1
|
Hirose Y, Taniguchi K. Intratumoral metabolic heterogeneity of colorectal cancer. Am J Physiol Cell Physiol 2023; 325:C1073-C1084. [PMID: 37661922 DOI: 10.1152/ajpcell.00139.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/31/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023]
Abstract
Although the metabolic phenotype within tumors is known to differ significantly from that of the surrounding normal tissue, the importance of this heterogeneity is just becoming widely recognized. Colorectal cancer (CRC) is often classified as the Warburg phenotype, a metabolic type in which the glycolytic system is predominant over oxidative phosphorylation (OXPHOS) in mitochondria for energy production. However, this dichotomy (glycolysis vs. OXPHOS) may be too simplistic and not accurately represent the metabolic characteristics of CRC. Therefore, in this review, we decompose metabolic phenomena into factors based on their source/origin and reclassify them into two categories: extrinsic and intrinsic. In the CRC context, extrinsic factors include those based on the environment, such as hypoxia, nutrient deprivation, and the tumor microenvironment, whereas intrinsic factors include those based on subpopulations, such as pathological subtypes and cancer stem cells. These factors form multiple layers inside and outside the tumor, affecting them additively, dominantly, or mutually exclusively. Consequently, the metabolic phenotype is a heterogeneous and fluid phenomenon reflecting the spatial distribution and temporal continuity of these factors. This allowed us to redefine the characteristics of specific metabolism-related factors in CRC and summarize and update our accumulated knowledge of their heterogeneity. Furthermore, we positioned tumor budding in CRC as an intrinsic factor and a novel form of metabolic heterogeneity, and predicted its metabolic dynamics, noting its similarity to circulating tumor cells and epithelial-mesenchymal transition. Finally, the possibilities and limitations of using human tumor tissue as research material to investigate and assess metabolic heterogeneity are discussed.
Collapse
Affiliation(s)
- Yoshinobu Hirose
- Department of Pathology, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Kohei Taniguchi
- Division of Translational Research, Center for Medical Research & Development, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| |
Collapse
|
2
|
Lin JR, Wang S, Coy S, Chen YA, Yapp C, Tyler M, Nariya MK, Heiser CN, Lau KS, Santagata S, Sorger PK. Multiplexed 3D atlas of state transitions and immune interaction in colorectal cancer. Cell 2023; 186:363-381.e19. [PMID: 36669472 PMCID: PMC10019067 DOI: 10.1016/j.cell.2022.12.028] [Citation(s) in RCA: 122] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 09/26/2022] [Accepted: 12/16/2022] [Indexed: 01/20/2023]
Abstract
Advanced solid cancers are complex assemblies of tumor, immune, and stromal cells characterized by high intratumoral variation. We use highly multiplexed tissue imaging, 3D reconstruction, spatial statistics, and machine learning to identify cell types and states underlying morphological features of known diagnostic and prognostic significance in colorectal cancer. Quantitation of these features in high-plex marker space reveals recurrent transitions from one tumor morphology to the next, some of which are coincident with long-range gradients in the expression of oncogenes and epigenetic regulators. At the tumor invasive margin, where tumor, normal, and immune cells compete, T cell suppression involves multiple cell types and 3D imaging shows that seemingly localized 2D features such as tertiary lymphoid structures are commonly interconnected and have graded molecular properties. Thus, while cancer genetics emphasizes the importance of discrete changes in tumor state, whole-specimen imaging reveals large-scale morphological and molecular gradients analogous to those in developing tissues.
