1
|
Gerszberg A, Hnatuszko-Konka K. Compendium on Food Crop Plants as a Platform for Pharmaceutical Protein Production. Int J Mol Sci 2022; 23:3236. [PMID: 35328657 PMCID: PMC8951019 DOI: 10.3390/ijms23063236] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/14/2022] Open
Abstract
Tremendous advances in crop biotechnology related to the availability of molecular tools and methods developed for transformation and regeneration of specific plant species have been observed. As a consequence, the interest in plant molecular farming aimed at producing the desired therapeutic proteins has significantly increased. Since the middle of the 1980s, recombinant pharmaceuticals have transformed the treatment of many serious diseases and nowadays are used in all branches of medicine. The available systems of the synthesis include wild-type or modified mammalian cells, plants or plant cell cultures, insects, yeast, fungi, or bacteria. Undeniable benefits such as well-characterised breeding conditions, safety, and relatively low costs of production make plants an attractive yet competitive platform for biopharmaceutical production. Some of the vegetable plants that have edible tubers, fruits, leaves, or seeds may be desirable as inexpensive bioreactors because these organs can provide edible vaccines and thus omit the purification step of the final product. Some crucial facts in the development of plant-made pharmaceuticals are presented here in brief. Although crop systems do not require more strictly dedicated optimization of methodologies at any stages of the of biopharmaceutical production process, here we recall the complete framework of such a project, along with theoretical background. Thus, a brief review of the advantages and disadvantages of different systems, the principles for the selection of cis elements for the expression cassettes, and available methods of plant transformation, through to the protein recovery and purification stage, are all presented here. We also outline the achievements in the production of biopharmaceuticals in economically important crop plants and provide examples of their clinical trials and commercialization.
Collapse
Affiliation(s)
- Aneta Gerszberg
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Katarzyna Hnatuszko-Konka
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| |
Collapse
|
2
|
Zayed A, Sheashea M, Kassem IAA, Farag MA. Red and white cabbages: An updated comparative review of bioactives, extraction methods, processing practices, and health benefits. Crit Rev Food Sci Nutr 2022; 63:7025-7042. [PMID: 35174750 DOI: 10.1080/10408398.2022.2040416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Red and white cabbages (Brassica oleracea var. capitata f. alba and rubra, respectively) are two of the most commercially valued vegetables in crucifers, well-recognized for their unique sensory and nutritive attributes in addition to a myriad of health-promoting benefits. The current review addressed the differential qualitative/quantitative phytochemical make-ups for the first time for better utilization as nutraceuticals and to identify potential uses based on the chemical makeup of both cultivars (cvs.). In addition, extraction methods are compared highlighting their advantages and/or limitations with regards to improving yield and stability of cabbage bioactives, especially glucosinolates. Besides, the review recapitulated detailed action mechanism and safety of cabbage bioactives, as well as processing technologies to further improve their effects are posed as future perspectives. White and red cabbage cvs. revealed different GLSs profile which affected by food processing, including enzymatic hydrolysis, thermal breakdown, and leaching. In addition, the red cultivar provides high quality pigment for industrial applications. Moreover, non-conventional modern extraction techniques showed promising techniques for the recovery of their bioactive constituents compared to solvent extraction. All these findings pose white and red cabbages as potential candidates for inclusion in nutraceuticals and/or to be commercialized as functional foods prepared in different culinary forms.
