1
|
Speakman GC, McNamara KK, Kalmar JR, Argyris PP. SATB2 expression in oral sarcomatoid (spindle cell) squamous cell carcinoma: clinicopathologic and immunophenotypic characterization of 10 cases. Oral Surg Oral Med Oral Pathol Oral Radiol 2025; 139:80-91. [PMID: 39317604 DOI: 10.1016/j.oooo.2024.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/26/2024]
Abstract
OBJECTIVE Sarcomatoid squamous cell carcinoma (sSCC) represents an uncommon histopathologic variant of squamous cell carcinoma (SCC). We examined the clinicopathologic and immunophenotypic characteristics, including SATB2 expression, of 10 cases of oral sSCCs. STUDY DESIGN Archived sSCC cases diagnosed during the period 2000 to 2023 were retrieved. Lesions lacking proper histomorphological features or adequate immunohistochemical confirmation were excluded. Patient age, sex, and lesion location were recorded. All cases were immunostained against SATB2 (Clone EP281; Cell Marque). RESULTS Ten oral sSCCs were identified (M:F ratio = 1.5:1; age range = 47-82 years, median = 74.5 years). The tongue was the most common anatomic site. Lesions presented as fungating or ulcerated, polypoid, and indurated masses. Microscopically, most tumors demonstrated an infiltrative population of atypical spindle cells organized in slender cords or fascicles. Rhabdoid/plasmacytoid morphology was observed in 3 cases. Immunohistochemically, all cases exhibited strong, focal-to-diffuse positivity for pancytokeratin, p63, and/or p40. Patchy, moderate-to-strong SATB2 staining was seen in 4 oral sSCCs, whereas 4 additional cases showed rare, weak-to-moderate expression. CONCLUSIONS Oral sSCC is uncommon and primarily exhibits spindled histomorphology, although rhabdoid/plasmacytoid features may be observed. A battery of epithelial and non-epithelial markers is required for proper diagnosis. Positive SATB2 immunostaining in oral sSCCs may pose a potential diagnostic pitfall, particularly in small biopsy specimens. (Oral Surg Oral Med Oral Pathol Oral Radiol YEAR;VOL:page range).
Collapse
Affiliation(s)
- Gabriella C Speakman
- Division of Oral and Maxillofacial Pathology, The Ohio State University College of Dentistry, Columbus, OH, USA.
| | - Kristin K McNamara
- Division of Oral and Maxillofacial Pathology, The Ohio State University College of Dentistry, Columbus, OH, USA
| | - John R Kalmar
- Division of Oral and Maxillofacial Pathology, The Ohio State University College of Dentistry, Columbus, OH, USA
| | - Prokopios P Argyris
- Division of Oral and Maxillofacial Pathology, The Ohio State University College of Dentistry, Columbus, OH, USA
| |
Collapse
|
2
|
Colares DF, Domingos NRDS, Mafra RP, da Silva LP, Pinto LP, de Souza LB. Is epithelial-mesenchymal transition related to the biological behavior of salivary gland neoplasms? Arch Oral Biol 2024; 165:106017. [PMID: 38852529 DOI: 10.1016/j.archoralbio.2024.106017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/28/2024] [Accepted: 05/28/2024] [Indexed: 06/11/2024]
Abstract
OBJECTIVE To evaluate and compare the expression of E-cadherin, Snail1 and Twist1 in pleomorphic adenomas (PAs), adenoid cystic carcinomas (AdCCa) and carcinoma ex-pleomorphic adenomas (CaexPA) of salivary glands, as well as investigate possible associations with clinicopathological parameters. STUDY DESIGN E-cadherin, Snail1 and Twist1 antibody immunostaining were analyzed semiquantitatively in 20 PAs, 20 AdCCas and 10 CaexPAs. Cases were classified as low and high expression for analysis of the association with clinicopathological parameters. RESULTS Compared to PAs, AdCCas and CaexPAs exhibited higher nuclear expression of Snail1 (p = 0.021 and p = 0.028, respectively) and Twist1 (p = 0.009 and p = 0.001). Membranous and cytoplasmic expression of E-cadherin were positively correlated in PAs, AdCCas and CaexPAs (r = 0.645, p = 0.002; r = 0.824, p < 0.001; r = 0.677, p = 0.031). In PAs, positive correlation was found between nuclear expression of Snail1 and membrane expression of E-cadherin (r = 0.634; p = 0.003), as well as between nuclear expression of Snail1 and Twist1 (r = 0.580; p = 0.007). Negative correlations were detected between membrane expression of E-cadherin and cytoplasmic expression of Snail1 in AdCCas (r = - 0.489; p = 0.029). CONCLUSIONS E-cadherin, Twist1, and Snail1 may participate in modulating events related to cell differentiation and adhesion in PAs and to biological behavior in AdCCas and CaexPAs, which indicates the involvement of EMT in these processes. Furthermore, the expression of these proteins in these carcinomas may reflect the plasticity feature of EMT.
