1
|
Li W, Zhang Z, Chen R, Sun L, Lai X, Li Q, Hao M, Zhang S, Li Q, Sun S, Chen Z. Metabolomics-based analysis of the effects of differences in soluble sugars on the sweetness quality of six major tea types in China. Food Funct 2025; 16:3707-3720. [PMID: 40259751 DOI: 10.1039/d5fo00232j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
Soluble sugars are indeed key factors in the formation of tea sweetness quality. However, the specific impact they exert on tea sweetness has not been clearly elucidated. Consequently, in this study, one bud and two leaves of the same tea variety were utilized to produce six types of tea for sensory evaluation, electronic tongue analysis, and targeted sugar metabolomics analysis, aiming to systematically assess the influence of soluble sugars on the sweetness contribution in different teas. The results obtained from sensory evaluation and the electronic tongue indicate that the sweetness order of various teas is green tea (GT) > yellow tea (YT) > dark tea (DT) > oolong tea (OT) > black tea (BT) > white tea (WT). Through metabolomics, 26 crucial differential metabolites were identified, among which sucrose, inositol, D-fructose, glucose, and D-arabinitol constitute the main sugar components that distinguish the sweetness characteristics of the six types of tea. This study offers a comprehensive and detailed overview of the effects of commonly employed processing methods on the sweetness quality of tea as well as its metabolic properties. It thereby lays a solid theoretical foundation for optimizing processing techniques to enhance the sweetness quality of tea and to better serve tea production practices.
Collapse
Affiliation(s)
- Wen Li
- College of Food Science/Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, South China Agricultural University, 483 Wushan Street, Tianhe District, Guangzhou, Guangdong, P.R. China.
| | - Zhenbiao Zhang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Ruohong Chen
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Lingli Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Xingfei Lai
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Qiuhua Li
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Mengjiao Hao
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Suwang Zhang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Qian Li
- Guangdong Academy of Agricultural Sciences, Sericultural & Agri-Food Research Institute, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, 510610, China.
| | - Shili Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Zhongzheng Chen
- College of Food Science/Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, South China Agricultural University, 483 Wushan Street, Tianhe District, Guangzhou, Guangdong, P.R. China.
| |
Collapse
|
2
|
Meng L, Zhou H, Tan L, Li Q, Hou Y, Li W, Kafle S, Liang J, Aryal R, Liang Z, Xin H. VaWRKY65 contributes to cold tolerance through dual regulation of soluble sugar accumulation and reactive oxygen species scavenging in Vitis amurensis. HORTICULTURE RESEARCH 2025; 12:uhae367. [PMID: 40078721 PMCID: PMC11896968 DOI: 10.1093/hr/uhae367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/23/2024] [Indexed: 03/14/2025]
Abstract
Although the significance of some plant WRKYs in response to cold stress have been identified, the molecular mechanisms of most WRKYs remain unclear in grapevine. In this study, we demonstrate that cold-induced expression of VaBAM3 in Vitis amurensis executes a beneficial role in enhancing resistance by the regulating starch decomposition. VaWRKY65 was identified as an upstream transcriptional activator of VaBAM3 through yeast one-hybrid library screening and validated to directly interact with the W-box region inside the VaBAM3 promoter. Transgenic Arabidopsis thaliana plants and grapevine roots overexpression VaWRKY65 exhibited improved cold tolerance along with higher BAM activity and soluble sugar levels, whereas opposite changes were observed in VaWRKY65 knockdown lines created by virus-induced gene silencing (VIGS) in grapevine plants and in the knockout wrky65 mutants generated by CRISPR/Cas9 technology in grapevine roots. The transcriptome data show that overexpression of VaWRKY65 led to significant alteration of a diverse set of stress-related genes at the transcriptional level. One of the genes, Peroxidase 36 (VaPOD36), was further verified as a direct target of VaWRKY65. Consistently, VaWRKY65-overexpressing plants had higher VaPOD36 transcript levels and POD activity but a reduced ROS level, while silencing VaWRKY65 results in contrary changes. Collectively, these results reveal that VaWRKY65 enhanced cold tolerance through modulating soluble sugars produced from starch breakdown and ROS scavenging.
Collapse
Affiliation(s)
- Lin Meng
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, No. 201, Jiufeng 1st Road, Donghu New Technology Development Zone, Wuhan 430074, China
| | - Huimin Zhou
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, No. 201, Jiufeng 1st Road, Donghu New Technology Development Zone, Wuhan 430074, China
- University of Chinese Academy of Sciences, No.19A, yuquan Road, Shijingshan Zone, Beijing 100049, China
| | - Lisha Tan
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, No. 201, Jiufeng 1st Road, Donghu New Technology Development Zone, Wuhan 430074, China
| | - Qingyun Li
- University of Chinese Academy of Sciences, No.19A, yuquan Road, Shijingshan Zone, Beijing 100049, China
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, No. 201, Jiufeng 1st Road, Donghu New Technology Development Zone, Wuhan 430074, China
| | - Yujun Hou
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, No. 201, Jiufeng 1st Road, Donghu New Technology Development Zone, Wuhan 430074, China
- University of Chinese Academy of Sciences, No.19A, yuquan Road, Shijingshan Zone, Beijing 100049, China
| | - Wenjuan Li
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, No. 201, Jiufeng 1st Road, Donghu New Technology Development Zone, Wuhan 430074, China
- University of Chinese Academy of Sciences, No.19A, yuquan Road, Shijingshan Zone, Beijing 100049, China
| | - Subash Kafle
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, No. 201, Jiufeng 1st Road, Donghu New Technology Development Zone, Wuhan 430074, China
- University of Chinese Academy of Sciences, No.19A, yuquan Road, Shijingshan Zone, Beijing 100049, China
| | - Ju Liang
- Turpan Institute of Agricultural Sciences, Xinjiang Academy of Agricultural Science, No. 845, munaer Road, Gaochang Zone, Turpan 838000, China
| | - Rishi Aryal
- Department of Horticultural Science, North Carolina State University, 2721 Founders Drive, Raleigh, NC 27695, USA
| | - Zhenchang Liang
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Science, No. 20, nanxincun, xiangshan, Haiding Zone, Beijing 100093, China
| | - Haiping Xin
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, No. 201, Jiufeng 1st Road, Donghu New Technology Development Zone, Wuhan 430074, China
| |
Collapse
|
3
|
Jiao Y, He Q, Li X, Chen Y, Tian T, Cao L, Zhang Z. Genome-wide identification of starch metabolism gene families in Potentilla anserina and the expression pattern in response to abiotic stress factors. BMC PLANT BIOLOGY 2025; 25:201. [PMID: 39953429 PMCID: PMC11827173 DOI: 10.1186/s12870-025-06229-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
BACKGROUND The tuberous roots of Potentilla anserina (Pan), which are called silverweed cinquefoil roots, serve as a source of starch for the inhabitants of the Qinghai-Tibet Plateau. They are also regarded as a valuable tonic food and herbal medicine in the ethnic medicine system. Starch plays a crucial part in the plant's life cycle, particularly during the growth stage and in response to abiotic stress. Moreover, numerous biological processes and regulatory networks are involved in the synthesis and accumulation of starch. RESULTS In this research, a combination of transcriptome and metabolomics approaches were employed to analyze the genes related to starch synthesis and degradation in Pan. The crucial genes involved in starch metabolism were identified, and the response characteristics of these genes to drought and low temperature treatments were investigated. Seven AMYs (Alpha-amylases) and 18 BAMs (Beta-amylases) were identified from the genome of Pan. Molecular phylogenetic analyses of AMYs and BAMs derived from 11 species of rosids were conducted respectively. AMYs of Pan and other species were clustered into 3 groups, whereas BAMs were classified into 4 groups. In the tuberous roots, when compared with the control conditions, 2 AMYs and 4 BAMs were upregulated, while 3 BAMs were downregulated, meanwhile, the contents of maltose and glucose-6-phosphate (G6P) were decreased, while the content of glucose-1-phosphate (G1P) was increased under drought treatment. In the tuberous roots under low temperature treatment, 1 BAM was upregulated, while 2 AMYs and 4 BAMs were downregulated compared with control. The response characteristics of AMYs and BAMs to drought and low temperature treatments were further verified through qPCR analysis. CONCLUSIONS In this research, the genes associated with starch synthesis in Pan were characterized, and the functions of AMYs and BAMs in abiotic stress treatments were elucidated. An overview of evolution of AMY and BAM gene families within rosids was also provided.
Collapse
Affiliation(s)
- Yangmiao Jiao
- Hunan Provincial Key Laboratory of Dong Medicine, Biomedical Research Institute, Hunan University of Medicine, Huaihua, 418000, China
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, Biomedical Research Institute, Hunan University of Medicine, Huaihua, 418000, China
| | - Qin He
- Hunan Provincial Key Laboratory of Dong Medicine, Biomedical Research Institute, Hunan University of Medicine, Huaihua, 418000, China
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, Biomedical Research Institute, Hunan University of Medicine, Huaihua, 418000, China
| | - Xu Li
- Hunan Provincial Key Laboratory of Dong Medicine, Biomedical Research Institute, Hunan University of Medicine, Huaihua, 418000, China
| | - Yang Chen
- Hunan Provincial Key Laboratory of Dong Medicine, Biomedical Research Institute, Hunan University of Medicine, Huaihua, 418000, China
| | - Tingting Tian
- Hunan Provincial Key Laboratory of Dong Medicine, Biomedical Research Institute, Hunan University of Medicine, Huaihua, 418000, China
| | - Liang Cao
- Hunan Provincial Key Laboratory of Dong Medicine, Biomedical Research Institute, Hunan University of Medicine, Huaihua, 418000, China.
| | - Zaiqi Zhang
- Hunan Provincial Key Laboratory of Dong Medicine, Biomedical Research Institute, Hunan University of Medicine, Huaihua, 418000, China.
| |
Collapse
|
4
|
Zhao H, Luo X, Guo C, Zhang Z, Ma K, Niu J, Quan S. Transcriptome and MicroRNA Analysis of Juglans regia in Response to Low-Temperature Stress. Int J Mol Sci 2025; 26:1401. [PMID: 40003869 PMCID: PMC11855649 DOI: 10.3390/ijms26041401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/01/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
Walnuts are among the globally significant woody food and oil tree species. At high latitudes, they frequently experience late-frost damage, inducing low-temperature stress, which significantly affects walnut seedlings. The aim of this study was to investigate the physiological and biochemical alterations in walnut seedlings under low-temperature (LT) stress along with its underlying molecular mechanisms. Physiological indices were determined, and the transcriptome and miRNA were sequenced by sampling leaves (0 h, 6 h, 12 h, 24 h, and 48 h) of two-month-old live seedlings of walnuts treated with a low temperature of 4 °C. The results indicated that LT stress induced an increase in electrical conductivity and malondialdehyde content while simultaneously causing a reduction in Fv/Fm. From the transcriptome comparison between the control and treated groups, a total of 12,566 differentially expressed genes (DEGs) were identified, consisting of 6829 up-regulated and 5737 down-regulated genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses revealed that the DEGs were primarily enriched in polysaccharide metabolic processes, responses to abscisic acid and phenylpropanoid biosynthesis pathways. Furthermore, the miRNA database identified 1052 miRNAs in response to low-temperature stress in walnuts; these miRNAs were found to target 7043 predicted genes. Through the integration and analysis of transcriptome and miRNA data, 244 differential DEGs were identified. Following GO and KEGG enrichment analyses of the differential target genes, we identified that these genes primarily regulate pathways involved in starch and sucrose metabolism, glyoxylate and dicarboxylate metabolism, and glycerophospholipid biosynthesis, as well as phenylalanine, tyrosine, and tryptophan biosynthesis, in walnut leaves under LT stress. Additionally, we conducted an in-depth analysis of the associations between differentially expressed genes (DEGs) and differentially expressed microRNAs (DEMs) within the starch and sucrose metabolism pathway. Real-time fluorescent quantitative PCR (qRT-PCR) validation of the expression patterns of a subset of differential genes confirmed the accuracy of the transcriptome data. This study unveils the potential molecular mechanisms underlying walnut's response to low-temperature stress, providing valuable genetic resources for future research on the cold tolerance mechanisms of walnut in response to late-frost damage.
