1
|
Cheng F, Dennis AB, Baumann O, Kirschbaum F, Abdelilah-Seyfried S, Tiedemann R. Gene and Allele-Specific Expression Underlying the Electric Signal Divergence in African Weakly Electric Fish. Mol Biol Evol 2024; 41:msae021. [PMID: 38410843 PMCID: PMC10897887 DOI: 10.1093/molbev/msae021] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/15/2023] [Accepted: 01/29/2024] [Indexed: 02/28/2024] Open
Abstract
In the African weakly electric fish genus Campylomormyrus, electric organ discharge signals are strikingly different in shape and duration among closely related species, contribute to prezygotic isolation, and may have triggered an adaptive radiation. We performed mRNA sequencing on electric organs and skeletal muscles (from which the electric organs derive) from 3 species with short (0.4 ms), medium (5 ms), and long (40 ms) electric organ discharges and 2 different cross-species hybrids. We identified 1,444 upregulated genes in electric organ shared by all 5 species/hybrid cohorts, rendering them candidate genes for electric organ-specific properties in Campylomormyrus. We further identified several candidate genes, including KCNJ2 and KLF5, and their upregulation may contribute to increased electric organ discharge duration. Hybrids between a short (Campylomormyrus compressirostris) and a long (Campylomormyrus rhynchophorus) discharging species exhibit electric organ discharges of intermediate duration and showed imbalanced expression of KCNJ2 alleles, pointing toward a cis-regulatory difference at this locus, relative to electric organ discharge duration. KLF5 is a transcription factor potentially balancing potassium channel gene expression, a crucial process for the formation of an electric organ discharge. Unraveling the genetic basis of the species-specific modulation of the electric organ discharge in Campylomormyrus is crucial for understanding the adaptive radiation of this emerging model taxon of ecological (perhaps even sympatric) speciation.
Collapse
Affiliation(s)
- Feng Cheng
- Unit of Evolutionary Biology/Systematic Zoology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Alice B Dennis
- Unit of Evolutionary Biology/Systematic Zoology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Laboratory of Adaptive Evolution and Genomics, Research Unit of Environmental and Evolutionary Biology, Institute of Life, Earth & Environment, University of Namur, Namur, Belgium
| | - Otto Baumann
- Department of Animal Physiology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Frank Kirschbaum
- Unit of Evolutionary Biology/Systematic Zoology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Department of Crop and Animal Science, Faculty of Life Sciences, Humboldt University, Berlin, Germany
| | - Salim Abdelilah-Seyfried
- Department of Animal Physiology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Ralph Tiedemann
- Unit of Evolutionary Biology/Systematic Zoology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| |
Collapse
|
2
|
Bray IE, Alshami IJJ, Kudoh T. The diversity and evolution of electric organs in Neotropical knifefishes. EvoDevo 2022; 13:9. [PMID: 35365204 PMCID: PMC8973549 DOI: 10.1186/s13227-022-00194-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 02/28/2022] [Indexed: 12/03/2022] Open
Abstract
The Gymnotiformes, also known as the South American or Neotropical knifefishes, include the strongly electric Electrophorus electricus and many other weakly electric species. These fish possess specialised electric organs that are able to release electric discharges into the water, for electrolocation and communication, and sometimes for predation and defence. All Gymnotiform species possess a myogenic electric organ (mEO) derived from the muscle tissue, and members of the Apteronotidae family uniquely possess a neurogenic electric organ (nEOs) derived from the nervous tissue. A mEO may consist of ‘Type A’ electrocytes that develop within the tail muscle (for example, in Apteronotus leptorhynchus), or ‘Type B’ electrocytes that develop below the tail muscle (for example, in Brachyhypopomus gauderio). In this review, we discuss the diversity in the anatomy, electric discharge and development of electric organs found in different Gymnotiform species, as well as the ecological and environmental factors that have likely contributed to this diversity. We then describe various hypotheses regarding the evolution of electric organs, and discuss the potential evolutionary origin of the nEO: a pair of nerve cords that are located on either side of the aorta in B. gauderio, and which may have expanded and developed into a nEO in the Apteronotidae family during its evolution from a common ancestral species. Finally, we compare potential Gymnotiform phylogenies and their supporting evidence.
