1
|
Méndez-Yáñez A, Carrasco-Orellana C, Ramos P, Morales-Quintana L. Alpha-expansins: more than three decades of wall creep and loosening in fruits. PLANT MOLECULAR BIOLOGY 2024; 114:84. [PMID: 38995453 DOI: 10.1007/s11103-024-01481-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/21/2024] [Indexed: 07/13/2024]
Abstract
Expansins are proteins without catalytic activity, but able to break hydrogen bonds between cell wall polysaccharides hemicellulose and cellulose. This proteins were reported for the first time in 1992, describing cell wall extension in cucumber hypocotyls caused particularly by alpha-expansins. Although these proteins have GH45 and CBM63 domains, characteristic of enzymes related with the cleavage of cell wall polysaccharides, demonstrating in vitro that they extend plant cell wall. Its participation has been associated to molecular processes such as development and growing, fruit ripening and softening, tolerance and resistance to biotic and abiotic stress and seed germination. Structural insights, facilitated by bioinformatics approaches, are highlighted, shedding light on the intricate interactions between alpha-expansins and cell wall polysaccharides. After more than thirty years of its discovery, we want to celebrate the knowledge of alpha-expansins and emphasize their importance to understand the phenomena of disassembly and loosening of the cell wall, specifically in the fruit ripening phenomena, with this state-of-the-art dedicated to them.
Collapse
Affiliation(s)
- Angela Méndez-Yáñez
- Multidisciplinary Agroindustry Research Laboratory, Facultad de Ciencias de La Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Cinco Poniente No. 1670, Talca, Chile.
| | - Cristian Carrasco-Orellana
- División Agroindustrial de Empresas Carozzi S. A., Desarrollo E Innovación Aplicada Agrozzi, Centro Tecnológico de Investigación, Teno, Chile
| | - Patricio Ramos
- Plant Microorganism Interaction Laboratory, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - Luis Morales-Quintana
- Multidisciplinary Agroindustry Research Laboratory, Facultad de Ciencias de La Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Cinco Poniente No. 1670, Talca, Chile.
| |
Collapse
|
2
|
Zhang J, Wang L, Wu D, Zhao H, Gong L, Xu J. Regulation of SmEXPA13 expression by SmMYB1R1-L enhances salt tolerance in Salix matsudana Koidz. Int J Biol Macromol 2024; 270:132292. [PMID: 38750858 DOI: 10.1016/j.ijbiomac.2024.132292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/23/2024] [Accepted: 05/09/2024] [Indexed: 05/18/2024]
Abstract
Expansins, cell wall proteins, play a significant role in plant stress resistance. Our previous study confirmed the expression of the expansin gene SmEXPA13 from Salix matsudana Koidz. enhanced salt tolerance of plants. This report presented an assay that the expression of SmEXPA13 was higher in the salt-resistant willow variety 9901 than in the salt-sensitive variety Yanjiang. In order to understand the possible reasons, a study of the regulation process was conducted. Despite being cloned from both varieties, SmEXPA13 and its promotor showed no significant differences in the structure and sequence. A transcription factor (TF), SmMYB1R1-L, identified through screening the yeast library of willow cDNA, was found to regulate SmEXPA13. Yeast one-hybrid (Y1H) assay confirmed that SmMYB1R1-L could bind to the MYB element at the -520 bp site on the SmEXPA13 promotor. A dual-luciferase reporter assay also demonstrated that SmMYB1R1-L could greatly activate SmEXPA13 expression. The willow calli with over-expression of SmMYB1R1-L exhibited better physiological performance than the wild type under salt stress. Further testing the expression of SmMYB1R1-L displayed it significantly higher in 9901 willow than that in Yanjiang under salt stress. In conclusion, the high accumulation of SmMYB1R1-L in 9901 willow under salt stress led to the high expression of SmEXPA13, resulting in variations in salt stress resistance among willow varieties. The SmMYB1R1-L/SmEXPA13 cascade module in willow offers a new perspective on plant resistance mechanisms.
Collapse
Affiliation(s)
- Junkang Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Lei Wang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Di Wu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Han Zhao
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Longfeng Gong
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Jichen Xu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
3
|
Liu C, Zhao H, Li J, Cao Z, Deng B, Liu X, Qin G. Identification of Candidate Expansin Genes Associated with Seed Weight in Pomegranate ( Punica granatum L.). Genes (Basel) 2024; 15:212. [PMID: 38397202 PMCID: PMC10888256 DOI: 10.3390/genes15020212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Seed weight is an important target trait in pomegranate breeding and culture. Expansins act by loosening plant cell walls and cellulosic materials, permitting turgor-driven cell enlargement. However, the role of expansin genes (EXPs) in pomegranate seed weight remains elusive. A total of 29 PgrEXPs were identified in the 'Dabenzi' genome. These genes were classified into four subfamilies and 14 subgroups, including 22 PgrEXPAs, 5 PgrEXPBs, 1 PgrEXPLA, and 1 PgrEXPLB. Transcriptome analysis of PgrEXPs in different tissues (root, leaf, flower, peel, and seed testa) in 'Dabenzi', and the seed testa of the hard-seeded pomegranate cultivar 'Dabenzi' and soft-seeded cultivar 'Tunisia' at three development stages showed that three PgrEXPs (PgrEXPA11, PgrEXPA22, PgrEXPA6) were highly expressed throughout seed development, especially in the sarcotesta. SNP/Indel markers of these PgrEXPs were developed and used to genotype 101 pomegranate accessions. The association of polymorphic PgrEXPs with seed weight-related traits (100-seed weight, 100-kernel weight, 100-sarcotesta weight, and the percentage of 100-sarcotesta to 100-seed weight) were analyzed. PgrEXP22 was significantly associated with 100-seed weight and 100-sarcotesta weight and is a likely candidate for regulating seed weight and sarcotesta development in particular. This study provides an effective tool for the genetic improvement of seed weight in pomegranate breeding programs.
Collapse
Affiliation(s)
- Chunyan Liu
- Key Laboratory of Horticultural Crop Germplasma Innovation and Utilisation (Co-Construction by Ministry and Province), Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230031, China; (C.L.); (H.Z.); (J.L.); (Z.C.); (X.L.)
- Key Laboratory of Genetic Improvement and Eco-Physiology of Horticultural Crops, Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Haoyu Zhao
- Key Laboratory of Horticultural Crop Germplasma Innovation and Utilisation (Co-Construction by Ministry and Province), Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230031, China; (C.L.); (H.Z.); (J.L.); (Z.C.); (X.L.)
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China;
| | - Jiyu Li
- Key Laboratory of Horticultural Crop Germplasma Innovation and Utilisation (Co-Construction by Ministry and Province), Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230031, China; (C.L.); (H.Z.); (J.L.); (Z.C.); (X.L.)
- Key Laboratory of Genetic Improvement and Eco-Physiology of Horticultural Crops, Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Zhen Cao
- Key Laboratory of Horticultural Crop Germplasma Innovation and Utilisation (Co-Construction by Ministry and Province), Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230031, China; (C.L.); (H.Z.); (J.L.); (Z.C.); (X.L.)