Collapse
Affiliation(s)
- Jia-Ren Lin
- Ludwig Center at Harvard and Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Shu Wang
- Ludwig Center at Harvard and Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA; Harvard Graduate Program in Biophysics, Harvard University, Cambridge, MA, USA
| | - Shannon Coy
- Ludwig Center at Harvard and Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Yu-An Chen
- Ludwig Center at Harvard and Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Clarence Yapp
- Ludwig Center at Harvard and Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Madison Tyler
- Ludwig Center at Harvard and Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Maulik K Nariya
- Ludwig Center at Harvard and Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Cody N Heiser
- Program in Chemical & Physical Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Ken S Lau
- Epithelial Biology Center and Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Sandro Santagata
- Ludwig Center at Harvard and Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Peter K Sorger
- Ludwig Center at Harvard and Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
3
|
Huang T, Bao H, Meng YH, Zhu JL, Chu XD, Chu XL, Pan JH. Tumour budding is a novel marker in breast cancer: the clinical application and future prospects. Ann Med 2022; 54:1303-1312. [PMID: 35535687 PMCID: PMC9103277 DOI: 10.1080/07853890.2022.2070272] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/27/2022] [Accepted: 04/20/2022] [Indexed: 11/30/2022] Open
Abstract
Breast cancer (BC) is a group of markedly heterogeneous tumours. There are many subtypes with different biological behaviours and clinicopathological characteristics, leading to significantly different prognosis. Despite significant advances in the treatment of BC, early metastatic is a critical factor for poor prognosis in BC patients. Tumour budding (TB) is considered as the first step process of tumour metastasis and is related to the epithelial-mesenchymal transition (EMT). TB has been observed in a variety of cancers, such as colorectal and gastric cancer, and had been considered as a distinct clinicopathological characteristics for early metastasis. However, TB evaluation standards and clinical application are not uniform in BC, as well as its molecular mechanism is not fully understood. Here, we reviewed the interpretation criteria, mechanism, clinicopathological characteristics and clinical application prospects of TB in BC. Key messagesCurrently, tumour budding is a poor prognosis for various solid tumours, also in breast cancer.Tumour budding is based on epithelial-mesenchymal transition and tumour microenvironment factors and is presumed to be an early step in the metastatic process.Breast cancer tumour budding still needs multi-centre experiments. We summarize the current research on breast cancer tumour budding, analyse the method of discriminating breast cancer tumour budding and explore the prognostic role and mechanism in breast cancer.
Collapse
Affiliation(s)
- Ting Huang
- Department of Clinical Pathology, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Hui Bao
- Department of Plastic Surgery, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yu-hua Meng
- Department of Clinical Pathology, the First People's Hospital of Shunde, Foshan, China
| | - Jian-lin Zhu
- Department of General Surgery, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiao-dong Chu
- Department of General Surgery, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiao-li Chu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong, China
- Guangdong Provincial Key laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, Guangzhou, China
| | - Jing-hua Pan
- Department of General Surgery, the First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
4
|
El Agy F, el Bardai S, Bouguenouch L, Lahmidani N, El Abkari M, Benjelloun EB, Ousadden A, Mazaz K, ImaneToughrai, Ibrahimi SA, Benbrahim Z, Chbani L. Prognostic Impact of Tumor Budding on Moroccan Colon Cancer Patients. Int J Surg Oncol 2022; 2022:9334570. [PMID: 35096426 PMCID: PMC8799359 DOI: 10.1155/2022/9334570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/05/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Tumor budding is now emerging as one of the robust and promising histological factors that play an important role in colon cancer. In this study, we aimed to investigate the association between tumor budding and tumor clinicopathological factors, tumor molecular signature, and patient survival for the first time in a Moroccan population. METHODS We collected data of 100 patients operated from colon adenocarcinoma. Tumor budding was assessed on HES slides, according to the International Tumor Budding Consensus Conference 2016 recommendations. The expression of MMR proteins was performed by immunohistochemistry. KRAS and NRAS mutations testing was performed by Sanger sequencing and pyrosequencing. RESULTS High tumor budding grade (BUD 3) was found to be significantly associated with adverse clinicopathological features including older age (P=0.03), presence of perineural invasion (P=0.02), presence of vascular invasion (P=0.05), distant metastases (P < 0.001), advanced TNM stage (P=0.001), the occurrence of relapse (P=0.04), and the high number of deceased cases (P=0.02). Interestingly, we found that tumors with high-grade tumor budding were more likely to be microsatellite stable (MSS) (P=0.005) and harbor more KRAS mutations (P=0.02). Tumors with high-grade tumor budding were strongly associated with KRAS G12D mutation (P=0.007). In all stages, high tumor budding was correlated with poorer overall survival (P=0.04) and decreased relapse-free survival with a difference close to significance ((P=0.09). We concluded that high tumor budding was strongly associated with unfavorable clinicopathological features and special molecular biomarkers and effectively affects the overall survival of CC patients. CONCLUSIONS Based on these findings and the ITBCC group recommendations, tumor budding should be taken into account along with other clinicopathologic factors in the risk assessment of colorectal cancer.