Collapse
Affiliation(s)
- Isabelle E Bray
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Ilham J J Alshami
- Department of Fisheries and Marine Resources, College of Agriculture, University of Basrah, Basrah, Iraq
| | - Tetsuhiro Kudoh
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK.
| |
Collapse
|
3
|
Sternopygus macrurus electric organ transcriptome and cell size exhibit insensitivity to short-term electrical inactivity. ACTA ACUST UNITED AC 2016; 110:233-244. [PMID: 27864094 DOI: 10.1016/j.jphysparis.2016.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/03/2016] [Accepted: 11/13/2016] [Indexed: 11/22/2022]
Abstract
Electrical activity is an important regulator of cellular function and gene expression in electrically excitable cell types. In the weakly electric teleost fish Sternopygus macrurus, electrocytes, i.e., the current-producing cells of the electric organ, derive from a striated muscle lineage. Mature electrocytes are larger than muscle fibers, do not contain sarcomeres, and are driven continuously at frequencies higher than those exerted on muscle cells. Previous work showed that the removal of electrical activity by spinal cord transection (ST) for two and five weeks led to an upregulation of some sarcomeric proteins and a decrease in electrocyte size. To test whether changes in gene transcription preceded these phenotypic changes, we determined the sensitivity of electrocyte gene expression to electrical inactivity periods of two and five days after ST. Whole tissue gene expression profiles using deep RNA sequencing showed minimal alterations in the levels of myogenic transcription factor and sarcomeric transcripts after either ST period. Moreover, while analysis of differentially expressed genes showed a transient upregulation of genes associated with proteolytic mechanisms at two days and an increase in mRNA levels of cytoskeletal genes at five days after electrical silencing, electrocyte size was not affected. Electrical inactivity also resulted in the downregulation of genes that were classified into enriched clusters associated with functions of axon migration and synapse structure. Overall, these data demonstrate that unlike tissues in the myogenic lineage in other vertebrate species, regulation of gene transcription and cell size in the muscle-like electrocytes of S. macrurus is highly insensitive to short-term electrical inactivity. Moreover, together with data obtained from control and long-term ST studies, the present data suggest that neural input might influence post-transcriptional processes to affect the mature electrocyte phenotype.
Collapse
|
4
|
Pitchers WR, Constantinou SJ, Losilla M, Gallant JR. Electric fish genomics: Progress, prospects, and new tools for neuroethology. ACTA ACUST UNITED AC 2016; 110:259-272. [PMID: 27769923 DOI: 10.1016/j.jphysparis.2016.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/06/2016] [Accepted: 10/16/2016] [Indexed: 01/01/2023]
Abstract
Electric fish have served as a model system in biology since the 18th century, providing deep insight into the nature of bioelectrogenesis, the molecular structure of the synapse, and brain circuitry underlying complex behavior. Neuroethologists have collected extensive phenotypic data that span biological levels of analysis from molecules to ecosystems. This phenotypic data, together with genomic resources obtained over the past decades, have motivated new and exciting hypotheses that position the weakly electric fish model to address fundamental 21st century biological questions. This review article considers the molecular data collected for weakly electric fish over the past three decades, and the insights that data of this nature has motivated. For readers relatively new to molecular genetics techniques, we also provide a table of terminology aimed at clarifying the numerous acronyms and techniques that accompany this field. Next, we pose a research agenda for expanding genomic resources for electric fish research over the next 10years. We conclude by considering some of the exciting research prospects for neuroethology that electric fish genomics may offer over the coming decades, if the electric fish community is successful in these endeavors.
