenyang Agricultural University, 110866, Shenyang, People's Republic of China
| | - Lin Wang
- Liaoning Key Laboratory of Genetics and Breeding for Cruciferous Vegetable Crops, Department of Horticulture, Shenyang Agricultural University, 110866, Shenyang, People's Republic of China
| | - Xueling Ye
- Liaoning Key Laboratory of Genetics and Breeding for Cruciferous Vegetable Crops, Department of Horticulture, Shenyang Agricultural University, 110866, Shenyang, People's Republic of China
| | - Wei Fu
- Liaoning Key Laboratory of Genetics and Breeding for Cruciferous Vegetable Crops, Department of Horticulture, Shenyang Agricultural University, 110866, Shenyang, People's Republic of China
| | - Jiamei Zhang
- Liaoning Key Laboratory of Genetics and Breeding for Cruciferous Vegetable Crops, Department of Horticulture, Shenyang Agricultural University, 110866, Shenyang, People's Republic of China
| | - Meng Qi
- Liaoning Key Laboratory of Genetics and Breeding for Cruciferous Vegetable Crops, Department of Horticulture, Shenyang Agricultural University, 110866, Shenyang, People's Republic of China
| | - Hui Feng
- Liaoning Key Laboratory of Genetics and Breeding for Cruciferous Vegetable Crops, Department of Horticulture, Shenyang Agricultural University, 110866, Shenyang, People's Republic of China
| | - Zhiyong Liu
- Liaoning Key Laboratory of Genetics and Breeding for Cruciferous Vegetable Crops, Department of Horticulture, Shenyang Agricultural University, 110866, Shenyang, People's Republic of China.
| |
Collapse
|
5
|
Zheng Y, Gao Z, Luo L, Wang Y, Chen Q, Yang Y, Kong X, Yang Y. Divergence of the genetic contribution of FRIGIDA homologues in regulating the flowering time in Brassica rapa ssp. rapa. Gene 2021; 796-797:145790. [PMID: 34175395 DOI: 10.1016/j.gene.2021.145790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/04/2021] [Accepted: 06/22/2021] [Indexed: 10/21/2022]
Affiliation(s)
- Yan Zheng
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zean Gao
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Landi Luo
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Yonggang Wang
- Agricultural Technology Extension Center of Zhaoyang District, Zhaotong 657000, China
| | - Qian Chen
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Ya Yang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Xiangxiang Kong
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| | - Yongping Yang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| |
Collapse
|
6
|
Wang Z, Kang J, Armando Casas-Mollano J, Dou Y, Jia S, Yang Q, Zhang C, Cerutti H. MLK4-mediated phosphorylation of histone H3T3 promotes flowering by transcriptional silencing of FLC/MAF in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:1400-1412. [PMID: 33280202 DOI: 10.1111/tpj.15122] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/27/2020] [Accepted: 11/09/2020] [Indexed: 05/26/2023]
Abstract
Casein kinase I (CK1), a ubiquitous Ser/Thr protein kinase in eukaryotes, plays a critical role in higher plant flowering. Arabidopsis CK1 family member MUT9-LIKE KINASEs, such as MLK1 and MLK3, have been shown to phosphorylate histone H3 at threonine 3 (H3T3), an evolutionarily conserved residue, and the modification is associated with the transcriptional repression of euchromatic and heterochromatic loci. This study demonstrates that mlk4-3, a T-DNA insertion mutant of MLK4, flowered late, and that overexpression of MLK4 caused early flowering. The nuclear protein MLK4 phosphorylated histone H3T3 both in vitro and in vivo, and this catalytic activity required the conserved lysine residue K175. mutation of MLK4 at K175 failed to restore the level of phosphorylated H3T3 (H3T3ph) or to complement the phenotypic defects of mlk4-3. The FLC/MAF-clade genes, including FLC, MAF4 and MAF5, were significantly upregulated in mlk4-3. The double mutant mlk4-3 flc-3 flowered earlier than mlk4-3, suggesting that functional FLC is crucial for flowering repression in mlk4-3. Chromatin immunoprecipitation assays showed that MLK4 bound to FLC/MAF chromatin and that H3T3ph occupancy at the promoter of FLC/MAF was negatively associated with its transcriptional level. In accordance, H3T3ph accumulated at FLC/MAF in 35S::MLK4/mlk4-3 but diminished in 35S::MLK4(K175R)/mlk4-3 plants. Moreover, the amount of RNA Pol II deposited at FLC/MAF was clearly enriched in mlk4-3 relative to the wild type. Therefore, MLK4-dependent phosphorylation of H3T3 contributes to accelerating flowering by repressing the transcription of negative flowering regulator FLC/MAF. This study sheds light on the delicate control of flowering by the plant-specific CK1, MLK4, via post-translational modification of histone H3.
