1
|
Sato H, Yamane H. Histone modifications affecting plant dormancy and dormancy release: common regulatory effects on hormone metabolism. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6142-6158. [PMID: 38721634 DOI: 10.1093/jxb/erae205] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/08/2024] [Indexed: 10/17/2024]
Abstract
As sessile organisms, plants enter periods of dormancy in response to environmental stresses to ensure continued growth and reproduction in the future. During dormancy, plant growth is suppressed, adaptive/survival mechanisms are exerted, and stress tolerance increases over a prolonged period until the plants resume their development or reproduction under favorable conditions. In this review, we focus on seed dormancy and bud dormancy, which are critical for adaptation to fluctuating environmental conditions. We provide an overview of the physiological characteristics of both types of dormancy as well as the importance of the phytohormones abscisic acid and gibberellin for establishing and releasing dormancy, respectively. Additionally, recent epigenetic analyses have revealed that dormancy establishment and release are associated with the removal and deposition of histone modifications at the loci of key regulatory genes influencing phytohormone metabolism and signaling, including DELAY OF GERMINATION 1 and DORMANCY-ASSOCIATED MADS-box genes. We discuss our current understanding of the physiological and molecular mechanisms required to establish and release seed dormancy and bud dormancy, while also describing how environmental conditions control dormancy depth, with a focus on the effects of histone modifications.
Collapse
Affiliation(s)
- Hikaru Sato
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8562, Japan
| | - Hisayo Yamane
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
2
|
Alakärppä E, Salo HM, Suokas M, Jokipii-Lukkari S, Vuosku J, Häggman H. Targeted bisulfite sequencing of Scots pine adaptation-related genes. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 346:112173. [PMID: 38944158 DOI: 10.1016/j.plantsci.2024.112173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/01/2024]
Abstract
During environmental changes, epigenetic processes can enable adaptive responses faster than natural selection. In plants, very little is known about the role of DNA methylation during long-term adaptation. Scots pine is a widely distributed coniferous species which must adapt to different environmental conditions throughout its long lifespan. Thus, epigenetic modifications may contribute towards this direction. We provide bisulfite next-generation sequencing data from the putative promoters and exons of eight adaptation-related genes (A3IP2, CCA1, COL1, COL2, FTL2, MFT1, PHYO, and ZTL) in three Scots pine populations located in northern and southern parts of Finland. DNA methylation levels were studied in the two seed tissues: the maternal megagametophyte which contributes to embryo viability, and the biparental embryo which represents the next generation. In most genes, differentially methylated cytosines (DMCs) were in line with our previously demonstrated gene expression differences found in the same Scots pine populations. In addition, we found a strong correlation of total methylation levels between the embryo and megagametophyte tissues of a given individual tree, which indicates that DNA methylation can be inherited from the maternal parent. In conclusion, our results imply that DNA methylation differences may contribute to the adaptation of Scots pine populations in different climatic conditions.
Collapse
Affiliation(s)
- Emmi Alakärppä
- Ecology and Genetics Research Unit, University of Oulu, PO Box 3000, Oulu FI-90014, Finland.
| | - Heikki M Salo
- Ecology and Genetics Research Unit, University of Oulu, PO Box 3000, Oulu FI-90014, Finland
| | - Marko Suokas
- Ecology and Genetics Research Unit, University of Oulu, PO Box 3000, Oulu FI-90014, Finland
| | - Soile Jokipii-Lukkari
- Ecology and Genetics Research Unit, University of Oulu, PO Box 3000, Oulu FI-90014, Finland
| | - Jaana Vuosku
- Ecology and Genetics Research Unit, University of Oulu, PO Box 3000, Oulu FI-90014, Finland
| | - Hely Häggman
- Ecology and Genetics Research Unit, University of Oulu, PO Box 3000, Oulu FI-90014, Finland
| |
Collapse
|
3
|
Fossdal CG, Krokene P, Olsen JE, Strimbeck R, Viejo M, Yakovlev I, Mageroy MH. Epigenetic stress memory in gymnosperms. PLANT PHYSIOLOGY 2024; 195:1117-1133. [PMID: 38298164 PMCID: PMC11142372 DOI: 10.1093/plphys/kiae051] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/18/2024] [Accepted: 01/25/2024] [Indexed: 02/02/2024]
Abstract
Gymnosperms are long-lived, cone-bearing seed plants that include some of the most ancient extant plant species. These relict land plants have evolved to survive in habitats marked by chronic or episodic stress. Their ability to thrive in these environments is partly due to their phenotypic flexibility, and epigenetic regulation likely plays a crucial part in this plasticity. We review the current knowledge on abiotic and biotic stress memory in gymnosperms and the possible epigenetic mechanisms underlying long-term phenotypic adaptations. We also discuss recent technological improvements and new experimental possibilities that likely will advance our understanding of epigenetic regulation in these ancient and hard-to-study plants.
Collapse
Affiliation(s)
- Carl Gunnar Fossdal
- Division of Plant Health and Biotechnology, Norwegian Institute of Bioeconomy Research, Ås 1431, Norway
| | - Paal Krokene
- Division of Plant Health and Biotechnology, Norwegian Institute of Bioeconomy Research, Ås 1431, Norway
| | - Jorunn Elisabeth Olsen
- Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås 1432, Norway
| | - Richard Strimbeck
- Department of Biology, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Marcos Viejo
- Department of Functional Biology, University of Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Igor Yakovlev
- Division of Plant Health and Biotechnology, Norwegian Institute of Bioeconomy Research, Ås 1431, Norway
| | - Melissa H Mageroy
- Division of Plant Health and Biotechnology, Norwegian Institute of Bioeconomy Research, Ås 1431, Norway
| |
Collapse
|
4
|
Krokene P, Børja I, Carneros E, Eldhuset TD, Nagy NE, Volařík D, Gebauer R. Effects of combined drought and pathogen stress on growth, resistance and gene expression in young Norway spruce trees. TREE PHYSIOLOGY 2023; 43:1603-1618. [PMID: 37171580 DOI: 10.1093/treephys/tpad062] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 04/20/2023] [Accepted: 05/08/2023] [Indexed: 05/13/2023]
Abstract
Drought-induced mortality is a major direct effect of climate change on tree health, but drought can also affect trees indirectly by altering their susceptibility to pathogens. Here, we report how a combination of mild or severe drought and pathogen infection affected the growth, pathogen resistance and gene expression in potted 5-year-old Norway spruce trees [Picea abies (L.) Karst.]. After 5 weeks of drought, trees were inoculated with the fungal pathogen Endoconidiophora polonica. Combined drought-pathogen stress over the next 8 weeks led to significant reductions in the growth of drought-treated trees relative to well-watered trees and more so in trees subjected to severe drought. Belowground, growth of the smallest fine roots was most affected. Aboveground, shoot diameter change was most sensitive to the combined stress, followed by shoot length growth and twig biomass. Both drought-related and some resistance-related genes were upregulated in bark samples collected after 5 weeks of drought (but before pathogen infection), and gene expression levels scaled with the intensity of drought stress. Trees subjected to severe drought were much more susceptible to pathogen infection than well-watered trees or trees subjected to mild drought. Overall, our results show that mild drought stress may increase the tree resistance to pathogen infection by upregulating resistance-related genes. Severe drought stress, on the other hand, decreased tree resistance. Because drought episodes are expected to become more frequent with climate change, combined effects of drought and pathogen stress should be studied in more detail to understand how these stressors interactively influence tree susceptibility to pests and pathogens.