Collapse
Affiliation(s)
- William R Pitchers
- Dept. of Integrative Biology, Michigan State University, 288 Farm Lane RM 203, East Lansing, MI 48824, USA.
| | - Savvas J Constantinou
- Dept. of Integrative Biology, Michigan State University, 288 Farm Lane RM 203, East Lansing, MI 48824, USA
| | - Mauricio Losilla
- Dept. of Integrative Biology, Michigan State University, 288 Farm Lane RM 203, East Lansing, MI 48824, USA
| | - Jason R Gallant
- Dept. of Integrative Biology, Michigan State University, 288 Farm Lane RM 203, East Lansing, MI 48824, USA.
| |
Collapse
|
5
|
Pinch M, Güth R, Samanta MP, Chaidez A, Unguez GA. The myogenic electric organ of Sternopygus macrurus: a non-contractile tissue with a skeletal muscle transcriptome. PeerJ 2016; 4:e1828. [PMID: 27114860 PMCID: PMC4841239 DOI: 10.7717/peerj.1828] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 02/29/2016] [Indexed: 12/13/2022] Open
Abstract
In most electric fish species, the electric organ (EO) derives from striated muscle cells that suppress many muscle properties. In the gymnotiform Sternopygus macrurus, mature electrocytes, the current-producing cells of the EO, do not contain sarcomeres, yet they continue to make some cytoskeletal and sarcomeric proteins and the muscle transcription factors (MTFs) that induce their expression. In order to more comprehensively examine the transcriptional regulation of genes associated with the formation and maintenance of the contractile sarcomere complex, results from expression analysis using qRT-PCR were informed by deep RNA sequencing of transcriptomes and miRNA compositions of muscle and EO tissues from adult S. macrurus. Our data show that: (1) components associated with the homeostasis of the sarcomere and sarcomere-sarcolemma linkage were transcribed in EO at levels similar to those in muscle; (2) MTF families associated with activation of the skeletal muscle program were not differentially expressed between these tissues; and (3) a set of microRNAs that are implicated in regulation of the muscle phenotype are enriched in EO. These data support the development of a unique and highly specialized non-contractile electrogenic cell that emerges from a striated phenotype and further differentiates with little modification in its transcript composition. This comprehensive analysis of parallel mRNA and miRNA profiles is not only a foundation for functional studies aimed at identifying mechanisms underlying the transcription-independent myogenic program in S. macrurus EO, but also has important implications to many vertebrate cell types that independently activate or suppress specific features of the skeletal muscle program.
Collapse
Affiliation(s)
- Matthew Pinch
- Department of Biology, New Mexico State University, Las Cruces, NM, United States
| | - Robert Güth
- Department of Biology, New Mexico State University, Las Cruces, NM, United States
| | | | - Alexander Chaidez
- Department of Biology, New Mexico State University, Las Cruces, NM, United States
| | - Graciela A. Unguez
- Department of Biology, New Mexico State University, Las Cruces, NM, United States
| |
Collapse
|
6
|
Zhu K, Chen L, Zhao J, Wang H, Wang W, Li Z, Wang H. Molecular characterization and expression patterns of myogenin in compensatory growth of Megalobrama amblycephala. Comp Biochem Physiol B Biochem Mol Biol 2014; 170:10-7. [PMID: 24440962 DOI: 10.1016/j.cbpb.2014.01.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 01/05/2014] [Accepted: 01/09/2014] [Indexed: 10/25/2022]
Abstract
Myogenin (myog) is a muscle-specific basic helix-loop-helix (bHLH) transcription factor that plays an essential role in regulating skeletal muscle development and growth. To investigate molecular characterization of myog and the effect of starvation/refeeding on the gene expression, we isolated the myog cDNA sequence and analyzed the expression patterns using quantitative real-time polymerase chain reaction in Megalobrama amblycephala. Sequence analysis indicated that M. amblycephala myog shared an analogous structure with the highly conserved His/Cys-rich, bHLH and C-terminal helix III domains with other vertebrates. Sequence alignment and phylogenetic tree showed that M. amblycephala myog had the highest identity with the homologues of Ctenopharyngodon idella and Cyprinus carpio. Spatio-temporal expression patterns revealed that myog mRNA levels at the segmentation period and 12 h post-hatching (hph) were significantly higher than at other development stages (P<0.05). Furthermore, the highest myog expression level was predominantly observed in white muscle compared with the other types of muscle. Fish body weight continuously decreased during 21-day starvation and then significantly increased after 7days of refeeding and reached the similar level to the control at 21days of refeeding, indicating that the pattern of complete compensatory growth possibly occurred in M. amblycephala; meanwhile, the relative somatic growth rate after refeeding was also dramatically higher than the control group. In addition, the myog expression decreased during 21days of starvation and then exhibited a strong rebound effect after 7days of refeeding and subsequently declined gradually to the control level by 21days of refeeding.