Collapse
Affiliation(s)
- Débora Frota Colares
- Department of Oral Pathology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | | | - Rodrigo Porpino Mafra
- Department of Oral Pathology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Leorik Pereira da Silva
- Oral Histopathology Service, Health and Rural Technology Center, Federal University of Campina Grande, Patos, PB, Brazil
| | - Leão Pereira Pinto
- Department of Oral Pathology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Lélia Batista de Souza
- Department of Oral Pathology, Federal University of Rio Grande do Norte, Natal, RN, Brazil.
| |
Collapse
|
3
|
Pavlič A, Urh K, Boštjančič E, Zidar N. Analyzing the invasive front of colorectal cancer - By punching tissue block or laser capture microdissection? Pathol Res Pract 2023; 248:154727. [PMID: 37517168 DOI: 10.1016/j.prp.2023.154727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
The aim of this study was to determine the advantages and limitations of two commonly used sampling techniques, i.e., punching tissue block (PTB) and laser capture microdissection (LCM) when investigating tumor cell-derived gene expression patterns at the invasive front of colorectal cancer (CRC). We obtained samples from 20 surgically removed CRCs at locations crucial for tumor progression, i.e., the central part, the expansive front and the infiltrative front exhibiting tumor budding (TB), using both sampling techniques. At each location, we separately analyzed the expressions of miR-200 family (miR-141, miR-200a, miR-200b, miR-200c and miR-429), known as reliable markers of epithelial-mesenchymal transition (EMT). We found significant downregulation of all members of miR-200 family at the infiltrative front in comparison to the central part regardless of the used sampling technique. However, when comparing miR-200 expression between the expansive and the infiltrative front, we found significant downregulation of all tested miR-200 at the infiltrative front only in samples obtained by LCM. Our results suggest that, PTB is an adequate technique for studying the differences in tumor gene expression between the central part and the invasive front of CRC, but is insufficient to analyze and compare morphologically distinct patterns along the invasive front including TB. For this purpose, the use of LCM is essential.
Collapse
Affiliation(s)
- Ana Pavlič
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000 Ljubljana, Slovenia
| | - Kristian Urh
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000 Ljubljana, Slovenia
| | - Emanuela Boštjančič
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000 Ljubljana, Slovenia
| | - Nina Zidar
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000 Ljubljana, Slovenia.
| |
Collapse
|
4
|
Ali AN, Ghoneim SM, Ahmed ER, El-Farouk Abdel Salam LO, Anis Saleh SM. Cadherin switching in oral squamous cell carcinoma: A clinicopathological study. J Oral Biol Craniofac Res 2023; 13:486-494. [PMID: 37293580 PMCID: PMC10245331 DOI: 10.1016/j.jobcr.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 12/21/2022] [Accepted: 05/01/2023] [Indexed: 06/10/2023] Open
Abstract
Background and aim Oral squamous cell carcinoma (OSCC) is one of the most common malignancies worldwide as it represents the sixth most common cancer. Numerous molecular mechanisms have been explained to regulate OSCC progression, including epithelial-mesenchymal transition (EMT). Cadherin switching is the pivotal process that controls EMT in which E-cadherin reduces while N-cadherin elevates. This work aimed to clarify the role of cadherin switching in OSCC. Material and methods Thirty paraffin-embedded tissue blocks of OSCC including six cases with lymph node metastasis were subjected to immunohistochemical staining using antibodies against E&N-cadherins. Cell cultures were performed using OSCC cell lines (SCC-15/SCC-25) from the human tongue. F-12K medium (Kaighn's Modification of Ham's F12 Medium) was added as EMT inducing media. E&N-cadherin mRNA gene expression levels were detected by real time-polymerase chain reaction (RT-PCR). Results Cadherin switching through N-cadherin elevation and E-cadherin reduction was evaluated at the histopathologic level in primary and metastatic OSCC as well as at the genetic level within OSCC cell culture. Cadherin switching showed a significant correlation between E&N-cadherins at different histopathological grades of OSCC and in metastatic OSCC. Moreover, the level of mRNA gene expression of E&N-cadherins in human 15 SCC and 25 SCC cell lines with EMT-inducing media exhibited a significant correlation. Conclusions Cadherin switching is a crucial event in the EMT process. It may be used as a significant tool in the study of OSCC progression. Cadherin switching plays a significant role in the invasion and metastasis of OSCC.