Collapse
Affiliation(s)
- Haochang Zhao
- College of Agriculture, Shihezi University, Shihezi 832003, China; (H.Z.); (X.L.); (C.G.); (Z.Z.)
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi 832003, China
| | - Xia Luo
- College of Agriculture, Shihezi University, Shihezi 832003, China; (H.Z.); (X.L.); (C.G.); (Z.Z.)
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi 832003, China
| | - Caihua Guo
- College of Agriculture, Shihezi University, Shihezi 832003, China; (H.Z.); (X.L.); (C.G.); (Z.Z.)
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi 832003, China
| | - Zhongrong Zhang
- College of Agriculture, Shihezi University, Shihezi 832003, China; (H.Z.); (X.L.); (C.G.); (Z.Z.)
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi 832003, China
| | - Kai Ma
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China;
| | - Jianxin Niu
- College of Agriculture, Shihezi University, Shihezi 832003, China; (H.Z.); (X.L.); (C.G.); (Z.Z.)
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi 832003, China
| | - Shaowen Quan
- College of Agriculture, Shihezi University, Shihezi 832003, China; (H.Z.); (X.L.); (C.G.); (Z.Z.)
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi 832003, China
| |
Collapse
|
5
|
Ying Y, Deng B, Zhang L, Hu Y, Liu L, Bao J, Xu F. Multi-omics analyses reveal mechanism for high resistant starch formation in an indica rice SSIIIa mutant. Carbohydr Polym 2025; 347:122708. [PMID: 39486949 DOI: 10.1016/j.carbpol.2024.122708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/18/2024] [Accepted: 09/03/2024] [Indexed: 11/04/2024]
Abstract
Soluble starch synthase IIIa (SSIIIa) is a key enzyme involved in amylopectin biosynthesis in rice, and deficiency of SSIIIa results in high content of resistant starch, which is benefit to human health. However, little is known about metabolic differences and carbon re-allocation in the seeds of the indica rice ss3a mutant. We found that SSIIIa deficiency impaired the storage of starch, but increased the soluble sugars, free amino acids and lipids. By multi-omic analyses, we found inactivation of SSIIIa triggered carbon repartitioning by downregulating sucrose synthase, grain incomplete filling 1, fructokinase and hexokinase (HK), and promoted the accumulation of soluble sugars. Meanwhile, the downregulation of HK and upregulation of plastidic phosphoglucomutase reduced the carbon flow through glycolysis and promoted glycogenesis. The downregulation of OsbZIP58 and the deleterious effect on ribosome formation might result in the reduction of storage protein synthesis and increased free amino acids content in ss3a. The higher levels of amylose and lipids could form more amylose-lipid complexes (starch phospholipids), resulting in a higher resistant starch content. Taken together, our study unraveled a functional cross talk between starch, protein and lipids in rice endosperm during seed development of ss3a, providing new insights for formation of high resistant starch in rice.
Collapse
Affiliation(s)
- Yining Ying
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Bowen Deng
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China; Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya 572025, China
| | - Lin Zhang
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China; Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya 572025, China
| | - Yaqi Hu
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Lei Liu
- Faculty of Science and Engineering, Southern Cross University, Lismore, NSW 2480, Australia
| | - Jinsong Bao
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China; Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya 572025, China.
| | - Feifei Xu
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China.
| |
Collapse
|
6
|
Zheng Y, Ou X, Li Q, Wu Z, Wu L, Li X, Zhang B, Sun Y. Genome-wide epigenetic dynamics of tea leaves under mechanical wounding stress during oolong tea postharvest processing. Food Res Int 2024; 194:114939. [PMID: 39232552 DOI: 10.1016/j.foodres.2024.114939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/02/2024] [Accepted: 08/16/2024] [Indexed: 09/06/2024]
Abstract
Understanding the epigenetic responses to mechanical wounding stress during the postharvest processing of oolong tea provides insight into the reprogramming of the tea genome and its impact on tea quality. Here, we characterized the 5mC DNA methylation and chromatin accessibility landscapes of tea leaves subjected to mechanical wounding stress during the postharvest processing of oolong tea. Analysis of the differentially methylated regions and preferentially accessible promoters revealed many overrepresented TF-binding motifs, highlighting sets of TFs that are likely important for the quality of oolong tea. Within these sets, we constructed a chromatin accessibility-mediated gene regulatory network specific to mechanical wounding stress. In combination with the results of the TF-centred yeast one-hybrid assay, we identified potential binding sites of CsMYC2 and constructed a gene regulatory network centred on CsMYC2, clarifying the potential regulatory role of CsMYC2 in the postharvest processing of oolong tea. Interestingly, highly accessible chromatin and hypomethylated cytosine were found to coexist in the promoter region of the indole biosynthesis gene (tryptophan synthase β-subunit, CsTSB) under wounding stress, which indicates that these two important epigenetic regulatory mechanisms are jointly involved in regulating the synthesis of indole during the postharvest processing of oolong tea. These findings improve our understanding of the epigenetic regulatory mechanisms involved in quality formation during the postharvest processing of oolong tea.
Collapse
Affiliation(s)
- Yucheng Zheng
- College of Tea and Food Sciences, Wuyi University, Tea Engineering Research Center of Fujian Higher Education, Tea Science Research Institute of Wuyi University, Wuyishan 354300, China; Key Laboratory of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350007, China
| | - Xiaoxi Ou
- Key Laboratory of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350007, China
| | - Qiuming Li
- Key Laboratory of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350007, China
| | - Zongjie Wu
- Key Laboratory of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350007, China
| | - Liangyu Wu
- Key Laboratory of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350007, China
| | - Xinlei Li
- Tea Research Institute, Fujian Academy of Agricultural Science, Fuzhou 350013, China
| | - Bo Zhang
- College of Tea and Food Sciences, Wuyi University, Tea Engineering Research Center of Fujian Higher Education, Tea Science Research Institute of Wuyi University, Wuyishan 354300, China.
| | - Yun Sun
- Key Laboratory of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350007, China.
| |
Collapse
|
7
|
Quan W, Liu X. Tandem mass tag (TMT)-based quantitative proteomics analysis reveals the different responses of contrasting alfalfa varieties to drought stress. BMC Genomics 2024; 25:806. [PMID: 39192174 DOI: 10.1186/s12864-024-10702-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND Drought stress restricts the growth, distribution and productivity of alfalfa (Medicago sativa L.). In order to study the response differences of alfalfa cultivars to drought stress, we previously carried out physiological and molecular comparative analysis on two alfalfa varieties with contrasting drought resistance (relatively drought-tolerant Longdong and drought-sensitive Algonquin). However, the differences in proteomic factors of the two varieties in response to drought stress still need to be further studied. Therefore, TMT-based quantitative proteomic analysis was performed using leaf tissues of the two alfalfa cultivars to identify and uncover differentially abundant proteins (DAPs). RESULTS In total, 677 DAPs were identified in Algonquin and 277 in Longdong under drought stress. Subsequently, we conducted various bioinformatics analysis on these DAPs, including subcellular location, functional classification and biological pathway enrichment. The first two main COG functional categories of DAPs in both alfalfa varieties after drought stress were 'Translation, ribosomal structure and biogenesis' and 'Posttranslational modification, protein turnover, chaperones'. According to KEGG database, the DAPs of the two alfalfa cultivars after drought treatment were differentially enriched in different biological pathways. The DAPs from Algonquin were enriched in 'photosynthesis' and 'ribosome'. The pathways of 'linoleic acid metabolism', 'protein processing in endoplasmic reticulum' and 'RNA transport' in Longdong were significantly enriched. Finally, we found significant differences in DAP enrichment and expression patterns between Longdong and Algonquin in glycolysis/glycogenesis, TCA cycle, photosynthesis, protein biosynthesis, flavonoid and isoflavonoid biosynthesis, and plant-pathogen interaction pathway after drought treatment. CONCLUSIONS The differences of DAPs involved in various metabolic pathways may explain the differences in the resistance of the two varieties to drought stress. These DAPs can be used as candidate proteins for molecular breeding of alfalfa to cultivate new germplasm with more drought tolerance to adapt to unfavorable environments.
Collapse
Affiliation(s)
- Wenli Quan
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin, 644000, China
| | - Xun Liu
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin, 644000, China.
| |
Collapse
|
8
|
Sun P, Zhu Z, Jin Z, Xie J, Miao H, Liu J. Molecular Characteristics and Functional Identification of a Key Alpha-Amylase-Encoding Gene AMY11 in Musa acuminata. Int J Mol Sci 2024; 25:7832. [PMID: 39063074 PMCID: PMC11276985 DOI: 10.3390/ijms25147832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/28/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Alpha-amylase (AMY) plays a significant role in regulating the growth, development, and postharvest quality formation in plants. Nevertheless, little is known about the genome-wide features, expression patterns, subcellular localization, and functional regulation of AMY genes (MaAMYs) in the common starchy banana (Musa acuminata). Twelve MaAMY proteins from the banana genome database were clustered into two groups and contained a conserved catalytic domain. These MaAMYs formed collinear pairs with the AMYs of maize and rice. Three tandem gene pairs were found within the MaAMYs and are indicative of putative gene duplication events. Cis-acting elements of the MaAMY promoters were found to be involved in phytohormone, development, and stress responses. Furthermore, MaAMY02, 08, 09, and 11 were actively expressed during fruit development and ripening. Specifically, MaAMY11 showed the highest expression level at the middle and later stages of banana ripening. Subcellular localization showed that MaAMY02 and 11 were predominately found in the chloroplast, whereas MaAMY08 and 09 were primarily localized in the cytoplasm. Notably, transient attenuation of MaAMY11 expression resulted in an obvious increase in the starch content of banana fruit, while a significant decrease in starch content was confirmed through the transient overexpression of MaAMY11. Together, these results reveal new insights into the structure, evolution, and expression patterns of the MaAMY family, affirming the functional role of MaAMY11 in the starch degradation of banana fruit.
Collapse
Affiliation(s)
- Peiguang Sun
- National Key Laboratory of Tropical Crop Biological Breeding, Institute of Tropical Bioscience and Biotechnology and Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, 4 Xueyuan Road, Haikou 571101, China; (P.S.); (Z.Z.); (Z.J.); (J.X.)
| | - Zhao Zhu
- National Key Laboratory of Tropical Crop Biological Breeding, Institute of Tropical Bioscience and Biotechnology and Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, 4 Xueyuan Road, Haikou 571101, China; (P.S.); (Z.Z.); (Z.J.); (J.X.)
- College of Tropical Crops, Hainan University, 58 Renmin Avenue, Haikou 571100, China
| | - Zhiqiang Jin
- National Key Laboratory of Tropical Crop Biological Breeding, Institute of Tropical Bioscience and Biotechnology and Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, 4 Xueyuan Road, Haikou 571101, China; (P.S.); (Z.Z.); (Z.J.); (J.X.)
| | - Jianghui Xie
- National Key Laboratory of Tropical Crop Biological Breeding, Institute of Tropical Bioscience and Biotechnology and Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, 4 Xueyuan Road, Haikou 571101, China; (P.S.); (Z.Z.); (Z.J.); (J.X.)
| | - Hongxia Miao
- National Key Laboratory of Tropical Crop Biological Breeding, Institute of Tropical Bioscience and Biotechnology and Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, 4 Xueyuan Road, Haikou 571101, China; (P.S.); (Z.Z.); (Z.J.); (J.X.)