- Key Laboratory of Genetic Improvement and Eco-Physiology of Horticultural Crops, Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Bo Deng
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China;
| | - Xin Liu
- Key Laboratory of Horticultural Crop Germplasma Innovation and Utilisation (Co-Construction by Ministry and Province), Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230031, China; (C.L.); (H.Z.); (J.L.); (Z.C.); (X.L.)
- Key Laboratory of Genetic Improvement and Eco-Physiology of Horticultural Crops, Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Gaihua Qin
- Key Laboratory of Horticultural Crop Germplasma Innovation and Utilisation (Co-Construction by Ministry and Province), Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230031, China; (C.L.); (H.Z.); (J.L.); (Z.C.); (X.L.)
- Key Laboratory of Genetic Improvement and Eco-Physiology of Horticultural Crops, Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| |
Collapse
|
4
|
Li M, Liu T, Cao R, Cao Q, Tong W, Song W. Evolution and Expression of the Expansin Genes in Emmer Wheat. Int J Mol Sci 2023; 24:14120. [PMID: 37762423 PMCID: PMC10531347 DOI: 10.3390/ijms241814120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/10/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Expansin proteins, a crucial class of intracellular proteins, are known to play a vital role in facilitating processes like cell wall relaxation and cell growth. Recent discoveries have revealed that expansin proteins also have significant functions in plant growth, development, and response to resistance. However, the expansin gene family, particularly in emmer wheat, has not been thoroughly studied, particularly in terms of evolution. In this study, we identified 63 TdEXPs and 49 TtEXPs from the latest genome versions of wild emmer wheat (WEW) and durum wheat (DW), respectively. The physicochemical properties of the encoded expansin proteins exhibited minimal differences, and the gene structures remained relatively conserved. Phylogenetic analysis categorized the proteins into three subfamilies, namely EXPA, EXPB, and EXLA, in addition to the EXLB subfamily. Furthermore, codon preference analysis revealed an increased usage frequency of the nucleotide "T" in expansin proteins throughout the evolution of WEW and DW. Collinearity analysis demonstrated higher orthology between the expansin proteins of WEW and DW, with a Ka/Ks ratio ranging from 0.4173 to 0.9494, indicating purifying selection during the evolution from WEW to DW. Haplotype analysis of the expansin gene family identified five genes in which certain haplotypes gradually became dominant over the course of evolution, enabling adaptation for survival and improvement. Expression pattern analysis indicated tissue-specific expression of expansin genes in emmer wheat, and some of these genes were quantified through qRT-PCR to assess their response to salt stress. These comprehensive findings present the first systematic analysis of the expansin protein gene family during the evolution from WEW to DW, providing a foundation for further understanding the functions and biological roles of expansin protein genes in emmer wheat.
Collapse
Affiliation(s)
| | | | | | | | - Wei Tong
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Xianyang 712100, China; (M.L.); (T.L.); (R.C.); (Q.C.)
| | - Weining Song
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Xianyang 712100, China; (M.L.); (T.L.); (R.C.); (Q.C.)
| |
Collapse
|
5
|
Faris Abdulkhadum Al-Mamoorı D, Celik Altunoglu Y, Horuz E, Özkan Kök B. Investigation of the expansin gene family in sugar beet (Beta vulgaris) by the genome-wide level and their expression responses under abiotic stresses. Biol Futur 2023; 74:295-307. [PMID: 37642915 DOI: 10.1007/s42977-023-00176-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 08/13/2023] [Indexed: 08/31/2023]
Abstract
Sugar beet (Beta vulgaris ssp. vulgaris) is primarily used in sugar production worldwide. Expansins are a gene family of cell wall proteins effective in regulating cell wall structure. They also participate in developmental stages, including cell and leaf growth, root development, and fruit ripening. This study comprehensively characterizes the expansin gene family members found in the sugar beet genome. In addition, in silico expression analysis of sugar beet expansin genes under variable abiotic stress conditions and expression profiles of expansin genes under combined drought and heat stresses by the qRT-PCR method were evaluated in the study. A total of 31 sugar beet expansin genes were identified. BvuEXLA-02 and BvuEXLB-02 genes can have abiotic stress tolerance roles besides their roles in normal development. Determining the properties of sugar beet expansin, family members can help enable the cellulose hydrolysis mechanism and raise plant biomass. Elucidating expression profiles of the sugar beet expansin genes under variable stress conditions can support improving plant productivity. The results of the current study may also contribute to the deep understanding of sugar beet expansin genes in the future.
Collapse
Affiliation(s)
| | - Yasemin Celik Altunoglu
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey.
| | - Erdoğan Horuz
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey
| | - Büşra Özkan Kök
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey
| |
Collapse
|
6
|
Yin Z, Zhou F, Chen Y, Wu H, Yin T. Genome-Wide Analysis of the Expansin Gene Family in Populus and Characterization of Expression Changes in Response to Phytohormone (Abscisic Acid) and Abiotic (Low-Temperature) Stresses. Int J Mol Sci 2023; 24:ijms24097759. [PMID: 37175464 PMCID: PMC10178758 DOI: 10.3390/ijms24097759] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Expansins are a group of cell wall enzyme proteins that help to loosen cell walls by breaking hydrogen bonds between cellulose microfibrils and hemicellulose. Expansins are essential plant proteins that are involved in several key processes, including seed germination, the growth of pollen tubes and root hairs, fruit ripening and abscission processes. Currently, there is a lack of knowledge concerning the role of expansins in woody plants. In this study, we analyzed expansin genes using Populus genome as the study target. Thirty-six members of the expansin gene family were identified in Populus that were divided into four subfamilies (EXPA, EXPB, EXLA and EXLB). We analyzed the molecular structure, chromosome localization, evolutionary relationships and tissue specificity of these genes and investigated expression changes in responses to phytohormone and abiotic stresses of the expansin genes of Populus tremula L. (PtEXs). Molecular structure analysis revealed that each PtEX protein had several conserved motifs and all of the PtEXs genes had multiple exons. Chromosome structure analysis showed that the expansin gene family is distributed on 14 chromosomes. The PtEXs gene family expansion patterns showed segmental duplication. Transcriptome data of Populus revealed that 36 PtEXs genes were differently expressed in different tissues. Cis-element analysis showed that the PtEXs were closely associated with plant development and responses to phytohormone and abiotic stress. Quantitative real-time PCR showed that abscisic acid (ABA) and low-temperature treatment affected the expression of some PtEXs genes, suggesting that these genes are involved in responses to phytohormone and abiotic stress. This study provides a further understanding of the expansin gene family in Populus and forms a basis for future functional research studies.