Collapse
Affiliation(s)
- Ahmed Noaman Ali
- Oral Pathology, Oral Pathology Department, Faculty of Dentistry, Tanta University, Egypt
| | | | | | | | | |
Collapse
|
5
|
Pavlič A, Boštjančič E, Kavalar R, Ilijevec B, Bonin S, Zanconati F, Zidar N. Tumour budding and poorly differentiated clusters in colon cancer - different manifestations of partial epithelial-mesenchymal transition. J Pathol 2022; 258:278-288. [PMID: 36062412 PMCID: PMC9825925 DOI: 10.1002/path.5998] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/24/2022] [Accepted: 08/04/2022] [Indexed: 01/11/2023]
Abstract
Morphological features including infiltrative growth, tumour budding (TB), and poorly differentiated clusters (PDCs) have a firmly established negative predictive value in colorectal cancer (CRC). Despite extensive research, the mechanisms underlying different tumour growth patterns remain poorly understood. The aim of this study was to investigate the involvement of epithelial-mesenchymal transition (EMT) in TB and PDCs in CRC. Using laser-capture microdissection, we obtained distinct parts of the primary CRC including TB, PDCs, expansive tumour front, and the central part of the tumour, and analysed the expression of EMT-related markers, i.e. the miR-200 family, ZEB1/2, RND3, and CDH1. In TB, the miR-200 family and CDH1 were significantly downregulated, while ZEB2 was significantly upregulated. In PDCs, miR-141, miR-200c, and CDH1 were significantly downregulated. No significant differences were observed in the expression of any EMT-related markers between the expansive tumour front and the central part of the tumour. Our results suggest that both TB and PDCs are related to partial EMT. Discrete differences in morphology and expression of EMT-related markers between TB and PDCs indicate that they represent different manifestations of partial EMT. TB seems to be closer to complete EMT than PDCs. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Ana Pavlič
- Institute of Pathology, Faculty of MedicineUniversity of LjubljanaLjubljanaSlovenia
| | - Emanuela Boštjančič
- Institute of Pathology, Faculty of MedicineUniversity of LjubljanaLjubljanaSlovenia
| | - Rajko Kavalar
- Department of PathologyUniversity Medical Centre MariborMariborSlovenia
| | - Bojan Ilijevec
- Department of Abdominal and General SurgeryUniversity Medical Centre MariborMariborSlovenia
| | - Serena Bonin
- Department of Medical SciencesUniversity of TriesteTriesteItaly
| | | | - Nina Zidar
- Institute of Pathology, Faculty of MedicineUniversity of LjubljanaLjubljanaSlovenia
| |
Collapse
|
6
|
Ranković B, Boštjančič E, Zidar N, Žlajpah M, Jeruc J. miR-200b, ZEB2 and PTPN13 Are Downregulated in Colorectal Carcinoma with Serosal Invasion. Biomedicines 2022; 10:2149. [PMID: 36140249 PMCID: PMC9496117 DOI: 10.3390/biomedicines10092149] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/23/2022] [Accepted: 08/27/2022] [Indexed: 11/16/2022] Open
Abstract
Serosal invasion is an independent negative prognostic factor in certain cancers, including CRC. However, the mechanisms behind serosal invasion are poorly understood. We therefore assumed that epithelial-mesenchymal transition (EMT) might be involved. Our study included 34 patients with CRC, 3 stage pT2, 14 stage pT3 and 17 showing serosal invasion (stage pT4a according to TNM staging system). RNA isolated from formalin-fixed paraffin-embedded tissue samples was analysed for expression of the miR-200 family and their target genes CDKN1B, ONECUT2, PTPN13, RND3, SOX2, TGFB2 and ZEB2 using real-time PCR. We found upregulation of miR-200b and ONECUT2 in CRC pT3 and pT4a compared to normal mucosa, and downregulation of CDKN1B in CRC pT3. Moreover, we observed, downregulation of miR-200b, PTPN13 and ZEB2 in CRC with serosal invasion (pT4a) compared to pT3. Our results suggest the involvement of partial EMT in serosal invasion of CRC. In addition, PTPN13 seems to be one of the important regulators involved in serosal invasion, and ONECUT2 in tumour growth.
Collapse
Affiliation(s)
| | | | | | | | - Jera Jeruc
- Faculty of Medicine, Institute of Pathology, University of Ljubljana, Korytkova 2, 1000 Ljubljana, Slovenia
| |
Collapse
|
7
|
Pavlič A, Hauptman N, Boštjančič E, Zidar N. Long Non-Coding RNAs as Potential Regulators of EMT-Related Transcription Factors in Colorectal Cancer—A Systematic Review and Bioinformatics Analysis. Cancers (Basel) 2022; 14:cancers14092280. [PMID: 35565409 PMCID: PMC9105237 DOI: 10.3390/cancers14092280] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Emerging evidence highlights long non-coding RNAs as important regulators of epithelial–mesenchymal transition. Numerous studies have attempted to define their possible diagnostic, prognostic and therapeutic values in various human cancers. The aim of this review is to summarize long non-coding RNAs involved in the regulation of epithelial–mesenchymal transition in colorectal carcinoma. Additional candidate long non-coding RNAs are identified through a bioinformatics analysis. Abstract Epithelial–mesenchymal transition (EMT) plays a pivotal role in carcinogenesis, influencing cancer progression, metastases, stemness, immune evasion, metabolic reprogramming and therapeutic resistance. EMT in most carcinomas, including colorectal carcinoma (CRC), is only partial, and can be evidenced by identification of the underlying molecular drivers and their regulatory molecules. During EMT, cellular reprogramming is orchestrated by core EMT transcription factors (EMT-TFs), namely ZEB1/2, TWIST1/2, SNAI1 (SNAIL) and SNAI2 (SLUG). While microRNAs have been clearly defined as regulators of EMT, the role of long non-coding RNAs (lncRNAs) in EMT is poorly defined and controversial. Determining the role of lncRNAs in EMT remains a challenge, because they are involved in a number of cellular pathways and are operating through various mechanisms. Adding to the complexity, some lncRNAs have controversial functions across different tumor types, acting as EMT promotors in some tumors and as EMT suppressors in others. The aim of this review is to summarize the role of lncRNAs involved in the regulation of EMT-TFs in human CRC. Additional candidate lncRNAs were identified through a bioinformatics analysis.
