1
|
Rey V, Menendez ST, Estupiñan O, Rodriguez A, Santos L, Tornin J, Martinez-Cruzado L, Castillo D, Ordoñez GR, Costilla S, Alvarez-Fernandez C, Astudillo A, Braña A, Rodriguez R. New Chondrosarcoma Cell Lines with Preserved Stem Cell Properties to Study the Genomic Drift During In Vitro/In Vivo Growth. J Clin Med 2019; 8:jcm8040455. [PMID: 30987403 PMCID: PMC6518242 DOI: 10.3390/jcm8040455] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/28/2019] [Accepted: 04/01/2019] [Indexed: 12/11/2022] Open
Abstract
For the cancer genomics era, there is a need for clinically annotated close-to-patient cell lines suitable to investigate altered pathways and serve as high-throughput drug-screening platforms. This is particularly important for drug-resistant tumors like chondrosarcoma which has few models available. Here we established and characterized new cell lines derived from two secondary (CDS06 and CDS11) and one dedifferentiated (CDS-17) chondrosarcomas as well as another line derived from a CDS-17-generated xenograft (T-CDS17). These lines displayed cancer stem cell-related and invasive features and were able to initiate subcutaneous and/or orthotopic animal models. Different mutations in Isocitrate Dehydrogenase-1 (IDH1), Isocitrate Dehydrogenase-2 (IDH2), and Tumor Supressor P53 (TP53) and deletion of Cyclin Dependent Kinase Inhibitor 2A (CDKN2A) were detected both in cell lines and tumor samples. In addition, other mutations in TP53 and the amplification of Mouse Double Minute 2 homolog (MDM2) arose during cell culture in CDS17 cells. Whole exome sequencing analysis of CDS17, T-CDS17, and matched patient samples confirmed that cell lines kept the most relevant mutations of the tumor, uncovered new mutations and revealed structural variants that emerged during in vitro/in vivo growth. Altogether, this work expanded the panel of clinically and genetically-annotated chondrosarcoma lines amenable for in vivo studies and cancer stem cell (CSC) characterization. Moreover, it provided clues of the genetic drift of chondrosarcoma cells during the adaptation to grow conditions.
Collapse
Affiliation(s)
- Veronica Rey
- University Central Hospital of Asturias-Health and Research Institute of Asturias (ISPA), 33011 Oviedo, Spain.
- University Institute of Oncology of Asturias, 33011 Oviedo, Spain.
| | - Sofia T Menendez
- University Central Hospital of Asturias-Health and Research Institute of Asturias (ISPA), 33011 Oviedo, Spain.
- University Institute of Oncology of Asturias, 33011 Oviedo, Spain.
- CIBER in Oncology (CIBERONC), 28029 Madrid, Spain.
| | - Oscar Estupiñan
- University Central Hospital of Asturias-Health and Research Institute of Asturias (ISPA), 33011 Oviedo, Spain.
- University Institute of Oncology of Asturias, 33011 Oviedo, Spain.
- CIBER in Oncology (CIBERONC), 28029 Madrid, Spain.
| | - Aida Rodriguez
- University Central Hospital of Asturias-Health and Research Institute of Asturias (ISPA), 33011 Oviedo, Spain.
| | - Laura Santos
- University Central Hospital of Asturias-Health and Research Institute of Asturias (ISPA), 33011 Oviedo, Spain.
| | - Juan Tornin
- University Central Hospital of Asturias-Health and Research Institute of Asturias (ISPA), 33011 Oviedo, Spain.
| | - Lucia Martinez-Cruzado
- University Central Hospital of Asturias-Health and Research Institute of Asturias (ISPA), 33011 Oviedo, Spain.
| | - David Castillo
- Disease Research and Medicine (DREAMgenics) S.L., 33011 Oviedo, Spain.
| | - Gonzalo R Ordoñez
- Disease Research and Medicine (DREAMgenics) S.L., 33011 Oviedo, Spain.
| | - Serafin Costilla
- Department of Radiology of the Servicio de Radiología of the University Central Hospital of Asturias, 33011 Oviedo, Spain.
| | - Carlos Alvarez-Fernandez
- Department of Medical Oncology of the Servicio de Radiología of the University Central Hospital of Asturias, 33011 Oviedo, Spain.
| | - Aurora Astudillo
- Department of Pathology of the Servicio de Radiología of the University Central Hospital of Asturias, 33011 Oviedo, Spain.
| | - Alejandro Braña
- Department of Traumatology of the University Central Hospital of Asturias, 33011 Oviedo, Spain.
| | - Rene Rodriguez
- University Central Hospital of Asturias-Health and Research Institute of Asturias (ISPA), 33011 Oviedo, Spain.