Collapse
Affiliation(s)
- Ahmed Zayed
- Pharmacognosy Department, College of Pharmacy, Tanta University, Tanta, Egypt
- Institute of Bioprocess Engineering, Technical University of Kaiserslautern, Kaiserslautern, Germany
| | - Mohamed Sheashea
- Aromatic and Medicinal Plants Department, Desert Research Center, Cairo, Egypt
| | - Iman A A Kassem
- Chemistry of Natural Compounds Department, National Research Centre, Dokki, Giza, Egypt
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
3
|
Ma M, Chen X, Yin Y, Fan R, Li B, Zhan Y, Zeng F. DNA Methylation Silences Exogenous Gene Expression in Transgenic Birch Progeny. FRONTIERS IN PLANT SCIENCE 2020; 11:523748. [PMID: 33414793 PMCID: PMC7783445 DOI: 10.3389/fpls.2020.523748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 10/28/2020] [Indexed: 05/04/2023]
Abstract
The genetic stability of exogenous genes in the progeny of transgenic trees is extremely important in forest breeding; however, it remains largely unclear. We selected transgenic birch (Betula platyphylla) and its hybrid F1 progeny to investigate the expression stability and silencing mechanism of exogenous genes. We found that the exogenous genes of transgenic birch could be transmitted to their offspring through sexual reproduction. The exogenous genes were segregated during genetic transmission. The hybrid progeny of transgenic birch WT1×TP22 (184) and WT1×TP23 (212) showed higher Bgt expression and greater insect resistance than their parents. However, the hybrid progeny of transgenic birch TP23×TP49 (196) showed much lower Bgt expression, which was only 13.5% of the expression in its parents. To elucidate the mechanism underlying the variation in gene expression between the parents and progeny, we analyzed the methylation rates of Bgt in its promoter and coding regions. The hybrid progeny with normally expressed exogenous genes showed much lower methylation rates (0-29%) than the hybrid progeny with silenced exogenous genes (32.35-45.95%). These results suggest that transgene silencing in the progeny is mainly due to DNA methylation at cytosine residues. We further demonstrated that methylation in the promoter region, rather than in the coding region, leads to gene silencing. We also investigated the relative expression levels of three methyltransferase genes: BpCMT, BpDRM, and BpMET. The transgenic birch line 196 with a silenced Gus gene showed, respectively, 2.54, 9.92, and 4.54 times higher expression levels of BpCMT, BpDRM, and BpMET than its parents. These trends are consistent with and corroborate the high methylation levels of exogenous genes in the transgenic birch line 196. Therefore, our study suggests that DNA methylation in the promoter region leads to silencing of exogenous genes in transgenic progeny of birch.
Collapse
Affiliation(s)
- Minghao Ma
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Xiaohui Chen
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Yibo Yin
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Ruixin Fan
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Bo Li
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Yaguang Zhan
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Fansuo Zeng
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| |
Collapse
|
4
|
Poveda J, Francisco M, Cartea ME, Velasco P. Development of Transgenic Brassica Crops Against Biotic Stresses Caused by Pathogens and Arthropod Pests. PLANTS 2020; 9:plants9121664. [PMID: 33261092 PMCID: PMC7761317 DOI: 10.3390/plants9121664] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/28/2020] [Accepted: 11/25/2020] [Indexed: 11/26/2022]
Abstract
The Brassica genus includes one of the 10 most agronomically and economically important plant groups in the world. Within this group, we can find examples such as broccoli, cabbage, cauliflower, kale, Brussels sprouts, turnip or rapeseed. Their cultivation and postharvest are continually threatened by significant stresses of biotic origin, such as pathogens and pests. In recent years, numerous research groups around the world have developed transgenic lines within the Brassica genus that are capable of defending themselves effectively against these enemies. The present work compiles all the existing studies to date on this matter, focusing in a special way on those of greater relevance in recent years, the choice of the gene of interest and the mechanisms involved in improving plant defenses. Some of the main transgenic lines developed include coding genes for chitinases, glucanases or cry proteins, which show effective results against pathogens such as Alternaria brassicae, Leptosphaeria maculans or Sclerotinia sclerotiorum, or pests such as Lipaphis erysimi or Plutella xylostella.
Collapse
Affiliation(s)
- Jorge Poveda
- Correspondence: ; Tel.: +34-986-85-48-00 (ext. 232)
| | | | | | | |
Collapse
|
5
|
Expression of cry1Aa gene in cabbage imparts resistance against diamondback moth (Plutella xylostella). Biol Futur 2020; 71:165-173. [PMID: 34554534 DOI: 10.1007/s42977-020-00014-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/11/2020] [Indexed: 10/24/2022]
Abstract
Brassica oleracea cv. Pride of India is one of the most promising vegetable cultivars commercially grown as cash crop in Himachal Pradesh, India. However, its overall production is severely hampered by diamondback moth (Plutella xylostella), a notorious pest. To avoid yield losses caused by this pest, cryIAa gene was introduced into cabbage cv. Pride of India using Agrobacterium-mediated transformation method. In an attempt to maximize the transformation frequency, critical determinant factors such as explant type, pre-incubation and co-cultivation period, and acetosyringone effect were successfully optimized. The highest transformation frequency (4.67% and 14.50%) in cotyledon and hypocotyl explant was achieved with a pre-incubation period of 72 h and co-cultivation period of 48 h. Furthermore, transformation frequency was enhanced in cotyledon (18.66%) and hypocotyl (32.00%) explants, when selective regeneration medium was fortified with 100 µM acetosyringone, respectively. The transgene (cryIAa) integration and copy number were confirmed using PCR and Southern blotting. Reverse transcriptase PCR and quantitative real-time PCR analyses were performed that proved transcriptional expression of cryIAa gene in PCR-positive transgenic events. Transgenic cabbage-fed diamondback moth larvae showed significantly higher mortality, thereby proving transgene effectiveness against insect pest control.