Collapse
|
8
|
Epithelial-mesenchymal transition related to bone invasion in oral squamous cell carcinoma. J Bone Oncol 2022; 33:100418. [PMID: 35242512 PMCID: PMC8881471 DOI: 10.1016/j.jbo.2022.100418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 12/18/2022] Open
Abstract
Presence of epithelial-mesenchymal transition markers in tumor-bone interface. Dominant infiltrative pattern in bone tissue is associated with lower survival. E-cadherin-positive cases were associated with tobacco smoking. Vimentin-positive cases were associated with tumors under 4 cm. Twist could be strongly involved in bone invasion and in disease progression.
Introduction Bone invasion is an important prognostic factor in oral squamous cell carcinoma, leading to a lower survival rate and the use of aggressive treatment approaches. Epithelial-mesenchymal transition (EMT) is possibly involved in this process, because it is often related to mechanisms of cell motility and invasiveness. This study examined whether a panel of epithelial-mesenchymal markers are present in cases of oral squamous cell carcinoma with bone invasion and whether these proteins have any relationship with patients’ clinical-pathological parameters and prognostic factors. Methods Immunohistochemical analysis of E-cadherin, twist, vimentin, TGFβ1, and periostin was performed in paraffin-embedded samples of 62 oral squamous cell carcinoma cases. Results The analysis revealed that most cases (66%) presented with a dominant tumor infiltrative pattern in bone tissue, associated with lower survival rates, when compared with cases with a dominant erosive invasion pattern (P = 0.048). Twenty-seven cases (43%) expressed markers that were compatible with total or partial EMT at the tumor-bone interface. There was no association between evidence of total or partial EMT and other demographic or prognostic features. E-cadherin-positive cases were associated with tobacco smoking (P = 0.022); vimentin-positive cases correlated with tumors under 4 cm (P = 0.043). Twistexpression was observed in tumors with a dominant infiltrative pattern (P = 0.041) and was associated with the absence of periostin (P = 0.031). Conclusion We observed evidence of total or partial EMT in oral squamous cell carcinoma bone invasion. The transcription factor twist appears to be involved in bone invasion and disease progression.
Collapse
|
9
|
Hellquist H, Agaimy A, Stenman G, Franchi A, Nadal A, Skalova A, Leivo I, Zidar N, Simpson RHW, Slootweg PJ, Hernandez-Prera JC, Ferlito A. Development of head and neck pathology in Europe. Virchows Arch 2022; 480:951-965. [PMID: 35028711 DOI: 10.1007/s00428-022-03275-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 12/22/2021] [Accepted: 01/07/2022] [Indexed: 01/12/2023]
Abstract
This review gives a brief history of the development of head and neck pathology in Europe from a humble beginning in the 1930s to the explosive activities the last 15 years. During the decades before the introduction of immunohistochemistry in the 1980s, head and neck pathology grew as a subspeciality in many European countries. In the late 1940s, the Institute of Laryngology and Otology with its own pathology laboratory was founded in London, and in 1964 the World Health Organization (WHO) International Reference Centre for the Histological Classification of Salivary Tumours was established at the Bland-Sutton Institute of Pathology, also in London. International collaboration, and very much so in Europe, led to the publication of the first WHO Classification of Salivary Gland Tumours in 1972. In the 1960s, a salivary gland register was organised in Hamburg and in Cologne the microlaryngoscopy was invented enabling microscopic endoscopic examination and rather shortly afterwards a carbon dioxide laser attached to the microscope became established and laryngeal lesions could be treated by laser vaporisation. During the last three decades, the use of immunohistochemistry supplemented with cytogenetic and refined molecular techniques has greatly facilitated the pathological diagnostics of head and neck lesions and has had a huge impact on research. Collaboration between different European centres has drastically increased partly due to establishment of scientific societies such as the Head and Neck Working Group (HNWG) within the European Society of Pathology and the International Head and Neck Scientific Group (IHNSG). A very large number of European pathologists have contributed to the 2nd, 3rd and 4th WHO books, and are involved in the upcoming 5th edition. Accredited educational meetings and courses are nowadays regularly arranged in Europe. Numerous textbooks on head and neck pathology have been written and edited by European pathologists. The increased collaboration has created larger series of tumours for research and new entities, mainly defined by their genetic abnormalities, are continuously emerging from Europe, particularly regarding salivary gland neoplasms and "undifferentiated" sinonasal tumours. These findings have led to a better and more precise classification and open the possibilities for new treatment strategies.