Collapse
Affiliation(s)
- P Krokene
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, P.O. Box 115, Ås, 1431, Norway
| | - I Børja
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, P.O. Box 115, Ås, 1431, Norway
| | - E Carneros
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, P.O. Box 115, Ås, 1431, Norway
- Center for Biological Research Margarita Salas-Spanish National Research Council (CSIC), Madrid, Spain
| | - T D Eldhuset
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, P.O. Box 115, Ås, 1431, Norway
- Sagveien 17, 1414, Trollåsen, Norway
| | - N E Nagy
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, P.O. Box 115, Ås, 1431, Norway
| | - D Volařík
- Department of Forest Botany, Dendrology and Geobicoenology, Mendel University in Brno, Zemědělská 3, Brno, 61300, Czech Republic
| | - R Gebauer
- Department of Forest Botany, Dendrology and Geobicoenology, Mendel University in Brno, Zemědělská 3, Brno, 61300, Czech Republic
| |
Collapse
|
5
|
Zhang(张宇鹏) Y, Fan G, Toivainen T, Tengs T, Yakovlev I, Krokene P, Hytönen T, Fossdal CG, Grini PE. Warmer temperature during asexual reproduction induce methylome, transcriptomic, and lasting phenotypic changes in Fragaria vesca ecotypes. HORTICULTURE RESEARCH 2023; 10:uhad156. [PMID: 37719273 PMCID: PMC10500154 DOI: 10.1093/hr/uhad156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/25/2023] [Indexed: 09/19/2023]
Abstract
Plants must adapt with increasing speed to global warming to maintain their fitness. One rapid adaptation mechanism is epigenetic memory, which may provide organisms sufficient time to adapt to climate change. We studied how the perennial Fragaria vesca adapted to warmer temperatures (28°C vs. 18°C) over three asexual generations. Differences in flowering time, stolon number, and petiole length were induced by warmer temperature in one or more ecotypes after three asexual generations and persisted in a common garden environment. Induced methylome changes differed between the four ecotypes from Norway, Iceland, Italy, and Spain, but shared methylome responses were also identified. Most differentially methylated regions (DMRs) occurred in the CHG context, and most CHG and CHH DMRs were hypermethylated at the warmer temperature. In eight CHG DMR peaks, a highly similar methylation pattern could be observed between ecotypes. On average, 13% of the differentially methylated genes between ecotypes also showed a temperature-induced change in gene expression. We observed ecotype-specific methylation and expression patterns for genes related to gibberellin metabolism, flowering time, and epigenetic mechanisms. Furthermore, we observed a negative correlation with gene expression when repetitive elements were found near (±2 kb) or inside genes. In conclusion, lasting phenotypic changes indicative of an epigenetic memory were induced by warmer temperature and were accompanied by changes in DNA methylation patterns. Both shared methylation patterns and transcriptome differences between F. vesca accessions were observed, indicating that DNA methylation may be involved in both general and ecotype-specific phenotypic variation.
Collapse
Affiliation(s)
- YuPeng Zhang(张宇鹏)
- EVOGENE, Department of Biosciences, University of Oslo, 0313 Oslo, Norway
- Department of Molecular Plant Biology, Norwegian Institute of Bioeconomy Research, 1431 Ås, Norway
| | - Guangxun Fan
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland
| | - Tuomas Toivainen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland
| | - Torstein Tengs
- Department of Molecular Plant Biology, Norwegian Institute of Bioeconomy Research, 1431 Ås, Norway
| | - Igor Yakovlev
- Department of Molecular Plant Biology, Norwegian Institute of Bioeconomy Research, 1431 Ås, Norway
| | - Paal Krokene
- Department of Molecular Plant Biology, Norwegian Institute of Bioeconomy Research, 1431 Ås, Norway
| | - Timo Hytönen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland
| | - Carl Gunnar Fossdal
- Department of Molecular Plant Biology, Norwegian Institute of Bioeconomy Research, 1431 Ås, Norway
| | - Paul E. Grini
- EVOGENE, Department of Biosciences, University of Oslo, 0313 Oslo, Norway
| |
Collapse
|
6
|
Viejo M, Tengs T, Yakovlev I, Cross H, Krokene P, Olsen JE, Fossdal CG. Epitype-inducing temperatures drive DNA methylation changes during somatic embryogenesis in the long-lived gymnosperm Norway spruce. FRONTIERS IN PLANT SCIENCE 2023; 14:1196806. [PMID: 37546277 PMCID: PMC10399239 DOI: 10.3389/fpls.2023.1196806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023]
Abstract
An epigenetic memory of the temperature sum experienced during embryogenesis is part of the climatic adaptation strategy of the long-lived gymnosperm Norway spruce. This memory has a lasting effect on the timing of bud phenology and frost tolerance in the resulting epitype trees. The epigenetic memory is well characterized phenotypically and at the transcriptome level, but to what extent DNA methylation changes are involved have not previously been determined. To address this, we analyzed somatic epitype embryos of Norway spruce clones produced at contrasting epitype-inducing conditions (18 and 28°C). We screened for differential DNA methylation in 2744 genes related mainly to the epigenetic machinery, circadian clock, and phenology. Of these genes, 68% displayed differential DNA methylation patterns between contrasting epitype embryos in at least one methylation context (CpG, CHG, CHH). Several genes related to the epigenetic machinery (e.g., DNA methyltransferases, ARGONAUTE) and the control of bud phenology (FTL genes) were differentially methylated. This indicates that the epitype-inducing temperature conditions induce an epigenetic memory involving specific DNA methylation changes in Norway spruce.