- University Institute of Oncology of Asturias, 33011 Oviedo, Spain.
- CIBER in Oncology (CIBERONC), 28029 Madrid, Spain.
| |
Collapse
|
2
|
Kalinski T. [Inflammation as molecular target in chondrosarcoma]. DER PATHOLOGE 2015; 35 Suppl 2:249-53. [PMID: 25394974 DOI: 10.1007/s00292-014-1968-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Inflammation is a hallmark in the development and progression of malignant tumors. In chondrosarcoma the inflammatory changes are relatively discrete; however, tumor-associated macrophages (TAM) may exert tumor-promoting effects. Interleukin (IL)-1 is an inflammatory cytokine which is produced by TAMs and which leads to the expression of NF-κB-regulated genes in chondrosarcoma cells, such as vascular endothelial growth factor A (VEGF-A). Through IL-1 antagonists and substances, such as curcumin IL-1-induced VEGF-A expression and angiogenesis can be blocked; therefore, IL-1-blockade provides an interesting therapy target for chondrosarcoma.
Collapse
Affiliation(s)
- T Kalinski
- Institut für Pathologie, Otto-von-Guericke-Universität, Leipziger Str. 44, 39120, Magdeburg, Deutschland,
| |
Collapse
|
3
|
Kalinski T, Sel S, Hütten H, Röpke M, Roessner A, Nass N. Curcumin blocks interleukin-1 signaling in chondrosarcoma cells. PLoS One 2014; 9:e99296. [PMID: 24901233 PMCID: PMC4047106 DOI: 10.1371/journal.pone.0099296] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 05/13/2014] [Indexed: 02/07/2023] Open
Abstract
Interleukin (IL)-1 signaling plays an important role in inflammatory processes, but also in malignant processes. The essential downstream event in IL-1 signaling is the activation of nuclear factor (NF)-κB, which leads to the expression of several genes that are involved in cell proliferation, invasion, angiogenesis and metastasis, among them VEGF-A. As microenvironment-derived IL-1β is required for invasion and angiogenesis in malignant tumors, also in chondrosarcomas, we investigated IL-1β-induced signal transduction and VEGF-A expression in C3842 and SW1353 chondrosarcoma cells. We additionally performed in vitro angiogenesis assays and NF-κB-related gene expression analyses. Curcumin is a substance which inhibits IL-1 signaling very early by preventing the recruitment of IL-1 receptor associated kinase (IRAK) to the IL-1 receptor. We demonstrate that IL-1 signaling and VEGF-A expression are blocked by Curcumin in chondrosarcoma cells. We further show that Curcumin blocks IL-1β-induced angiogenesis and NF-κB-related gene expression. We suppose that IL-1 blockade is an additional treatment option in chondrosarcoma, either by Curcumin, its derivatives or other IL-1 blocking agents.