Collapse
Affiliation(s)
- Henrik Hellquist
- Department of Biomedical Sciences and Medicine, Epigenetics and Human Disease Group, Algarve Biomedical Centre (ABC), Algarve University, Campus de Gambelas, Ala Norte, 8005-139, Faro, Portugal.
| | - Abbas Agaimy
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany.,Comprehensive Cancer Center (CCC) Erlangen-EMN, Erlangen, Germany
| | - Göran Stenman
- Department of Pathology, Sahlgrenska Center for Cancer Research, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Alessandro Franchi
- Section of Pathology, Department of Translational Research and of New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Alfons Nadal
- Department of Pathology, Hospital Clínic, Barcelona, Spain.,Department of Basic Clinical Practice, School of Medicine, Universitat de Barcelona, Barcelona, Spain.,August Pi I Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Alena Skalova
- Department of Pathology, Faculty of Medicine in Plzen, Charles University, Plzen, Czech Republic.,Department of Pathology and Molecular Genetics, Bioptical Laboratory Ltd, Plzen, Czech Republic
| | - Ilmo Leivo
- Institute of Biomedicine, Pathology, University of Turku, Turku, Finland.,Turku University Central Hospital, 20521, Turku, Finland
| | - Nina Zidar
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | | | - Pieter J Slootweg
- Department of Pathology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | | | - Alfio Ferlito
- Coordinator of the International Head and Neck Scientific Group, Padua, Italy
| |
Collapse
|
10
|
Metastatic EMT Phenotype Is Governed by MicroRNA-200-Mediated Competing Endogenous RNA Networks. Cells 2021; 11:cells11010073. [PMID: 35011635 PMCID: PMC8749983 DOI: 10.3390/cells11010073] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 12/12/2022] Open
Abstract
Epithelial–mesenchymal transition (EMT) is a fundamental physiologically relevant process that occurs during morphogenesis and organ development. In a pathological setting, the transition from epithelial toward mesenchymal cell phenotype is hijacked by cancer cells, allowing uncontrolled metastatic dissemination. The competing endogenous RNA (ceRNA) hypothesis proposes a competitive environment resembling a large-scale regulatory network of gene expression circuits where alterations in the expression of both protein-coding and non-coding genes can make relevant contributions to EMT progression in cancer. The complex regulatory diversity is exerted through an array of diverse epigenetic factors, reaching beyond the transcriptional control that was previously thought to single-handedly govern metastatic dissemination. The present review aims to unravel the competitive relationships between naturally occurring ceRNA transcripts for the shared pool of the miRNA-200 family, which play a pivotal role in EMT related to cancer dissemination. Upon acquiring more knowledge and clinical evidence on non-genetic factors affecting neoplasia, modulation of the expression levels of diverse ceRNAs may allow for the development of novel prognostic/diagnostic markers and reveal potential targets for the disruption of cancer-related EMT.
Collapse
|
11
|
Kałafut J, Czerwonka A, Anameriç A, Przybyszewska-Podstawka A, Misiorek JO, Rivero-Müller A, Nees M. Shooting at Moving and Hidden Targets-Tumour Cell Plasticity and the Notch Signalling Pathway in Head and Neck Squamous Cell Carcinomas. Cancers (Basel) 2021; 13:6219. [PMID: 34944837 PMCID: PMC8699303 DOI: 10.3390/cancers13246219] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 12/15/2022] Open
Abstract
Head and Neck Squamous Cell Carcinoma (HNSCC) is often aggressive, with poor response to current therapies in approximately 40-50% of the patients. Current therapies are restricted to operation and irradiation, often combined with a small number of standard-of-care chemotherapeutic drugs, preferentially for advanced tumour patients. Only very recently, newer targeted therapies have entered the clinics, including Cetuximab, which targets the EGF receptor (EGFR), and several immune checkpoint inhibitors targeting the immune receptor PD-1 and its ligand PD-L1. HNSCC tumour tissues are characterized by a high degree of intra-tumour heterogeneity (ITH), and non-genetic alterations that may affect both non-transformed cells, such as cancer-associated fibroblasts (CAFs), and transformed carcinoma cells. This very high degree of heterogeneity likely contributes to acquired drug resistance, tumour dormancy, relapse, and distant or lymph node metastasis. ITH, in turn, is likely promoted by pronounced tumour cell plasticity, which manifests in highly dynamic and reversible phenomena such as of partial or hybrid forms of epithelial-to-mesenchymal transition (EMT), and enhanced tumour stemness. Stemness and tumour cell plasticity are strongly promoted by Notch signalling, which remains poorly understood especially in HNSCC. Here, we aim to elucidate how Notch signal may act both as a tumour suppressor and proto-oncogenic, probably during different stages of tumour cell initiation and progression. Notch signalling also interacts with numerous other signalling pathways, that may also have a decisive impact on tumour cell plasticity, acquired radio/chemoresistance, and metastatic progression of HNSCC. We outline the current stage of research related to Notch signalling, and how this pathway may be intricately interconnected with other, druggable targets and signalling mechanisms in HNSCC.
