1
|
Evolution of Snail-mediated regulation of neural crest and placodes from an ancient role in bilaterian neurogenesis. Dev Biol 2019; 453:180-190. [PMID: 31211947 DOI: 10.1016/j.ydbio.2019.06.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 06/14/2019] [Accepted: 06/14/2019] [Indexed: 12/26/2022]
Abstract
A major challenge in vertebrate evolution is to identify the gene regulatory mechanisms that facilitated the origin of neural crest cells and placodes from ancestral precursors in invertebrates. Here, we show in lamprey, a primitively jawless vertebrate, that the transcription factor Snail is expressed simultaneously throughout the neural plate, neural plate border, and pre-placodal ectoderm in the early embryo and is then upregulated in the CNS throughout neurogenesis. Using CRISPR/Cas9-mediated genome editing, we demonstrate that Snail plays functional roles in all of these embryonic domains or their derivatives. We first show that Snail patterns the neural plate border by repressing lateral expansion of Pax3/7 and activating nMyc and ZicA. We also present evidence that Snail is essential for DlxB-mediated establishment of the pre-placodal ectoderm but is not required for SoxB1a expression during formation of the neural plate proper. At later stages, Snail regulates formation of neural crest-derived and placode-derived PNS neurons and controls CNS neural differentiation in part by promoting cell survival. Taken together with established functions of invertebrate Snail genes, we identify a pan-bilaterian mechanism that extends to jawless vertebrates for regulating neurogenesis that is dependent on Snail transcription factors. We propose that ancestral vertebrates deployed an evolutionarily conserved Snail expression domain in the CNS and PNS for neurogenesis and then acquired derived functions in neural crest and placode development by recruitment of regulatory genes downstream of neuroectodermal Snail activity. Our results suggest that Snail regulatory mechanisms in vertebrate novelties such as the neural crest and placodes may have emerged from neurogenic roles that originated early in bilaterian evolution.
Collapse
|
2
|
The neural crest and evolution of the head/trunk interface in vertebrates. Dev Biol 2018; 444 Suppl 1:S60-S66. [PMID: 29408469 DOI: 10.1016/j.ydbio.2018.01.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 01/24/2018] [Accepted: 01/24/2018] [Indexed: 12/31/2022]
Abstract
The migration and distribution patterns of neural crest (NC) cells reflect the distinct embryonic environments of the head and trunk: cephalic NC cells migrate predominantly along the dorsolateral pathway to populate the craniofacial and pharyngeal regions, whereas trunk crest cells migrate along the ventrolateral pathways to form the dorsal root ganglia. These two patterns thus reflect the branchiomeric and somitomeric architecture, respectively, of the vertebrate body plan. The so-called vagal NC occupies a postotic, intermediate level between the head and trunk NC. This level of NC gives rise to both trunk- and cephalic-type (circumpharyngeal) NC cells. The anatomical pattern of the amphioxus, a basal chordate, suggests that somites and pharyngeal gills coexist along an extensive length of the body axis, indicating that the embryonic environment is similar to that of vertebrate vagal NC cells and may have been ancestral for vertebrates. The amniote-like condition in which the cephalic and trunk domains are distinctly separated would have been brought about, in part, by anteroposterior reduction of the pharyngeal domain.
Collapse
|
3
|
York JR, Yuan T, Zehnder K, McCauley DW. Lamprey neural crest migration is Snail-dependent and occurs without a differential shift in cadherin expression. Dev Biol 2017. [PMID: 28624345 DOI: 10.1016/j.ydbio.2017.06.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The acquisition of neural crest cells was a key step in the origin of the vertebrate body plan. An outstanding question is how neural crest cells acquired their ability to undergo an epithelial-mesenchymal transition (EMT) and migrate extensively throughout the vertebrate embryo. We tested if differential regulation of classical cadherins-a highly conserved feature of neural crest EMT and migration in jawed vertebrates-mediates these cellular behaviors in lamprey, a basal jawless vertebrate. Lamprey has single copies of the type I and type II classical cadherins (CadIA and CadIIA). CadIIA is expressed in premigratory neural crest, and requires the transcription factor Snail for proper expression, yet CadIA is never expressed in the neural tube during neural crest development, suggesting that differential regulation of classical cadherin expression is not required to initiate neural crest migration in basal vertebrates. We hypothesize that neural crest cells evolved by retention of regulatory programs linking distinct mesenchymal and multipotency properties, and emigrated from the neural tube without differentially regulating type I/type II cadherins. Our results point to the coupling of mesenchymal state and multipotency as a key event facilitating the origin of migratory neural crest cells.