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Juhua Liu
- National Key Laboratory of Tropical Crop Biological Breeding, Institute of Tropical Bioscience and Biotechnology and Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, 4 Xueyuan Road, Haikou 571101, China; (P.S.); (Z.Z.); (Z.J.); (J.X.)
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| |
Collapse
|
9
|
Guo F, Jin M, Xie Y, Feng L, Jiang L. Combined application of sucrose and 1-MCP alleviated the senescence of Gynura bicolor DC through regulating hexose accumulation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108745. [PMID: 38795551 DOI: 10.1016/j.plaphy.2024.108745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/02/2024] [Accepted: 05/17/2024] [Indexed: 05/28/2024]
Abstract
As a leaf vegetable, Gynura bicolor DC (G. bicolor) experiences a rapid deterioration after harvest including insufficient supply of sugar and destruction of cell membranes. In this research, four treatments were experimented on G. bicolor including the control (CK), 12% (g/g) sucrose (ST), 10 μL L-1 1-MCP (MT), and the combination of sucrose and 1-MCP (SMT). The results showed that three treated groups reduced respiratory rate, inhibited hexose consumption and promoted the decrease of starch and sucrose, which was converted into hexose including glucose and fructose to maintain cell membrane integrity. Meanwhile, the activities of AI, NI, SS-C, amylase, and corresponding gene expression levels were significantly up-regulated in three treated groups at 1 d, among which AI played a crucial role in regulating the accumulation of hexose. Furthermore, ST exerted a pronounced effect on hexose accumulation at the beginning while MT reduced hexose consumption through lowered respiratory metabolism during storage. Notably, SMT exhibited an optimum preservation effect on inhibited respiratory metabolism, maintaining cell membrane integrity, enhancing the retention of hexose, indicating that a synergistic effect of ST and MT were developed during storage.
Collapse
Affiliation(s)
- Fuzheng Guo
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Min Jin
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yitong Xie
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Li Feng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Li Jiang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
10
|
Duan Y, Jin L. Genome-Wide Identification and Expression Profiling of the α-Amylase ( AMY) Gene Family in Potato. Genes (Basel) 2024; 15:793. [PMID: 38927729 PMCID: PMC11202818 DOI: 10.3390/genes15060793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/05/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024] Open
Abstract
Starch degradation provides energy and signaling molecules for plant growth, development, defense, and stress response. α-amylase (AMY) is one of the most important enzymes in this process. Potato tubers are rich in starch, and the hydrolysis of starch into sugar negatively impacts the frying quality of potato. Despite its importance, the AMY gene family has not been fully explored in potatoes. Here, we performed a detailed analysis of the StAMY gene family to determine its role in potato. Twenty StAMY genes were identified across the potato genome and were divided into three subgroups. The promoters of StAMY genes contained an array of cis-acting elements involved in growth and development, phytohormone signaling, and stress and defense responses. StAMY8, StAMY9, StAMY12, and StAMY20 were specifically expressed in mature tubers. Different StAMY gene family members tended to be upregulated in response to β-aminobutyric acid (BABA), Phytophthora infestans (P. infestans), benzothiadiazole (BTH), heat, salt, and drought stress. In addition, different StAMY gene family members tended to be responsive to abscisic acid (ABA), indole-3-acetic acid (IAA), gibberellic acid (GA3), and 6-benzylaminopurine (BAP) treatment. These results suggest that StAMY gene family members may be involved in starch and sugar metabolism, defense, stress response, and phytohormone signaling. The results of this study may be applicable to other starchy crops and lay a foundation for further research on the functions and regulatory mechanisms of AMY genes.
Collapse
Affiliation(s)
| | - Liping Jin
- State Key Laboratory of Vegetable Biobreeding/Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crops of Ministry of Agriculture and Rural Affairs/Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| |
Collapse
|
11
|
Liang G, Wang H, Gou H, Li M, Cheng Y, Zeng B, Mao J, Chen B. Overexpression of VaBAM3 from Vitis amurensis enhances seedling cold tolerance by promoting soluble sugar accumulation and reactive oxygen scavenging. PLANT CELL REPORTS 2024; 43:151. [PMID: 38802546 DOI: 10.1007/s00299-024-03236-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024]
Abstract
KEY MESSAGE The VaBAM3 cloned from Vitis amurensis can enhance the cold tolerance of overexpressed plants, but VaBAM3 knock out by CRISPR/Cas9 system weakened grape callus cold tolerance. In grape production, extreme cold conditions can seriously threaten plant survival and fruit quality. Regulation of starch content by β-amylase (BAM, EC: 3.2.1.2) contributes to cold tolerance in plants. In this study, we cloned the VaBAM3 gene from an extremely cold-tolerant grape, Vitis amurensis, and overexpressed it in tomato and Arabidopsis plants, as well as in grape callus for functional characterization. After exposure to cold stress, leaf wilting in the VaBAM3-overexpressing tomato plants was slightly less pronounced than that in wild-type tomato plants, and these plants were characterized by a significant accumulation of autophagosomes. Additionally, the VaBAM3-overexpressing Arabidopsis plants had a higher freezing tolerance than the wild-type counterparts. Under cold stress conditions, the activities of total amylase, BAM, peroxidase, superoxide dismutase, and catalase in VaBAM3-overexpressing plants were significantly higher than those in the corresponding wild-type plants. Furthermore, sucrose, glucose, and fructose contents in these lines were similarly significantly higher, whereas starch contents were reduced in comparison to the levels in the wild-type plants. Furthermore, we detected high CBF and COR gene expression levels in cold-stressed VaBAM3-overexpressing plants. Compared with those in VaBAM3-overexpressing grape callus, the aforementioned indicators tended to change in the opposite direction in grape callus with silenced VaBAM3. Collectively, our findings indicate that heterologous overexpression of VaBAM3 enhanced cold tolerance of plants by promoting the accumulation of soluble sugars and scavenging of excessive reactive oxygen species. These findings provide a theoretical basis for the cultivation of cold-resistant grape and support creation of germplasm resources for this purpose.
Collapse
Affiliation(s)
- Guoping Liang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Han Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Huimin Gou
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Min Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yongjuan Cheng
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Baozhen Zeng
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Juan Mao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China.
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Baihong Chen
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China.
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
12
|
Liu L, Xu S, Zhang L, Zheng J. A Genome-Wide Analysis of the BAM Gene Family and Identification of the Cold-Responsive Genes in Pomegranate ( Punica granatum L.). PLANTS (BASEL, SWITZERLAND) 2024; 13:1321. [PMID: 38794392 PMCID: PMC11125002 DOI: 10.3390/plants13101321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/05/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024]
Abstract
Beta-amylases (BAMs, EC 3.2.1.2), belonging to a multigene family, play a pivotal role in starch breakdown and are also involved in hormonal and stress responses, notably to cold stress. Pomegranate trees (Punica granatum L.) are adapted to warm climates and are sensitive to cold temperatures. In this study, we analyzed eight PgBAM genes from the pomegranate genome dataset. These members unevenly distributed across chromosomes and were categorized into four groups based on their orthologous members. The motif composition was highly consistent among most members. In contrast, exon numbers and arrangements were conserved within groups or subgroups, whereas significant diversity was observed between different groups. A syntenic analysis revealed that three PgBAM members (PgBAM1/4/5) showed a total of 11 syntenic relationships with the BAM members from Arabidopsis, kiwifruit, and Chinese white pear, respectively. Promoter binding motif prediction suggested potential roles for PgBAMs' genes in light, stress, hormones, and development signaling. Gene expression indicated that PgBAM4 was predominantly expressed in leaves, PgBAM7 in flowers, and PgBAM8 in roots and leaves and during fruit ripening, particularly in pericarp development. A transcriptome analysis identified the starch and sucrose metabolism pathway (map00500) as a key factor in the cold stress response of cold-sensitive cultivar 'Tunisia' seedlings. PgBAM4 exhibited remarkable expression and was closely associated with the cold-responsive BAM genes, characterized by a closer phylogenetic relationship, conserved catalytic residues, and similar secondary and tertiary structures. Moreover, the differences in soluble sugar levels and PgBAM4 expression were closely associated with the varying cold stress resistance observed between 'Tunisia' and 'Sanbai' seedlings. Furthermore, yeast one-hybrid assays confirmed that PgCBF7, a critical transcription factor for enhancing freezing tolerance, binds to the promoter region of PgBAM4. Our findings provide a systematic overview of the PgBAM gene family and shed new light on the regulatory mechanisms underlying cold stress tolerance in pomegranate.
Collapse
Affiliation(s)
| | | | | | - Jie Zheng
- School of Life Science, Huaibei Normal University, Huaibei 235000, China; (L.L.); (S.X.); (L.Z.)
| |
Collapse
|
13
|
Muthui SW, Wei L, Ochieng WA, Linda EL, Otieno DO, Nyongesa EW, Liu F, Xian L. The distinctive level of interaction between carbon and nitrogen metabolisms in the leaves of submerged macrophytes plays a key role in ammonium detoxification. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 268:106840. [PMID: 38278063 DOI: 10.1016/j.aquatox.2024.106840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 01/28/2024]
Abstract
Possible ammonium detoxification mechanisms have been proposed recently, on submerged macrophytes, evidently illustrating that glutamate dehydrogenase (GDH) plays a greater role in ammonium detoxification compared to the primary glutamine synthetase/glutamate oxaloacetate transaminase (GS/GOGAT) pathway. In the current investigation, we cultured three submerged macrophytes to extreme concentrations of [NH4+-N] of up to 50 mg/L with the aim of clarifying the interaction between carbon and nitrogen metabolisms. The activities of carboxylation enzymes pyruvate orthophosphate dikinase (PPDK) and phosphoenolpyruvate carboxylase (PEPC), in lieu of Rubisco, increased almost two-fold for ammonium tolerant species P. maackianus and M. spicatum, compared with the sensitive species P. lucens. While these enzymes are well known for their central role in CO2 fixation, their inference in conferring resistance to ammonium stress has not been well elucidated before. In this study, we demonstrate that the overproduction of PEPC and PPDK led to improved photosynthesis, better ammonium assimilation and overall ammonium detoxification in M. spicatum and P. maackianus. These findings propose likelihood for the existence of a complementary ammonium detoxification pathway that targets carbon metabolism, thus, presenting a relatively efficient linkage between nitrogen and carbon metabolisms and identify candidate species for practical restoration of fresh water resources.