Collapse
Affiliation(s)
- Joanna Kałafut
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, ul. Chodzki 1, 20-093 Lublin, Poland; (J.K.); (A.C.); (A.A.); (A.P.-P.); (A.R.-M.)
| | - Arkadiusz Czerwonka
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, ul. Chodzki 1, 20-093 Lublin, Poland; (J.K.); (A.C.); (A.A.); (A.P.-P.); (A.R.-M.)
| | - Alinda Anameriç
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, ul. Chodzki 1, 20-093 Lublin, Poland; (J.K.); (A.C.); (A.A.); (A.P.-P.); (A.R.-M.)
| | - Alicja Przybyszewska-Podstawka
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, ul. Chodzki 1, 20-093 Lublin, Poland; (J.K.); (A.C.); (A.A.); (A.P.-P.); (A.R.-M.)
| | - Julia O. Misiorek
- Department of Molecular Neurooncology, Institute of Bioorganic Chemistry Polish Academy of Sciences, ul. Noskowskiego 12/14, 61-704 Poznan, Poland;
| | - Adolfo Rivero-Müller
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, ul. Chodzki 1, 20-093 Lublin, Poland; (J.K.); (A.C.); (A.A.); (A.P.-P.); (A.R.-M.)
| | - Matthias Nees
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, ul. Chodzki 1, 20-093 Lublin, Poland; (J.K.); (A.C.); (A.A.); (A.P.-P.); (A.R.-M.)
- Western Finland Cancer Centre (FICAN West), Institute of Biomedicine, University of Turku, 20101 Turku, Finland
| |
Collapse
|
12
|
Kadeh H, Saravani S, Miri Moghaddam E. Immunohistochemical Expression of Epithelial Mesenchymal Transition Proteins in Squamous Cell Carcinoma of the Oral Cavity. IRANIAN JOURNAL OF PATHOLOGY 2021; 16:354-361. [PMID: 34567183 PMCID: PMC8463764 DOI: 10.30699/ijp.20201.137498.2502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 05/10/2021] [Indexed: 11/06/2022]
Abstract
Background & Objective Epithelial-Mesenchymal transition (EMT) is known to be a possible mechanism in tumor progression; however, there is insufficient evidence to support the contribution of this process in human cancers. The present study aimed to evaluate the expression of EMT markers in normal oral epithelium and oral squamous cell carcinoma and also correlates with some clinicopathological parameters. Methods This study was conducted on 70 samples, including 20 cases of normal epithelium and 50 cases of Oral Squamous cell Carcinoma (OSCC). To examine the expression level of these proteins, immunohistochemical staining was performed for samples using E-cadherin and N-cadherin monoclonal antibodies. Results Reduced expression of E-cadherin was observed in 74% of OSCC and 15% of normal epithelium samples; this difference was statistically significant (P˂0.000). With the progression of SCC from well towards poor differentiation, the E-cadherin expression decreased; however, this difference was not statistically significant (P=0.642). Normal epithelial specimens were negative for N-cadherin expression in 75% of cases, whereas OSCC specimens showed high expression of N-cadherin in 46% of cases, this difference was statistically significant (P=0.01). Although 62.5% of poorly differentiated OSCC showed high expression of N-cadherin, the difference between the histopathological grades was not significant (P=0.586). No significant relationship was found between markers expression and patient's age, gender, and tumor location. Conclusion This study showed that OSCC tissues showed high EMT phenotype (reduced E-cadherin expression and high expression of N-cadherin) compared to normal oral mucosa which may indicate the possible key role of EMT mechanism during oral carcinogenesis.
Collapse
Affiliation(s)
- Hamideh Kadeh
- Oral & Dental Disease Research Center, Department of Oral & Maxillofacial Pathology, School of Dentistry, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Shirin Saravani
- Oral & Dental Disease Research Center, Department of Oral & Maxillofacial Pathology, School of Dentistry, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Ebrahim Miri Moghaddam
- Department of Molecular Medicine, Cardiovascular Diseases Research Center, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
13
|
Pavlič A, Urh K, Štajer K, Boštjančič E, Zidar N. Epithelial-Mesenchymal Transition in Colorectal Carcinoma: Comparison Between Primary Tumor, Lymph Node and Liver Metastases. Front Oncol 2021; 11:662806. [PMID: 34046357 PMCID: PMC8144630 DOI: 10.3389/fonc.2021.662806] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/12/2021] [Indexed: 01/06/2023] Open
Abstract
There is emerging evidence suggesting that epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET) play an important role in colorectal carcinoma (CRC), but their exact role remains controversial. Our aim was to analyze the miR-200 family as EMT markers and their target genes expression at invasive tumor front and in nodal and liver metastases. Sixty-three formalin-fixed paraffin-embedded tissue samples from 19 patients with CRC were included. Using a micropuncture technique, tissue was obtained from central part and invasive front of the primary tumor, and nodal and liver metastases. Expression of the miR-200 family and their target genes CDKN1B, ONECUT2, PTPN13, RND3, SOX2, TGFB2 and ZEB2 was analyzed using real-time PCR. We found miR-200 family down-regulation at invasive front compared to central part, and up-regulation of miRNA-200a/b/c and miR-429 in metastases compared to invasive front. At invasive front, TGFB2 was the only gene with inverse expression to the miR-200 family, whereas in metastases inverse expression was found for ONECUT2 and SOX2. CDKN1B, PTPN13 and ZEB2 were down-regulated at invasive front and up-regulated in metastases. Our results suggest the involvement of partial EMT at invasive tumor front, and partial MET in metastases in CRC, based on miR-200 family and its target genes expression.