Collapse
Affiliation(s)
- Marcos Viejo
- Department of Molecular Plant Biology, Norwegian Institute of Bioeconomy Research, Ås, Norway
- Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
- Department of Functional Biology, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Torstein Tengs
- Department of Molecular Plant Biology, Norwegian Institute of Bioeconomy Research, Ås, Norway
- Department of Breeding and Genetics, Norwegian Institute of Food, Fisheries and Aquaculture Research (NOFIMA), Ås, Norway
| | - Igor Yakovlev
- Department of Molecular Plant Biology, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Hugh Cross
- Department of Molecular Plant Biology, Norwegian Institute of Bioeconomy Research, Ås, Norway
- Department of Science, National Ecological Observatory Network, Boulder, CO, United States
| | - Paal Krokene
- Department of Molecular Plant Biology, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Jorunn E. Olsen
- Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Carl Gunnar Fossdal
- Department of Molecular Plant Biology, Norwegian Institute of Bioeconomy Research, Ås, Norway
| |
Collapse
|
7
|
Zhang Y, Viejo M, Yakovlev I, Tengs T, Krokene P, Hytönen T, Grini PE, Fossdal CG. Major transcriptomic differences are induced by warmer temperature conditions experienced during asexual and sexual reproduction in Fragaria vesca ecotypes. FRONTIERS IN PLANT SCIENCE 2023; 14:1213311. [PMID: 37521931 PMCID: PMC10379642 DOI: 10.3389/fpls.2023.1213311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/29/2023] [Indexed: 08/01/2023]
Abstract
A major challenge for plants in a rapidly changing climate is to adapt to rising temperatures. Some plants adapt to temperature conditions by generating an epigenetic memory that can be transmitted both meiotically and mitotically. Such epigenetic memories may increase phenotypic variation to global warming and provide time for adaptation to occur through classical genetic selection. The goal of this study was to understand how warmer temperature conditions experienced during sexual and asexual reproduction affect the transcriptomes of different strawberry (Fragaria vesca) ecotypes. We let four European F. vesca ecotypes reproduce at two contrasting temperatures (18 and 28°C), either asexually through stolon formation for several generations, or sexually by seeds (achenes). We then analyzed the transcriptome of unfolding leaves, with emphasis on differential expression of genes belonging to the epigenetic machinery. For asexually reproduced plants we found a general transcriptomic response to temperature conditions but for sexually reproduced plants we found less significant responses. We predicted several splicing isoforms for important genes (e.g. a SOC1, LHY, and SVP homolog), and found significantly more differentially presented splicing event variants following asexual vs. sexual reproduction. This difference could be due to the stochastic character of recombination during meiosis or to differential creation or erasure of epigenetic marks during embryogenesis and seed development. Strikingly, very few differentially expressed genes were shared between ecotypes, perhaps because ecotypes differ greatly both genetically and epigenetically. Genes related to the epigenetic machinery were predominantly upregulated at 28°C during asexual reproduction but downregulated after sexual reproduction, indicating that temperature-induced change affects the epigenetic machinery differently during the two types of reproduction.
Collapse
Affiliation(s)
- Yupeng Zhang
- Department of Molecular Plant Biology, Norwegian Institute of Bioeconomy Research, Ås, Norway
- EVOGENE, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Marcos Viejo
- Department of Functional Biology, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Igor Yakovlev
- Department of Molecular Plant Biology, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Torstein Tengs
- Department of Molecular Plant Biology, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Paal Krokene
- Department of Molecular Plant Biology, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Timo Hytönen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Paul E. Grini
- EVOGENE, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Carl Gunnar Fossdal
- Department of Molecular Plant Biology, Norwegian Institute of Bioeconomy Research, Ås, Norway
| |
Collapse
|
8
|
Zhang Y, Toivainen T, Mackenzie K, Yakovlev I, Krokene P, Hytönen T, Grini PE, Fossdal CG. Methylome, transcriptome, and phenotype changes induced by temperature conditions experienced during sexual reproduction in Fragaria vesca. PHYSIOLOGIA PLANTARUM 2023; 175:e13963. [PMID: 37340851 DOI: 10.1111/ppl.13963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/29/2023] [Accepted: 06/19/2023] [Indexed: 06/22/2023]
Abstract
Temperature conditions experienced during embryogenesis and seed development may induce epigenetic changes that increase phenotypic variation in plants. Here we investigate if embryogenesis and seed development at two different temperatures (28 vs. 18°C) result in lasting phenotypic effects and DNA methylation changes in woodland strawberry (Fragaria vesca). Using five European ecotypes from Spain (ES12), Iceland (ICE2), Italy (IT4), and Norway (NOR2 and NOR29), we found statistically significant differences between plants from seeds produced at 18 or 28°C in three of four phenotypic features investigated under common garden conditions. This indicates the establishment of a temperature-induced epigenetic memory-like response during embryogenesis and seed development. The memory effect was significant in two ecotypes: in NOR2 flowering time, number of growth points and petiole length were affected, and in ES12 number of growth points was affected. This indicates that genetic differences between ecotypes in their epigenetic machinery, or other allelic differences, impact this type of plasticity. We observed statistically significant differences between ecotypes in DNA methylation marks in repetitive elements, pseudogenes, and genic elements. Leaf transcriptomes were also affected by embryonic temperature in an ecotype-specific manner. Although we observed significant and lasting phenotypic change in at least some ecotypes, there was considerable variation in DNA methylation between individual plants within each temperature treatment. This within-treatment variability in DNA methylation marks in F. vesca progeny may partly be a result of allelic redistribution from recombination during meiosis and subsequent epigenetic reprogramming during embryogenesis.
Collapse
Affiliation(s)
- Yupeng Zhang
- Department of Molecular Plant Biology, Norwegian Institute of Bioeconomy Research, Ås, Norway
- EVOGENE, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Tuomas Toivainen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Kathryn Mackenzie
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Igor Yakovlev
- Department of Molecular Plant Biology, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Paal Krokene
- Department of Molecular Plant Biology, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Timo Hytönen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Paul E Grini
- EVOGENE, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Carl Gunnar Fossdal
- Department of Molecular Plant Biology, Norwegian Institute of Bioeconomy Research, Ås, Norway
| |
Collapse
|
9
|
Petrik P, Petek-Petrik A, Kurjak D, Mukarram M, Klein T, Gömöry D, Střelcová K, Frýdl J, Konôpková A. Interannual adjustments in stomatal and leaf morphological traits of European beech (Fagus sylvatica L.) demonstrate its climate change acclimation potential. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:1287-1296. [PMID: 35238138 DOI: 10.1111/plb.13401] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
The current projections of climate change might exceed the ability of European forest trees to adapt to upcoming environmental conditions. However, stomatal and leaf morphological traits could greatly influence the acclimation potential of forest tree species subjected to global warming, including the single most important forestry species in Europe, European beech. We analysed stomatal (guard cell length, stomatal density and potential conductance index) and leaf (leaf area, leaf dry weight and leaf mass per area) morphological traits of ten provenances from two provenance trials with contrasting climates between 2016 and 2020. The impact of meteorological conditions of the current and preceding year on stomatal and leaf traits was tested by linear and quadratic regressions. Ecodistance was used to capture the impact of adaptation after the transfer of provenances to new environments. Interactions of trial-provenance and trial-year factors were significant for all measured traits. Guard cell length was lowest and stomatal density was highest across beech provenances in the driest year, 2018. Adaptation was also reflected in a significant relationship between aridity ecodistance and measured traits. Moreover, the meteorological conditions of the preceding year affected the interannual variability of stomatal and leaf traits more than the meteorological conditions of the spring of the current year, suggesting the existence of plant stress memory. High intraspecific variability of stomatal and leaf traits controlled by the interaction of adaptation, acclimation and plant memory suggests a high acclimation potential of European beech provenances under future conditions of global climate change.