Collapse
Affiliation(s)
- Thomas Kalinski
- Department of Pathology, Otto-von-Guericke-University, Magdeburg, Germany
- * E-mail:
| | - Saadettin Sel
- Department of Ophthalmology, University of Heidelberg, Heidelberg, Germany
| | - Heiko Hütten
- Department of Hematology and Oncology, Klinikum Braunschweig, Braunschweig, Germany
| | - Martin Röpke
- Department of Orthopedics, Otto-von-Guericke-University, Magdeburg, Germany
| | - Albert Roessner
- Department of Pathology, Otto-von-Guericke-University, Magdeburg, Germany
| | - Norbert Nass
- Department of Pathology, Otto-von-Guericke-University, Magdeburg, Germany
| |
Collapse
|
4
|
Monderer D, Luseau A, Bellec A, David E, Ponsolle S, Saiagh S, Bercegeay S, Piloquet P, Denis MG, Lodé L, Rédini F, Biger M, Heymann D, Heymann MF, Le Bot R, Gouin F, Blanchard F. New chondrosarcoma cell lines and mouse models to study the link between chondrogenesis and chemoresistance. J Transl Med 2013; 93:1100-14. [PMID: 23958880 DOI: 10.1038/labinvest.2013.101] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 07/25/2013] [Accepted: 07/25/2013] [Indexed: 12/23/2022] Open
Abstract
Chondrosarcomas are cartilage-forming, poorly vascularized tumors. They represent the second malignant primary bone tumor of adults after osteosarcoma, but in contrast to osteosarcoma they are resistant to chemotherapy and radiotherapy, surgical excision remaining the only therapeutic option. Few cell lines and animal models are available, and the mechanisms behind their chemoresistance remain largely unknown. Our goal was to establish new cell lines and animal cancer models from human chondrosarcoma biopsies to study their chemoresistance. Between 2007 and 2012, 10 chondrosarcoma biopsies were collected and used for cell culture and transplantation into nude mice. Only one transplanted biopsy and one injected cell line has engrafted successfully leading to conventional central high-grade chondrosarcoma similar to the original biopsies. In culture, two new stable cell lines were obtained, one from a dedifferentiated and one from a grade III conventional central chondrosarcoma biopsy. Their genetic characterization revealed triploid karyotypes, mutations in IDH1, IDH2, and TP53, deletion in CDKN2A and/or MDM2 amplification. These cell lines expressed mesenchymal membrane markers (CD44, 73, 90, 105) and were able to produce a hyaline cartilaginous matrix when cultured in chondrogenic three-dimensional (3D) pellets. Using a high-throughput quantitative RT-PCR approach, we observed that cell lines cultured in monolayer had lost expression of several genes implicated in cartilage development (COL2A1, COMP, ACAN) but restored their expression in 3D cultures. Chondrosarcoma cells in monolayer were sensitive to several conventional chemotherapeutic agents but became resistant to low doses of mafosfamide or doxorubicin when cultured in 3D pellets, in parallel with an altered nucleic accumulation of the drug. Our results indicate that the cartilaginous matrix produced by chondrosarcoma cells may impair diffusion of several drugs and thus contribute to chemoresistance. Therefore, 3D chondrogenic cell pellets constitute a more relevant model to study chondrosarcoma chemoresistance and may be a valuable alternative to animal experimentations.
Collapse
Affiliation(s)
- David Monderer
- 1] INSERM, UMR 957, Equipe Labellisée LIGUE 2012, Nantes, France [2] Université de Nantes, Nantes Atlantique Universités, Laboratoire de Physiopathologie de la Résorption Osseuse et Thérapie des Tumeurs Osseuses Primitives, Nantes, France [3] Atlantic Bone Screen (ABS), St Herblain, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Characterization of a new human cell line (CH-3573) derived from a grade II chondrosarcoma with matrix production. Pathol Oncol Res 2012; 18:793-802. [PMID: 22350793 DOI: 10.1007/s12253-012-9505-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2011] [Accepted: 01/17/2012] [Indexed: 10/14/2022]
Abstract
Chondrosarcomas are malignant cartilage-forming tumors that represent the third most common malignant solid tumor of bone. In patients with grades II and III, local recurrence, increasing tumor size and dedifferentiation have been associated with lower survival rates. These biologically poorly-understood neoplasms vary considerably in clinical presentation and biological behavior. Cytogenetic studies have shown that heterogeneity is related to karyotypic complexity; moreover, alterations in the 9p21 locus and TP53 gene are related to disease progression. Despite the relatively high frequency of chondrosarcoma only a limited number of cell lines exist in the scientific community, limiting the possibility to study hypothesis-derived research or primary drug interaction necessary for pre-clinical studies. We report a chondrosarcoma cell line, CH-3573, derived from a primary tumor that may serve as a useful tool for both in vitro and in vivo models to study the molecular pathogenesis. In addition, xenograft passages in nude mice were studied to characterize the genetic stability over the course of tumor progression. In contrary to other reported cell lines, an important feature of our established cell line was the retained matrix production, a characteristic feature of a conventional grade II chondrosarcoma. The cell line (CH-3573) was characterized by pathological, immunohistochemical and molecular genetic methods.