Collapse
Affiliation(s)
- Ana Pavlič
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Kristian Urh
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Katarina Štajer
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Emanuela Boštjančič
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Nina Zidar
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
14
|
Law ZJ, Khoo XH, Lim PT, Goh BH, Ming LC, Lee WL, Goh HP. Extracellular Vesicle-Mediated Chemoresistance in Oral Squamous Cell Carcinoma. Front Mol Biosci 2021; 8:629888. [PMID: 33768115 PMCID: PMC7985159 DOI: 10.3389/fmolb.2021.629888] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/12/2021] [Indexed: 12/11/2022] Open
Abstract
Oral Squamous Cell Carcinoma (OSCC) remains a cancer with poor prognosis and high recurrence rate. Even with multimodal treatment options available for OSCC, tumor drug resistance is still a persistent problem, leading to increased tumor invasiveness among OSCC patients. An emerging trend of thought proposes that extracellular vesicles (EVs) play a role in facilitating tumor progression and chemoresistance via signaling between tumor cells. In particular, exosomes and microvesicles are heavily implicated in this process by various studies. Where primary studies into a particular EV-mediated chemoresistance mechanism in OSCC are limited, similar studies on other cancer cell types will be used in the discussion below to provide ideas for a new line of investigation into OSCC chemoresistance. By understanding how EVs are or may be involved in OSCC chemoresistance, novel targeted therapies such as EV inhibition may be an effective alternative to current treatment options in the near future. In this review, the current understandings on OSCC drug mechanisms under the novel context of exosomes and microvesicles were reviewed, including shuttling of miRNA content, drug efflux, alteration of vesicular pH, anti-apoptotic signaling, modulation of DNA damage repair, immunomodulation, epithelial-to-mesenchymal transition and maintenance of tumor by cancer stem cells.
Collapse
Affiliation(s)
- Zhu-Jun Law
- School of Science, Monash University Malaysia, Selangor, Malaysia
| | - Xin Hui Khoo
- School of Science, Monash University Malaysia, Selangor, Malaysia
| | - Pei Tee Lim
- School of Science, Monash University Malaysia, Selangor, Malaysia
| | - Bey Hing Goh
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, Selangor, Malaysia
| | - Long Chiau Ming
- PAP Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei Darussalam
| | - Wai-Leng Lee
- School of Science, Monash University Malaysia, Selangor, Malaysia
| | - Hui Poh Goh
- PAP Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei Darussalam
| |
Collapse
|
15
|
Prognostic Implications of ALDH1 and Notch1 in Different Subtypes of Oral Cancer. JOURNAL OF ONCOLOGY 2021; 2021:6663720. [PMID: 33854547 PMCID: PMC8020805 DOI: 10.1155/2021/6663720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/27/2021] [Accepted: 02/03/2021] [Indexed: 11/18/2022]
Abstract
Background The present study aimed to investigate the clinical significance and prognostic value of the immunoexpression of cancer stem cell markers, ALDH1 and Notch1, in subtypes of oral squamous cell carcinoma. Materials and Methods The expression of ALDH1 and Notch1 in 63 patients with well and poorly differentiated oral squamous cell carcinomas and their subtypes, verrucous carcinoma and basaloid squamous cell carcinoma, was evaluated by immunohistochemistry. The semi-quantitative analysis of the ALDH1 and Notch immunoexpression levels, based on the capture of 10 microscopic fields, at 400X magnification, at the invasive tumor front was performed and associated with clinicopathological variables using the chi-square test or Fisher's exact test. The overall and disease-free survival rates were estimated according to the Kaplan-Meier method and the curves were compared using the log-rank test. The independent effects of variables were calculated using Cox's proportional hazards regression model. Results Strong ALDH1 and Notch1 expression was observed in 16 (25.4%) and 27 (42.9%) oral squamous cell carcinomas including their subtypes, respectively. Most tumors with strong immunoexpression of ALDH1 were basaloid squamous cell carcinoma (56.3%). Statistically significant associations were observed between the strong immunoexpression of Notch1 in poorly differentiated oral squamous cell carcinoma with perineural infiltration (p = 0.011) and lymph node involvement (pN+) (p = 0.034). The strong immunoexpression of ALDH1 was a prognostic factor associated with worse overall survival (p = 0.040) for patients with oral cancer. Conclusion The strong immunoexpression of Notch1 can contribute to identification of patients with poorly differentiated oral squamous cell carcinoma, who have perineural infiltration or lymph node metastasis. In addition, the strong immunoexpression of ALDH1 may help to identify a worse prognosis in patients with oral squamous cell carcinoma and their subtypes.