Collapse
Affiliation(s)
- P Petrik
- Global Change Research Institute, Czech Academy of Sciences, Brno, Czech Republic
| | - A Petek-Petrik
- Department of Vegetation Ecology, Institute of Botany CAS, Brno, Czech Republic
| | - D Kurjak
- Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
| | - M Mukarram
- Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
- Advance Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, India
| | - T Klein
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - D Gömöry
- Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
| | - K Střelcová
- Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
| | - J Frýdl
- Forestry and Game Management Research Institute, Jíloviště, Czech Republic
| | - A Konôpková
- Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
| |
Collapse
|
10
|
Ribeyre Z, Messier C, Nolet P. No stress memory pattern was detected in sugar maple and white spruce seedlings subjected to experimental droughts. Ecosphere 2022. [DOI: 10.1002/ecs2.4332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Zoé Ribeyre
- Département des Sciences Naturelles, Institut des Sciences de la Forêt Tempérée (ISFORT), Centre d'étude de la Forêt (CEF) University of Québec en Outaouais (UQO) Ripon Quebec Canada
| | - Christian Messier
- Département des Sciences Naturelles, Institut des Sciences de la Forêt Tempérée (ISFORT), Centre d'étude de la Forêt (CEF) University of Québec en Outaouais (UQO) Ripon Quebec Canada
- Département des Sciences Biologiques, Centre d'Étude de la Forêt (CEF) University of Québec à Montréal (UQAM) Montreal Quebec Canada
| | - Philippe Nolet
- Département des Sciences Naturelles, Institut des Sciences de la Forêt Tempérée (ISFORT), Centre d'étude de la Forêt (CEF) University of Québec en Outaouais (UQO) Ripon Quebec Canada
| |
Collapse
|
11
|
Genetic diversity of Norway spruce ecotypes assessed by GBS-derived SNPs. Sci Rep 2021; 11:23119. [PMID: 34848793 PMCID: PMC8632914 DOI: 10.1038/s41598-021-02545-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/11/2021] [Indexed: 11/08/2022] Open
Abstract
We investigated the genetic structure of three phenotypically distinct ecotypic groups of Norway spruce (Picea abies) belonging to three elevational classes; namely, low- (acuminata), medium- (europaea), and high-elevation (obovata) form, each represented by 150 trees. After rigorous filtering, we used 1916 Genotyping-by-Sequencing generated SNPs for analysis. Outputs from three multivariate analysis methods (Bayesian clustering algorithm implemented in STRUCTURE, Principal Component Analysis, and the Discriminant Analysis of Principal Components) indicated the presence of a distinct genetic cluster representing the high-elevation ecotypic group. Our findings bring a vital message to forestry practice affirming that artificial transfer of forest reproductive material, especially for stands under harsh climate conditions, should be considered with caution.
Collapse
|
12
|
Sow MD, Le Gac AL, Fichot R, Lanciano S, Delaunay A, Le Jan I, Lesage-Descauses MC, Citerne S, Caius J, Brunaud V, Soubigou-Taconnat L, Cochard H, Segura V, Chaparro C, Grunau C, Daviaud C, Tost J, Brignolas F, Strauss SH, Mirouze M, Maury S. RNAi suppression of DNA methylation affects the drought stress response and genome integrity in transgenic poplar. THE NEW PHYTOLOGIST 2021; 232:80-97. [PMID: 34128549 DOI: 10.1111/nph.17555] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/08/2021] [Indexed: 05/27/2023]
Abstract
Trees are long-lived organisms that continuously adapt to their environments, a process in which epigenetic mechanisms are likely to play a key role. Via downregulation of the chromatin remodeler DECREASED IN DNA METHYLATION 1 (DDM1) in poplar (Populus tremula × Populus alba) RNAi lines, we examined how DNA methylation coordinates genomic and physiological responses to moderate water deficit. We compared the growth and drought response of two RNAi-ddm1 lines to wild-type (WT) trees under well-watered and water deficit/rewatering conditions, and analyzed their methylomes, transcriptomes, mobilomes and phytohormone contents in the shoot apical meristem. The RNAi-ddm1 lines were more tolerant to drought-induced cavitation but did not differ in height or stem diameter growth. About 5000 differentially methylated regions were consistently detected in both RNAi-ddm1 lines, colocalizing with 910 genes and 89 active transposable elements. Under water deficit conditions, 136 differentially expressed genes were found, including many involved in phytohormone pathways; changes in phytohormone concentrations were also detected. Finally, the combination of hypomethylation and drought led to the mobility of two transposable elements. Our findings suggest major roles for DNA methylation in regulation of genes involved in hormone-related stress responses, and the maintenance of genome integrity through repression of transposable elements.