Collapse
Affiliation(s)
- Zhihui Yin
- Key Laboratory for Tree Breeding and Germplasm Improvement, Southern Modern Forestry Collaborative Innovation Center, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Fangwei Zhou
- Key Laboratory for Tree Breeding and Germplasm Improvement, Southern Modern Forestry Collaborative Innovation Center, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Yingnan Chen
- Key Laboratory for Tree Breeding and Germplasm Improvement, Southern Modern Forestry Collaborative Innovation Center, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Huaitong Wu
- Key Laboratory for Tree Breeding and Germplasm Improvement, Southern Modern Forestry Collaborative Innovation Center, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Tongming Yin
- Key Laboratory for Tree Breeding and Germplasm Improvement, Southern Modern Forestry Collaborative Innovation Center, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
7
|
İncili ÇY, Arslan B, Çelik ENY, Ulu F, Horuz E, Baloglu MC, Çağlıyan E, Burcu G, Bayarslan AU, Altunoglu YC. Comparative bioinformatics analysis and abiotic stress responses of expansin proteins in Cucurbitaceae members: watermelon and melon. PROTOPLASMA 2023; 260:509-527. [PMID: 35804193 DOI: 10.1007/s00709-022-01793-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Watermelon and melon are members of the Cucurbitaceae family including economically significant crops in the world. The expansin protein family, which is one of the members of the cell wall, breaks down the non-covalent bonds between cell wall polysaccharides, causing pressure-dependent cell expansion. Comparative bioinformatics and molecular characterization analysis of the expansin protein family were carried out in the watermelon (Citrullus lanatus) and melon (Cucumis melo) plants in the study. Gene expression levels of expansin family members were analyzed in leaf and root tissues of watermelon and melon under ABA, drought, heat, cold, and salt stress conditions by quantitative real-time PCR analysis. After comprehensive searches, 40 expansin proteins (22 ClaEXPA, 14 ClaEXPLA, and 4 ClaEXPB) in watermelon and 43 expansin proteins (19 CmEXPA, 15 CmEXPLA, 3 CmEXPB, and 6 CmEXPLB) in melon were identified. The greatest orthologous genes were identified with soybean expansin genes for watermelon and melon. However, the latest divergence time between orthologous genes was determined with poplar expansin genes for watermelon and melon expansin genes. ClaEXPA-04, ClaEXPA-09, ClaEXPB-01, ClaEXPB-03, and ClaEXPLA-13 genes in watermelon and CmEXPA-12, CmEXPA-10, and CmEXPLA-01 genes in melon can be involved in tissue development and abiotic stress response of the plant. The current study combining bioinformatics and experimental analysis can provide a detailed characterization of the expansin superfamily which has roles in growth and reaction to the stress of the plant. The study ensures detailed data for future studies examining gene functions including the roles in plant growth and stress conditions.
Collapse
Affiliation(s)
- Çınar Yiğit İncili
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey
| | - Büşra Arslan
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey
| | - Esra Nurten Yer Çelik
- Department of Silviculture, Faculty of Forestry, Kastamonu University, Kastamonu, Turkey
| | - Ferhat Ulu
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey
| | - Erdoğan Horuz
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey
| | - Mehmet Cengiz Baloglu
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey
| | - Ebrar Çağlıyan
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey
| | - Gamze Burcu
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey
| | - Aslı Ugurlu Bayarslan
- Department of Biology, Faculty of Science and Arts, Kastamonu University, Kastamonu, Turkey
| | - Yasemin Celik Altunoglu
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey.
| |
Collapse
|
8
|
Samalova M, Gahurova E, Hejatko J. Expansin-mediated developmental and adaptive responses: A matter of cell wall biomechanics? QUANTITATIVE PLANT BIOLOGY 2022; 3:e11. [PMID: 37077967 PMCID: PMC10095946 DOI: 10.1017/qpb.2022.6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 03/16/2022] [Accepted: 03/29/2022] [Indexed: 05/03/2023]
Abstract
Biomechanical properties of the cell wall (CW) are important for many developmental and adaptive responses in plants. Expansins were shown to mediate pH-dependent CW enlargement via a process called CW loosening. Here, we provide a brief overview of expansin occurrence in plant and non-plant species, their structure and mode of action including the role of hormone-regulated CW acidification in the control of expansin activity. We depict the historical as well as recent CW models, discuss the role of expansins in the CW biomechanics and address the developmental importance of expansin-regulated CW loosening in cell elongation and new primordia formation. We summarise the data published so far on the role of expansins in the abiotic stress response as well as the rather scarce evidence and hypotheses on the possible mechanisms underlying expansin-mediated abiotic stress resistance. Finally, we wrap it up by highlighting possible future directions in expansin research.
Collapse
Affiliation(s)
- Marketa Samalova
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Evelina Gahurova
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- National Centre for Biotechnological Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jan Hejatko
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- National Centre for Biotechnological Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
9
|
Liu C, Zhang Q, Dong J, Cai C, Zhu H, Li S. Genome-wide identification and characterization of mungbean CIRCADIAN CLOCK ASSOCIATED 1 like genes reveals an important role of VrCCA1L26 in flowering time regulation. BMC Genomics 2022; 23:374. [PMID: 35581536 PMCID: PMC9115955 DOI: 10.1186/s12864-022-08620-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 05/11/2022] [Indexed: 11/22/2022] Open
Abstract
Background CIRCADIAN CLOCK ASSOCIATED 1 like (CCA1L) proteins are important components that participate in plant growth and development, and now have been characterized in multiple plant species. However, information on mungbean CCA1L genes is limited. Results In this study, we identified 27 VrCCA1L genes from the mungbean genome. VrCCA1L genes were unevenly distributed on 10 of the 11 chromosomes and showed one tandem and two interchromosomal duplication events. Two distinct kinds of conserved MYB domains, MYB 1 and MYB 2, were found, and the conserved SHAQK(Y/F) F sequence was found at the C terminus of each MYB 2 domain. The VrCCA1Ls displayed a variety of exon-intron organizations, and 24 distinct motifs were found among these genes. Based on phylogenetic analysis, VrCCA1L proteins were classified into five groups; group I contained the most members, with 11 VrCCA1Ls. VrCCA1L promoters contained different types and numbers of cis-acting elements, and VrCCA1Ls showed different expression levels in different tissues. The VrCCA1Ls also displayed distinct expression patterns under different photoperiod conditions throughout the day in leaves. VrCCA1L26 shared greatest homology to Arabidopsis CCA1 and LATE ELONGATED HYPOCOTYL (LHY). It delayed the flowering time in Arabidopsis by affecting the expression levels of CONSTANS (CO), FLOWERING LOCUS T (FT), and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1). Conclusion We identified and characterized 27 VrCCA1L genes from mungbean genome, and investigated their spatio-temporal expression patterns. Further analysis revealed that VrCCA1L26 delayed flowering time in transgenic Arabidopsis plants. Our results provide useful information for further functional characterization of the VrCCA1L genes. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08620-7.