Collapse
Affiliation(s)
- Zhen Wang
- Institute of Animal Science, the Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Junmei Kang
- Institute of Animal Science, the Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Juan Armando Casas-Mollano
- School of Biological Sciences and Center for Plant Science Innovation, University of Nebraska, Lincoln, NE, 68588, USA
| | - Yongchao Dou
- School of Biological Sciences and Center for Plant Science Innovation, University of Nebraska, Lincoln, NE, 68588, USA
| | - Shangang Jia
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Qingchuan Yang
- Institute of Animal Science, the Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Chi Zhang
- School of Biological Sciences and Center for Plant Science Innovation, University of Nebraska, Lincoln, NE, 68588, USA
| | - Heriberto Cerutti
- School of Biological Sciences and Center for Plant Science Innovation, University of Nebraska, Lincoln, NE, 68588, USA
| |
Collapse
|
7
|
Liu J, He Z. Small DNA Methylation, Big Player in Plant Abiotic Stress Responses and Memory. FRONTIERS IN PLANT SCIENCE 2020; 11:595603. [PMID: 33362826 PMCID: PMC7758401 DOI: 10.3389/fpls.2020.595603] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/18/2020] [Indexed: 05/12/2023]
Abstract
DNA methylation is a conserved epigenetic mark that plays important roles in maintaining genome stability and regulating gene expression. As sessile organisms, plants have evolved sophisticated regulatory systems to endure or respond to diverse adverse abiotic environmental challenges, i.e., abiotic stresses, such as extreme temperatures (cold and heat), drought and salinity. Plant stress responses are often accompanied by changes in chromatin modifications at diverse responsive loci, such as 5-methylcytosine (5mC) and N 6-methyladenine (6mA) DNA methylation. Some abiotic stress responses are memorized for several hours or days through mitotic cell divisions and quickly reset to baseline levels after normal conditions are restored, which is referred to as somatic memory. In some cases, stress-induced chromatin marks are meiotically heritable and can impart the memory of stress exposure from parent plants to at least the next stress-free offspring generation through the mechanisms of transgenerational epigenetic inheritance, which may offer the descendants the potential to be adaptive for better fitness. In this review, we briefly summarize recent achievements regarding the establishment, maintenance and reset of DNA methylation, and highlight the diverse roles of DNA methylation in plant responses to abiotic stresses. Further, we discuss the potential role of DNA methylation in abiotic stress-induced somatic memory and transgenerational inheritance. Future research directions are proposed to develop stress-tolerant engineered crops to reduce the negative effects of abiotic stresses.
Collapse
Affiliation(s)
- Junzhong Liu
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan and Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Zuhua He
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
8
|
Lyu J, Cai Z, Li Y, Suo H, Yi R, Zhang S, Nian H. The Floral Repressor GmFLC-like Is Involved in Regulating Flowering Time Mediated by Low Temperature in Soybean. Int J Mol Sci 2020; 21:E1322. [PMID: 32075331 PMCID: PMC7072909 DOI: 10.3390/ijms21041322] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/04/2020] [Accepted: 02/13/2020] [Indexed: 01/09/2023] Open
Abstract
Soybean is an important crop that is grown worldwide. Flowering time is a critical agricultural trait determining successful reproduction and yields. For plants, light and temperature are important environmental factors that regulate flowering time. Soybean is a typical short-day (SD) plant, and many studies have elucidated the fine-scale mechanisms of how soybean responds to photoperiod. Low temperature can delay the flowering time of soybean, but little is known about the detailed mechanism of how temperature affects soybean flowering. In this study, we isolated GmFLC-like from soybean, which belongs to the FLOWERING LOCUS C clade of the MADS-box family and is intensely expressed in soybean leaves. Heterologous expression of GmFLC-like results in a delayed-flowering phenotype in Arabidopsis. Additional experiments revealed that GmFLC-like is involved in long-term low temperature-triggered late flowering by inhibiting FT gene expression. In addition, yeast one-hybrid, dual-luciferase reporter assay, and electrophoretic mobility shift assay revealed that the GmFLC-like protein could directly repress the expression of FT2a by physically interacting with its promoter region. Taken together, our results revealed that GmFLC-like functions as a floral repressor involved in flowering time during treatments with various low temperature durations. As the only the FLC gene in soybean, GmFLC-like was meaningfully retained in the soybean genome over the course of evolution, and this gene may play an important role in delaying flowering time and providing protective mechanisms against sporadic and extremely low temperatures.