Collapse
Affiliation(s)
- Samuel Wamburu Muthui
- Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China; Sino-Africa Joint Research Centre, Chinese Academy of Sciences, Wuhan, China
| | - Li Wei
- Changjiang Water Resources and Hydropower Development Group (Hubei) Co., Ltd., Wuhan 430010, China
| | - Wyckliffe Ayoma Ochieng
- Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China; Sino-Africa Joint Research Centre, Chinese Academy of Sciences, Wuhan, China
| | - Elive Limunga Linda
- Hubei University, School of Resources and Environmental Science, Wuhan 430074, China
| | - Duncan Ochieng Otieno
- Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China; Sino-Africa Joint Research Centre, Chinese Academy of Sciences, Wuhan, China
| | - Emmanuel Waswa Nyongesa
- Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China; Sino-Africa Joint Research Centre, Chinese Academy of Sciences, Wuhan, China
| | - Fan Liu
- Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Ling Xian
- Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.
| |
Collapse
|
14
|
Li M, Chen X, Huang W, Wu K, Bai Y, Guo D, Guo C, Shu Y. Comprehensive Identification of the β-Amylase (BAM) Gene Family in Response to Cold Stress in White Clover. PLANTS (BASEL, SWITZERLAND) 2024; 13:154. [PMID: 38256708 PMCID: PMC10820397 DOI: 10.3390/plants13020154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/30/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024]
Abstract
White clover (Trifolium repens L.) is an allopolyploid plant and an excellent perennial legume forage. However, white clover is subjected to various stresses during its growth, with cold stress being one of the major limiting factors affecting its growth and development. Beta-amylase (BAM) is an important starch-hydrolyzing enzyme that plays a significant role in starch degradation and responses to environmental stress. In this study, 21 members of the BAM gene family were identified in the white clover genome. A phylogenetic analysis using BAMs from Arabidopsis divided TrBAMs into four groups based on sequence similarity. Through analysis of conserved motifs, gene duplication, synteny analysis, and cis-acting elements, a deeper understanding of the structure and evolution of TrBAMs in white clover was gained. Additionally, a gene regulatory network (GRN) containing TrBAMs was constructed; gene ontology (GO) annotation analysis revealed close interactions between TrBAMs and AMY (α-amylase) and DPE (4-alpha-glucanotransferase). To determine the function of TrBAMs under various tissues and stresses, RNA-seq datasets were analyzed, showing that most TrBAMs were significantly upregulated in response to biotic and abiotic stresses and the highest expression in leaves. These results were validated through qRT-PCR experiments, indicating their involvement in multiple gene regulatory pathways responding to cold stress. This study provides new insights into the structure, evolution, and function of the white clover BAM gene family, laying the foundation for further exploration of the functional mechanisms through which TrBAMs respond to cold stress.
Collapse
Affiliation(s)
- Manman Li
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China; (M.L.); (D.G.); (C.G.)
| | - Xiuhua Chen
- International Agriculture Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China;
| | - Wangqi Huang
- National Engineering Research Center for Ornamental Horticulture, Yunnan Flower Breeding Key Laboratory, Flower Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China;
| | - Kaiyue Wu
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China; (M.L.); (D.G.); (C.G.)
| | - Yan Bai
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China; (M.L.); (D.G.); (C.G.)
| | - Donglin Guo
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China; (M.L.); (D.G.); (C.G.)
| | - Changhong Guo
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China; (M.L.); (D.G.); (C.G.)
| | - Yongjun Shu
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China; (M.L.); (D.G.); (C.G.)
| |
Collapse
|
15
|
Yue C, Cao H, Zhang S, Shen G, Wu Z, Yuan L, Luo L, Zeng L. Multilayer omics landscape analyses reveal the regulatory responses of tea plants to drought stress. Int J Biol Macromol 2023; 253:126582. [PMID: 37652332 DOI: 10.1016/j.ijbiomac.2023.126582] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/12/2023] [Accepted: 08/27/2023] [Indexed: 09/02/2023]
Abstract
Adverse environments, especially drought conditions, deeply influence plant development and growth in all aspects, and the yield and quality of tea plants are largely dependent on favorable growth conditions. Although tea plant responses to drought stress (DS) have been studied, a comprehensive multilayer epigenetic, transcriptomic, and proteomic investigation of how tea responds to DS is lacking. In this study, we generated DNA methylome, transcriptome, proteome, and phosphoproteome data to explore multiple regulatory landscapes in the tea plant response to DS. An integrated multiomics analysis revealed the response of tea plants to DS at multiple regulatory levels. Furthermore, a set of DS-responsive genes involved in photosynthesis, transmembrane transportation, phytohormone metabolism and signaling, secondary metabolite pathways, transcription factors, protein kinases, posttranslational and epigenetic modification, and other key stress-responsive genes were identified for further functional investigation. These results reveal the multilayer regulatory landscape of the tea plant response to DS and provide insight into the mechanisms of these DS responses.
Collapse
Affiliation(s)
- Chuan Yue
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City/College of Food Science, Southwest University, Chongqing, China.
| | - Hongli Cao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City/College of Food Science, Southwest University, Chongqing, China
| | - Shaorong Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City/College of Food Science, Southwest University, Chongqing, China
| | - Gaojian Shen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City/College of Food Science, Southwest University, Chongqing, China
| | - Zhijun Wu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City/College of Food Science, Southwest University, Chongqing, China
| | - Lianyu Yuan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City/College of Food Science, Southwest University, Chongqing, China
| | - Liyong Luo
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City/College of Food Science, Southwest University, Chongqing, China
| | - Liang Zeng
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City/College of Food Science, Southwest University, Chongqing, China.
| |
Collapse
|
16
|
Mandal SN, Sanchez J, Bhowmick R, Bello OR, Van-Beek CR, de Los Reyes BG. Novel genes and alleles of the BTB/POZ protein family in Oryza rufipogon. Sci Rep 2023; 13:15466. [PMID: 37726366 PMCID: PMC10509276 DOI: 10.1038/s41598-023-41269-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 08/24/2023] [Indexed: 09/21/2023] Open
Abstract
The BTB/POZ family of proteins is widespread in plants and animals, playing important roles in development, growth, metabolism, and environmental responses. Although members of the expanded BTB/POZ gene family (OsBTB) have been identified in cultivated rice (Oryza sativa), their conservation, novelty, and potential applications for allele mining in O. rufipogon, the direct progenitor of O. sativa ssp. japonica and potential wide-introgression donor, are yet to be explored. This study describes an analysis of 110 BTB/POZ encoding gene loci (OrBTB) across the genome of O. rufipogon as outcomes of tandem duplication events. Phylogenetic grouping of duplicated OrBTB genes was supported by the analysis of gene sequences and protein domain architecture, shedding some light on their evolution and functional divergence. The O. rufipogon genome encodes nine novel BTB/POZ genes with orthologs in its distant cousins in the family Poaceae (Sorghum bicolor, Brachypodium distachyon), but such orthologs appeared to have been lost in its domesticated descendant, O. sativa ssp. japonica. Comparative sequence analysis and structure comparisons of novel OrBTB genes revealed that diverged upstream regulatory sequences and regulon restructuring are the key features of the evolution of this large gene family. Novel genes from the wild progenitor serve as a reservoir of potential new alleles that can bring novel functions to cultivars when introgressed by wide hybridization. This study establishes a foundation for hypothesis-driven functional genomic studies and their applications for widening the genetic base of rice cultivars through the introgression of novel genes or alleles from the exotic gene pool.
Collapse
Affiliation(s)
- Swarupa Nanda Mandal
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, 79409, USA
| | - Jacobo Sanchez
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, 79409, USA
| | - Rakesh Bhowmick
- ICAR-Vivekananda Parvatiya Krishi Anusandhan Sansthan, Almora, Uttarakhand, 263601, India
| | - Oluwatobi R Bello
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, 79409, USA
| | - Coenraad R Van-Beek
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, 79409, USA
| | | |
Collapse
|
17
|
Kaur A, Kaur S, Singh HP, Batish DR. Is intraspecific trait differentiation in Parthenium hysterophorus a consequence of hereditary factors and/or phenotypic plasticity? PLANT DIVERSITY 2023; 45:611-620. [PMID: 37936811 PMCID: PMC10625975 DOI: 10.1016/j.pld.2022.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/03/2022] [Accepted: 09/02/2022] [Indexed: 11/09/2023]
Abstract
Of the various strategies adopted by an invasive plant species for expanding its niche breadth, phenotypic differentiation (either due to plasticity and/or adaptive evolution) is proven to be the most successful. Lately, we studied the persistence of substantial morpho-functional variations within the individuals of alien invasive plant, Parthenium hysterophorus in Chandigarh, India, through field surveys. Based on observed differences, the individuals were categorized into two morphotypes, PA and PB. PA had higher leaf area, leaf biomass, and chlorophyll content as compared with PB. However, PB had a higher stem circumference, stem specific density, twig dry matter content, profuse branching, bigger canopy, and better reproductive output than PA. To substantiate the persistence of intraspecific variations in P. hysterophorus and to deduce the possible genesis of these variations, we propagated both the morphotypes under experimental conditions in winter and summer. Apart from the key morpho-functional differences observed during the field studies, protein and carbohydrate metabolism were studied in leaves and roots of the propagated plants. Differences in plant metabolism were observed only during the early growth period, whereas the morpho-functional traits varied in the mature flowering plants. The effect of growth season was highly significant on all the studied morpho-functional and biochemical parameters (p ≤ 0.05). Parent morphotypes (P) and interactions between morphotypes and seasons significantly affected several growth parameters (p ≤ 0.05). The analyses revealed that the contrasting growth conditions at the time of transplantation and early growth may regulate the phenotype of P. hysterophorus. The pattern of intraspecific variations observed during the study is justified to consider morphotype PA as winter biotype and morphotype PB as summer biotype of P. hysterophorus. The study points towards the role of plasticity or a combination of genetic and environmental (G × E) factors in producing the phenotypic variability observed in the population of P. hysterophorus.
Collapse
Affiliation(s)
- Amarpreet Kaur
- Department of Botany, Panjab University, Chandigarh 160014, India
| | - Shalinder Kaur
- Department of Botany, Panjab University, Chandigarh 160014, India
| | - Harminder Pal Singh
- Department of Environment Studies, Panjab University, Chandigarh 160014, India
| | - Daizy R. Batish
- Department of Botany, Panjab University, Chandigarh 160014, India
| |
Collapse
|
18
|
Wang S, Wen B, Yang Y, Long S, Liu J, Li M. Genome-Wide Identification and Expression Analysis of the RADIALIS-like Gene Family in Camellia sinensis. PLANTS (BASEL, SWITZERLAND) 2023; 12:3039. [PMID: 37687288 PMCID: PMC10490161 DOI: 10.3390/plants12173039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/09/2023] [Accepted: 08/15/2023] [Indexed: 09/10/2023]
Abstract
The RADIALIS-like (RL) proteins are v-myb avian myeloblastosis viral oncogene homolog (MYB)-related transcription factors (TFs), and are involved in many biological processes, including metabolism, development, and response to biotic and abiotic stresses. However, the studies on the RL genes of Camellia sinensis are not comprehensive enough. Therefore, we undertook this study and identified eight CsaRLs based on the typical conserved domain SANT Associated domain (SANT) of RL. These genes have low molecular weights and theoretical pI values ranging from 5.67 to 9.76. Gene structure analysis revealed that six CsaRL genes comprise two exons and one intron, while the other two contain a single exon encompassing motifs 1 and 2, and part of motif 3. The phylogenetic analysis divided one hundred and fifty-eight RL proteins into five primary classes, in which CsaRLs clustered in Group V and were homologous with CssRLs of the Shuchazao variety. In addition, we selected different tissue parts to analyze the expression profile of CsaRLs, and the results show that almost all genes displayed variable expression levels across tissues, with CsaRL1a relatively abundant in all tissues. qRT-PCR (real-time fluorescence quantitative PCR) was used to detect the relative expression levels of the CsaRL genes under various abiotic stimuli, and it was found that CsaRL1a expression levels were substantially higher than other genes, with abscisic acid (ABA) causing the highest expression. The self-activation assay with yeast two-hybrid system showed that CsaRL1a has no transcriptional activity. According to protein functional interaction networks, CsaRL1a was well connected with WIN1-like, lysine histidine transporter-1-like, β-amylase 3 chloroplastic-like, carbonic anhydrase-2-like (CA2), and carbonic anhydrase dnaJC76 (DJC76). This study adds to our understanding of the RL family and lays the groundwork for further research into the function and regulatory mechanisms of the CsaRLs gene family in Camellia sinensis.