Collapse
Affiliation(s)
- Chenyang Liu
- College of Life Sciences, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao Agricultural University, Qingdao, 266109, China
| | - Qianqian Zhang
- College of Life Sciences, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jing Dong
- College of Life Sciences, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chunmei Cai
- College of Life Sciences, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao Agricultural University, Qingdao, 266109, China
| | - Hong Zhu
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Shuai Li
- College of Life Sciences, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
10
|
Panzade KP, Kale SS, Manoj ML, Kothawale SP, Damse DN. Genome-Wide Analysis and Expression Profile of Nuclear Factor Y (NF-Y) Gene Family in Z. jujuba. Appl Biochem Biotechnol 2022; 194:1373-1389. [PMID: 34731431 DOI: 10.1007/s12010-021-03730-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/21/2021] [Indexed: 10/19/2022]
Abstract
Nuclear factor-Y (NF-Y) is an important transcription factor in the plant species, which potentially provides a higher level of functional diversity including for abiotic stress tolerance. The genome-wide study and expression analysis of NF-Y gene family in Ziziphus, an elite abiotic stress-tolerant species, assist bioprospecting of genes. Here, a total of 32 NF-Y (8 NF-YA, 15 NF-YB, and 9 NF-YC) genes were identified in genome-wide search of Z. jujuba genome. Physicochemical properties, cellular localization, gene structure, chromosomal location, and protein motifs were analyzed for structural and functional understanding. Identified 12 NF-Ys were responsible for the expansion of NF-Y gene family by tandem duplication in Z. jujuba. Phylogenetic and comparative physical mapping of Z. jujuba NF-Ys with its orthologs illustrated evolutionary and functional insights into NF-Y gene family. A total of 45 perfect microsatellites (20bp to 40bp) were extracted across the ZjNF-Y genes. The promoter and gene ontology study suggested that Z. jujuba NF-Y gene family is functionally diverse and could play a wide-ranging role in plant abiotic stress, development, and cellular processes. An expression study revealed that large numbers of the NF-Ys are differentially expressed in response to drought and salinity. The total 15 and 18 ZjNF-Y genes that are upregulated under drought and salinity stress, respectively, are the potential candidates for further functional analysis for development of climate-resilient crops. The present study established a base for understanding the role of NF-Ys in Z. jujuba under abiotic stress conditions and paved a way for further research.
Collapse
Affiliation(s)
- Kishor Prabhakar Panzade
- Department of Plant Biotechnology, SDMVM College of Agricultural Biotechnology, Georai Tanda, Maharashtra, 431002, India.
| | - Sonam S Kale
- Department of Plant Biotechnology, MGM College of Agricultural Biotechnology, Aurangabad, Maharashtra, 431007, India
| | | | | | - Dipak N Damse
- Central Sugarcane Research Station, Padegaon, Mahatma Phule Agriculture University, Rahuri, Maharashtra, 415521, India
| |
Collapse
|
11
|
WANG N, YU Q, WANG D, REN H, XU C, NING C, LI N, FAN H, AI Z. Synergistic antiaging effects of jujube polysaccharide and flavonoid in D-Galactose-Induced aging mice. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.46222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Na WANG
- Henan Agricultural University, China; Key Laboratory of Nutrition and Healthy Food of Zhengzhou, China; Ministry of Agriculture, China
| | - Qiuying YU
- Key Laboratory of Nutrition and Healthy Food of Zhengzhou, China; Henan Agricultural University, China
| | - Dongliang WANG
- Zhengzhou Chunzhilan Commercial & Trading Co. Ltd, China
| | - Hongtao REN
- Key Laboratory of Nutrition and Healthy Food of Zhengzhou, China; Ministry of Agriculture, China; Henan Agricultural University, China
| | - Chao XU
- Key Laboratory of Nutrition and Healthy Food of Zhengzhou, China; Ministry of Agriculture, China; Henan Agricultural University, China
| | - Cancan NING
- Key Laboratory of Nutrition and Healthy Food of Zhengzhou, China; Henan Agricultural University, China
| | - Na LI
- Ministry of Agriculture, China; Henan Agricultural University, China
| | - Huiping FAN
- Key Laboratory of Nutrition and Healthy Food of Zhengzhou, China; Henan Agricultural University, China
| | - Zhilu AI
- Key Laboratory of Nutrition and Healthy Food of Zhengzhou, China; Henan Agricultural University, China
| |
Collapse
|
12
|
Wang M, Mo Z, Lin R, Zhu C. Characterization and expression analysis of the SPL gene family during floral development and abiotic stress in pecan ( Carya illinoinensis). PeerJ 2021; 9:e12490. [PMID: 34966577 PMCID: PMC8667720 DOI: 10.7717/peerj.12490] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 10/25/2021] [Indexed: 12/14/2022] Open
Abstract
SQUAMOSA promoter binding protein-like (SPL) genes are a type of plant-specific transcription factors that play crucial roles in the regulation of phase transition, floral transformation, fruit development, and various stresses. Although SPLs have been characterized in several model species, no systematic analysis has been studied in pecans, an important woody oil tree species. In this study, a total of 32 SPL genes (CiSPLs) were identified in the pecan genome. After conducting phylogenetic analysis of the conserved SBP proteins from Arabidopsis, rice, and poplar, the CiSPLs were separated into eight subgroups. The CiSPL genes within the same subgroup contained very similar exon-intron structures and conserved motifs. Nine segmentally duplicated gene pairs in the pecan genome and 16 collinear gene pairs between the CiSPL and AtSPL genes were identified. Cis-element analysis showed that CiSPL genes may regulate plant meristem differentiation and seed development, participate in various biological processes, and respond to plant hormones and environmental stresses. Therefore, we focused our study on the expression profiles of CiSPL genes during flower and fruit development. Most of the CiSPL genes were predominantly expressed in buds and/or female flowers. Additionally, quantitative real time PCR (qRT-PCR) analyses confirmed that CiSPL genes showed distinct spatiotemporal expression patterns in response to drought and salt treatments. The study provides foundation for the further exploration of the function and evolution of SPL genes in pecan.
Collapse
Affiliation(s)
- Min Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China.,Horticulture Research Institute, Shanghai Key Lab of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Zhenghai Mo
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Ruozhu Lin
- Key laboratory of Forest Protection of National Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
| | - Cancan Zhu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
13
|
Arslan B, İncili ÇY, Ulu F, Horuz E, Bayarslan AU, Öçal M, Kalyoncuoğlu E, Baloglu MC, Altunoglu YC. Comparative genomic analysis of expansin superfamily gene members in zucchini and cucumber and their expression profiles under different abiotic stresses. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:2739-2756. [PMID: 35035133 PMCID: PMC8720134 DOI: 10.1007/s12298-021-01108-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 11/17/2021] [Accepted: 11/25/2021] [Indexed: 05/25/2023]
Abstract
UNLABELLED Zucchini and cucumber belong to the Cucurbitaceae family, a group of economical and nutritious food plants that is consumed worldwide. Expansin superfamily proteins are generally localized in the cell wall of plants and are known to possess an effect on cell wall modification by causing the expansion of this region. Although the whole genome sequences of cucumber and zucchini plants have been resolved, the determination and characterization of expansin superfamily members in these plants using whole genomic data have not been implemented yet. In the current study, a genome-wide analysis of zucchini (Cucurbita pepo) and cucumber (Cucumis sativus) genomes was performed to determine the expansin superfamily genes. In total, 49 and 41 expansin genes were identified in zucchini and cucumber genomes, respectively. All expansin superfamily members were subjected to further bioinformatics analysis including gene and protein structure, ontology of the proteins, phylogenetic relations and conserved motifs, orthologous relations with other plants, targeting miRNAs of those genes and in silico gene expression profiles. In addition, various abiotic stress responses of zucchini and cucumber expansin genes were examined to determine their roles in stress tolerance. CsEXPB-04 and CsEXPA-11 from cucumber and CpEXPA-20 and CpEXPLA-14 from zucchini can be candidate genes for abiotic stress response and tolerance in addition to their roles in the normal developmental processes, which are supported by the gene expression analysis. This work can provide new perspectives for the roles of expansin superfamily genes and offers comprehensive knowledge for future studies investigating the modes of action of expansin proteins. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01108-w.