Collapse
Affiliation(s)
- Fatima El Agy
- Laboratory of Biomedical and Translational Research, Faculty of Medicine and Pharmacy, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Sanae el Bardai
- Laboratory of Anatomic and Molecular Pathology, University Hospital Hassan II, Fez, Morocco
| | - Laila Bouguenouch
- Laboratory of Medical Genetics and Oncogenetics, University Hospital Hassan II, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Nada Lahmidani
- Department of Gastroenterology, University Hospital Hassan II, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Mohammed El Abkari
- Department of Gastroenterology, University Hospital Hassan II, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - El Bachir Benjelloun
- Department of General Surgery, University Hospital Hassan II, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Abdelmalek Ousadden
- Department of General Surgery, University Hospital Hassan II, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Khalid Mazaz
- Department of General Surgery, University Hospital Hassan II, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - ImaneToughrai
- Department of General Surgery, University Hospital Hassan II, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Sidi Adil Ibrahimi
- Department of Gastroenterology, University Hospital Hassan II, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Zineb Benbrahim
- Department of Oncology, University Hospital Hassan II, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Laila Chbani
- Laboratory of Anatomic and Molecular Pathology, University Hospital Hassan II, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| |
Collapse
|
5
|
Refining the ITBCC tumor budding scoring system with a "zero-budding" category in colorectal cancer. Virchows Arch 2021; 479:1085-1090. [PMID: 33843013 PMCID: PMC8724067 DOI: 10.1007/s00428-021-03090-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 03/16/2021] [Accepted: 03/22/2021] [Indexed: 12/11/2022]
Abstract
Tumor budding scoring guidelines from the International Tumor Budding Consensus Conference (ITBCC) for colorectal cancer propose three groups: BD1 (0–4 buds/0.785 mm2), BD2 (5–9 buds/0.785 mm2), and BD3 (10 or more buds/0.785 mm2). Here, we investigate whether a fourth scoring category, namely zero buds, may have additional clinical relevance. The number of tumor buds/0.785 mm2 was scored in 959 cases. Those with zero tumor buds were considered BD0, while a new BD1 category of 1–4 buds was proposed. Associations of both scoring approaches with clinicopathological features were analyzed. Conventional ITBCC scoring showed expected associations with unfavorable histopathological prognostic factors. In total, 111/959 (11.6%) were BD0. A significant difference was found when BD0 was compared statistically to BD1 (1–4 buds) for pT, TNM, tumor grade, and lymphatic, venous, and perineural invasion (p < 0.01, all). Tumors with BD0 occur relatively frequently and contribute additional information on tumor behavior. BD0 should be considered for subsequent ITBCC guidelines.
Collapse
|
6
|
Tumour budding and its clinical implications in gastrointestinal cancers. Br J Cancer 2020; 123:700-708. [PMID: 32601463 PMCID: PMC7462864 DOI: 10.1038/s41416-020-0954-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 04/17/2020] [Accepted: 06/02/2020] [Indexed: 02/07/2023] Open
Abstract
Tumour budding in colorectal cancer has become an important prognostic factor. Represented by single cells or small tumour cell clusters at the invasion front of the tumour mass, these tumour buds seem to reflect cells in a ‘hybrid’ state of epithelial–mesenchymal transition, and evidence indicates that the presence of these entities is associated with lymph node metastasis, local recurrence and distant metastatic disease. The International Tumour Budding Consensus Conference (ITBCC) has highlighted a scoring system for the reporting of tumour budding in colorectal cancer, as well as different clinical scenarios that could affect patient management. Other organs are not spared: tumour budding has been described in numerous gastrointestinal and non-gastrointestinal cancers. Here, we give an update on ITBCC validation studies in the context of colorectal cancer and the clinical implications of tumour budding throughout the upper gastrointestinal and pancreatico-biliary tract.
Collapse
|
7
|
Maffeis V, Nicolè L, Cappellesso R. RAS, Cellular Plasticity, and Tumor Budding in Colorectal Cancer. Front Oncol 2019; 9:1255. [PMID: 31803624 PMCID: PMC6877753 DOI: 10.3389/fonc.2019.01255] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 10/30/2019] [Indexed: 12/14/2022] Open
Abstract
The high morbidity and mortality of colorectal cancer (CRC) remain a worldwide challenge, despite the advances in prevention, diagnosis, and treatment. RAS alterations have a central role in the pathogenesis of CRC universally recognized both in the canonical mutation-based classification and in the recent transcriptome-based classification. About 40% of CRCs are KRAS mutated, 5% NRAS mutated, and only rare cases are HRAS mutated. Morphological and molecular correlations demonstrated the involvement of RAS in cellular plasticity, which is related to invasive and migration properties of neoplastic cells. RAS signaling has been involved in the initiation of epithelial to mesenchymal transition (EMT) in CRC leading to tumor spreading. Tumor budding is the morphological surrogate of EMT and features cellular plasticity. Tumor budding is clinically relevant for CRC patients in three different contexts: (i) in pT1 CRC the presence of tumor buds is associated with nodal metastasis, (ii) in stage II CRC identifies the cases with a prognosis similar to metastatic disease, and (iii) intratumoral budding could be useful in patient selection for neoadjuvant therapy. This review is focused on the current knowledge on RAS in CRC and its link with cellular plasticity and related clinicopathological features.