Collapse
Affiliation(s)
- Mamadou D Sow
- LBLGC, INRAE, Université d'Orléans, EA 1207 USC 1328, Orléans, 45067, France
| | - Anne-Laure Le Gac
- LBLGC, INRAE, Université d'Orléans, EA 1207 USC 1328, Orléans, 45067, France
| | - Régis Fichot
- LBLGC, INRAE, Université d'Orléans, EA 1207 USC 1328, Orléans, 45067, France
| | - Sophie Lanciano
- IRD, UMR 232 DIADE, Université de Montpellier, Montpellier, 34090, France
- Laboratory of Plant Genome and Development, Université de Perpignan, Perpignan, 66860, France
| | - Alain Delaunay
- LBLGC, INRAE, Université d'Orléans, EA 1207 USC 1328, Orléans, 45067, France
| | - Isabelle Le Jan
- LBLGC, INRAE, Université d'Orléans, EA 1207 USC 1328, Orléans, 45067, France
| | | | - Sylvie Citerne
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, 78000, France
| | - Jose Caius
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université Evry, Orsay, 91405, France
| | - Véronique Brunaud
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université Evry, Orsay, 91405, France
| | - Ludivine Soubigou-Taconnat
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université Evry, Orsay, 91405, France
| | - Hervé Cochard
- Université Clermont Auvergne, INRAE, PIAF, Clermont-Ferrand, 63000, France
| | - Vincent Segura
- BioForA, INRAE, ONF, UMR 0588, Orléans, 45075, France
- UMR AGAP Institut, Université Montpellier, CIRAD, INRAE, Institut Montpellier SupAgro, UMR 1334, Montpellier, F-34398, France
| | | | - Christoph Grunau
- UMR 5244, IHPE, Université de Perpignan, Perpignan, 66100, France
| | - Christian Daviaud
- Laboratory for Epigenetics and Environment Centre National de Recherche en Génomique Humaine, CEA- Institut de Biologie Francois Jacob, Université Paris-Saclay, Evry, 91057, France
| | - Jörg Tost
- Laboratory for Epigenetics and Environment Centre National de Recherche en Génomique Humaine, CEA- Institut de Biologie Francois Jacob, Université Paris-Saclay, Evry, 91057, France
| | - Franck Brignolas
- LBLGC, INRAE, Université d'Orléans, EA 1207 USC 1328, Orléans, 45067, France
| | - Steven H Strauss
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, 97331-5752, USA
| | - Marie Mirouze
- IRD, UMR 232 DIADE, Université de Montpellier, Montpellier, 34090, France
- Laboratory of Plant Genome and Development, Université de Perpignan, Perpignan, 66860, France
| | - Stéphane Maury
- LBLGC, INRAE, Université d'Orléans, EA 1207 USC 1328, Orléans, 45067, France
| |
Collapse
|
13
|
Trontin JF, Raschke J, Rupps A. Tree 'memory': new insights on temperature-induced priming effects during early embryogenesis. TREE PHYSIOLOGY 2021; 41:906-911. [PMID: 33216135 DOI: 10.1093/treephys/tpaa150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/02/2020] [Accepted: 10/23/2020] [Indexed: 06/11/2023]
Affiliation(s)
- Jean-François Trontin
- Biotechnology and Advanced Forestry Department, FCBA Technological Institute, 71, Route d'Arcachon, Pierroton, F-33610 Cestas, France
| | - Juliane Raschke
- Institute of Biology, Section Botany and Arboretum, Humboldt-Universität zu Berlin, Invalidenstr. 42, D-10115 Berlin, Germany
| | - Andrea Rupps
- Institute of Biology, Section Botany and Arboretum, Humboldt-Universität zu Berlin, Invalidenstr. 42, D-10115 Berlin, Germany
| |
Collapse
|
14
|
Moler ERV, Kolb T, Brady A, Palmiero BN, Wallace TR, Waring KM, Whipple AV. Plant developmental stage influences responses of Pinus strobiformis seedlings to experimental warming. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2021; 2:148-164. [PMID: 37283863 PMCID: PMC10168050 DOI: 10.1002/pei3.10055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 04/17/2021] [Accepted: 04/23/2021] [Indexed: 06/08/2023]
Abstract
Seedling emergence, survival, morphological and physiological traits, and oxidative stress resistance of southwestern white pine (Pinus strobiformis Engelm.) were studied in response to warming treatments applied during embryogenesis, germination, and early seedling growth. Daytime air temperature surrounding cones in tree canopies was warmed by +2.1°C during embryo development. Resulting seeds and seedlings were assigned to three thermal regimes in growth chambers, with each regime separated by 4°C to encompass the wide range of temperatures observed over space and time across the species' range, plus the effect of heat waves coupled with a high carbon emissions scenario of climate warming. The embryo warming treatment reduced percent seedling emergence in all germination and growth environments and reduced mortality of seedlings grown in the warmest environment. Warm thermal regimes during early seedling growth increased subsequent seedling resistance to oxidative stress and transpirational water use. Experimental warming during seed development, germination, and seedling growth affected seedling emergence and survival. Oxidative stress resistance, morphology, and water relations were affected only by warming imposed during germination and seedling growth. This work explores potential outcomes of climate warming on multiple dimensions of seedling performance and uniquely illustrates that plant responses to heat vary with plant developmental stage in addition to the magnitude of temperature change.
Collapse
Affiliation(s)
| | - Thomas Kolb
- School of ForestryNorthern Arizona UniversityFlagstaffAZUSA
| | - Anne Brady
- Department of Biological SciencesNorthern Arizona UniversityFlagstaffAZUSA
| | | | | | | | - Amy Vaughn Whipple
- Department of Biological SciencesNorthern Arizona UniversityFlagstaffAZUSA
- Center for Adaptive Western LandscapesNorthern Arizona UniversityFlagstaffAZUSA
| |
Collapse
|
15
|
Molecular Research on Stress Responses in Quercus spp.: From Classical Biochemistry to Systems Biology through Omics Analysis. FORESTS 2021. [DOI: 10.3390/f12030364] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The genus Quercus (oak), family Fagaceae, comprises around 500 species, being one of the most important and dominant woody angiosperms in the Northern Hemisphere. Nowadays, it is threatened by environmental cues, which are either of biotic or abiotic origin. This causes tree decline, dieback, and deforestation, which can worsen in a climate change scenario. In the 21st century, biotechnology should take a pivotal role in facing this problem and proposing sustainable management and conservation strategies for forests. As a non-domesticated, long-lived species, the only plausible approach for tree breeding is exploiting the natural diversity present in this species and the selection of elite, more resilient genotypes, based on molecular markers. In this direction, it is important to investigate the molecular mechanisms of the tolerance or resistance to stresses, and the identification of genes, gene products, and metabolites related to this phenotype. This research is being performed by using classical biochemistry or the most recent omics (genomics, epigenomics, transcriptomics, proteomics, and metabolomics) approaches, which should be integrated with other physiological and morphological techniques in the Systems Biology direction. This review is focused on the current state-of-the-art of such approaches for describing and integrating the latest knowledge on biotic and abiotic stress responses in Quercus spp., with special reference to Quercus ilex, the system on which the authors have been working for the last 15 years. While biotic stress factors mainly include fungi and insects such as Phytophthora cinnamomi, Cerambyx welensii, and Operophtera brumata, abiotic stress factors include salinity, drought, waterlogging, soil pollutants, cold, heat, carbon dioxide, ozone, and ultraviolet radiation. The review is structured following the Central Dogma of Molecular Biology and the omic cascade, from DNA (genomics, epigenomics, and DNA-based markers) to metabolites (metabolomics), through mRNA (transcriptomics) and proteins (proteomics). An integrated view of the different approaches, challenges, and future directions is critically discussed.