Collapse
Affiliation(s)
- Büşra Arslan
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey
| | - Çınar Yiğit İncili
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey
| | - Ferhat Ulu
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey
| | - Erdoğan Horuz
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey
| | - Aslı Ugurlu Bayarslan
- Department of Biology, Faculty of Science and Arts, Kastamonu University, Kastamonu, Turkey
| | - Mustafa Öçal
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey
| | - Elif Kalyoncuoğlu
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey
| | - Mehmet Cengiz Baloglu
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey
| | - Yasemin Celik Altunoglu
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey
| |
Collapse
|
14
|
Genome-wide identification of expansin gene family in barley and drought-related expansins identification based on RNA-seq. Genetica 2021; 149:283-297. [PMID: 34643833 DOI: 10.1007/s10709-021-00136-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 09/23/2021] [Indexed: 10/20/2022]
Abstract
Expansins are cell wall loosening proteins and involved in various developmental processes and abiotic stress. No systematic research, however, has been conducted on expansin genes family in barley. A total of 46 expansins were identified and could be classified into three subfamilies in Hordeum vulgare: HvEXPA, HvEXPB, and HvEXLA. All expansin proteins contained two conserved domains: DPBB_1 and Pollen_allerg_1. Expansins, in the same subfamily, share similar motifs composition and exon-intron organization; but greater differences were found among different subfamilies. Expansins are distributed unevenly on 7 barley chromosomes; tandem duplicates, including the collinear tandem array, contribute to the forming of the expansin genes family in barley with few whole-genome duplication events. Most HvEXPAs mainly expressed in embryonic and root tissues. HvEXPBs and HvEXLAs showed different expression patterns in 16 tissues during different developmental stages. In response to water deficit, expansins in wild barley were more sensitive than that in cultivated barley; the expressions of HvEXPB5 and HvEXPB6 were significantly induced in wild barley under drought stress. Our study provides a comprehensive and systematic analysis of the barley expansin genes in genome-wide level. This information will lay a solid foundation for further functional exploration of expansin genes in plant development and drought stress tolerance.
Collapse
|
15
|
Li K, Ma B, Shen J, Zhao S, Ma X, Wang Z, Fan Y, Tang Q, Wei D. The evolution of the expansin gene family in Brassica species. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:630-638. [PMID: 34479031 DOI: 10.1016/j.plaphy.2021.08.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/18/2021] [Accepted: 08/22/2021] [Indexed: 06/13/2023]
Abstract
Expansin gene (EXP) family plays important roles in plant growth and crop improvement. However, it has not been well studied in the Brassica genus that includes several important agricultural and horticultural crops. To get insight to the evolution and expansion of EXP family in Brassica, Brassica EXPs which are homologues of 35 known AtEXPs of Arabidopsis were comprehensively and systematically analyzed in the present study. In total, 340 Brassica EXPs were clustered into four groups that corresponded multiple alignment to four subfamilies of AtEXPs, with divergent conserved motifs and cis-acting elements among groups. To understand the expansion of EXP family, an integrated genomic block system was constructed among Arabidopsis and Brassica species based on 24 known ancestral karyotype blocks. Obvious gene loss, segmental duplication, tandem duplication and DNA sequence repeat events were found during the expansion of Brassica EXPs, of which the segmental duplication was possibly the major driving force. The divergence time was estimated in 1109 orthologs pairs of EXPs, revealing the divergence of Brassica EXPs from AtEXPs during ~30 MYA, and the divergence of EXPs among Brassica species during 13.50-17.94 MYA. Selective mode analysis revealed that the purifying selection was the major contributor to expansion of Brassica EXPs. This study provides new insights into the evolution and expansion of the EXP family in Brassica genus.
Collapse
Affiliation(s)
- Kui Li
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China
| | - Bi Ma
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China
| | - Jinjuan Shen
- Chongqing Yudongnan Academy of Agricultural Sciences, Fuling, 408000, China
| | - Sa Zhao
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China
| | - Xiao Ma
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China
| | - Zhimin Wang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China
| | - Yonghong Fan
- Chongqing Yudongnan Academy of Agricultural Sciences, Fuling, 408000, China
| | - Qinglin Tang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China.
| | - Dayong Wei
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
16
|
Huang X, Hou Z. Label-free quantitative proteomics analysis of jujube ( Ziziphus jujuba Mill.) during different growth stages. RSC Adv 2021; 11:22106-22119. [PMID: 35480818 PMCID: PMC9034241 DOI: 10.1039/d1ra02989d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/15/2021] [Indexed: 01/08/2023] Open
Abstract
Chinese jujube (Zizyphus jujuba Mill.), a member of the Rhamnaceae family with favorable nutritional and flavor quality, exhibited characteristic climacteric changes during its fruit growth stage. Therefore, fruit samples were harvested at four developmental stages on days 55 (young fruits), 76 (white-mature fruits), 96 (half-red fruits), and 116 (full-red fruits) after flowering (DAF). This study then investigated those four growth stage changes of the jujube proteome using label-free quantification proteomics. The results identified 4762 proteins in the samples, of which 3757 proteins were quantified. Compared with former stages, the stages examined were designated as "76 vs. 55 DAF" group, "96 vs. 76 DAF" group, and "116 vs. 96 DAF" group. Gene Ontology (GO) and KEGG annotation and enrichment analysis of the differentially expressed proteins (DEPs) showed that 76 vs. 55 DAF group pathways represented amino sugar, nucleotide sugar, ascorbate, and aldarate metabolic pathways. These pathways were associated with cell division and resistance. In the study, the jujube fruit puffing slowed down and attained a stable growth stage in the 76 vs. 55 DAF group. However, fatty acid biosynthesis and phenylalanine metabolism was mainly enriched in the 96 vs. 76 DAF group. Fatty acids are precursors of aromatic substances and fat-soluble pigments in fruit. The upregulation of differential proteins at this stage indicates that aromatic compounds were synthesized in large quantities at this stage and that fruit would enter the ripening stage. During the ripening stage, 55 DEPs were identified to be involved in photosynthesis and flavonoid biosynthesis in the 116 vs. 96 DAF group. Also, the fruit entered the mature stage, which showed that flavonoids were produced in large quantities. Furthermore, the color of jujube turned red, and photosynthesis was significantly reduced. Hence, a link was established between protein profiles and growth phenotypes, which will help improve our understanding of jujube fruit growth at the proteomic level.