Collapse
Affiliation(s)
- Valeria Maffeis
- Department of Medicine, Surgical Pathology and Cytopathology Unit, University of Padova, Padova, Italy
| | - Lorenzo Nicolè
- Department of Medicine, Surgical Pathology and Cytopathology Unit, University of Padova, Padova, Italy
| | - Rocco Cappellesso
- Pathological Anatomy Unit, Padova University Hospital, Padova, Italy
| |
Collapse
|
8
|
Tumour microenvironment of pancreatic cancer: immune landscape is dictated by molecular and histopathological features. Br J Cancer 2019; 121:5-14. [PMID: 31110329 PMCID: PMC6738327 DOI: 10.1038/s41416-019-0479-5] [Citation(s) in RCA: 183] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 07/03/2018] [Accepted: 04/17/2019] [Indexed: 12/17/2022] Open
Abstract
Pancreatic cancer is a lethal disease, with fewer than 7% of patients surviving beyond 5 years following diagnosis. Immune responses are known to influence tumour progression. The dynamic interaction between cancer cells and immune cells in the tumour microenvironment (TME) can not only result in, or be influenced by, different tumour characteristics, but it can also lead to diverse mechanisms of immune evasion. At present, there is much interest in classifying pancreatic cancer according to its morphologic, genetic and immunologic features in order to understand the significant heterogeneity of this tumour type. Such information can contribute to the identification of highly needed novel prognostic and predictive biomarkers, and can be used for accurate patient stratification and therapy guidance. This review focuses on the characteristics of the local immune contexture of pancreatic ductal adenocarcinoma and the interaction between tumour cells and immune cells within the TME, by simultaneously taking into account the histomorphologic and genetic features of the tumours. The emerging opportunities for approaches that could predict the most-effective therapeutic modalities towards more targeted, personalised treatments to improve patient care are also discussed.
Collapse
|
9
|
Trinh A, Lädrach C, Dawson HE, Ten Hoorn S, Kuppen PJK, Reimers MS, Koopman M, Punt CJA, Lugli A, Vermeulen L, Zlobec I. Tumour budding is associated with the mesenchymal colon cancer subtype and RAS/RAF mutations: a study of 1320 colorectal cancers with Consensus Molecular Subgroup (CMS) data. Br J Cancer 2018; 119:1244-1251. [PMID: 30385823 PMCID: PMC6251036 DOI: 10.1038/s41416-018-0230-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 07/16/2018] [Accepted: 07/20/2018] [Indexed: 01/03/2023] Open
Abstract
Background Tumour budding is an important prognostic factor in colorectal cancer (CRC). Molecular profiling of tumour buds suggests (partial) epithelial–mesenchymal transition and cancer stem-cell phenotype, similarly described in the “mesenchymal” Consensus Molecular Subtype 4 (CMS4), which identifies a particularly poor prognostic subgroup. Here, we determine the association of tumour budding with CMS classification, prognosis, and response to therapy. Methods AMC-AJCCII-90 cohort (n = 76, stage II) was evaluated for peritumoural budding on H&E slides. LUMC (n = 270, stage I–IV), CAIRO (n = 504, metastatic CRC) and CAIRO2 (n = 472, metastatic CRC) cohorts were investigated for intratumoural budding using pan-cytokeratin-stained tissue microarrays. Budding was scored as count/area, then classified as <5 or ≥5 buds. For all cohorts, CMS classifications were available (gene-expression/immunohistochemistry-based classifiers). Results High (≥5) budding predicted a worse outcome in multivariate analysis in AMC-AJCCII-90 (p = 0.018), LUMC (p < 0.0001), and CAIRO (p = 0.03), and in CAIRO2 (continuous variable, p = 0.02). Tumour budding counts were higher in CMS4 compared to epithelial CMS2/3 cancers (p < 0.01, all), and associated with KRAS/BRAF mutations (p < 0.01, AMC-AJCCII-90, CAIRO, CAIRO2). Conclusion Tumour budding is an adverse prognostic factor across all CRC stages and is associated with the mesenchymal CMS4 phenotype. KRAS/BRAF mutations are strongly correlated with tumour budding suggesting their involvement in the regulation of this process.