Collapse
|
6
|
Farooq N, Nawaz MA, Mukhtar Z, Ali I, Hundleby P, Ahmad N. Investigating the In Vitro Regeneration Potential of Commercial Cultivars of Brassica. PLANTS (BASEL, SWITZERLAND) 2019; 8:E558. [PMID: 31795525 PMCID: PMC6963692 DOI: 10.3390/plants8120558] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 11/24/2019] [Accepted: 11/26/2019] [Indexed: 01/11/2023]
Abstract
In vitro regeneration is a pre-requisite for developing transgenic plants through tissue culture-based genetic engineering approaches. Huge variations among different genotypes of the genus Brassica necessitate the identification of a set of regeneration conditions for a genotype, which can be reliably used in transformation experiments. In this study, we evaluated the morphogenesis potential of four commercial cultivars (Faisal canola, Punjab canola, Aari canola, Nifa Gold) and one model, Westar, from four different explants namely cotyledons, hypocotyls, petioles and roots on three different Brassica regeneration protocols, BRP-I, -II and -III. The regeneration efficiency was observed in the range of 6-73%, 4-79.3%, 0-50.6%, and 0-42.6% from cotyledons, petioles, hypocotyls and roots, respectively, whereas, the regeneration response in terms of average shoots per explant was found to be 0.76-10.9, 0.2-3.2, 0-3.4 and 0-2.7 from these explants. Of the commercial varieties tested, almost all varieties showed poorer regeneration than Westar except Aari canola. In comparison to Westar, its regeneration frequency from cotyledons was up to 7.5-fold higher on BRP-I, while it produced up to 21.9-fold more shoots per explant. Our data show that the explant has strong influence on the regeneration response, ranging from 24% to 92%. While the growth of commercial cultivars was least affected by the regeneration conditions provided, the effect on Westar was twice that of the commercial cultivars. After determining the optimal explant type and regeneration conditions, we also determined the minimum kanamycin concentration levels required to selectively inhibit the growth of untransformed cells for these cultivars. Regenerated shoots of Aari canola could be successfully grown to maturity within 16-18 weeks, with no altered phenotype noted and normal seed yields obtained. Therefore, the commercial variety, Aari canola, could be a good candidate for future genetic transformation studies.
Collapse
Affiliation(s)
- Nisma Farooq
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad 38000, Pakistan
| | - Muhammad Asif Nawaz
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad 38000, Pakistan
| | - Zahid Mukhtar
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad 38000, Pakistan
| | - Iftikhar Ali
- Nuclear Institute for Agriculture and Biology, Faisalabad 38000, Pakistan
| | - Penny Hundleby
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Niaz Ahmad
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad 38000, Pakistan
| |
Collapse
|
7
|
Chen G, Zeng F, Wang J, Ye X, Zhu S, Yuan L, Hou J, Wang C. Transgenic Wucai (Brassica campestris L.) produced via Agrobacterium-mediated anther transformation in planta. PLANT CELL REPORTS 2019; 38:577-586. [PMID: 30758711 DOI: 10.1007/s00299-019-02387-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 01/25/2019] [Indexed: 06/09/2023]
Abstract
We developed a novel Agrobacterium-mediated anther transformation for Wucai in planta, and in this procedure, the male germ line was the predominant target. Wucai (Brassica campestris L.), a variant of non-heading Chinese cabbage, is widely cultured in China and only improved by classic breeding methods. Here, a novel and efficient in planta Agrobacterium-mediated anther transformation method is developed based on the optimization of several factors that affect anther transformation. After optimization, transformation with the manual pollination application led to increased transient GUS expression in anthers (reaching 91.59%) and the transformation efficacies in planta (0.59-1.56% for four commercial cultivars). The stable integration and inheritance of the transgenes were further examined by molecular and genetic analyses. Three T2 transgenic lines presented a segregation ratio of 3:1, which was consistent with the Mendelian feature of a single dominant gene. In addition, the GUS histochemical assay and genetic crossing analysis revealed that the male germ line was the predominant target in this transformation. This optimized transformation system could provide a useful tool for both the improvement of cultivar qualities and investigation of functional genes in Wucai.