Collapse
Affiliation(s)
- Xiaoli Huang
- College of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences) No. 3501 Daxue Road, Changqing District Ji'nan Shandong Province 250353 P. R. China +86 531 89631191 +86 188 66151356
| | - Zhaohua Hou
- College of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences) No. 3501 Daxue Road, Changqing District Ji'nan Shandong Province 250353 P. R. China +86 531 89631191 +86 188 66151356
| |
Collapse
|
17
|
Characterization and Comparative Analysis of RWP-RK Proteins from Arachis duranensis, Arachis ipaensis, and Arachis hypogaea. Int J Genomics 2020; 2020:2568640. [PMID: 32908854 PMCID: PMC7474775 DOI: 10.1155/2020/2568640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/30/2020] [Accepted: 08/07/2020] [Indexed: 11/17/2022] Open
Abstract
RWP-RK proteins are important factors involved in nitrate response and gametophyte development in plants, and the functions of RWP-RK proteins have been analyzed in many species. However, the characterization of peanut RWP-RK proteins is limited. In this study, we identified 16, 19, and 32 RWP-RK members from Arachis duranensis, Arachis ipaensis, and Arachis hypogaea, respectively, and investigated their evolution relationships. The RWP-RK proteins were classified into two groups, RWP-RK domain proteins and NODULE-INCEPTION-like proteins. Chromosomal distributions, gene structures, and conserved motifs of RWP-RK genes were compared among wild and cultivated peanuts. In addition, we identified 12 orthologous gene pairs from the two wild peanut species, 13 from A. duranensis and A. hypogaea, and 13 from A. ipaensis and A. hypogaea. One, one, and seventeen duplicated gene pairs were identified within the A. duranensis, A. ipaensis, and A. hypogaea genomes, respectively. Moreover, different numbers of cis-acting elements in the RWP-RK promoters were found in wild and cultivated species (87 in A. duranensis, 89 in A. ipaensis, and 92 in A. hypogaea), and as a result, many RWP-RK genes showed distinct expression patterns in different tissues. Our study will provide useful information for further functional and evolutionary analysis of the RWP-RK genes.
Collapse
|
18
|
Zhang Y, Gao W, Li H, Wang Y, Li D, Xue C, Liu Z, Liu M, Zhao J. Genome-wide analysis of the bZIP gene family in Chinese jujube (Ziziphus jujuba Mill.). BMC Genomics 2020; 21:483. [PMID: 32664853 PMCID: PMC7362662 DOI: 10.1186/s12864-020-06890-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 07/07/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Among several TF families unique to eukaryotes, the basic leucine zipper (bZIP) family is one of the most important. Chinese jujube (Ziziphus jujuba Mill.) is a popular fruit tree species in Asia, and its fruits are rich in sugar, vitamin C and so on. Analysis of the bZIP gene family of jujube has not yet been reported. In this study, ZjbZIPs were identified firstly, their expression patterns were further studied in different tissues and in response to various abiotic and phytoplasma stresses, and their protein-protein interactions were also analyzed. RESULTS At the whole genome level, 45 ZjbZIPs were identified and classified into 14 classes. The members of each class of bZIP subfamily contain a specific conserved domain in addition to the core bZIP conserved domain, which may be related to its biological function. Relative Synonymous Codon Usage (RSCU) analysis displayed low values of NTA and NCG codons in ZjbZIPs, which would be beneficial to increase the protein production and also indicated that ZjbZIPs were at a relative high methylation level. The paralogous and orthologous events occurred during the evolutionary process of ZjbZIPs. Thirty-four ZjbZIPs were mapped to but not evenly distributed among 10 pseudo- chromosomes. 30 of ZjbZIP genes showed diverse tissue-specific expression in jujube and wild jujube trees, indicating that these genes may have multiple functions. Some ZjbZIP genes were specifically analyzed and found to play important roles in the early stage of fruit development. Moreover, some ZjbZIPs that respond to phytoplasma invasion and abiotic stress environmental conditions, such as salt and low temperature, were found. Based on homology comparisons, prediction analysis and yeast two-hybrid, a protein interaction network including 42 ZjbZIPs was constructed. CONCLUSIONS The bioinformatics analyses of 45 ZjbZIPs were implemented systematically, and their expression profiles in jujube and wild jujube showed that many genes might play crucial roles during fruit ripening and in the response to phytoplasma and abiotic stresses. The protein interaction networks among ZjbZIPs could provide useful information for further functional studies.
Collapse
Affiliation(s)
- Yao Zhang
- College of Life Science, Hebei Agricultural University, Baoding, China.,Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, China
| | - Weilin Gao
- College of Life Science, Hebei Agricultural University, Baoding, China.,Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, China
| | - Hongtai Li
- College of Life Science, Hebei Agricultural University, Baoding, China.,Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, China
| | - Yongkang Wang
- Pomology Institute, Shanxi Academy of Agricultural Sciences, Taigu, China
| | - Dengke Li
- Pomology Institute, Shanxi Academy of Agricultural Sciences, Taigu, China
| | - Chaoling Xue
- College of Life Science, Hebei Agricultural University, Baoding, China.,Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, China
| | - Zhiguo Liu
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, China
| | - Mengjun Liu
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, China
| | - Jin Zhao
- College of Life Science, Hebei Agricultural University, Baoding, China. .,Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, China.
| |
Collapse
|
19
|
Genome-wide identification, characterization, and expression analysis of the expansin gene family in watermelon ( Citrullus lanatus). 3 Biotech 2020; 10:302. [PMID: 32550119 DOI: 10.1007/s13205-020-02293-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/07/2020] [Indexed: 10/24/2022] Open
Abstract
Expansins are plant cell-wall loosening proteins involved in cell enlargement, adaptive responses to environmental stimuli, and various developmental processes. Although expansins have been characterized in many plant species, little is reported on this family in watermelon. In this study, 30 expansin genes in the watermelon genome (ClEXPs) were identified. These genes which were divided into four subfamilies (7 ClEXLAs, 2 ClEXLBs, 18 ClEXPAs, and 3 ClEXPBs) are unevenly distribute on 10 of 11 watermelon chromosomes. Chromosome mapping suggested that tandem duplication events may have played important roles in the expanding of watermelon expansins. Gene structure and motif identification revealed that same subfamily and subgroup have conserved gene structure and motif. Detection of cis-acting elements revealed that ClEXPs gene promoter regions were enriched with light-responsive elements, hormone-responsive, environmental stress-related, and development-related elements. Expression patterns of ClEXPs were investigated by qRT-PCR. The results showed that expression patterns of 15 ClEXP genes differed in three tissues. Through our own and public RNA-seq analysis, we found that ClEXPs had different expression patterns in fruit flesh, fruit rind, and seed at various developmental stages, and most of ClEXPs were highly responsive to abiotic and biotic stresses. Remarkably, 7 ClEXPs (ClEXLA1, ClEXLA6, ClEXLB1, ClEXLB2, ClEXPA5, ClEXPA10, and ClEXPA16) exhibited positive response to at least three kinds of stresses, suggesting that they might play important roles in the crosstalk of stress signal pathways. The results of this study provide useful insights for the functional identification of expansin gene family in watermelon.