Collapse
|
16
|
Moler ERV, Page G, Flores-Rentería L, Garms CG, Hull JB, Cooper HF, Swenson J, Perks S, Waring KM, Whipple AV. A method for experimental warming of developing tree seeds with a common garden demonstration of seedling responses. PLANT METHODS 2021; 17:1. [PMID: 33407638 PMCID: PMC7789486 DOI: 10.1186/s13007-020-00700-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/14/2020] [Indexed: 05/30/2023]
Abstract
BACKGROUND Forest dieback driven by rapid climate warming threatens ecosystems worldwide. The health of forested ecosystems depends on how tree species respond to warming during all life history stages. While it is known that seed development is temperature-sensitive, little is known about possible effects of climate warming on seed development and subsequent seedling performance. Exposure of seeds to high air temperatures may influence subsequent seedling performance negatively, though conversely, warming during seed development may aid acclimation of seedlings to subsequent thermal stress. Technical challenges associated with in-situ warming of developing tree seeds limit understanding of how tree species may respond to seed development in a warmer climate. RESULTS We developed and validated a simple method for passively warming seeds as they develop in tree canopies to enable controlled study of climate warming on seedling performance. We quantified thermal effects of the cone-warming method across individual pine trees and stands by measuring the air temperature surrounding seed cones using thermal loggers and the temperature of seed cone tissue using thermocouples. We then investigated seedling phenotypes in relation to the warming method through a common garden study. We assessed seedling morphology, physiology, and mycorrhizal nodulation in response to experimental cone-warming in 20 seed-source-tree canopies on the San Francisco Peaks in northern Arizona, USA. The warming method increased air temperature surrounding developing seed cones by 2.1 °C, a plausible increase in mean air temperature by 2050 under current climate projections. Notable effect sizes of cone-warming were detected for seedling root length, shoot length, and diameter at root collar using Cohen's Local f2. Root length was affected most by cone-warming, but effect sizes of cone-warming on root length and diameter at root collar became negligible after the first year of growth. Cone-warming had small but significant effects on mycorrhizal fungal richness and seedling multispectral near-infrared indices indicative of plant health. CONCLUSIONS The method was shown to reliably elevate the temperature surrounding seed cones and thereby facilitate experimental in-situ climate warming research on forest trees. The method was furthermore shown to influence plant traits that may affect seedling performance under climate warming.
Collapse
Affiliation(s)
- E R V Moler
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA.
- College of Natural Resources, Center for Forest Nursery and Seedling Research, University of Idaho, Moscow, ID, 83843, USA.
| | - G Page
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, 97331, USA
| | - L Flores-Rentería
- Department of Biology, San Diego State University, San Diego, CA, 92182, USA
| | - C G Garms
- Forest Engineering, Resources & Management, Oregon State University, Corvallis, OR, 97331, USA
| | - J B Hull
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - H F Cooper
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - J Swenson
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - S Perks
- USDA Forest Service, Dorena Genetic Resource Center, Cottage Grove, OR, 97424, USA
| | - K M Waring
- School of Forestry, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - A V Whipple
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA
| |
Collapse
|
17
|
Variability among Sites and Climate Models Contribute to Uncertain Spruce Growth Projections in Denmark. FORESTS 2020. [DOI: 10.3390/f12010036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Projecting trees species growth into future climate is subject to large uncertainties and it is of importance to quantify the different sources (e.g., site, climate model) to prioritize research efforts. This study quantifies and compares sites and climate model-induced uncertainties in projected Norway spruce growth from Denmark. We analyzed tree-rings from 340 Norway spruce trees sampled in 14 planted stands (1. Plantation; period 1950–1987) and additionally 36 trees from six trials in a common garden experiment (2. Common garden; period 1972–2012). Growth-climate correlations were estimated and multiple linear and nonlinear regression models relating growth with climate were tested. Tree growth was projected up to 2100 applying multiple linear or quadratic regression models based on the 15 Atmosphere-Ocean General Circulation Models (AOGCMs) of the Coupled Model Inter-comparison Project Phase 5 (CMIP5). The climate-growth models showed that summer drought and warm previous-year late-summer and early-autumn constrain growth. In some stands, warm springs affected growth positively. The projections of growth under future climates on average showed from no to slightly negative changes in growth compared to present growth rates. However, projections showed a very large variation, ranging from highly positive to highly negative growth changes. The uncertainties due to variation in site responses and in climate models were substantial. A lesser degree of uncertainty was related to the emission scenarios. Even though our projections on average suggest that Norway spruce may experience a growth reduction in the future, the tremendous variation in growth predictions due to differences between stands and climate models calls for further research and caution when projections are interpreted. These results also suggest that forest managers in general should avoid the use of Norway spruce on exposed and drought prone sites and as an additional resilience measure primarily use it in mixtures with other more climate tolerant species.
Collapse
|
18
|
The dehydrins gene expression differs across ecotypes in Norway spruce and relates to weather fluctuations. Sci Rep 2020; 10:20789. [PMID: 33247164 PMCID: PMC7695824 DOI: 10.1038/s41598-020-76900-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/26/2020] [Indexed: 11/09/2022] Open
Abstract
Norway spruce has a broad natural distribution range, which results in a substantial variety of its physiological and genetic variation. There are three distinct altitudinal ecotypes described in this tree species. The physiological optimum of each ecotype may be shifted due to ongoing climate change, especially in traits associated with water demand that might be crucial for adaptation. Dehydrins are proteins that help to mitigate the adverse effects of dehydration. Dehydrin gene expression patterns appeared to be a suitable marker for plant stress assessment. Genetically determined differences in response between individuals and populations were formerly studied, however, mainly in controlled conditions. We evaluated ecotypic variation in dehydrin gene expression in a clonal bank comprised of all three ecotypes. A genetic relationship among targeted trees was uncovered utilizing GBS (Genotyping by Sequencing) platform. We sampled 4-6 trees of each ecotype throughout 15 months period. Subsequently, we assessed the RNA expression of dehydrin genes by qRT-PCR. For this study, we deliberately selected dehydrins from different categories. Our findings detected significant differences among ecotypes in dehydrin expression. The association of recorded climatic variables and individual gene expression across the study period was evaluated and revealed, for certain genes, a correlation between dehydrin gene expression and precipitation, temperature, and day-length.
Collapse
|
19
|
Abstract
The importance of tree genetic variability in the ability of forests to respond and adapt to environmental changes is crucial in forest management and conservation. Along with genetics, recent advances have highlighted “epigenetics” as an emerging and promising field of research for the understanding of tree phenotypic plasticity and adaptive responses. In this paper, we review recent advances in this emerging field and their potential applications for tree researchers and breeders, as well as for forest managers. First, we present the basics of epigenetics in plants before discussing its potential for trees. We then propose a bibliometric and overview of the literature on epigenetics in trees, including recent advances on tree priming. Lastly, we outline the promises of epigenetics for forest research and management, along with current gaps and future challenges. Research in epigenetics could use highly diverse paths to help forests adapt to global change by eliciting different innovative silvicultural approaches for natural- and artificial-based forest management.