Collapse
Affiliation(s)
- Kecheng Zhu
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery, Huazhong Agricultural University, Wuhan, 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China
| | - Liping Chen
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinkun Zhao
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery, Huazhong Agricultural University, Wuhan, 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China
| | - Huijuan Wang
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery, Huazhong Agricultural University, Wuhan, 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China
| | - Weimin Wang
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery, Huazhong Agricultural University, Wuhan, 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China
| | - Zhong Li
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Huanling Wang
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery, Huazhong Agricultural University, Wuhan, 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China.
| |
Collapse
|
7
|
Güth R, Pinch M, Unguez GA. Mechanisms of muscle gene regulation in the electric organ of Sternopygus macrurus. ACTA ACUST UNITED AC 2014; 216:2469-77. [PMID: 23761472 DOI: 10.1242/jeb.082404] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Animals perform a remarkable diversity of movements through the coordinated mechanical contraction of skeletal muscle. This capacity for a wide range of movements is due to the presence of muscle cells with a very plastic phenotype that display many different biochemical, physiological and morphological properties. What factors influence the maintenance and plasticity of differentiated muscle fibers is a fundamental question in muscle biology. We have exploited the remarkable potential of skeletal muscle cells of the gymnotiform electric fish Sternopygus macrurus to trans-differentiate into electrocytes, the non-contractile electrogenic cells of the electric organ (EO), to investigate the mechanisms that regulate the skeletal muscle phenotype. In S. macrurus, mature electrocytes possess a phenotype that is intermediate between muscle and non-muscle cells. How some genes coding for muscle-specific proteins are downregulated while others are maintained, and novel genes are upregulated, is an intriguing problem in the control of skeletal muscle and EO phenotype. To date, the intracellular and extracellular factors that generate and maintain distinct patterns of gene expression in muscle and EO have not been defined. Expression studies in S. macrurus have started to shed light on the role that transcriptional and post-transcriptional events play in regulating specific muscle protein systems and the muscle phenotype of the EO. In addition, these findings also represent an important step toward identifying mechanisms that affect the maintenance and plasticity of the muscle cell phenotype for the evolution of highly specialized non-contractile tissues.
Collapse
Affiliation(s)
- Robert Güth
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA
| | | | | |
Collapse
|
8
|
Abstract
Weakly electric gymnotiform and mormyrid fish generate and detect weak electric fields to image their worlds and communicate. These multi-purpose electric signals are generated by electrocytes, the specialized electric organ (EO) cells that produce the electric organ discharge (EOD). Just over 50 years ago the first experimental analyses of electrocyte physiology demonstrated that the EOD is produced and shaped by the timing and waveform of electrocyte action potentials (APs). Electrocytes of some species generate a single AP from a distinct region of excitable membrane, and this AP waveform determines EOD waveform. In other species, electrocytes possess two independent regions of excitable membrane that generate asynchronous APs with different waveforms, thereby increasing EOD complexity. Signal complexity is further enhanced in some gymnotiforms by the spatio-temporal activation of distinct EO regions with different electrocyte properties. For many mormyrids, additional EOD waveform components are produced by APs that propagate along stalks that connect postsynaptic regions to the main body of the electrocyte. I review here the history of research on electrocyte physiology in weakly electric fish, as well as recent discoveries of key phenomena not anticipated during early work in this field. Recent areas of investigation include the regulation of electrocyte activity by steroid and peptide hormones, the molecular evolution of electrocyte ion channels, and the evolutionary selection of ion channels expressed in excitable cells. These emerging research areas have generated renewed interest in electrocyte function and clear future directions for research addressing a broad range of new and important questions.