Collapse
Affiliation(s)
- Joshua R York
- Department of Biology, University of Oklahoma, 730 Van Vleet Oval, Norman, OK 73019, USA
| | - Tian Yuan
- Department of Biology, University of Oklahoma, 730 Van Vleet Oval, Norman, OK 73019, USA
| | - Kevin Zehnder
- Department of Biology, University of Oklahoma, 730 Van Vleet Oval, Norman, OK 73019, USA
| | - David W McCauley
- Department of Biology, University of Oklahoma, 730 Van Vleet Oval, Norman, OK 73019, USA.
| |
Collapse
|
4
|
Hudson C, Sirour C, Yasuo H. Snail mediates medial-lateral patterning of the ascidian neural plate. Dev Biol 2015; 403:172-9. [PMID: 25962578 DOI: 10.1016/j.ydbio.2015.04.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 04/20/2015] [Accepted: 04/24/2015] [Indexed: 11/30/2022]
Abstract
The ascidian neural plate exhibits a regular, grid-like arrangement of cells. Patterning of the neural plate across the medial-lateral axis is initiated by bilateral sources of Nodal signalling, such that Nodal signalling induces expression of lateral neural plate genes and represses expression of medial neural plate genes. One of the earliest lateral neural plate genes induced by Nodal signals encodes the transcription factor Snail. Here, we show that Snail is a critical downstream factor mediating this Nodal-dependent patterning. Using gain and loss of function approaches, we show that Snail is required to repress medial neural plate gene expression at neural plate stages and to maintain the lateral neural tube genetic programme at later stages. A comparison of these results to those obtained following Nodal gain and loss of function indicates that Snail mediates a subset of Nodal functions. Consistently, overexpression of Snail can partially rescue a Nodal inhibition phenotype. We conclude that Snail is an early component of the gene regulatory network, initiated by Nodal signals, that patterns the ascidian neural plate.
Collapse
Affiliation(s)
- Clare Hudson
- CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer, Observatoire Océanologique, 06230 Villefranche-sur-mer, France; Sorbonne Universités, UPMC Univ Paris 06, Laboratoire de Biologie du Développement de Villefranche-sur-mer, Observatoire Océanologique, 06230 Villefranche-sur-mer, France.
| | - Cathy Sirour
- CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer, Observatoire Océanologique, 06230 Villefranche-sur-mer, France; Sorbonne Universités, UPMC Univ Paris 06, Laboratoire de Biologie du Développement de Villefranche-sur-mer, Observatoire Océanologique, 06230 Villefranche-sur-mer, France
| | - Hitoyoshi Yasuo
- CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer, Observatoire Océanologique, 06230 Villefranche-sur-mer, France; Sorbonne Universités, UPMC Univ Paris 06, Laboratoire de Biologie du Développement de Villefranche-sur-mer, Observatoire Océanologique, 06230 Villefranche-sur-mer, France
| |
Collapse
|
5
|
Muñoz WA, Trainor PA. Neural crest cell evolution: how and when did a neural crest cell become a neural crest cell. Curr Top Dev Biol 2015; 111:3-26. [PMID: 25662256 DOI: 10.1016/bs.ctdb.2014.11.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
As vertebrates evolved from protochordates, they shifted to a more predatory lifestyle, and radiated and adapted to most niches of the planet. This process was largely facilitated by the generation of novel vertebrate head structures, which were derived from neural crest cells (NCC). The neural crest is a unique vertebrate cell population that is frequently termed the "fourth germ layer" because it forms in conjunction with the other germ layers and contributes to a diverse array of cell types and tissues including the craniofacial skeleton, the peripheral nervous system, and pigment cells among many other tissues and cell types. NCC are defined by their origin at the neural plate border, via an epithelial-to-mesenchymal transition (EMT), together with multipotency and polarized patterns of migration. These defining characteristics, which evolved independently in the germ layers of invertebrates, were subsequently co-opted through their gene regulatory networks to form NCC in vertebrates. Moreover, recent data suggest that the ability to undergo an EMT was one of the latter features co-opted by NCC. In this review, we discuss the potential origins of NCC and how they evolved to contribute to nearly all tissues and organs throughout the body, based on paleontological evidence together with an evaluation of the evolution of molecules involved in NCC development and their migratory cell paths.