Collapse
Affiliation(s)
- Anne Trinh
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Claudia Lädrach
- Institute of Pathology, University of Bern, Bern, Switzerland
| | | | - Sanne Ten Hoorn
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Peter J K Kuppen
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Marlies S Reimers
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Miriam Koopman
- Medical Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Cornelis J A Punt
- Medical Oncology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Louis Vermeulen
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Inti Zlobec
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
10
|
Zlobec I, Lugli A. Tumour budding in colorectal cancer: molecular rationale for clinical translation. Nat Rev Cancer 2018; 18:203-204. [PMID: 29376521 DOI: 10.1038/nrc.2018.1] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Inti Zlobec
- Institute of Pathology, University of Bern, Bern, Switzerland
| | | |
Collapse
|
11
|
Georges LM, Verset L, Zlobec I, Demetter P, De Wever O. Impact of the Microenvironment on Tumour Budding in Colorectal Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1110:101-111. [PMID: 30623368 DOI: 10.1007/978-3-030-02771-1_7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Tumour Budding (TB) is recognized as an adverse prognostic factor in colorectal cancer (CRC). TB is the detachment of isolated cancer cells or small clusters of such cells mainly at the invasion front. One question that arises is of the role of the tumour stroma regarding the permissiveness of the formation and progression of TB. In this review, we will examine potential factors affecting TB, in particular we will analyse the potential effect of inflammation, hypoxia, extracellular matrix and Cancer-Associated Fibroblasts (CAFs).
Collapse
Affiliation(s)
- Laurent Mc Georges
- Department of Pathology, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Laurine Verset
- Department of Pathology, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Inti Zlobec
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Pieter Demetter
- Department of Pathology, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Olivier De Wever
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University, Ghent, Belgium. .,Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| |
Collapse
|
12
|
Laedrach C, Salhia B, Cihoric N, Zlobec I, Tapia C. Immunophenotypic profile of tumor buds in breast cancer. Pathol Res Pract 2017; 214:25-29. [PMID: 29254793 PMCID: PMC7474545 DOI: 10.1016/j.prp.2017.11.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 11/20/2017] [Accepted: 11/28/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND Tumor buds are associated with lympho-vascular invasion and lymph node metastases leading to the assumption that they are involved in the early metastatic process. Hence, it would be important to know if tumor buds can be targeted with the most widely used targeted therapies in breast cancer (BC) and if changes in hormone and Her2 status occur. The aim of this study was to answer these questions by determining whether hormone receptor (HR) and Her2 status are expressed in the tumor buds of a large cohort of BCs. DESIGN We constructed a tumor bud next-generation tissue microarray (ngTMA) consisting of n = 199 BCs of non-special type. Generally, two 1 mm punches were taken from the tumor bud areas in the periphery (PTB) and within the tumor center (ITB). HR and Her2 status was assessed using immunohistochemistry and fluorescence in situ hybridization, respectively. HR status was positive if ≥1% of tumor bud cells were positive. Her2 status was considered positive if bud cells showed strong complete membranous Her2 over-expression or Her2 amplification. RESULTS Most tumor buds were positive for estrogen (ER) (PTB: 86%; ITB: 88.3) and progesterone receptor (PgR) (PTB: 72%; ITB: 72.8%) and Her2 was positive in: PTB 11.5% and ITB 11%. A difference between the main tumor mass and tumor buds (PTB and ITB) was seen for PgR in 3.5% of cases (n = 7). No differences were seen for ER and Her2 between tumor buds and main tumor mass. CONCLUSION Most tumor buds (96.5%) share the same HR and Her2 expression profile of the main tumor mass, implying that tumor buds relay on the same pathways as the main tumor mass and might be equally responsive to targeted therapies.
Collapse
Affiliation(s)
- C Laedrach
- Intstitute of Pathology, University of Bern, Bern, Switzerland
| | - B Salhia
- Department of Translational Genomics, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - N Cihoric
- Department of Radio-Oncology, Inselspital, Bern, Switzerland; Breast Center, Inselspital, Bern, Switzerland
| | - I Zlobec
- Intstitute of Pathology, University of Bern, Bern, Switzerland
| | - C Tapia
- Intstitute of Pathology, University of Bern, Bern, Switzerland; Breast Center, Inselspital, Bern, Switzerland; Department of Molecular Pathology, UT MD Anderson Cancer Center, Houston, TX, USA; Department of Investigational Cancer Therapeutics, UT MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|