Collapse
Affiliation(s)
| | | | | | | | - Jianjun Liu
- College of Tea Sciences, Guizhou University, Guiyang 550025, China; (S.W.); (B.W.); (Y.Y.); (S.L.)
| | - Meifeng Li
- College of Tea Sciences, Guizhou University, Guiyang 550025, China; (S.W.); (B.W.); (Y.Y.); (S.L.)
| |
Collapse
|
19
|
Yang T, Li H, Li L, Wei W, Huang Y, Xiong F, Wei M. Genome-wide characterization and expression analysis of α-amylase and β-amylase genes underlying drought tolerance in cassava. BMC Genomics 2023; 24:190. [PMID: 37024797 PMCID: PMC10080747 DOI: 10.1186/s12864-023-09282-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 03/29/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Starch hydrolysates are energy sources for plant growth and development, regulate osmotic pressure and transmit signals in response to both biological and abiotic stresses. The α-amylase (AMY) and the β-amylase (BAM) are important enzymes that catalyze the hydrolysis of plant starch. Cassava (Manihot esculenta Crantz) is treated as one of the most drought-tolerant crops. However, the mechanisms of how AMY and BAM respond to drought in cassava are still unknown. RESULTS Six MeAMY genes and ten MeBAM genes were identified and characterized in the cassava genome. Both MeAMY and MeBAM gene families contain four genes with alternative splicing. Tandem and fragment replications play important roles in the amplification of MeAMY and MeBAM genes. Both MeBAM5 and MeBAM10 have a BZR1/BES1 domain at the N-terminus, which may have transcription factor functions. The promoter regions of MeAMY and MeBAM genes contain a large number of cis-acting elements related to abiotic stress. MeAMY1, MeAMY2, MeAMY5, and MeBAM3 are proven as critical genes in response to drought stress according to their expression patterns under drought. The starch content, soluble sugar content, and amylase activity were significantly altered in cassava under different levels of drought stress. CONCLUSIONS These results provide fundamental knowledge for not only further exploring the starch metabolism functions of cassava under drought stress but also offering new perspectives for understanding the mechanism of how cassava survives and develops under drought.
Collapse
Affiliation(s)
- Taiyi Yang
- College of Agronomy, Guangxi University, Nanning, 530004, China
| | - Hengrui Li
- Guangxi South Subtropical Agricultural Sciences Research Institute, Chongzuo, 532406, China
| | - Liangwu Li
- College of Agronomy, Guangxi University, Nanning, 530004, China
| | - Wanling Wei
- Guangxi South Subtropical Agricultural Sciences Research Institute, Chongzuo, 532406, China
| | - Yuanhang Huang
- College of Agronomy, Guangxi University, Nanning, 530004, China
| | - Faqian Xiong
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Maogui Wei
- College of Agronomy, Guangxi University, Nanning, 530004, China.
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, 530004, China.
- Guangxi Key Laboratory of Agro-environment and Agro-products Safety, Guangxi University, Nanning, 530004, Guangxi, China.
| |
Collapse
|
20
|
Hao Z, Tan Y, Feng J, Lin H, Sun Z, Zhuang JY, Chen Q, Jin X, Sun Y. Integrated metabolomic and transcriptomic analysis reveal the effect of mechanical stress on sugar metabolism in tea leaves ( Camellia sinensis) post-harvest. PeerJ 2023; 11:e14869. [PMID: 36785711 PMCID: PMC9921968 DOI: 10.7717/peerj.14869] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 01/18/2023] [Indexed: 02/11/2023] Open
Abstract
Sugar metabolites not only act as the key compounds in tea plant response to stress but are also critical for tea quality formation during the post-harvest processing of tea leaves. However, the mechanisms by which sugar metabolites in post-harvest tea leaves respond to mechanical stress are unclear. In this study, we aimed to investigate the effects of mechanical stress on saccharide metabolites and related post-harvest tea genes. Withered (C15) and mechanically-stressed (V15) for 15 min Oolong tea leaves were used for metabolome and transcriptome sequencing analyses. We identified a total of 19 sugar metabolites, most of which increased in C15 and V15. A total of 69 genes related to sugar metabolism were identified using transcriptome analysis, most of which were down-regulated in C15 and V15. To further understand the relationship between the down-regulated genes and sugar metabolites, we analyzed the sucrose and starch, galactose, and glycolysis metabolic pathways, and found that several key genes of invertase (INV), α-amylase (AMY), β-amylase (BMY), aldose 1-epimerase (AEP), and α-galactosidase (AGAL) were down-regulated. This inhibited the hydrolysis of sugars and might have contributed to the enrichment of galactose and D-mannose in V15. Additionally, galactinol synthase (Gols), raffinose synthase (RS), hexokinase (HXK), 6-phosphofructokinase 1 (PFK-1), and pyruvate kinase (PK) genes were significantly upregulated in V15, promoting the accumulation of D-fructose-6-phosphate (D-Fru-6P), D-glucose-6-phosphate (D-glu-6P), and D-glucose. Transcriptome and metabolome association analysis showed that the glycolysis pathway was enhanced and the hydrolysis rate of sugars related to hemicellulose synthesis slowed in response to mechanical stress. In this study, we explored the role of sugar in the response of post-harvest tea leaves to mechanical stress by analyzing differences in the expression of sugar metabolites and related genes. Our results improve the understanding of post-harvest tea's resistance to mechanical stress and the associated mechanism of sugar metabolism. The resulting treatment may be used to control the quality of Oolong tea.
Collapse
|
21
|
Wang Z, Zhou Y, Ren XY, Wei K, Fan XL, Huang LC, Zhao DS, Zhang L, Zhang CQ, Liu QQ, Li QF. Co-Overexpression of Two Key Source Genes, OsBMY4 and OsISA3, Improves Multiple Key Traits of Rice Seeds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:615-625. [PMID: 36537359 DOI: 10.1021/acs.jafc.2c06039] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Optimized source-sink interactions are determinants of both rice yield and quality. However, most source genes have not been well studied in rice, a major grain crop. In this study, OsBMY4 and OsISA3, the key β-amylase and debranching enzymes that control transient starch degradation in rice leaves, were co-overexpressed in rice in order to accelerate starch degradation efficiency and increase the sugar supply for sink organs. Systematic analyses of the transgenic rice indicated that co-overexpression of OsBMY4 and OsISA3 not only promoted rice yield and quality, but also improved seed germination and stress tolerance. Moreover, since the OsBMY4 gene has not been characterized, we generated osbmy4 mutants using CRIPSR/Cas9 gene editing, which helped to reveal the roles of β-amylase in rice yield and quality. This study demonstrated that specific modulation of the expression of some key source genes improves the source-sink balance and leads to improvements in multiple key traits of rice seeds.
Collapse
Affiliation(s)
- Zhen Wang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yu Zhou
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xin-Yu Ren
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Ke Wei
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xiao-Lei Fan
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Li-Chun Huang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Dong-Sheng Zhao
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Lin Zhang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Chang-Quan Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Qiao-Quan Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, Jiangsu 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Qian-Feng Li
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, Jiangsu 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou, Jiangsu 225009, China
| |
Collapse
|
22
|
Bublyk OM, Andreev IO, Kunakh VA. Comparative Analysis of Promoters of DREB2B Transcription Factor Genes in Deschampsia antarctica and Other Grasses. CYTOL GENET+ 2022. [DOI: 10.3103/s0095452722050048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Transcriptome Sequencing and Metabolome Analysis Reveals the Molecular Mechanism of Drought Stress in Millet. Int J Mol Sci 2022; 23:ijms231810792. [PMID: 36142707 PMCID: PMC9501609 DOI: 10.3390/ijms231810792] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
As one of the oldest agricultural crops in China, millet (Panicum miliaceum) has powerful drought tolerance. In this study, transcriptome and metabolome analyses of ‘Hequ Red millet’ (HQ) and ‘Yanshu No.10’ (YS10) millet after 6 h of drought stress were performed. Transcriptome characteristics of drought stress in HQ and YS10 were characterized by Pacbio full-length transcriptome sequencing. The pathway analysis of the differentially expressed genes (DEGs) showed that the highly enriched categories were related to starch and sucrose metabolism, pyruvate metabolism, metabolic pathways, and the biosynthesis of secondary metabolites when the two millet varieties were subjected to drought stress. Under drought stress, 245 genes related to energy metabolism were found to show significant changes between the two strains. Further analysis showed that 219 genes related to plant hormone signal transduction also participated in the drought response. In addition, numerous genes involved in anthocyanin metabolism and photosynthesis were confirmed to be related to drought stress, and these genes showed significant differential expression and played an important role in anthocyanin metabolism and photosynthesis. Moreover, we identified 496 transcription factors related to drought stress, which came from 10 different transcription factor families, such as bHLH, C3H, MYB, and WRKY. Further analysis showed that many key genes related to energy metabolism, such as citrate synthase, isocitrate dehydrogenase, and ATP synthase, showed significant upregulation, and most of the structural genes involved in anthocyanin biosynthesis also showed significant upregulation in both strains. Most genes related to plant hormone signal transduction showed upregulated expression, while many JA and SA signaling pathway-related genes were downregulated. Metabolome analysis was performed on ‘Hequ red millet’ (HQ) and ‘Yanshu 10’ (YS10), a total of 2082 differential metabolites (DEMs) were identified. These findings indicate that energy metabolism, anthocyanins, photosynthesis, and plant hormones are closely related to the drought resistance of millet and adapt to adversity by precisely regulating the levels of various molecular pathways.
Collapse
|
24
|
Zhang Y, Dai T, Liu Y, Wang J, Wang Q, Zhu W. Effect of Exogenous Glycine Betaine on the Germination of Tomato Seeds under Cold Stress. Int J Mol Sci 2022; 23:ijms231810474. [PMID: 36142386 PMCID: PMC9502054 DOI: 10.3390/ijms231810474] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/30/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Cold stress is known to influence tomato growth, development, and yield. In this study, we analyzed the germination of tomato seeds treated with exogenous glycine betaine (GB) at a low temperature (14 °C). The results showed that cold stress inhibited tomato seed germination, and pretreatment with exogenous GB reduced this inhibition and enhanced the germination rate (GR), germination index (GI), and viability of tomato seeds at low temperatures. Analysis of gene expression and metabolism revealed that GB positively regulated endogenous hormone gibberellin (GA) content and negatively regulated abscisic acid (ABA) content, while GB reduced the starch content in the seeds by up-regulating the amylase gene expression. Gene expression analysis showed that the key genes (SlSOD, SlPOD, and SlchlAPX) involved in reactive oxygen species (ROS) scavenging systems were up-regulated in GB-pretreated tomato seeds compared with the control. At the same time, levels of malondialdehyde and hydrogen peroxide were significantly lower, while the proline content and peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT) levels were elevated compared with those in the control. These results demonstrate that exogenous GB as a positive regulator effectively alleviated the inhibition of tomato seed germination under cold stress by different signal pathways.