Collapse
Affiliation(s)
- William A Muñoz
- Stowers Institute for Medical Research, Kansas City, Missouri, USA
| | - Paul A Trainor
- Stowers Institute for Medical Research, Kansas City, Missouri, USA; Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, USA.
| |
Collapse
|
6
|
Green SA, Norris RP, Terasaki M, Lowe CJ. FGF signaling induces mesoderm in the hemichordate Saccoglossus kowalevskii. Development 2013; 140:1024-33. [PMID: 23344709 DOI: 10.1242/dev.083790] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
FGFs act in vertebrate mesoderm induction and also play key roles in early mesoderm formation in ascidians and amphioxus. However, in sea urchins initial characterizations of FGF function do not support a role in early mesoderm induction, making the ancestral roles of FGF signaling and mechanisms of mesoderm specification in deuterostomes unclear. In order to better characterize the evolution of mesoderm formation, we have examined the role of FGF signaling during mesoderm development in Saccoglossus kowalevskii, an experimentally tractable representative of hemichordates. We report the expression of an FGF ligand, fgf8/17/18, in ectoderm overlying sites of mesoderm specification within the archenteron endomesoderm. Embryological experiments demonstrate that mesoderm induction in the archenteron requires contact with ectoderm, and loss-of-function experiments indicate that both FGF ligand and receptor are necessary for mesoderm specification. fgf8/17/18 gain-of-function experiments establish that FGF8/17/18 is sufficient to induce mesoderm in adjacent endomesoderm. These experiments suggest that FGF signaling is necessary from the earliest stages of mesoderm specification and is required for all mesoderm development. Furthermore, they suggest that the archenteron is competent to form mesoderm or endoderm, and that FGF signaling from the ectoderm defines the location and amount of mesoderm. When considered in a comparative context, these data support a phylogenetically broad requirement for FGF8/17/18 signaling in mesoderm specification and suggest that FGF signaling played an ancestral role in deuterostome mesoderm formation.
Collapse
Affiliation(s)
- Stephen A Green
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA.
| | | | | | | |
Collapse
|
7
|
Medeiros DM. The evolution of the neural crest: new perspectives from lamprey and invertebrate neural crest-like cells. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 2:1-15. [PMID: 23799627 DOI: 10.1002/wdev.85] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The neural crest is an embryonic cell population that gives rise to an array of tissues and structures in adult vertebrates including most of the head skeleton. Because neural crest cells (NCCs), and many of their derivatives, are unique to vertebrates, the evolution of the neural crest is thought to have potentiated vertebrate origins and diversification. However, the lack of clear NCC homologs in invertebrate chordates has made it difficult to reconstruct the evolutionary history of modern NCCs. In this review, the development of NCCs in the basal jawless vertebrate, lamprey, is compared with the development of neural crest-like cells in a range of invertebrates to deduce features of the first NCCs and their evolutionary precursors. These comparisons demonstrate that most of the defining attributes of NCCs are widespread features of invertebrate embryonic ectoderm. In addition, they suggest ancient origins for the neural border domain and chondroid skeletal tissue in the first bilaterian, and show that NCCs must have evolved in a chordate with an unduplicated invertebrate-type genome. On the basis of these observations, a stepwise model for the evolution of NCCs involving heterotopic and heterochronic activation of ancient ectodermal gene programs and new responsiveness to preexisting inducing signals is proposed. In light of the phylogenetic distribution of neural crest-like cells, the deep homology of developmental gene networks, and the central role of evolutionary loss in deuterostome evolution, this article concludes with suggestions for future studies in a broad range of bilaterians to test key aspects of this model. WIREs Dev Biol 2013, 2:1-15. doi: 10.1002/wdev.85 For further resources related to this article, please visit the WIREs website.
Collapse
|
8
|
Lakiza O, Miller S, Bunce A, Lee EMJ, McCauley DW. SoxE gene duplication and development of the lamprey branchial skeleton: Insights into development and evolution of the neural crest. Dev Biol 2011; 359:149-161. [PMID: 21889937 DOI: 10.1016/j.ydbio.2011.08.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 08/06/2011] [Accepted: 08/19/2011] [Indexed: 11/25/2022]
Abstract
SoxE genes are multifunctional transcriptional regulators that play key roles in specification and differentiation of neural crest. Three members (Sox8, Sox9, Sox10) are expressed in the neural crest and are thought to modulate the expression and activity of each other. In addition to regulating the expression of other early neural crest marker genes, SoxE genes are required for development of cartilage. Here we investigated the role of SoxE genes in development of the neural crest-derived branchial skeleton in the sea lamprey. Using a morpholino knockdown approach, we show that all three SoxE genes described in lamprey are required for branchial basket development. Our results suggest that SoxE1 and SoxE2 are required for specification of the chondrogenic neural crest. SoxE3 plays a morphogenetic role in patterning of the branchial basket and may be required for the development of mucocartilage, a tissue unique to larval lampreys. While the lamprey branchial basket develops primarily from an elastin-like major extracellular matrix protein that is specific to lampreys, fibrillar collagen is also expressed in developing branchial cartilage and may be regulated by the lamprey SoxE genes. Our data suggest that the regulation of Type II collagen by Sox9 might have been co-opted by the neural crest in development of the branchial skeleton following the divergence of agnathan and gnathostome vertebrates. Finally, our results also have implications for understanding the independent evolution of duplicated SoxE genes among agnathan and gnathostome vertebrates.