Collapse
Affiliation(s)
- Michael R Markham
- Department of Biology, The University of Oklahoma, Norman, OK 73019, USA.
| |
Collapse
|
9
|
Unguez GA. Electric fish: new insights into conserved processes of adult tissue regeneration. J Exp Biol 2013; 216:2478-86. [PMID: 23761473 PMCID: PMC3680508 DOI: 10.1242/jeb.082396] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 12/13/2012] [Indexed: 02/06/2023]
Abstract
Biology is replete with examples of regeneration, the process that allows animals to replace or repair cells, tissues and organs. As on land, vertebrates in aquatic environments experience the occurrence of injury with varying frequency and to different degrees. Studies demonstrate that ray-finned fishes possess a very high capacity to regenerate different tissues and organs when they are adults. Among fishes that exhibit robust regenerative capacities are the neotropical electric fishes of South America (Teleostei: Gymnotiformes). Specifically, adult gymnotiform electric fishes can regenerate injured brain and spinal cord tissues and restore amputated body parts repeatedly. We have begun to identify some aspects of the cellular and molecular mechanisms of tail regeneration in the weakly electric fish Sternopygus macrurus (long-tailed knifefish) with a focus on regeneration of skeletal muscle and the muscle-derived electric organ. Application of in vivo microinjection techniques and generation of myogenic stem cell markers are beginning to overcome some of the challenges owing to the limitations of working with non-genetic animal models with extensive regenerative capacity. This review highlights some aspects of tail regeneration in S. macrurus and discusses the advantages of using gymnotiform electric fishes to investigate the cellular and molecular mechanisms that produce new cells during regeneration in adult vertebrates.
Collapse
Affiliation(s)
- Graciela A Unguez
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA.
| |
Collapse
|
10
|
Gallant JR, Hopkins CD, Deitcher DL. Differential expression of genes and proteins between electric organ and skeletal muscle in the mormyrid electric fish Brienomyrus brachyistius. ACTA ACUST UNITED AC 2012; 215:2479-94. [PMID: 22723488 DOI: 10.1242/jeb.063222] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Electric organs (EOs) have evolved independently in vertebrates six times from skeletal muscle (SM). The transcriptional changes accompanying this developmental transformation are not presently well understood. Mormyrids and gymnotiforms are two highly convergent groups of weakly electric fish that have independently evolved EOs: while much is known about development and gene expression in gymnotiforms, very little is known about development and gene expression in mormyrids. This lack of data limits prospects for comparative work. We report here on the characterization of 28 differentially expressed genes between SM and EO tissues in the mormyrid Brienomyrus brachyistius, which were identified using suppressive subtractive hybridization (SSH). Forward and reverse SSH was performed on tissue samples of EO and SM resulting in one cDNA library enriched with mRNAs expressed in EO, and a second library representing mRNAs unique to SM. Nineteen expressed sequence tags (ESTs) were identified in EO and nine were identified in SM using BLAST searching of Danio rerio sequences available in NCBI databases. We confirmed differential expression of all 28 ESTs using RT-PCR. In EO, these ESTs represent four classes of proteins: (1) ion pumps, including the α- and β-subunits of Na(+)/K(+)-ATPase, and a plasma membrane Ca(2+)-ATPase; (2) Ca(2+)-binding protein S100, several parvalbumin paralogs, calcyclin-binding protein and neurogranin; (3) sarcomeric proteins troponin I, myosin heavy chain and actin-related protein complex subunit 3 (Arcp3); and (4) the transcription factors enhancer of rudimentary homolog (ERH) and myocyte enhancer factor 2A (MEF2A). Immunohistochemistry and western blotting were used to demonstrate the translation of seven proteins (myosin heavy chain, Na(+)/K(+)-ATPase, plasma membrane Ca(2+)-ATPase, MEF2, troponin and parvalbumin) and their cellular localization in EO and SM. Our findings suggest that mormyrids express several paralogs of muscle-specific genes and the proteins they encode in EOs, unlike gymnotiforms, which may post-transcriptionally repress several sarcomeric proteins. In spite of the similarity in the physiology and function of EOs in mormyrids and gymnotiforms, this study indicates that the mechanisms of development in the two groups may be considerably different.