Collapse
Affiliation(s)
- Guohu Chen
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University, Hefei, 230036, China
- Anhui Provincial Engineering Laboratory of Horticultural Crop Breeding, Hefei, 230036, China
| | - Fanli Zeng
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Jian Wang
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Xinyu Ye
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Shidong Zhu
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University, Hefei, 230036, China
- Anhui Provincial Engineering Laboratory of Horticultural Crop Breeding, Hefei, 230036, China
| | - Lingyun Yuan
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University, Hefei, 230036, China
- Anhui Provincial Engineering Laboratory of Horticultural Crop Breeding, Hefei, 230036, China
| | - Jinfeng Hou
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University, Hefei, 230036, China
- Anhui Provincial Engineering Laboratory of Horticultural Crop Breeding, Hefei, 230036, China
| | - Chenggang Wang
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University, Hefei, 230036, China.
- Anhui Provincial Engineering Laboratory of Horticultural Crop Breeding, Hefei, 230036, China.
| |
Collapse
|
8
|
Ma C, Zhu C, Zheng M, Liu M, Zhang D, Liu B, Li Q, Si J, Ren X, Song H. CRISPR/Cas9-mediated multiple gene editing in Brassica oleracea var. capitata using the endogenous tRNA-processing system. HORTICULTURE RESEARCH 2019; 6:20. [PMID: 30729010 PMCID: PMC6355899 DOI: 10.1038/s41438-018-0107-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/24/2018] [Accepted: 10/31/2018] [Indexed: 05/05/2023]
Abstract
Cabbage (Brassica oleracea var. capitata) is a biennial plant with strong self-incompatibility and an obligate requirement for prolonged vernalization by exposure to low temperatures to induce flowering. These characteristics significantly increase the difficulty of exploiting novel germplasm induced by physical or chemical mutagens. In this study, we report a CRISPR/Cas9 gene-editing system based on endogenous tRNA processing to induce high efficiency and inheritable mutagenesis in cabbage. Using the phytoene desaturase gene BoPDS, the S-receptor kinase gene BoSRK, and the male-sterility-associated gene BoMS1 as the target genes, multisite and multiple gene mutations were achieved using a construct with tandemly arrayed tRNA-sgRNA architecture to express multiple sgRNAs. The BoSRK3 gene mutation suppressed self-incompatibility completely, converting the self-incompatible line into a self-compatible line. In addition, the BoMS1 gene mutation produced a completely male-sterile mutant, which was highly cross compatible with its nonmutant isoline at the flowering stage as a result of a simultaneous BoSRK3 gene mutation, enabling the economic propagation of the male-sterile line through bee-mediated cross-pollination. Interestingly, higher site mutation efficiency was detected when a guide sequence was inserted into a location in the tandemly arrayed tRNA-sgRNA architecture that was distal from the upstream Pol III promoter. In addition, mutation sites were also detected in the paralogous genes of the BoPDS and BoSRK genes that had fully consistent sequences or base mismatches but beyond the "seed" region in the spacer sequence compared with the target sgRNAs. Collectively, our results demonstrate that the CRISPR/Cas9 system, coupled with an endogenous tRNA-processing system, is an efficient tool to improve cabbage traits.