Collapse
Affiliation(s)
- Olga Lakiza
- Department of Zoology, University of Oklahoma, 730 Van Vleet Oval, Norman, OK 73019, United States
| | - Sarah Miller
- Department of Zoology, University of Oklahoma, 730 Van Vleet Oval, Norman, OK 73019, United States
| | - Ashley Bunce
- Department of Zoology, University of Oklahoma, 730 Van Vleet Oval, Norman, OK 73019, United States
| | - Eric Myung-Jae Lee
- Department of Zoology, University of Oklahoma, 730 Van Vleet Oval, Norman, OK 73019, United States
| | - David W McCauley
- Department of Zoology, University of Oklahoma, 730 Van Vleet Oval, Norman, OK 73019, United States.
| |
Collapse
|
9
|
Smith JJ, Saha NR, Amemiya CT. Genome biology of the cyclostomes and insights into the evolutionary biology of vertebrate genomes. Integr Comp Biol 2010; 50:130-7. [PMID: 21558194 PMCID: PMC3140258 DOI: 10.1093/icb/icq023] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The jawless vertebrates (lamprey and hagfish) are the closest extant outgroups to all jawed vertebrates (gnathostomes) and can therefore provide critical insight into the evolution and basic biology of vertebrate genomes. As such, it is notable that the genomes of lamprey and hagfish possess a capacity for rearrangement that is beyond anything known from the gnathostomes. Like the jawed vertebrates, lamprey and hagfish undergo rearrangement of adaptive immune receptors. However, the receptors and the mechanisms for rearrangement that are utilized by jawless vertebrates clearly evolved independently of the gnathostome system. Unlike the jawed vertebrates, lamprey and hagfish also undergo extensive programmed rearrangements of the genome during embryonic development. By considering these fascinating genome biologies in the context of proposed (albeit contentious) phylogenetic relationships among lamprey, hagfish, and gnathostomes, we can begin to understand the evolutionary history of the vertebrate genome. Specifically, the deep shared ancestry and rapid divergence of lampreys, hagfish and gnathostomes is considered evidence that the two versions of programmed rearrangement present in lamprey and hagfish (embryonic and immune receptor) were present in an ancestral lineage that existed more than 400 million years ago and perhaps included the ancestor of the jawed vertebrates. Validating this premise will require better characterization of the genome sequence and mechanisms of rearrangement in lamprey and hagfish.
Collapse
Affiliation(s)
- J J Smith
- Benaroya Research Institute at Virginia Mason, 1201 9th Avenue, Seattle, WA 98101, USA.
| | | | | |
Collapse
|
10
|
Zhang C, Klymkowsky MW. Unexpected functional redundancy between Twist and Slug (Snail2) and their feedback regulation of NF-kappaB via Nodal and Cerberus. Dev Biol 2009; 331:340-9. [PMID: 19389392 PMCID: PMC2747320 DOI: 10.1016/j.ydbio.2009.04.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Revised: 04/08/2009] [Accepted: 04/09/2009] [Indexed: 10/20/2022]
Abstract
A NF-kappaB-Twist-Snail network controls axis and mesoderm formation in Drosophila. Using translation-blocking morpholinos and hormone-regulated proteins, we demonstrate the presence of an analogous network in the early Xenopus embryo. Loss of twist (twist1) function leads to a reduction of mesoderm and neural crest markers, an increase in apoptosis, and a decrease in snail1 (snail) and snail2 (slug) mRNA levels. Injection of snail2 mRNA rescues twist's loss of function phenotypes and visa versa. In the early embryo NF-kappaB/RelA regulates twist, snail2, and snail1 mRNA levels; similarly Nodal/Smad2 regulate twist, snail2, snail1, and relA RNA levels. Both Twist and Snail2 negatively regulate levels of cerberus RNA, which encodes a Nodal, bone morphogenic protein (BMP), and Wnt inhibitor. Cerberus's anti-Nodal activity inhibits NF-kappaB activity and decreases relA RNA levels. These results reveal both conserved and unexpected regulatory interactions at the core of a vertebrate's mesodermal specification network.