Collapse
Affiliation(s)
- Yingying Zhang
- Shanghai Key Laboratory of Protected Horticulture Technology, The Protected Horticulture Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Taoyu Dai
- Shanghai Key Laboratory of Protected Horticulture Technology, The Protected Horticulture Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
- College of Life Science, Shanghai Normal University, Shanghai 201400, China
| | - Yahui Liu
- Shanghai Key Laboratory of Protected Horticulture Technology, The Protected Horticulture Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Jinyan Wang
- Innovation Center of Jiangsu, Academy of Agricultural Sciences, Nanjing 210014, China
| | - Quanhua Wang
- College of Life Science, Shanghai Normal University, Shanghai 201400, China
| | - Weimin Zhu
- Shanghai Key Laboratory of Protected Horticulture Technology, The Protected Horticulture Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
- Correspondence:
| |
Collapse
|
25
|
Yue C, Chen Q, Hu J, Li C, Luo L, Zeng L. Genome-Wide Identification and Characterization of GARP Transcription Factor Gene Family Members Reveal Their Diverse Functions in Tea Plant ( Camellia sinensis). FRONTIERS IN PLANT SCIENCE 2022; 13:947072. [PMID: 35845671 PMCID: PMC9280663 DOI: 10.3389/fpls.2022.947072] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Golden2, ARR-B, Psr1 (GARP) proteins are plant-specific transcription factors that play vital and diverse roles in plants. However, systematic research on the GARP gene family in plants, including tea plant (Camellia sinensis), is scarce. In this study, a total of 69 GARP genes were identified and characterized from the tea plant genome based on the B-motif sequence signature. The CsGARP genes were clustered into five subfamilies: PHR1/PHL1, KAN, NIGT1/HRS1/HHO, GLK and ARR-B subfamilies. The phylogenetic relationships, gene structures, chromosomal locations, conserved motifs and regulatory cis-acting elements of the CsGARP family members were comprehensively analyzed. The expansion of CsGARP genes occurred via whole-genome duplication/segmental duplication, proximal duplication, and dispersed duplication under purifying selective pressure. The expression patterns of the CsGARP genes were systematically explored from various perspectives: in different tissues during different seasons; in different leaf color stages of tea plant; under aluminum treatment and nitrogen treatment; and in response to abiotic stresses such as cold, drought and salt and to biotic stress caused by Acaphylla theae. The results demonstrate that CsGARP family genes are ubiquitously expressed and play crucial roles in the regulation of growth and development of tea plant and the responses to environmental stimuli. Collectively, these results not only provide valuable information for further functional investigations of CsGARPs in tea plant but also contribute to broadening our knowledge of the functional diversity of GARP family genes in plants.
Collapse
Affiliation(s)
- Chuan Yue
- College of Food Science, Tea Research Institute, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Speciality Food Co-built by Sichuan and Chongqing, Southwest University, Chongqing, China
| | - Qianqian Chen
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Juan Hu
- Key Laboratory of Tea Science in Universities of Fujian Province, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Congcong Li
- Key Laboratory of Tea Science in Universities of Fujian Province, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Liyong Luo
- College of Food Science, Tea Research Institute, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Speciality Food Co-built by Sichuan and Chongqing, Southwest University, Chongqing, China
| | - Liang Zeng
- College of Food Science, Tea Research Institute, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Speciality Food Co-built by Sichuan and Chongqing, Southwest University, Chongqing, China
| |
Collapse
|
26
|
Ma Y, Han Y, Feng X, Gao H, Cao B, Song L. Genome-wide identification of BAM (β-amylase) gene family in jujube (Ziziphus jujuba Mill.) and expression in response to abiotic stress. BMC Genomics 2022; 23:438. [PMID: 35698031 PMCID: PMC9195466 DOI: 10.1186/s12864-022-08630-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 05/16/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Elevated temperature and drought stress have substantial impacts on fruit quality, especially in terms of sugar metabolism and content. β-Amylase (BAM) plays a critical role in regulating jujube fruit sugar levels and abiotic stress response. Nevertheless, little is known about the regulatory functions of the BAM genes in jujube fruit. RESULTS Nine jujube BAM genes were identified, clustered into four groups, and characterized to elucidate their structure, function, and distribution. Multiple sequence alignment and gene structure analysis showed that all ZjBAM genes contain Glu-186 and Glu-380 residues and are highly conserved. Phylogenetic and synteny analysis further indicated that the ZjBAM gene family is evolutionarily conserved and formed collinear pairs with the BAM genes of peach, apple, poplar, Arabidopsis thaliana, and cucumber. A single tandem gene pair was found within the ZjBAM gene family and is indicative of putative gene duplication events. We also explored the physicochemical properties, conserved motifs, and chromosomal and subcellular localization of ZjBAM genes as well as the interaction networks and 3D structures of ZjBAM proteins. A promoter cis-acting element analysis suggested that ZjBAM promoters comprise elements related to growth, development, phytohormones, and stress response. Furthermore, a metabolic pathways annotation analysis showed that ZjBAMs are significantly upregulated in the starch and sucrose metabolism, thereby controlling starch-maltose interconversion and hydrolyzing starch to maltose. Transcriptome and qRT-PCR analyses revealed that ZjBAMs respond positively to elevated temperature and drought stress. Specifically, ZjBAM1, ZjBAM2, ZjBAM5, and ZjBAM6 are significantly upregulated in response to severe drought. Bimolecular fluorescence complementation analysis demonstrated ZjBAM1-ZjAMY3, ZjBAM8-ZjDPE1, and ZjBAM7-ZjDPE1 protein interactions that were mainly present in the plasma membrane and nucleus. CONCLUSION The jujube BAM gene family exhibits high evolutionary conservation. The various expression patterns of ZjBAM gene family members indicate that they play key roles in jujube growth, development, and abiotic stress response. Additionally, ZjBAMs interact with α-amylase and glucanotransferase. Collectively, the present study provides novel insights into the structure, evolution, and functions of the jujube BAM gene family, thus laying a foundation for further exploration of ZjBAM functional mechanisms in response to elevated temperature and drought stress, while opening up avenues for the development of economic forests in arid areas.
Collapse
Affiliation(s)
- Yaping Ma
- School of Agriculture, Ningxia University, Yinchuan, 750021, China
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Yaru Han
- School of Agriculture, Ningxia University, Yinchuan, 750021, China
| | - Xuerui Feng
- School of Agriculture, Ningxia University, Yinchuan, 750021, China
| | - Handong Gao
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China.
- Southern Tree Seed Inspection Center, Nanjing, 210037, China.
| | - Bing Cao
- School of Agriculture, Ningxia University, Yinchuan, 750021, China
| | - Lihua Song
- School of Agriculture, Ningxia University, Yinchuan, 750021, China.
| |
Collapse
|
27
|
Metabolic Profiling of Sugars and Organic Acids, and Expression Analyses of Metabolism-Associated Genes in Two Yellow-Peel Pitaya Species. PLANTS 2022; 11:plants11050694. [PMID: 35270164 PMCID: PMC8912497 DOI: 10.3390/plants11050694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/09/2022] [Accepted: 03/01/2022] [Indexed: 11/25/2022]
Abstract
Sugar and organic acids are important factors determining pitaya fruit quality. However, changes in sugars and acids, and expressions of metabolism-associated genes during fruit maturation of yellow-peel pitayas are not well-documented. In this study, metabolic and expression analyses in pulps of different fruit developmental stages of ‘Wucihuanglong’ (‘WCHL’, Hylocereus undatus) and ‘Youcihuanglong’ pitaya (‘YCHL’, Hylocereus megalanthus) were used to explore the sugar and organic acid metabolic process. Total phenols and flavonoids were mainly accumulated at S1 in pitaya pulps. Ascorbic acid contents of ‘WCHL’ pitaya were higher than that of ‘YCHL’ pitaya during fruit maturation. Starch was mainly accumulated at early fruit development stages while soluble sugars were rich in late stages. Sucrose, fructose, and glucose were the main sugar components of ‘YCHL’ pitaya while glucose was dominant in ‘WCHL’ pitaya. Malic and citric acids were the main organic acids in ‘WCHL’ and ‘YCHL’ pitayas, respectively. Based on the transcriptome analyses, 118 genes involved in pitaya sugar and organic acid metabolism were obtained. Results from the correlation analyses between the expression profiling of candidate genes and the contents of sugar and organic acid showed that 51 genes had a significant correlation relationship and probably perform key role in pitaya sugar and organic acid metabolism processes. The finding of the present study provides new information for quality regulation of pitayas.
Collapse
|
28
|
Floridean Starch and Floridoside Metabolic Pathways of Neoporphyra haitanensis and Their Regulatory Mechanism under Continuous Darkness. Mar Drugs 2021; 19:md19120664. [PMID: 34940663 PMCID: PMC8703398 DOI: 10.3390/md19120664] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 12/28/2022] Open
Abstract
Floridean starch and floridoside are the main storage carbohydrates of red algae. However, their complete metabolic pathways and the origin, function, and regulatory mechanism of their pathway genes have not been fully elucidated. In this study, we identified their metabolic pathway genes and analyzed the changes in related gene expression and metabolite content in Neoporphyra haitanensis under continuous dark conditions. Our results showed that genes from different sources, including eukaryotic hosts, cyanobacteria, and bacteria, were combined to construct floridean starch and floridoside metabolic pathways in N. haitanensis. Moreover, compared with those in the control, under continuous dark conditions, floridean starch biosynthesis genes and some degradation genes were significantly upregulated with no significant change in floridean starch content, whereas floridoside degradation genes were significantly upregulated with a significant decrease in floridoside content. This implies that floridean starch content is maintained but floridoside is consumed in N. haitanensis under dark conditions. This study elucidates the "floridean starch-floridoside" metabolic network and its gene origins in N. haitanensis for the first time.
Collapse
|
29
|
Regulation of β-amylase synthesis: a brief overview. Mol Biol Rep 2021; 48:6503-6511. [PMID: 34379288 DOI: 10.1007/s11033-021-06613-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 07/29/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND The major activity of β-amylase (BMY) is the production of maltose by the hydrolytic degradation of starch. BMY is found to be produced by some plants and few microorganisms only. The industrial importance of the enzyme warrants its application in a larger scale with the help of genetic engineering, for which the regulatory mechanism is to be clearly understood. RESULTS AND CONCLUSION In plants, the activities of BMY are regulated by various environmental stimuli including stress of drought, cold and heat. In vascular plant, Arabidopsis sp. the enzyme is coded by nine BAM genes, whereas in most bacteria, BMY enzymes are coded by the spoII gene family. The activities of these genes are in turn controlled by various compounds. Production and inhibition of the microbial BMY is regulated by the activation and inactivation of various BAM genes. Various types of transcriptional regulators associated with the plant- BMYs regulate the production of BMY enzyme. The enhancement in the expression of such genes reflects evolutionary significance. Bacterial genes, on the other hand, as exemplified by Bacillus sp and Clostridium sp, clearly depict the importance of a single regulatory gene, the absence or mutation of which totally abolishes the BMY activity.
Collapse
|
30
|
Zhang DL, Wang Y, Jia BC, Tian XQ, Chu J, Yin HB, Jameson PE, Chen SH, Guo SL. Genome-Wide Identification and Expression Analysis of the β-Amylase Gene Family in Chenopodium quinoa. DNA Cell Biol 2021; 40:936-948. [PMID: 34042512 DOI: 10.1089/dna.2020.5911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
β-Amylase (BAM) is an important starch hydrolase, playing a role in a variety of plant growth and development processes. In this study, 22 BAM gene family members (GFMs) were identified in quinoa (Chenopodium quinoa), an ancient crop gaining modern consumer acceptance because of its nutritional qualities. The genetic structure, phylogenetic and evolutionary relationships, and expression patterns of CqBAM GFMs in different tissues, were analyzed. Phylogenetic analyses assigned the CqBAMs, AtBAMs, and OsBAMs into four clades. The CqBAM gene family had expanded due to segmental duplication. RNA-seq analysis revealed expression of the duplicated pairs to be similar, with the expression of CqBAM GFM pairs showing a degree of tissue specificity that was confirmed by reverse transcription quantitative PCR (RT-qPCR). Several CqBAM GFMs were also responsive to abiotic stresses in shoots and/or roots. In conclusion, the BAM gene family in quinoa was identified and systematically analyzed using bioinformatics and experimental methods. These results will help to elucidate the evolutionary relationship and biological functions of the BAM gene family in quinoa.