Collapse
Affiliation(s)
- Jing Lyu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; (J.L.); (Z.C.); (R.Y.)
| | - Zhandong Cai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; (J.L.); (Z.C.); (R.Y.)
| | - Yonghong Li
- School of Applied Chemistry and Biological Technology, Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen 518055, China;
| | - Haicui Suo
- Crop Research Institute, Guangdong Academy of Agriculture, Guangzhou 510642, China;
| | - Rong Yi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; (J.L.); (Z.C.); (R.Y.)
- Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Shuai Zhang
- School of Applied Chemistry and Biological Technology, Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen 518055, China;
| | - Hai Nian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; (J.L.); (Z.C.); (R.Y.)
- Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
9
|
Dommes AB, Gross T, Herbert DB, Kivivirta KI, Becker A. Virus-induced gene silencing: empowering genetics in non-model organisms. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:757-770. [PMID: 30452695 DOI: 10.1093/jxb/ery411] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 11/08/2018] [Indexed: 05/19/2023]
Abstract
Virus-induced gene silencing (VIGS) is an RNA interference-based technology used to transiently knock down target gene expression by utilizing modified plant viral genomes. VIGS can be adapted to many angiosperm species that cover large phylogenetic distances, allowing the analysis of gene functions in species that are not amenable to stable genetic transformation. With a vast amount of sequence information already available and even more likely to become available in the future, VIGS provides a means to analyze the functions of candidate genes identified in large genomic or transcriptomic screens. Here, we provide a comprehensive overview of target species and VIGS vector systems, assess recent key publications in the field, and explain how plant viruses are modified to serve as VIGS vectors. As many reports on the VIGS technique are being published, we also propose minimal reporting guidelines for carrying out these experiments, with the aim of increasing comparability between experiments. Finally, we propose methods for the statistical evaluation of phenotypic results obtained with VIGS-treated plants, as analysis is challenging due to the predominantly transient nature of the silencing effect.
Collapse
Affiliation(s)
- Anna B Dommes
- Institute of Botany, Justus-Liebig-University, Heinrich-Buff-Ring, Gießen, Germany
| | - Thomas Gross
- Institute of Botany, Justus-Liebig-University, Heinrich-Buff-Ring, Gießen, Germany
| | - Denise B Herbert
- Institute of Botany, Justus-Liebig-University, Heinrich-Buff-Ring, Gießen, Germany
| | - Kimmo I Kivivirta
- Institute of Botany, Justus-Liebig-University, Heinrich-Buff-Ring, Gießen, Germany
| | - Annette Becker
- Institute of Botany, Justus-Liebig-University, Heinrich-Buff-Ring, Gießen, Germany
| |
Collapse
|
10
|
Leijten W, Koes R, Roobeek I, Frugis G. Translating Flowering Time From Arabidopsis thaliana to Brassicaceae and Asteraceae Crop Species. PLANTS 2018; 7:plants7040111. [PMID: 30558374 PMCID: PMC6313873 DOI: 10.3390/plants7040111] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/07/2018] [Accepted: 12/13/2018] [Indexed: 12/31/2022]
Abstract
Flowering and seed set are essential for plant species to survive, hence plants need to adapt to highly variable environments to flower in the most favorable conditions. Endogenous cues such as plant age and hormones coordinate with the environmental cues like temperature and day length to determine optimal time for the transition from vegetative to reproductive growth. In a breeding context, controlling flowering time would help to speed up the production of new hybrids and produce high yield throughout the year. The flowering time genetic network is extensively studied in the plant model species Arabidopsis thaliana, however this knowledge is still limited in most crops. This article reviews evidence of conservation and divergence of flowering time regulation in A. thaliana with its related crop species in the Brassicaceae and with more distant vegetable crops within the Asteraceae family. Despite the overall conservation of most flowering time pathways in these families, many genes controlling this trait remain elusive, and the function of most Arabidopsis homologs in these crops are yet to be determined. However, the knowledge gathered so far in both model and crop species can be already exploited in vegetable crop breeding for flowering time control.
Collapse
Affiliation(s)
- Willeke Leijten
- ENZA Zaden Research & Development B.V., Haling 1E, 1602 DB Enkhuizen, The Netherlands.
| | - Ronald Koes
- Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.
| | - Ilja Roobeek
- ENZA Zaden Research & Development B.V., Haling 1E, 1602 DB Enkhuizen, The Netherlands.
| | - Giovanna Frugis
- Istituto di Biologia e Biotecnologia Agraria (IBBA), Operative Unit of Rome, Consiglio Nazionale delle Ricerche (CNR), Via Salaria Km. 29,300 ⁻ 00015, Monterotondo Scalo, Roma, Italy.
| |
Collapse
|