Collapse
Affiliation(s)
| | - Michael W. Klymkowsky
- Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Boulder, CO 80309-0347, U.S.A
| |
Collapse
|
11
|
Kerner P, Hung J, Béhague J, Le Gouar M, Balavoine G, Vervoort M. Insights into the evolution of the snail superfamily from metazoan wide molecular phylogenies and expression data in annelids. BMC Evol Biol 2009; 9:94. [PMID: 19426549 PMCID: PMC2688512 DOI: 10.1186/1471-2148-9-94] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Accepted: 05/09/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND An important issue concerning the evolution of duplicated genes is to understand why paralogous genes are retained in a genome even though the most likely fate for a redundant duplicated gene is nonfunctionalization and thereby its elimination. Here we study a complex superfamily generated by gene duplications, the snail related genes that play key roles during animal development. We investigate the evolutionary history of these genes by genomic, phylogenetic, and expression data studies. RESULTS We systematically retrieved the full complement of snail related genes in several sequenced genomes. Through phylogenetic analysis, we found that the snail superfamily is composed of three ancestral families, snail, scratchA and scratchB. Analyses of the organization of the encoded proteins point out specific molecular signatures, indicative of functional specificities for Snail, ScratchA and ScratchB proteins. We also report the presence of two snail genes in the annelid Platynereis dumerilii, which have distinct expression patterns in the developing mesoderm, nervous system, and foregut. The combined expression of these two genes is identical to that of two independently duplicated snail genes in another annelid, Capitella spI, but different aspects of the expression patterns are differentially shared among paralogs of Platynereis and Capitella. CONCLUSION Our study indicates that the snail and scratchB families have expanded through multiple independent gene duplications in the different bilaterian lineages, and highlights potential functional diversifications of Snail and ScratchB proteins following duplications, as, in several instances, paralogous proteins in a given species show different domain organizations. Comparisons of the expression pattern domains of the two Platynereis and Capitella snail paralogs provide evidence for independent subfunctionalization events which have occurred in these two species. We propose that the snail related genes may be especially prone to subfunctionalization, and this would explain why the snail superfamily underwent so many independent duplications leading to maintenance of functional paralogs.
Collapse
Affiliation(s)
- Pierre Kerner
- Programme Development and Neurobiology, Institut Jacques Monod, UMR 7592 CNRS/Université Paris Diderot – Paris 7, 15 rue Hélène Brion, 75205 Paris Cedex 13, France
- Evolution et Développement des Métazoaires, Centre de Génétique Moléculaire- FRE 3144 CNRS, 1, av. de la terrasse, 91198 Gif-sur-Yvette, France
- UFR des Sciences du Vivant, Université Paris Diderot – Paris 7, 5, rue Marie-Andrée Lagroua Weill-Hallé, 75205 Paris Cedex 13, France
| | - Johanne Hung
- Evolution et Développement des Métazoaires, Centre de Génétique Moléculaire- FRE 3144 CNRS, 1, av. de la terrasse, 91198 Gif-sur-Yvette, France
| | - Julien Béhague
- Programme Development and Neurobiology, Institut Jacques Monod, UMR 7592 CNRS/Université Paris Diderot – Paris 7, 15 rue Hélène Brion, 75205 Paris Cedex 13, France
- Evolution et Développement des Métazoaires, Centre de Génétique Moléculaire- FRE 3144 CNRS, 1, av. de la terrasse, 91198 Gif-sur-Yvette, France
| | - Martine Le Gouar
- Evolution et Développement des Métazoaires, Centre de Génétique Moléculaire- FRE 3144 CNRS, 1, av. de la terrasse, 91198 Gif-sur-Yvette, France
| | - Guillaume Balavoine
- Programme Development and Neurobiology, Institut Jacques Monod, UMR 7592 CNRS/Université Paris Diderot – Paris 7, 15 rue Hélène Brion, 75205 Paris Cedex 13, France
- Evolution et Développement des Métazoaires, Centre de Génétique Moléculaire- FRE 3144 CNRS, 1, av. de la terrasse, 91198 Gif-sur-Yvette, France
| | - Michel Vervoort
- Programme Development and Neurobiology, Institut Jacques Monod, UMR 7592 CNRS/Université Paris Diderot – Paris 7, 15 rue Hélène Brion, 75205 Paris Cedex 13, France
- Evolution et Développement des Métazoaires, Centre de Génétique Moléculaire- FRE 3144 CNRS, 1, av. de la terrasse, 91198 Gif-sur-Yvette, France
- UFR des Sciences du Vivant, Université Paris Diderot – Paris 7, 5, rue Marie-Andrée Lagroua Weill-Hallé, 75205 Paris Cedex 13, France
| |
Collapse
|