Collapse
|
6
|
Somatic mosaic IDH1 and IDH2 mutations are associated with enchondroma and spindle cell hemangioma in Ollier disease and Maffucci syndrome. Nat Genet 2011; 43:1256-61. [PMID: 22057234 PMCID: PMC3427908 DOI: 10.1038/ng.1004] [Citation(s) in RCA: 381] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 10/12/2011] [Indexed: 12/18/2022]
Abstract
Ollier disease and Maffucci syndrome are non-hereditary skeletal disorders characterized by multiple enchondromas (Ollier disease) combined with spindle cell hemangiomas (Maffucci syndrome). We report somatic heterozygous mutations in IDH1 (c.394C>T encoding an R132C substitution and c.395G>A encoding an R132H substitution) or IDH2 (c.516G>C encoding R172S) in 87% of enchondromas (benign cartilage tumors) and in 70% of spindle cell hemangiomas (benign vascular lesions). In total, 35 of 43 (81%) subjects with Ollier disease and 10 of 13 (77%) with Maffucci syndrome carried IDH1 (98%) or IDH2 (2%) mutations in their tumors. Fourteen of 16 subjects had identical mutations in separate lesions. Immunohistochemistry to detect mutant IDH1 R132H protein suggested intraneoplastic and somatic mosaicism. IDH1 mutations in cartilage tumors were associated with hypermethylation and downregulated expression of several genes. Mutations were also found in 40% of solitary central cartilaginous tumors and in four chondrosarcoma cell lines, which will enable functional studies to assess the role of IDH1 and IDH2 mutations in tumor formation.
Collapse
|
7
|
Kalinski T, Roessner A. [Angiogenesis in cartilage tumors]. DER PATHOLOGE 2010; 31 Suppl 2:177-82. [PMID: 20661574 DOI: 10.1007/s00292-010-1331-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In contrast to normal cartilage, which is avascular, angiogenesis is characteristic of cartilage tumors. In this review, we outline the basic principles of angiogenesis with regard to recent findings on differential morphological and molecular aspects of angiogenesis in cartilage tumors, including enchondromas, conventional chondrosarcomas and dedifferentiated chondrosarcomas. Furthermore, we describe the effects of hypoxia and interleukin-1β on angiogenic signaling in chondrosarcoma cells.
Collapse
Affiliation(s)
- T Kalinski
- Institut für Pathologie, Otto-von-Guericke-Universität, Leipziger Str. 44, 39120 Magdeburg.
| | | |
Collapse
|
8
|
Schrage Y, Machado I, Meijer D, Briaire-de Bruijn I, van den Akker B, Taminiau A, Kalinski T, Llombart-Bosch A, Bovée J. COX-2 expression in chondrosarcoma: A role for celecoxib treatment? Eur J Cancer 2010; 46:616-24. [DOI: 10.1016/j.ejca.2009.11.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Accepted: 11/10/2009] [Indexed: 02/02/2023]
|
9
|
Kalinski T, Röpke A, Sel S, Kouznetsova I, Röpke M, Roessner A. Down-regulation of ephrin-A5, a gene product of normal cartilage, in chondrosarcoma. Hum Pathol 2009; 40:1679-85. [DOI: 10.1016/j.humpath.2009.03.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Revised: 02/24/2009] [Accepted: 03/21/2009] [Indexed: 12/20/2022]
|
10
|
Schrage YM, Briaire-de Bruijn IH, de Miranda NFCC, van Oosterwijk J, Taminiau AHM, van Wezel T, Hogendoorn PCW, Bovée JVMG. Kinome profiling of chondrosarcoma reveals SRC-pathway activity and dasatinib as option for treatment. Cancer Res 2009; 69:6216-22. [PMID: 19602594 DOI: 10.1158/0008-5472.can-08-4801] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Chondrosarcomas are notorious for their resistance to conventional chemotherapy and radiotherapy, indicating there are no curative treatment possibilities for patients with inoperable or metastatic disease. We therefore explored the existence of molecular targets for systemic treatment of chondrosarcoma using kinome profiling. Peptide array was performed for four chondrosarcoma cell lines and nine primary chondrosarcoma cultures with GIST882, MSCs, and colorectal cancer cell lines as controls. Activity of kinases was verified using immunoblot, and active Src- and platelet-derived growth factor receptor (PDGFR) signaling were further explored using imatinib and dasatinib on chondrosarcoma in vitro. The AKT1/GSK3B pathway was clearly active in chondrosarcoma. In addition, the PDGFR pathway and the Src kinase family were active. PDGFR and Src kinases can be inhibited by imatinib and dasatinib, respectively. Although imatinib did not show any effect on chondrosarcoma cell cultures, dasatinib showed a decrease in cell viability at nanomolar concentrations in seven of nine chondrosarcoma cultures. However, inhibition of phosphorylated Src (Y419) was found both in responsive and nonresponsive cells. In conclusion, using kinome profiling, we found the Src pathway to be active in chondrosarcoma. Moreover, we showed in vitro that the inhibitor of the Src pathway, dasatinib, may provide a potential therapeutic benefit for chondrosarcoma patients who are not eligible for surgery.