Collapse
Affiliation(s)
- Jason R Gallant
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA.
| | | | | |
Collapse
|
11
|
Weber CM, Martindale MQ, Tapscott SJ, Unguez GA. Activation of Pax7-positive cells in a non-contractile tissue contributes to regeneration of myogenic tissues in the electric fish S. macrurus. PLoS One 2012; 7:e36819. [PMID: 22685526 PMCID: PMC3365140 DOI: 10.1371/journal.pone.0036819] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 04/15/2012] [Indexed: 11/19/2022] Open
Abstract
The ability to regenerate tissues is shared across many metazoan taxa, yet the type and extent to which multiple cellular mechanisms come into play can differ across species. For example, urodele amphibians can completely regenerate all lost tissues, including skeletal muscles after limb amputation. This remarkable ability of urodeles to restore entire limbs has been largely linked to a dedifferentiation-dependent mechanism of regeneration. However, whether cell dedifferentiation is the fundamental factor that triggers a robust regeneration capacity, and whether the loss or inhibition of this process explains the limited regeneration potential in other vertebrates is not known. Here, we studied the cellular mechanisms underlying the repetitive regeneration of myogenic tissues in the electric fish S. macrurus. Our in vivo microinjection studies of high molecular weight cell lineage tracers into single identified adult myogenic cells (muscle or noncontractile muscle-derived electrocytes) revealed no fragmentation or cellularization proximal to the amputation plane. In contrast, ultrastructural and immunolabeling studies verified the presence of myogenic stem cells that express the satellite cell marker Pax7 in mature muscle fibers and electrocytes of S. macrurus. These data provide the first example of Pax-7 positive muscle stem cells localized within a non-contractile electrogenic tissue. Moreover, upon amputation, Pax-7 positive cells underwent a robust replication and were detected exclusively in regions that give rise to myogenic cells and dorsal spinal cord components revealing a regeneration process in S. macrurus that is dependent on the activation of myogenic stem cells for the renewal of both skeletal muscle and the muscle-derived electric organ. These data are consistent with the emergent concept in vertebrate regeneration that different tissues provide a distinct progenitor cell population to the regeneration blastema, and these progenitor cells subsequently restore the original tissue.
Collapse
Affiliation(s)
- Christopher M. Weber
- Biology Department, New Mexico State University, Las Cruces, New Mexico, United States of America
| | - Mark Q. Martindale
- Kewalo Marine Lab, University of Hawaii, Honolulu, Hawaii, United States of America
| | - Stephen J. Tapscott
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Graciela A. Unguez
- Biology Department, New Mexico State University, Las Cruces, New Mexico, United States of America
| |
Collapse
|
12
|
Kim HJ, Güth R, Jonsson CB, Unguez GA. S. macrurus myogenic regulatory factors (MRFs) induce mammalian skeletal muscle differentiation; evidence for functional conservation of MRFs. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2009; 53:993-1002. [PMID: 19598116 DOI: 10.1387/ijdb.082672hk] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The current-producing cells of the electric organ, i.e., electrocytes, in Sternopygus macrurus derive from skeletal muscle fibers. Mature electrocytes are not contractile, but they do retain some muscle proteins, are multinucleated, and receive cholinergic innervation. Electrocytes express the myogenic regulatory factors (MRFs) MyoD, myogenin, Myf5 and MRF4 despite their incomplete muscle phenotype. Although S. macrurus MRFs share functional domains which are highly conserved and their expression is confined to the myogenic lineage, their capability to induce the muscle phenotype has not been determined. To test the functional conservation of S. macrurus MRFs to transcriptionally activate skeletal muscle gene expression and induce the myogenic program, we transiently over-expressed S. macrurus MyoD (SmMyoD) and myogenin (SmMyoG) in mouse C3H/10T1/2 and NIH3T3 embryonic cells. RT-PCR and immunolabeling studies showed that SmMyoD and SmMyoG can efficiently convert these two cell lines into multinucleated myotubes which expressed differentiated muscle markers. The levels of myogenic induction by SmMyoD and SmMyoG were comparable to those obtained with mouse MRF homologs. Furthermore, SmMyoD and SmMyoG proteins were able to induce mouse MyoD and myogenin in C3H/10T1/2 cells. We conclude that S. macrurus MRFs are functionally conserved as they can transcriptionally activate skeletal muscle gene expression and induce the myogenic program in mammalian non-muscle cells. Hence, these data suggest that the partial muscle phenotype of electrocytes is not likely due to differences in the MRF-dependent transcriptional program between skeletal muscle and electric organ.