Collapse
|
20
|
Dewan S, De Frenne P, Leroux O, Nijs I, Vander Mijnsbrugge K, Verheyen K. Phenology and growth of Fagus sylvatica and Quercus robur seedlings in response to temperature variation in the parental versus offspring generation. PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22 Suppl 1:113-122. [PMID: 30739399 DOI: 10.1111/plb.12975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 02/06/2019] [Indexed: 06/09/2023]
Abstract
Plants are known to respond to warming temperatures. Few studies, however, have included the temperature experienced by the parent plant in the experimental design, in spite of the importance of this factor for population dynamics. We investigated the phenological and growth responses of seedlings of two key temperate tree species (Fagus sylvatica and Quercus robur) to spatiotemporal temperature variation during the reproductive period (parental generation) and experimental warming of the offspring. To this end, we sampled oak and beech seedlings of different ages (1-5 years) from isolated mother trees and planted the seedlings in a common garden. Warming of the seedlings advanced bud burst in both species. In oak seedlings, higher temperatures experienced by mother trees during the reproductive period delayed bud burst in control conditions, but advanced bud burst in heated seedlings. In beech seedlings, bud burst timing advanced both with increasing temperatures during the reproductive period of the parents and with experimental warming of the seedlings. Relative diameter growth was enhanced in control oak seedlings but decreased with warming when the mother plant experienced higher temperatures during the reproductive period. Overall, oak displayed more plastic responses to temperatures than beech. Our results emphasise that temperature during the reproductive period can be a potential determinant of tree responses to climate change.
Collapse
Affiliation(s)
- S Dewan
- Forest & Nature Lab, Ghent University, Gontrode, Belgium
| | - P De Frenne
- Forest & Nature Lab, Ghent University, Gontrode, Belgium
| | - O Leroux
- Department of Biology, Ghent University, Ghent, Belgium
| | - I Nijs
- Department of Biology, University of Antwerp, Wilrijk, Belgium
| | | | - K Verheyen
- Forest & Nature Lab, Ghent University, Gontrode, Belgium
| |
Collapse
|
21
|
Mass spectrometry reveals the presence of specific set of epigenetic DNA modifications in the Norway spruce genome. Sci Rep 2019; 9:19314. [PMID: 31848418 PMCID: PMC6917789 DOI: 10.1038/s41598-019-55826-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 11/29/2019] [Indexed: 01/02/2023] Open
Abstract
5-Methylcytosine (5mC) is an epigenetic modification involved in regulation of gene expression in metazoans and plants. Iron-(II)/α-ketoglutarate-dependent dioxygenases can oxidize 5mC to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). Although these oxidized forms of 5mC may serve as demethylation intermediates or contribute to transcriptional regulation in animals and fungi, experimental evidence for their presence in plant genomes is ambiguous. Here, employing reversed-phase HPLC coupled with sensitive mass spectrometry, we demonstrated that, unlike 5caC, both 5hmC and 5fC are detectable in non-negligible quantities in the DNA of a conifer, Norway spruce. Remarkably, whereas 5hmC content of spruce DNA is approximately 100-fold lower relative to human colorectal carcinoma cells, the levels of both - 5fC and a thymine base modification, 5-hydroxymethyluracil, are comparable in these systems. We confirmed the presence of modified DNA bases by immunohistochemistry in Norway spruce buds based on peroxidase-conjugated antibodies and tyramide signal amplification. Our results reveal the presence of specific range of noncanonical DNA bases in conifer genomes implying potential roles for these modifications in plant development and homeostasis.
Collapse
|
22
|
Dewan S, De Frenne P, Vanden Broeck A, Steenackers M, Vander Mijnsbrugge K, Verheyen K. Transgenerational effects in asexually reproduced offspring of Populus. PLoS One 2018; 13:e0208591. [PMID: 30521624 PMCID: PMC6283561 DOI: 10.1371/journal.pone.0208591] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 11/20/2018] [Indexed: 11/18/2022] Open
Abstract
The response of trees to a changing climate can be affected by transgenerational phenotypic plasticity, i.e. phenotypic variation that is conserved and transferred to the offspring. Transgenerational plasticity that is influenced by epigenetics (heritable changes in gene function that do not result from changes in DNA sequence) during both sexual and asexual reproduction are of major relevance for adaptation of plants to climate change. To understand the transgenerational effects on the responses of vegetatively propagated poplar (Populus deltoides and P. trichocarpa) ramets (cuttings) to a changing environment, we tested whether the temperature and photoperiod experienced by the mother trees (genets) persistently affects the phenology of the cuttings grown in a common environment. We weekly monitored the bud phenology of the cuttings collected from the parent trees that have been growing across Europe along a >2100 km latitudinal gradient for at least 18 years. In addition, we asked whether there was variation in DNA methylation as measured by Methylation Sensitive Amplified Fragment Length Polymorphism (MSAPs) in the clones due to the different environmental conditions experienced by the parent trees. Our results indicate a transgenerational effect on bud phenology in the asexually reproduced offspring (vegetative cuttings). The temperatures experienced by the parent tree clones (from different geographic regions) altered the bud flush of the cuttings in the common garden. However, no significant epigenetic variation was detected in the cuttings of the parent trees within single genotypes growing under different climates. In sum, our results show that trees have the potential to respond to rapid climate change but the mechanism behind these changes needs to be further investigated by more powerful molecular methods like whole-genome bisulphite sequencing techniques.
Collapse
Affiliation(s)
- Sumitra Dewan
- Forest & Nature Lab, Department of Environment, Ghent University, Gontrode, Belgium
- * E-mail:
| | - Pieter De Frenne
- Forest & Nature Lab, Department of Environment, Ghent University, Gontrode, Belgium
| | - An Vanden Broeck
- Research Institute for Nature and Forest (INBO), Geraardsbergen, Belgium
| | | | | | - Kris Verheyen
- Forest & Nature Lab, Department of Environment, Ghent University, Gontrode, Belgium
| |
Collapse
|
23
|
Varis S, Klimaszewska K, Aronen T. Somatic Embryogenesis and Plant Regeneration From Primordial Shoot Explants of Picea abies (L.) H. Karst. Somatic Trees. FRONTIERS IN PLANT SCIENCE 2018; 9:1551. [PMID: 30405679 PMCID: PMC6207908 DOI: 10.3389/fpls.2018.01551] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 10/03/2018] [Indexed: 05/24/2023]
Abstract
The recalcitrance of adult conifer tissues has prevented vegetative propagation of trees with known and desired characteristics. Somatic embryogenesis (SE) initiation protocol, recently developed for white spruce (Picea glauca, Klimaszewska et al., 2011), was applied in order to examine the feasibility, frequency and timing of SE induction from primordial shoots (PS) of Norway spruce (P. abies). In total, 39 genotypes were screened from 2015 to 2017 using 4-6 years old trees of SE origin as explant donors. Two genotypes responded: 11Pa3794 produced six proliferating embryonal mass (EM) sublines and 11Pa4066 produced 23 EM sublines. SE initiations occurred at the beginning of April, when the temperature sum (d.d.) started to accumulate, and at the end of October or beginning of November when the chilling unit (ch.u.) sum was over 500. EM sublines from both genotypes contained numerous early somatic embryos as detected by acetocarmine staining. The sublines of 11Pa4066 produced the mean of 78.6 ± 12.8 cotyledonary somatic embryos /g FW, but 11Pa3794 produced only a few cotyledonary somatic embryos that were able to germinate. The original EM lines (from which the trees were regenerated) had produced the same number of somatic embryos in 2011 maturations, which was approximately 120 somatic embryos /g FW. Microsatellite analyses conducted with both responsive genotypes confirmed the genetic stability of the EM sublines compared with the donor trees growing in the field. SE protocol developed for white spruce PS explants was also suitable for PS of Norway spruce if the explants were in the responsive developmental stage.