Collapse
Affiliation(s)
| | - Yu Wang
- College of Life Sciences, Yantai University, Yantai, China
| | - Bing-Chen Jia
- College of Life Sciences, Yantai University, Yantai, China
| | - Xiao-Qin Tian
- College of Life Sciences, Yantai University, Yantai, China
| | - Jing Chu
- College of Life Sciences, Yantai University, Yantai, China
| | - Hai-Bo Yin
- College of Life Sciences, Yantai University, Yantai, China
| | - Paula E Jameson
- College of Life Sciences, Yantai University, Yantai, China.,School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Shi-Hua Chen
- College of Life Sciences, Yantai University, Yantai, China
| | - Shan-Li Guo
- College of Life Sciences, Yantai University, Yantai, China
| |
Collapse
|
31
|
Chen L, Lu B, Liu L, Duan W, Jiang D, Li J, Zhang K, Sun H, Zhang Y, Li C, Bai Z. Melatonin promotes seed germination under salt stress by regulating ABA and GA 3 in cotton (Gossypium hirsutum L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 162:506-516. [PMID: 33773227 DOI: 10.1016/j.plaphy.2021.03.029] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/15/2021] [Indexed: 05/21/2023]
Abstract
Although previous studies have found that melatonin can promote seed germination, the phytohormone regulation mechanism by which exogenous melatonin mediates salt tolerance during cotton seed germination is still largely unknown. The effects of melatonin on germination traits and physiological parameters of GXM9 cotton seeds (Gossypium hirsutum L.) under three salt stress treatments (CK, germination of seeds pretreated with water alone; S, germination of seeds pretreated in 150 mM NaCl under salt stress; SM, germination of seeds pretreated in 20 μM melatonin under 150 mM NaCl solution) in the laboratory was investigated. The results showed that salt stress (150 mM) inhibited cotton seed germination and endogenous melatonin accumulation, and pretreatment with 20 μM exogenous melatonin enhanced the cotton germination rate and hypocotyl length as well as the content of endogenous melatonin during seed germination. This suggests that exogenous melatonin promotes seed germination from a morphological perspective. The contents of starch, α-amylase (EC3.3.1.1), β-galactosidase (EC3.2.1.23), abscisic acid (ABA), and gibberellin (GA) were determined simultaneously. The results showed that the α-amylase and β-galactosidase contents in the cotton seeds decreased by 56.97% and 20.18%, respectively, under salt stress compared with the control, while the starch content increased by 11.53% compared with the control at day 7. The ABA content increased by 25.18% and GA content decreased by 27.99% under salt stress compared with the control at 24 h. When exogenous melatonin was applied to the cotton seeds, the content of α-amylase and β-galactosidase increased by 121.77% and 32.76%, respectively, whereas the starch contents decreased by 13.55% compared with the S treatment at day 7. Similarly, the ABA content increased by 12.20% and the GA content increased by 4.77% at 24 h. To elucidate the molecular mechanism by which melatonin promotes seed germination under salt stress, the effects of ABA- and GA-related genes on plant hormone signal transduction were analyzed by quantitative real-time PCR and RNA sequencing. The results indicated that melatonin regulated the expression of ABA and GA genes in the plant signal transduction pathway, induced embryo root development and seed germination, and alleviated dormancy. The expression of the ABA signaling gene GhABF2 was up-regulated and GhDPBF2 was down-regulated, and the expression of GA signaling genes (e.g., GhGID1C and GhGID1B) was up-regulated by melatonin. In conclusion, melatonin enhances salt tolerance in cotton seeds by regulating ABA and GA and by mediating the expression of hormone-related genes in plant hormone signal transduction. This should help us to explore the regulatory mechanisms of cotton resistance and provide a foundation for the cultivation of new varieties.
Collapse
Affiliation(s)
- Li Chen
- State Key Laboratory of North China Crop Improvement and Regulation/College of Life Science, Hebei Agricultural University, Baoding, 071001, China; State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Crop Growth Regulation of Hebei Province/College of Agronomy, Hebei Agricultural University, Baoding, 071001, China
| | - Bin Lu
- College of Landscape and Tourism, Hebei Agricultural University, Baoding 071001, China
| | - Liantao Liu
- State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Crop Growth Regulation of Hebei Province/College of Agronomy, Hebei Agricultural University, Baoding, 071001, China
| | - Wenjing Duan
- State Key Laboratory of North China Crop Improvement and Regulation/College of Life Science, Hebei Agricultural University, Baoding, 071001, China; State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Crop Growth Regulation of Hebei Province/College of Agronomy, Hebei Agricultural University, Baoding, 071001, China
| | - Dan Jiang
- State Key Laboratory of North China Crop Improvement and Regulation/College of Life Science, Hebei Agricultural University, Baoding, 071001, China; State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Crop Growth Regulation of Hebei Province/College of Agronomy, Hebei Agricultural University, Baoding, 071001, China
| | - Jin Li
- State Key Laboratory of North China Crop Improvement and Regulation/College of Life Science, Hebei Agricultural University, Baoding, 071001, China; State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Crop Growth Regulation of Hebei Province/College of Agronomy, Hebei Agricultural University, Baoding, 071001, China
| | - Ke Zhang
- State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Crop Growth Regulation of Hebei Province/College of Agronomy, Hebei Agricultural University, Baoding, 071001, China
| | - Hongchun Sun
- State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Crop Growth Regulation of Hebei Province/College of Agronomy, Hebei Agricultural University, Baoding, 071001, China
| | - Yongjiang Zhang
- State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Crop Growth Regulation of Hebei Province/College of Agronomy, Hebei Agricultural University, Baoding, 071001, China
| | - Cundong Li
- State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Crop Growth Regulation of Hebei Province/College of Agronomy, Hebei Agricultural University, Baoding, 071001, China.
| | - Zhiying Bai
- State Key Laboratory of North China Crop Improvement and Regulation/College of Life Science, Hebei Agricultural University, Baoding, 071001, China; State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Crop Growth Regulation of Hebei Province/College of Agronomy, Hebei Agricultural University, Baoding, 071001, China.
| |
Collapse
|
32
|
Liang G, He H, Nai G, Feng L, Li Y, Zhou Q, Ma Z, Yue Y, Chen B, Mao J. Genome-wide identification of BAM genes in grapevine (Vitis vinifera L.) and ectopic expression of VvBAM1 modulating soluble sugar levels to improve low-temperature tolerance in tomato. BMC PLANT BIOLOGY 2021; 21:156. [PMID: 33771117 PMCID: PMC8004407 DOI: 10.1186/s12870-021-02916-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Low temperature (LT) is one of the main limiting factors that affect growth and development in grape. Increasing soluble sugar and scavenging reactive oxygen species (ROS) play critical roles in grapevine resistance to cold stress. However, the mechanism of β-amylase (BAM) involved in the regulation of sugar levels and antioxidant enzyme activities in response to cold stress is unclear. RESULTS In this study, six BAM genes were identified and clustered into four groups. Multiple sequence alignment and gene structure analysis showed that VvBAM6 lacked the Glu380 residue and contained only an exon. The transcript abundance of VvBAM1 and VvBAM3 significantly increased as temperature decreased. After LT stress, VvBAM1 was highly expressed in the leaves, petioles, stems, and roots of overexpressing tomato lines. The total amylase and BAM activities increased by 6.5- and 6.01-fold in transgenic plants compared with those in wild-type tomato plants (WT) subjected to LT, respectively. The glucose and sucrose contents in transgenic plants were significantly higher than those in WT plants, whereas the starch contents in the former decreased by 1.5-fold compared with those in the latter under LT stress. The analysis of transcriptome sequencing data revealed that 541 genes were upregulated, and 663 genes were downregulated in transgenic plants. One sugar transporter protein gene (SlSTP10), two peroxidase (POD)-related genes (SlPER7 and SlPER5), and one catalase (CAT)-related gene (SlCAT1) were upregulated by 8.6-, 3.6-, 3.0-, and 2.3-fold in transgenic plants after LT stress, respectively. CONCLUSIONS Our results suggest that VvBAM1 overexpression promotes ROS scavenging and improves cold tolerance ability by modulating starch hydrolysis to affect soluble sugar levels in tomato plants.
Collapse
Affiliation(s)
- Guoping Liang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Honghong He
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Guojie Nai
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Lidan Feng
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Yanmei Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Qi Zhou
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Zonghuan Ma
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Yuan Yue
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Baihong Chen
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Juan Mao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China.
| |
Collapse
|
33
|
Samarina LS, Bobrovskikh AV, Doroshkov AV, Malyukova LS, Matskiv AO, Rakhmangulov RS, Koninskaya NG, Malyarovskaya VI, Tong W, Xia E, Manakhova KA, Ryndin AV, Orlov YL. Comparative Expression Analysis of Stress-Inducible Candidate Genes in Response to Cold and Drought in Tea Plant [ Camellia sinensis (L.) Kuntze]. Front Genet 2020; 11:611283. [PMID: 33424935 PMCID: PMC7786056 DOI: 10.3389/fgene.2020.611283] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/23/2020] [Indexed: 12/15/2022] Open
Abstract
Cold and drought are two of the most severe threats affecting the growth and productivity of the tea plant, limiting its global spread. Both stresses cause osmotic changes in the cells of the tea plant by decreasing their water potential. To develop cultivars that are tolerant to both stresses, it is essential to understand the genetic responses of tea plant to these two stresses, particularly in terms of the genes involved. In this study, we combined literature data with interspecific transcriptomic analyses (using Arabidopsis thaliana and Solanum lycopersicum) to choose genes related to cold tolerance. We identified 45 stress-inducible candidate genes associated with cold and drought responses in tea plants based on a comprehensive homologous detection method. Of these, nine were newly characterized by us, and 36 had previously been reported. The gene network analysis revealed upregulated expression in ICE1-related cluster of bHLH factors, HSP70/BAM5 connected genes (hexokinases, galactinol synthases, SnRK complex, etc.) indicating their possible co-expression. Using qRT-PCR we revealed that 10 genes were significantly upregulated in response to both cold and drought in tea plant: HSP70, GST, SUS1, DHN1, BMY5, bHLH102, GR-RBP3, ICE1, GOLS1, and GOLS3. SnRK1.2, HXK1/2, bHLH7/43/79/93 were specifically upregulated in cold, while RHL41, CAU1, Hydrolase22 were specifically upregulated in drought. Interestingly, the expression of CIP was higher in the recovery stage of both stresses, indicating its potentially important role in plant recovery after stress. In addition, some genes, such as DHN3, bHLH79, PEI54, SnRK1.2, SnRK1.3, and Hydrolase22, were significantly positively correlated between the cold and drought responses. CBF1, GOLS1, HXK2, and HXK3, by contrast, showed significantly negative correlations between the cold and drought responses. Our results provide valuable information and robust candidate genes for future functional analyses intended to improve the stress tolerance of the tea plant and other species.