Collapse
Affiliation(s)
- Hyun-Jung Kim
- Department of Biology, New Mexico State University, Las Cruces, 88003, USA
| | | | | | | |
Collapse
|
13
|
Andersen Ø, Dahle SW, van Nes S, Bardal T, Tooming-Klunderud A, Kjørsvik E, Galloway TF. Differential spatio-temporal expression and functional diversification of the myogenic regulatory factors MyoD1 and MyoD2 in Atlantic halibut (Hippoglossus hippoglossus). Comp Biochem Physiol B Biochem Mol Biol 2009; 154:93-101. [PMID: 19454321 DOI: 10.1016/j.cbpb.2009.05.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 04/30/2009] [Accepted: 05/11/2009] [Indexed: 10/20/2022]
Abstract
Development of the vertebrate skeletal muscle is orchestrated by the myogenic regulatory factors MyoD, Myf5, myogenin and MRF4, which likely arose from the duplications of a single ancestral gene early in vertebrate evolution. We have isolated two myod genes from Atlantic halibut and examined their differential expression during embryogenesis using quantitative PCR and in situ hybridization to address their functional roles in this asymmetrically organized flatfish. myod1 was initially maternally expressed, while myod2 mRNA was first detectable during gastrulation. The myod1 mRNA levels predominated throughout somitogenesis, and both slow and fast muscle precursor cells displayed the bilateral symmetric myod1 signal during the formation of the symmetric somite pairs. In contrast, myod2 was left-right asymmetrically expressed in the fast muscle precursors. The random expression of myod2 was not associated with the right-sided eye migration and the development of thicker fast skeletal muscle on the eyed side than on the blind side. The nucleotide substitution analysis indicated that the teleost MyoDs essentially have evolved under purifying selection, but a subset of amino acid sites under strong positive selection were identified in the MyoD2 branch. Altogether, halibut MyoD1 seems to have retained the central role of MyoD in driving skeletal myogenesis, whereas the function of MyoD2 is uncertain in this flatfish species.
Collapse
|
14
|
Kim JA, Laney C, Curry J, Unguez GA. Expression of myogenic regulatory factors in the muscle-derived electric organ of Sternopygus macrurus. ACTA ACUST UNITED AC 2008; 211:2172-84. [PMID: 18552307 DOI: 10.1242/jeb.016592] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
In most groups of electric fish, the current-producing cells of electric organs (EOs) derive from striated muscle fibers but retain some phenotypic characteristics of their precursor muscle cells. Given the role of the MyoD family of myogenic regulatory factors (MRFs) in the transcriptional activation of the muscle program in vertebrates, we examined their expression in the electrocytes of the gymnotiform Sternopygus macrurus. We estimated the number of MRF genes in the S. macrurus genome and our Southern blot analyses revealed a single MyoD, myogenin, myf5 and MRF4 gene. Quantitative RT-PCR showed that muscle and EO transcribe all MRF genes. With the exception of MyoD, the endogenous levels of myogenin, myf5 and MRF4 transcripts in electrocytes were greater than those detected in muscle fibers. These data indicate that MRF expression levels are not sufficient to predict the level to which the muscle program is manifested. Qualitative expression analysis of MRF co-regulators MEF2C, Id1 and Id2 also revealed these genes not to be unique to either muscle or EO, and detected similar expression patterns in the two tissues. Therefore, the partial muscle program of the EO is not associated with a partial expression of MRFs or with apparent distinct levels of some MRF co-factors. In addition, electrical inactivation by spinal cord transection (ST) resulted in the up-regulation of some muscle proteins in electrocytes without an accompanying increase in MRF transcript levels or notable changes in the co-factors MEF2C, Id1 and Id2. These findings suggest that the neural regulation of the skeletal muscle program via MRFs in S. macrurus might differ from that of their mammalian counterparts. Together, these data further our understanding of the molecular processes involved in the plasticity of the vertebrate skeletal muscle program that brings about the muscle-like phenotype of the non-contractile electrogenic cells in S. macrurus.