Collapse
Affiliation(s)
- Yvonne M Schrage
- Department of Pathology and Orthopedic Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Schrage YM, Hameetman L, Szuhai K, Cleton-Jansen AM, Taminiau AHM, Hogendoorn PCW, Bovée JVMG. Aberrant heparan sulfate proteoglycan localization, despite normal exostosin, in central chondrosarcoma. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 174:979-88. [PMID: 19179614 DOI: 10.2353/ajpath.2009.080623] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The tumor suppressor genes EXT1 and EXT2 are involved in the formation of multiple osteochondromas, which can progress to become secondary peripheral chondrosarcomas. The most common chondrosarcoma subtype is primary central chondrosarcoma, which occurs in the medullar cavity of bone. The EXT1/EXT2 protein complex is involved in heparan sulfate proteoglycan (HSPG) biosynthesis, which is important for signal transduction of Indian hedgehog (IHH), WNT, and transforming growth factor (TGF)-beta. The role of EXT and its downstream targets in central chondrosarcomas is currently unknown. EXT1 and EXT2 were therefore evaluated in central chondrosarcomas at both the DNA and mRNA levels. Immunohistochemistry was used to assess HSPG (CD44v3 and SDC2), WNT (beta-catenin), and TGF-beta (PAI-1 and phosphorylated Smad2) signaling, whereas IHH signaling was studied both by quantitative polymerase chain reaction and in vitro. mRNA levels of both EXT1 and EXT2 were normal in central chondrosarcomas; genomic alterations were absent in these regions and in 30 other HSPG-related genes. Although HSPGs were aberrantly located (CD44v3 in the Golgi and SDC2 in cytoplasm and nucleus), this was not caused by mutation. WNT signaling negatively correlated with increasing histological grade, whereas TGF-beta positively correlated with increasing histological grade. IHH signaling was active, and inhibition decreased cell viability in one of six cell lines. Our data suggest that, despite normal EXT in central chondrosarcomas, HSPGs and HSPG-dependent signaling are affected in both central and peripheral chondrosarcomas.
Collapse
Affiliation(s)
- Yvonne M Schrage
- Department of Pathology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
12
|
Pelz AF, Klawunde P, Skalej M, Wieacker P, Kirches E, Schneider T, Mawrin C. Novel chromosomal aberrations in a recurrent malignant meningioma. ACTA ACUST UNITED AC 2007; 174:48-53. [PMID: 17350466 DOI: 10.1016/j.cancergencyto.2006.10.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2006] [Accepted: 10/13/2006] [Indexed: 11/19/2022]
Abstract
The molecular basis of tumorigenesis and tumor progression in meningiomas is not fully understood. Here we present results of conventional cytogenetic, fluorescence in situ hybridization (FISH), and comparative genetic hybridization (CGH) analyses in a patient with recurrent anaplastic meningioma. We found complex aberrant karyotype alterations previously described in anaplastic meningiomas, such as 1p, 14q aberration, and a possibly tetraploid karyotype. Loss of chromosome 22q was detected by conventional cytogenetic analysis. Additional chromosomal aberrations not previously reported included a near-triploid karyotype and alterations such as 4p+, 5p-, 7p+, 8q+, and gain of chromosome 19. FISH with LSI 9p21, CEP9, LSI PML/RARA, and CGH confirmed the karyotype complexity in this case. Our findings of several previously unreported cytogenetic alterations suggest that complex karyotype alterations are a characteristic feature in anaplastic meningiomas. High chromosomal complexity might be associated with a highly aggressive meningioma phenotype.