Collapse
Affiliation(s)
- Saila Varis
- Natural Resources Institute Finland (Luke), Savonlinna, Finland
| | - Krystyna Klimaszewska
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Quebec, QC, Canada
| | - Tuija Aronen
- Natural Resources Institute Finland (Luke), Savonlinna, Finland
| |
Collapse
|
24
|
Le Gac AL, Lafon-Placette C, Chauveau D, Segura V, Delaunay A, Fichot R, Marron N, Le Jan I, Berthelot A, Bodineau G, Bastien JC, Brignolas F, Maury S. Winter-dormant shoot apical meristem in poplar trees shows environmental epigenetic memory. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4821-4837. [PMID: 30107545 PMCID: PMC6137975 DOI: 10.1093/jxb/ery271] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 08/02/2018] [Indexed: 05/04/2023]
Abstract
Trees have a long lifespan and must continually adapt to environmental pressures, notably in the context of climate change. Epigenetic mechanisms are doubtless involved in phenotypic plasticity and in stress memory; however, little evidence of the role of epigenetic processes is available for trees growing in fields. Here, we analyzed the possible involvement of epigenetic mechanisms in the winter-dormant shoot apical meristem of Populus × euramericana clones in memory of the growing conditions faced during the vegetative period. We aimed to estimate the range of genetic and environmentally induced variations in global DNA methylation and to evaluate their correlation with changes in biomass production, identify differentially methylated regions (DMRs), and characterize common DMRs between experiments. We showed that the variations in global DNA methylation between conditions were genotype dependent and correlated with biomass production capacity. Microarray chip analysis allowed detection of DMRs 6 months after the stressful summer period. The 161 DMRs identified as common to three independent experiments most notably targeted abiotic stress and developmental response genes. Results are consistent with a winter-dormant shoot apical meristem epigenetic memory of stressful environmental conditions that occurred during the preceding summer period. This memory may facilitate tree acclimation.
Collapse
Affiliation(s)
| | | | | | | | | | - Régis Fichot
- LBLGC, INRA, Université d’Orléans, Orléans, France
| | - Nicolas Marron
- Silva, INRA Grand Est, Nancy, AgroParisTech, Université de Lorraine, UMR, Nancy, France
| | | | - Alain Berthelot
- FCBA Délégation Territoriale Nord-Est, Charrey-Sur-Saône, France
| | | | | | | | - Stéphane Maury
- LBLGC, INRA, Université d’Orléans, Orléans, France
- Correspondence:
| |
Collapse
|
25
|
Lloret A, Badenes ML, Ríos G. Modulation of Dormancy and Growth Responses in Reproductive Buds of Temperate Trees. FRONTIERS IN PLANT SCIENCE 2018; 9:1368. [PMID: 30271422 PMCID: PMC6146825 DOI: 10.3389/fpls.2018.01368] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 08/29/2018] [Indexed: 05/20/2023]
Abstract
During autumn perennial trees cease growth and form structures called buds in order to protect meristems from the unfavorable environmental conditions, including low temperature and desiccation. In addition to increased tolerance to these abiotic stresses, reproductive buds modulate developmental programs leading to dormancy induction to avoid premature growth resumption, and flowering pathways. Stress tolerance, dormancy, and flowering processes are thus physically and temporarily restricted to a bud, and consequently forced to interact at the regulatory level. We review recent genomic, genetic, and molecular contributions to the knowledge of these three processes in trees, highlighting the role of epigenetic modifications, phytohormones, and common regulatory factors. Finally, we emphasize the utility of transcriptomic approaches for the identification of key structural and regulatory genes involved in bud processes, illustrated with our own experience using peach as a model.
Collapse
|
26
|
Dewan S, De Frenne P, Vanden Broeck A, Steenackers M, Vander Mijnsbrugge K, Verheyen K. Transgenerational effects in asexually reproduced offspring of Populus. PLoS One 2018. [PMID: 30521624 DOI: 10.1038/s41598-019-56934-56936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Abstract
The response of trees to a changing climate can be affected by transgenerational phenotypic plasticity, i.e. phenotypic variation that is conserved and transferred to the offspring. Transgenerational plasticity that is influenced by epigenetics (heritable changes in gene function that do not result from changes in DNA sequence) during both sexual and asexual reproduction are of major relevance for adaptation of plants to climate change. To understand the transgenerational effects on the responses of vegetatively propagated poplar (Populus deltoides and P. trichocarpa) ramets (cuttings) to a changing environment, we tested whether the temperature and photoperiod experienced by the mother trees (genets) persistently affects the phenology of the cuttings grown in a common environment. We weekly monitored the bud phenology of the cuttings collected from the parent trees that have been growing across Europe along a >2100 km latitudinal gradient for at least 18 years. In addition, we asked whether there was variation in DNA methylation as measured by Methylation Sensitive Amplified Fragment Length Polymorphism (MSAPs) in the clones due to the different environmental conditions experienced by the parent trees. Our results indicate a transgenerational effect on bud phenology in the asexually reproduced offspring (vegetative cuttings). The temperatures experienced by the parent tree clones (from different geographic regions) altered the bud flush of the cuttings in the common garden. However, no significant epigenetic variation was detected in the cuttings of the parent trees within single genotypes growing under different climates. In sum, our results show that trees have the potential to respond to rapid climate change but the mechanism behind these changes needs to be further investigated by more powerful molecular methods like whole-genome bisulphite sequencing techniques.
Collapse
Affiliation(s)
- Sumitra Dewan
- Forest & Nature Lab, Department of Environment, Ghent University, Gontrode, Belgium
| | - Pieter De Frenne
- Forest & Nature Lab, Department of Environment, Ghent University, Gontrode, Belgium
| | - An Vanden Broeck
- Research Institute for Nature and Forest (INBO), Geraardsbergen, Belgium
| | | | | | - Kris Verheyen
- Forest & Nature Lab, Department of Environment, Ghent University, Gontrode, Belgium
| |
Collapse
|