Collapse
Affiliation(s)
- Cunfa Ma
- Key Laboratory of Horticulture Science for the Southern Mountains Regions, Ministry of Education; College of Horticulture and Landscape Architecture, Southwest University, 400715 Chongqing, China
| | - Chenzeng Zhu
- Key Laboratory of Horticulture Science for the Southern Mountains Regions, Ministry of Education; College of Horticulture and Landscape Architecture, Southwest University, 400715 Chongqing, China
| | - Min Zheng
- Key Laboratory of Horticulture Science for the Southern Mountains Regions, Ministry of Education; College of Horticulture and Landscape Architecture, Southwest University, 400715 Chongqing, China
| | - Mengci Liu
- Key Laboratory of Horticulture Science for the Southern Mountains Regions, Ministry of Education; College of Horticulture and Landscape Architecture, Southwest University, 400715 Chongqing, China
| | - Dejun Zhang
- Key Laboratory of Horticulture Science for the Southern Mountains Regions, Ministry of Education; College of Horticulture and Landscape Architecture, Southwest University, 400715 Chongqing, China
| | - Baoli Liu
- Key Laboratory of Horticulture Science for the Southern Mountains Regions, Ministry of Education; College of Horticulture and Landscape Architecture, Southwest University, 400715 Chongqing, China
| | - Qinfei Li
- Key Laboratory of Horticulture Science for the Southern Mountains Regions, Ministry of Education; College of Horticulture and Landscape Architecture, Southwest University, 400715 Chongqing, China
| | - Jun Si
- Key Laboratory of Horticulture Science for the Southern Mountains Regions, Ministry of Education; College of Horticulture and Landscape Architecture, Southwest University, 400715 Chongqing, China
| | - Xuesong Ren
- Key Laboratory of Horticulture Science for the Southern Mountains Regions, Ministry of Education; College of Horticulture and Landscape Architecture, Southwest University, 400715 Chongqing, China
| | - Hongyuan Song
- Key Laboratory of Horticulture Science for the Southern Mountains Regions, Ministry of Education; College of Horticulture and Landscape Architecture, Southwest University, 400715 Chongqing, China
| |
Collapse
|
9
|
Rubab M, Chellia R, Saravanakumar K, Mandava S, Khan I, Tango CN, Hussain MS, Daliri EBM, Kim SH, Ramakrishnan SR, Wang MH, Lee J, Kwon JH, Chandrashekar S, Oh DH. Preservative effect of Chinese cabbage (Brassica rapa subsp. pekinensis) extract on their molecular docking, antioxidant and antimicrobial properties. PLoS One 2018; 13:e0203306. [PMID: 30281596 PMCID: PMC6169867 DOI: 10.1371/journal.pone.0203306] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 08/17/2018] [Indexed: 12/25/2022] Open
Abstract
This study aimed at investigating the antimicrobial activity of different solvent extracts of Chinese cabbage Brassica rapa subsp. pekinensis (BRARP) and their antioxidant and cytotoxicity properties. Of the different solvents extracts, the chloroform extracts (CE) were significantly inhibited the bacterial pathogens at minimum inhibitory concentration (MIC) of 16.5 mg.mL-1. Biochemical analysis revealed that total phenol (62.6 ± 0.05 mg GAE.g-1) and flavonoids (27.6 ± 0.04 mg QE.g-1) were higher in the extracts of BRARP, which resulted in enhanced antioxidant activity in CE. A total of eight dominant compounds were detected in the potent antimicrobial extract from BRARP based on GC-MS analysis. The molecular interactions study revealed that, among the screened compounds the 1,2-benzenedicarboxylic acid and 2,3-dicyanopropionamide interacted with the active site of pathogenicity and survival related protein with lipopolysaccharide (LpxC) with higer binding energy. This work concluded that the 1, 2-Benzenedicarboxylic acid and 2, 3-Dicyanopropionamide from BRARP was reported to be good non-cytotoxic and antioxidant antimicrobials against bacterial pathogens.
Collapse
Affiliation(s)
- Momna Rubab
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon, South Korea
| | - Ramachandran Chellia
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon, South Korea
| | - Kandasamy Saravanakumar
- Department of Medical Biotechnology, College of Biomedical Sciences, Kangwon National University, Chuncheon, South Korea
| | - Suresh Mandava
- College of Pharmacy, Kangwon National University, Chuncheon, South Korea
| | - Imran Khan
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon, South Korea
| | - Charles Nkufi Tango
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon, South Korea
| | - Mohammad Shakhawat Hussain
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon, South Korea
| | - Eric Banan-Mwine Daliri
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon, South Korea
| | - Se-Hun Kim
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon, South Korea
| | | | - Myeong-Hyeon Wang
- Department of Medical Biotechnology, College of Biomedical Sciences, Kangwon National University, Chuncheon, South Korea
| | - Jongkook Lee
- College of Pharmacy, Kangwon National University, Chuncheon, South Korea
| | - Joong-Ho Kwon
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, South Korea
| | | | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon, South Korea
- * E-mail:
| |
Collapse
|