Collapse
|
20
|
Dong MY, Lei L, Fan XW, Li YZ. Dark response genes: a group of endogenous pendulum/timing players in maize? PLANTA 2020; 252:1. [PMID: 32504137 DOI: 10.1007/s00425-020-03403-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/18/2020] [Indexed: 05/21/2023]
Abstract
MAIN CONCLUSION Maize has a set of dark response genes, expression of which is influenced by multiple factor and varies with maize inbred lines but without germplasm specificity. The response to photoperiod is a common biological issue across the species kingdoms. Dark is as important as light in photoperiod. However, further in-depth understanding of responses of maize (Zea mays) to light and dark transition under photoperiod is hindered due to the lack of understanding of dark response genes. With multiple public "-omic" datasets of temperate and tropical/subtropical maize, 16 maize dark response genes, ZmDRGs, were found and had rhythmic expression under dark and light-dark cycle. ZmDRGs 6-8 were tandemly duplicated. ZmDRGs 2, 13, and 14 had a chromosomal collinearity with other maize genes. ZmDRGs 1-11 and 13-16 had copy-number variations. ZmDRGs 2, 9, and 16 showed 5'-end sequence deletion mutations. Some ZmDRGs had chromatin interactions and underwent DNA methylation and/or m6A mRNA methylation. Chromosomal histones associated with 15 ZmDRGs were methylated and acetylated. ZmDRGs 1, 2, 4, 9, and 13 involved photoperiodic phenotypes. ZmDRG16 was within flowering-related QTLs. ZmDRGs 1, 3, and 6-11 were present in cis-acting expression QTLs (eQTLs). ZmDRGs 1, 4, 6-9, 11, 12, and 14-16 showed co-expression with other maize genes. Some of ZmDRG-encoded ZmDRGs showed obvious differences in abundance and phosphorylation. CONCLUSION Sixteen ZmDRGs 1-16 are associated with the dark response of maize. In the process of post-domestication and/or breeding, the ZmDRGs undergo the changes without germplasm specificity, including epigenetic modifications, gene copy numbers, chromatin interactions, and deletion mutations. In addition to effects by these factors, ZmDRG expression is influenced by promoter elements, cis-acting eQTLs, and co-expression networks.
Collapse
Affiliation(s)
- Ming-You Dong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| | - Ling Lei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| | - Xian-Wei Fan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| | - You-Zhi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China.
| |
Collapse
|
21
|
Lv LM, Zuo DY, Wang XF, Cheng HL, Zhang YP, Wang QL, Song GL, Ma ZY. Genome-wide identification of the expansin gene family reveals that expansin genes are involved in fibre cell growth in cotton. BMC PLANT BIOLOGY 2020; 20:223. [PMID: 32429837 PMCID: PMC7236947 DOI: 10.1186/s12870-020-02362-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 03/24/2020] [Indexed: 05/19/2023]
Abstract
BACKGROUND Expansins (EXPs), a group of proteins that loosen plant cell walls and cellulosic materials, are involved in regulating cell growth and diverse developmental processes in plants. However, the biological functions of this gene family in cotton are still unknown. RESULTS In this paper, we identified a total of 93 expansin genes in Gossypium hirsutum. These genes were classified into four subfamilies, including 67 GhEXPAs, 8 GhEXPBs, 6 GhEXLAs, and 12 GhEXLBs, and divided into 15 subgroups. The 93 expansin genes are distributed over 24 chromosomes, excluding Ghir_A02 and Ghir_D06. All GhEXP genes contain multiple exons, and each GhEXP protein has multiple conserved motifs. Transcript profiling and qPCR analysis revealed that the expansin genes have distinct expression patterns among different stages of cotton fibre development. Among them, 3 genes (GhEXPA4o, GhEXPA1A, and GhEXPA8h) were highly expressed in the initiation stage, 9 genes (GhEXPA4a, GhEXPA13a, GhEXPA4f, GhEXPA4q, GhEXPA8f, GhEXPA2, GhEXPA8g, GhEXPA8a, and GhEXPA4n) had high expression during the fast elongation stage, and GhEXLA1c and GhEXLA1f were preferentially expressed in the transition stage of fibre development. CONCLUSIONS Our results provide a solid basis for further elucidation of the biological functions of expansin genes in relation to cotton fibre development and valuable genetic resources for future crop improvement.
Collapse
Affiliation(s)
- Li-Min Lv
- Hebei Research Base, State Key Laboratory of Cotton Biology in China, Hebei Agricultural University, Baoding, 071001, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (CAAS), Anyang, 455000, China
| | - Dong-Yun Zuo
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (CAAS), Anyang, 455000, China
| | - Xing-Fen Wang
- Hebei Research Base, State Key Laboratory of Cotton Biology in China, Hebei Agricultural University, Baoding, 071001, China
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding, 071001, China
| | - Hai-Liang Cheng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (CAAS), Anyang, 455000, China
| | - You-Ping Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (CAAS), Anyang, 455000, China
| | - Qiao-Lian Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (CAAS), Anyang, 455000, China
| | - Guo-Li Song
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (CAAS), Anyang, 455000, China.
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China.
| | - Zhi-Ying Ma
- Hebei Research Base, State Key Laboratory of Cotton Biology in China, Hebei Agricultural University, Baoding, 071001, China.
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding, 071001, China.
| |
Collapse
|
22
|
B-box Proteins in Arachis duranensis: Genome-Wide Characterization and Expression Profiles Analysis. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy10010023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
B-box (BBX) proteins are important factors involved in plant growth and developmental regulation, and they have been identified in many species. However, information on the characteristics and transcription patterns of BBX genes in wild peanut are limited. In this study, we identified and characterized 24 BBX genes from a wild peanut, Arachis duranensis. Many characteristics were analyzed, including chromosomal locations, phylogenetic relationships, and gene structures. Arachis duranensis B-box (AdBBX) proteins were grouped into five classes based on the diversity of their conserved domains: I (3 genes), II (4 genes), III (4 genes), IV (9 genes), and V (4 genes). Fifteen distinct motifs were found in the 24 AdBBX proteins. Duplication analysis revealed the presence of two interchromosomal duplicated gene pairs, from group II and IV. In addition, 95 kinds of cis-acting elements were found in the genes’ promoter regions, 53 of which received putative functional predictions. The numbers and types of cis-acting elements varied among different AdBBX promoters, and, as a result, AdBBX genes exhibited distinct expression patterns in different tissues. Transcriptional profiling combined with synteny analysis suggests that AdBBX8 may be a key factor involved in flowering time regulation. Our study will provide essential information for further functional investigation of AdBBX genes.