Collapse
Affiliation(s)
- Lidiia S Samarina
- Biotechnology Department, Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, Sochi, Russia
| | - Alexandr V Bobrovskikh
- Biotechnology Department, Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, Sochi, Russia.,Institute Cytology and Genetics Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Alexey V Doroshkov
- Biotechnology Department, Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, Sochi, Russia.,Institute Cytology and Genetics Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Lyudmila S Malyukova
- Biotechnology Department, Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, Sochi, Russia
| | - Alexandra O Matskiv
- Biotechnology Department, Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, Sochi, Russia
| | - Ruslan S Rakhmangulov
- Biotechnology Department, Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, Sochi, Russia
| | - Natalia G Koninskaya
- Biotechnology Department, Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, Sochi, Russia
| | - Valentina I Malyarovskaya
- Biotechnology Department, Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, Sochi, Russia
| | - Wei Tong
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Enhua Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Karina A Manakhova
- Biotechnology Department, Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, Sochi, Russia
| | - Alexey V Ryndin
- Biotechnology Department, Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, Sochi, Russia
| | - Yuriy L Orlov
- Biotechnology Department, Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, Sochi, Russia.,Agrarian and Technological Institute, Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
| |
Collapse
|
34
|
Cao W, Gan L, Shang K, Wang C, Song Y, Liu H, Zhou S, Zhu C. Global transcriptome analyses reveal the molecular signatures in the early response of potato (Solanum tuberosum L.) to Phytophthora infestans, Ralstonia solanacearum, and Potato virus Y infection. PLANTA 2020; 252:57. [PMID: 32955625 DOI: 10.1007/s00425-020-03471-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/15/2020] [Indexed: 05/24/2023]
Abstract
Specific and common genes including transcription factors, resistance genes and pathways were significantly induced in potato by Phytophthora infestans, Ralstonia solanacearum, and Potato virus Y infection. The three major pathogens, namely, Phytophthora infestans, Ralstonia solanacearum, and Potato virus Y, can cause late blight, bacterial wilt, and necrotic ringspot, respectively, and thus severely reduce the yield and quality of potatoes (Solanum tuberosum L.). This study was the first to systematically analyze the relationship between transcriptome alterations in potato infected by these pathogens at the early stages. A total of 75,500 unigenes were identified, and 44,008 were annotated into 5 databases, namely, non-redundant (NR), Swiss-Prot protein, clusters of orthologous groups for eukaryotic complete genomes (KOG), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. A total of 6945 resistance genes and 11,878 transcription factors (TFs) were identified from all transcriptome data. Differential expression analysis revealed that 13,032 (9490 specifics), 9877 (6423 specifics), and 6661 (4144 specifics) differentially expressed genes (DEGs) were generated from comparisons of the P. infestans/control (Pi vs. Pi-CK), R. solanacearum/control (Rs vs. Rs-CK), and PVY/control (PVY vs. PVY-CK) treatments, respectively. The specific DEGs from the 3 comparisons were assigned to 13 common pathways, such as biosynthesis of amino acids, plant hormone signal transduction, carbon metabolism, and starch and sucrose metabolism. Weighted Gene Co-Expression Network Analysis (WGCNA) identified many hub unigenes, of which several unigenes were reported to regulate plant immune responses, such as FLAGELLIN-SENSITIVE 2 and chitinases. The present study provide crucial systems-level insights into the relationship between transcriptome changes in potato infected with the three pathogens. Moreover, this study presents a theoretical basis for breeding broad-spectrum and specific pathogen-resistant cultivars.
Collapse
Affiliation(s)
- Weilin Cao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Liming Gan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Kaijie Shang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Chenchen Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Yunzhi Song
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Hongmei Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Shumei Zhou
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Changxiang Zhu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China.
| |
Collapse
|
35
|
Dai Y, Zhang S, Sun X, Li G, Yuan L, Li F, Zhang H, Zhang S, Chen G, Wang C, Sun R. Comparative Transcriptome Analysis of Gene Expression and Regulatory Characteristics Associated with Different Vernalization Periods in Brassica rapa. Genes (Basel) 2020; 11:E392. [PMID: 32260536 PMCID: PMC7231026 DOI: 10.3390/genes11040392] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/17/2020] [Accepted: 04/03/2020] [Indexed: 12/17/2022] Open
Abstract
Brassica rapa is an important Chinese vegetable crop that is beneficial to human health. The primary factor affecting B. rapa yield is low temperature, which promotes bolting and flowering, thereby lowering its commercial value. However, quickened bolting and flowering can be used for rapid breeding. Therefore, studying the underlying molecular mechanism of vernalization in B.rapa is crucial for solving production-related problems. Here, the transcriptome of two B. rapa accessions were comprehensively analyzed during different vernalization periods. During vernalization, a total of 974,584,022 clean reads and 291.28 Gb of clean data were obtained. Compared to the reference genome of B. rapa, 44,799 known genes and 2280 new genes were identified. A self-organizing feature map analysis of 21,035 differentially expressed genes was screened in two B. rapa accessions, 'Jin Wawa' and 'Xiao Baojian'. The analysis indicated that transcripts related to the plant hormone signal transduction, starch and sucrose metabolism, photoperiod and circadian clock, and vernalization pathways changed notably at different vernalization periods. Moreover, different expression patterns of TPS, UGP, CDF, VIN1, and seven hormone pathway genes were observed during vernalization between the two accessions. The transcriptome results of this study provide a new perspective on the changes that occur during B. rapavernalization, as well as serve as an excellent reference for B. rapa breeding.
Collapse
Affiliation(s)
- Yun Dai
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.D.); (S.Z.); (X.S.); (G.L.); (F.L.); (H.Z.); (S.Z.)
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University, Hefei 230036, China; (L.Y.); (G.C.)
| | - Shujiang Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.D.); (S.Z.); (X.S.); (G.L.); (F.L.); (H.Z.); (S.Z.)
| | - Xiao Sun
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.D.); (S.Z.); (X.S.); (G.L.); (F.L.); (H.Z.); (S.Z.)
| | - Guoliang Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.D.); (S.Z.); (X.S.); (G.L.); (F.L.); (H.Z.); (S.Z.)
| | - Lingyun Yuan
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University, Hefei 230036, China; (L.Y.); (G.C.)
| | - Fei Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.D.); (S.Z.); (X.S.); (G.L.); (F.L.); (H.Z.); (S.Z.)
| | - Hui Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.D.); (S.Z.); (X.S.); (G.L.); (F.L.); (H.Z.); (S.Z.)
| | - Shifan Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.D.); (S.Z.); (X.S.); (G.L.); (F.L.); (H.Z.); (S.Z.)
| | - Guohu Chen
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University, Hefei 230036, China; (L.Y.); (G.C.)
| | - Chenggang Wang
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University, Hefei 230036, China; (L.Y.); (G.C.)
| | - Rifei Sun
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.D.); (S.Z.); (X.S.); (G.L.); (F.L.); (H.Z.); (S.Z.)
| |
Collapse
|
36
|
Cao H, Wang F, Lin H, Ye Y, Zheng Y, Li J, Hao Z, Ye N, Yue C. Transcriptome and metabolite analyses provide insights into zigzag-shaped stem formation in tea plants (Camellia sinensis). BMC PLANT BIOLOGY 2020; 20:98. [PMID: 32131737 PMCID: PMC7057490 DOI: 10.1186/s12870-020-2311-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/26/2020] [Indexed: 05/14/2023]
Abstract
BACKGROUND Shoot orientation is important for plant architecture formation, and zigzag-shaped shoots are a special trait found in many plants. Zigzag-shaped shoots have been selected and thoroughly studied in Arabidopsis; however, the regulatory mechanism underlying zigzag-shaped shoot development in other plants, especially woody plants, is largely unknown. RESULTS In this study, tea plants with zigzag-shaped shoots, namely, Qiqu (QQ) and Lianyuanqiqu (LYQQ), were investigated and compared with the erect-shoot tea plant Meizhan (MZ) in an attempt to reveal the regulation of zigzag-shaped shoot formation. Tissue section observation showed that the cell arrangement and shape of zigzag-shaped stems were aberrant compared with those of normal shoots. Moreover, a total of 2175 differentially expressed genes (DEGs) were identified from the zigzag-shaped shoots of the tea plants QQ and LYQQ compared to the shoots of MZ using transcriptome sequencing, and the DEGs involved in the "Plant-pathogen interaction", "Phenylpropanoid biosynthesis", "Flavonoid biosynthesis" and "Linoleic acid metabolism" pathways were significantly enriched. Additionally, the DEGs associated with cell expansion, vesicular trafficking, phytohormones, and transcription factors were identified and analysed. Metabolomic analysis showed that 13 metabolites overlapped and were significantly changed in the shoots of QQ and LYQQ compared to MZ. CONCLUSIONS Our results suggest that zigzag-shaped shoot formation might be associated with the gravitropism response and polar auxin transport in tea plants. This study provides a valuable foundation for further understanding the regulation of plant architecture formation and for the cultivation and application of horticultural plants in the future.
Collapse
Affiliation(s)
- Hongli Cao
- College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science in Universities of Fujian Province, Fuzhou, 350002, China
| | - Feiquan Wang
- College of Tea and Food Science, Wuyi University, Wuyishan, 354300, China
| | - Hongzheng Lin
- College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science in Universities of Fujian Province, Fuzhou, 350002, China
| | - Yijun Ye
- College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science in Universities of Fujian Province, Fuzhou, 350002, China
| | - Yucheng Zheng
- College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science in Universities of Fujian Province, Fuzhou, 350002, China
| | - Jiamin Li
- College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science in Universities of Fujian Province, Fuzhou, 350002, China
| | - Zhilong Hao
- College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science in Universities of Fujian Province, Fuzhou, 350002, China
| | - Naixing Ye
- College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science in Universities of Fujian Province, Fuzhou, 350002, China
| | - Chuan Yue
- College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science in Universities of Fujian Province, Fuzhou, 350002, China.
| |
Collapse
|
37
|
Zhu C, Zhang S, Zhou C, Chen L, Fu H, Li X, Lin Y, Lai Z, Guo Y. Genome-wide investigation and transcriptional analysis of cytosine-5 DNA methyltransferase and DNA demethylase gene families in tea plant ( Camellia sinensis) under abiotic stress and withering processing. PeerJ 2020; 8:e8432. [PMID: 31976183 PMCID: PMC6968495 DOI: 10.7717/peerj.8432] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 12/19/2019] [Indexed: 12/11/2022] Open
Abstract
DNA methylation is a highly conserved epigenetic modification involved in many biological processes, including growth and development, stress response, and secondary metabolism. In the plant kingdom, cytosine-5 DNA methyltransferase (C5-MTase) and DNA demethylase (dMTase) genes have been identified in some plant species. However, to the best of our knowledge, no investigator has focused on the identification and analysis of C5-MTase and dMTase genes in tea plants (Camellia sinensis) based on genome-wide levels. In this study, eight CsC5-MTases and four dMTases were identified in tea plants. These CsC5-MTase genes were divided into four subfamilies, including CsMET, CsCMT, CsDRM and CsDNMT2. The CsdMTase genes can be classified into CsROS, CsDME and CsDML. Based on conserved domain analysis of these genes, the gene loss and duplication events occurred during the evolution of CsC5-MTase and CsdMTase. Furthermore, multiple cis-acting elements were observed in the CsC5-MTase and CsdMTase, including light responsiveness, phytohormone responsiveness, stress responsiveness, and plant growth and development-related elements. Then, we investigated the transcript abundance of CsC5-MTase and CsdMTase under abiotic stress (cold and drought) and withering processing (white tea and oolong tea). Notably, most CsC5-MTases, except for CsCMT1 and CsCMT2, were significantly downregulated under abiotic stress, while the transcript abundance of all four CsdMTase genes was significantly induced. Similarly, the same transcript abundance of CsC5-MTase and CsdMTase was found during withering processing of white tea and oolong tea, respectively. In total, our findings will provide a basis for the roles of CsC5-MTase and CsdMTase in response to abiotic stress and the potential functions of these two gene families in affecting tea flavor during tea withering processing.
Collapse
Affiliation(s)
- Chen Zhu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.,Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Shuting Zhang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.,Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Chengzhe Zhou
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Lan Chen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Haifeng Fu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Xiaozhen Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yuling Lin
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.,Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Zhongxiong Lai
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.,Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yuqiong Guo
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|