Collapse
Affiliation(s)
- Antje-Friederike Pelz
- Department of Human Genetics, Otto-von-Guericke University, Leipziger Strasse 44, D-39120 Magdeburg, Germany
| | | | | | | | | | | | | |
Collapse
|
13
|
Kalinski T, Krueger S, Sel S, Werner K, Röpke M, Roessner A. ADAMTS1 is regulated by interleukin-1β, not by hypoxia, in chondrosarcoma. Hum Pathol 2007; 38:86-94. [PMID: 16949904 DOI: 10.1016/j.humpath.2006.06.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2006] [Revised: 06/11/2006] [Accepted: 06/14/2006] [Indexed: 11/23/2022]
Abstract
Angiogenesis is characteristic of cartilage tumors, not of normal cartilage tissue. In addition to our previous report on differential expression of proangiogenic vascular endothelial growth factor A (VEGF-A) in cartilage tumors, we analyzed the expression of a disintegrin and metalloproteinase with thrombospondin motifs 1 (ADAMTS1), which has been identified as a potent inhibitor of VEGF-A. We further used a chondrosarcoma cell line to study the effect of interleukin (IL)-1beta and hypoxia on the regulation of ADAMTS1 and VEGF-A expression. ADAMTS1 was detected by reverse transcriptase-polymerase chain reaction and immunohistochemistry in all analyzed samples from enchondromas, conventional chondrosacromas, and dedifferentiated chondrosarcomas without exception. In contrast to previous reports on other cancers, we did not detect a consistent decrease in ADAMTS1 expression in chondrosarcomas. Interleukin-1beta stimulation, not hypoxia, transcriptionally downregulated ADAMTS1 in chondrosarcoma cells, whereas VEGF-A expression was upregulated either by hypoxia or IL-1beta. We conclude that ADAMTS1 and VEGF-A in chondrosarcoma cells are regulated independently from each other. We believe that IL-1beta has a stronger impact on vascularization in chondrosarcomas than hypoxia, as both factors, ADAMTS1 and VEGF-A, are regulated in a way that favors angiogenesis.
Collapse
Affiliation(s)
- Thomas Kalinski
- Department of Pathology, Otto-von-Guericke-University, D-39120 Magdeburg, Germany.
| | | | | | | | | | | |
Collapse
|
14
|
Kalinski T, Krueger S, Sel S, Werner K, Ropke M, Roessner A. Differential expression of VEGF-A and angiopoietins in cartilage tumors and regulation by interleukin-1β. Cancer 2006; 106:2028-38. [PMID: 16565972 DOI: 10.1002/cncr.21848] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Vascular endothelial growth factor (VEGF)-A and angiopoietin (Ang)-1 and Ang-2 are key factors in angiogenic signaling. In this study the expression of these factors was identified in cartilage tumors. As interleukin (IL)-1beta has been found to be an indispensable factor in angiogenic signaling, we further analyzed the effect of IL-1beta on the expression of VEGF-A, Ang-1, and Ang-2 using a previously established cell culture model. METHODS Surgical specimens of enchondromas, conventional chondrosarcomas, and dedifferentiated chondrosarcomas were obtained from 72 patients. VEGF-A, Ang-1, and Ang-2 mRNA expression was detected by conventional and quantitative reverse transcription polymerase chain reaction (PCR). VEGF-A expression was also detected by immunohistochemistry or Western blot. RESULTS Differential expression of VEGF-A, Ang-1, and Ang-2 was clearly demonstrated in cartilage tumors. VEGF-A expression was positively correlated with the tumor type. Higher VEGF-A expression levels were detected in conventional chondrosarcomas Grades II and III (using a 3-tier grading system) than in dedifferentiated chondrosarcomas (P < .05). A typical pattern of VEGF-A isoforms was identified, including VEGF(121), VEGF(145), VEGF(165), and VEGF(189). Ang-1 presented as a low-level transcript with slightly elevated levels in chondrosarcomas (P < .05). Highly variable Ang-2 expression levels were detected in solitary cases of conventional chondrosarcomas. IL-1beta regulated VEGF-A and Ang-1 expressions in a dose-dependent manner. Whereas low IL-1beta concentrations increased VEGF-A and Ang-1 transcription, high IL-1beta concentrations had the opposite effect. IL-1beta did not activate Ang-2 expression. CONCLUSIONS Angiogenic signaling in cartilage tumors is variable and at least partly regulable by IL-1beta. The findings are of therapeutic relevance, either as a desired effect or a side effect in medical treatment.
Collapse
Affiliation(s)
- Thomas Kalinski
- Department of Pathology, Otto-von-Guericke-University, Magdeburg, Germany.
| | | | | | | | | | | |
Collapse
|