Collapse
|
23
|
Dong MY, Fan XW, Pang XY, Li YZ. Decrypting tubby-like protein gene family of multiple functions in starch root crop cassava. AOB PLANTS 2019; 11:plz075. [PMID: 31871614 PMCID: PMC6920310 DOI: 10.1093/aobpla/plz075] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 11/24/2019] [Indexed: 05/23/2023]
Abstract
Tubby-like proteins (TLPs) are ubiquitous in eukaryotes and function in abiotic stress tolerance of some plants. Cassava (Manihot esculenta Crantz) is a high-yield starch root crop and has a high tolerance to poor soil conditions and abiotic stress. However, little is known about TLP gene characteristics and their expression in cassava. We identified cassava TLP genes, MeTLPs, and further analysed structure, duplication, chromosome localization and collinearity, cis-acting elements in the promoter regions and expression patterns of MeTLPs, and three-dimensional structure of the encoded proteins MeTLPs. In conclusion, there is a MeTLP family containing 13 members, which are grouped into A and C subfamilies. There are 11 pairs of MeTLPs that show the duplication which took place between 10.11 and 126.69 million years ago. Two MeTLPs 6 and 9 likely originate from one gene in an ancestral species, may be common ancestors for other MeTLPs and would most likely not be eligible for ubiquitin-related protein degradation because their corresponding proteins (MeTLPs 6 and 9) have no the F-box domain in the N-terminus. MeTLPs feature differences in the number from TLPs in wheat, apple, Arabidopsis, poplar and maize, and are highlighted by segmental duplication but more importantly by the chromosomal collinearity with potato StTLPs. MeTLPs are at least related to abiotic stress tolerance in cassava. However, the subtle differences in function among MeTLPs are predictable partly because of their differential expression profiles, which are coupled with various cis‑acting elements existing in the promoter regions depending on genes.
Collapse
Affiliation(s)
- Ming-You Dong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Xian-Wei Fan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Xiang-Yu Pang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - You-Zhi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
| |
Collapse
|
24
|
Jin H, Tang X, Xing M, Zhu H, Sui J, Cai C, Li S. Molecular and transcriptional characterization of phosphatidyl ethanolamine-binding proteins in wild peanuts Arachis duranensis and Arachis ipaensis. BMC PLANT BIOLOGY 2019; 19:484. [PMID: 31706291 PMCID: PMC6842551 DOI: 10.1186/s12870-019-2113-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 10/31/2019] [Indexed: 05/10/2023]
Abstract
BACKGROUND Phosphatidyl ethanolamine-binding proteins (PEBPs) are involved in the regulation of plant architecture and flowering time. The functions of PEBP genes have been studied in many plant species. However, little is known about the characteristics and expression profiles of PEBP genes in wild peanut species, Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanuts. RESULTS In this study, genome-wide identification methods were used to identify and characterize a total of 32 peanut PEBP genes, 16 from each of the two wild peanut species, A. duranensis and A. ipaensis. These PEBP genes were classified into 3 groups (TERMINAL FLOWER1-like, FLOWERING LOCUS T-like, and MOTHER OF FT AND TFL1-like) based on their phylogenetic relationships. The gene structures, motifs, and chromosomal locations for each of these PEBPs were analyzed. In addition, 4 interchromosomal duplications and 1 tandem duplication were identified in A. duranensis, and 2 interchromosomal paralogs and 1 tandem paralog were identified in A. ipaensis. Ninety-five different cis-acting elements were identified in the PEBP gene promoter regions and most genes had different numbers and types of cis-elements. As a result, the transcription patterns of these PEBP genes varied in different tissues and under long day and short day conditions during different growth phases, indicating the functional diversities of PEBPs in different tissues and their potential functions in plant photoperiod dependent developmental pathways. Moreover, our analysis revealed that AraduF950M/AraduWY2NX in A. duranensis, and Araip344D4/Araip4V81G in A. ipaensis are good candidates for regulating plant architecture, and that Aradu80YRY, AraduYY72S, and AraduEHZ9Y in A. duranensis and AraipVEP8T in A. ipaensis may be key factors regulating flowering time. CONCLUSION Sixteen PEBP genes were identified and characterized from each of the two diploid wild peanut genomes, A. duranensis and A. ipaensis. Genetic characterization and spatio-temporal expression analysis support their importance in plant growth and development. These findings further our understanding of PEBP gene functions in plant species.
Collapse
Affiliation(s)
- Hanqi Jin
- College of Life Sciences, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao Agricultural University, Qingdao, 266109 China
| | - Xuemin Tang
- College of Life Sciences, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao Agricultural University, Qingdao, 266109 China
| | - Mengge Xing
- College of Life Sciences, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao Agricultural University, Qingdao, 266109 China
| | - Hong Zhu
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109 China
| | - Jiongming Sui
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109 China
| | - Chunmei Cai
- College of Life Sciences, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao Agricultural University, Qingdao, 266109 China
| | - Shuai Li
- College of Life Sciences, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao Agricultural University, Qingdao, 266109 China
| |
Collapse
|
25
|
Dong MY, Fan XW, Li YZ. Cassava AGPase genes and their encoded proteins are different from those of other plants. PLANTA 2019; 250:1621-1635. [PMID: 31399791 DOI: 10.1007/s00425-019-03247-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 06/21/2019] [Indexed: 05/10/2023]
Abstract
Cassava AGPase and AGPase genes have some unique characteristics. ADP-glucose pyrophosphorylase (AGPase) is a rate-limiting enzyme for starch synthesis. In this study, cassava AGPase genes (MeAGP) were analyzed based on six cultivars and one wild species. A total of seven MeAGPs was identified, including four encoding AGPase large subunits (MeAGPLs 1, 2, 3 and 4) and three encoding AGPase small subunits (MeAGPSs 1, 2 and 3). The copy number of MeAGPs varied in cassava germplasm materials. There were 14 introns for MeAGPLs 1, 2 and 3, 13 introns for MeAGPL4, and 8 introns for other three MeAGPSs. Multiple conservative amino acid sequence motifs were found in the MeAGPs. There were differences in amino acids at binding sites of substrates and regulators among different MeAGP subunits and between MeAGPs and a potato AGPase small subunit (1YP2:B). MeAGPs were all located in chloroplasts. MeAGP expression was not only associated with gene copy number and types/combinations, regions and levels of the DNA methylation but was also affected by environmental factors with the involvement of various transcription factors in multiple regulation networks and in various cis-elements in the gene promoter regions. The MeAGP activity also changed with environmental conditions and had potential differences among the subunits. Taken together, MeAGPs differ in number from those of Arabidopsis, potato, maize, banana, sweet potato, and tomato.
Collapse
Affiliation(s)
- Ming-You Dong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| | - Xian-Wei Fan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| | - You-Zhi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China.
| |
Collapse
|