Collapse
Affiliation(s)
- Jung A Kim
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA
| | | | | | | |
Collapse
|
15
|
Sun S, Wang Z, Hao Y. Osterix overexpression enhances osteoblast differentiation of muscle satellite cells in vitro. Int J Oral Maxillofac Surg 2008; 37:350-6. [PMID: 18272339 DOI: 10.1016/j.ijom.2007.11.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Revised: 09/15/2007] [Accepted: 11/28/2007] [Indexed: 11/30/2022]
Abstract
Muscle satellite cells have long been considered a distinct myogenic lineage responsible for postnatal growth, repair and maintenance of skeletal muscle. Recent studies have demonstrated that they are multi-potential. Osterix (Osx), a novel zinc-finger-containing transcription factor of the sp family, is required for osteoblast differentiation and bone formation. It was hypothesized that Osx overexpression would enhance osteoblast differentiation of muscle satellite cells in vitro. Recombinant adenovirus-mediated Osx gene (Ad-Osx) was constructed and used to transfect muscle satellite cells. Osx overexpression inhibited myogenesis, as demonstrated by suppression of MyoD and myogenin mRNA levels and reduced myotube formation. Muscle satellite cells transduced with Ad-Osx exhibited apparent osteoblast differentiation as determined by the expression of related osteoblastic genes, increased activity of alkaline phosphatase and the formation of mineralized nodules. These results confirmed the ability of Osx to enhance osteoblast differentiation of muscle satellite cells in vitro, and the competence of muscle satellite cells as promising seed cells for bone tissue engineering.
Collapse
Affiliation(s)
- S Sun
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Tongji University, Shanghai, China
| | | | | |
Collapse
|
16
|
Cuellar H, Kim JA, Unguez GA. Evidence of post-transcriptional regulation in the maintenance of a partial muscle phenotype by electrogenic cells of S. macrurus. FASEB J 2006; 20:2540. [PMID: 17077280 DOI: 10.1096/fj.06-6474fje] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Electrocytes, the current-producing cells of electric organs (EOs) in electric fish, are unique in that they derive from striated muscle and they possess biochemical characteristics of both muscle and non-muscle cells. In the freshwater teleost Sternopygus macrurus, electrocytes are multinucleated cells that do not contract yet retain expression of some proteins common to skeletal muscle cells. Given the role that transcriptional regulation plays in the activation of the myogenic program in vertebrates, we examined the expression patterns of several genes associated with multiple functions of skeletal muscle in mature electrocytes of S. macrurus. Our expression analyses detected transcripts for alpha-actin, alpha-acetylcholine (ACh) receptor (alpha-AChR), desmin, muscle creatine kinase (MCK), myosin heavy chain (MHC) isoforms, titin, tropomyosin, and troponin-T genes in the EO. However, immunolabeling studies revealed that electrocytes do not contain MCK, MHCs, or tropomyosin or troponin-T proteins. These results underscore the contribution of gene regulatory mechanisms in the maintenance of the muscle-like phenotype of EO that may be transcriptional-independent. We also report the classification and frequency of distinct transcripts from a random selection of 420 clones from an EO cDNA library. This is the first characterization of expressed genes in an EO, and it is an important step toward identifying mechanisms that affect different muscle protein systems for the evolution of highly specialized noncontractile tissues. Evidence of post-transcriptional regulation in the maintenance of a partial muscle phenotype by electrogenic cells of S. macrurus.
Collapse
Affiliation(s)
- Heriberto Cuellar
- Department of Biology, Foster Hall, New Mexico State University, Las Cruces, NM 88003, USA
| | | | | |
Collapse
|