Collapse
|
16
|
Kashyap T, Nath N, Mishra P, Jha A, Nagini S, Mishra R. Pluripotency transcription factor Nanog and its association with overall oral squamous cell carcinoma progression, cisplatin-resistance, invasion and stemness acquisition. Head Neck 2020; 42:3282-3294. [PMID: 32710593 DOI: 10.1002/hed.26373] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/28/2020] [Accepted: 06/23/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Cisplatin-resistant oral squamous cell carcinoma (OSCC) cells acquire stem-like characteristics and are difficult to treat. Nanog is a transcription factor and needed for maintenance of pluripotency, but its transcription-promoting role in OSCC progression and cisplatin resistance is poorly understood. METHODS Here, 110 fresh human tissue specimens of various stages, including invasive (N1-3 )/chemoradiation-resistant OSCC samples, cisplatin-resistant (CisR-SCC-4/-9) OSCC cells/parental cells, photochemical ECGC, and siRNA (Nanog) were used. RESULTS Nanog overexpression was associated with overall progression, chemoresistance, and invasion of OSCC. Nanog recruitment to c-Myc, Slug, E-cadherin, and Oct-4 gene promoter was observed. Positive correlation of Nanog protein expression with c-Myc, Slug, cyclin D1, MMP-2/-9, and Oct-4 and negative correlation with E-cadherin gene expression were found. Knockdown of Nanog and treatment of epicatechin-3-gallate reversed cisplatin resistance and diminished invasion/migration potential. CONCLUSION Nanog directly participated in the regulation of Slug, E-cadherin, Oct-4, and c-Myc genes, causing cisplatin resistance/recurrence of OSCC.
Collapse
Affiliation(s)
- Tanushree Kashyap
- Department of Life Sciences, School of Natural Sciences, Central University of Jharkhand, Ranchi, Jharkhand, India
| | - Nidhi Nath
- Department of Life Sciences, School of Natural Sciences, Central University of Jharkhand, Ranchi, Jharkhand, India
| | - Prajna Mishra
- Centre for Applied Chemistry, School of Natural Sciences, Central University of Jharkhand, Ranchi, Jharkhand, India
| | - Arpita Jha
- Department of Life Sciences, School of Natural Sciences, Central University of Jharkhand, Ranchi, Jharkhand, India
| | - Siddavaram Nagini
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamil Nadu, India
| | - Rajakishore Mishra
- Department of Life Sciences, School of Natural Sciences, Central University of Jharkhand, Ranchi, Jharkhand, India
| |
Collapse
|
17
|
Tsunoda N, Ohashi Y, Onodera K, Takeda K, Kawai T, Miyamoto I, Chiba T, Takeda Y, Yamada H. Squamous cell carcinoma of the buccal mucosa with multiple distant metastases. JOURNAL OF ORAL AND MAXILLOFACIAL SURGERY, MEDICINE, AND PATHOLOGY 2020; 32:488-492. [DOI: 10.1016/j.ajoms.2020.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
|
18
|
Shetty SS, Sharma M, Fonseca FP, Jayaram P, Tanwar AS, Kabekkodu SP, Kapaettu S, Radhakrishnan R. Signaling pathways promoting epithelial mesenchymal transition in oral submucous fibrosis and oral squamous cell carcinoma. JAPANESE DENTAL SCIENCE REVIEW 2020; 56:97-108. [PMID: 32874377 PMCID: PMC7452314 DOI: 10.1016/j.jdsr.2020.07.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/02/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a critical process that occurs during the embryonic development, wound healing, organ fibrosis and the onset of malignancy. Emerging evidence suggests that the EMT is involved in the invasion and metastasis of cancers. The inflammatory reaction antecedent to fibrosis in the onset of oral submucous fibrosis (OSF) and the role of EMT in its malignant transformation indicates a hitherto unexplored involvement of EMT. This review focuses on the role of EMT markers which are regulators of the EMT mediated complex network of molecular mechanisms involved in the pathogenesis of OSF and OSCC. Further the gene enrichment analysis and pathway analysis supports the association of the upregulated and downregulated genes in various EMT regulating pathways.
Collapse
Affiliation(s)
- Smitha Sammith Shetty
- Department of Oral Pathology, Faculty of Dentistry, Melaka Manipal Medical College, Manipal Academy of Higher Education, Manipal 576104, India
| | - Mohit Sharma
- Department of Oral Pathology, Sudha Rustagi College of Dental Sciences and Research, Faridabad 121004, India
| | - Felipe Paiva Fonseca
- Department of Oral Surgery and Pathology, School of Dentistry, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Pradyumna Jayaram
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Ankit Singh Tanwar
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Satyamoorthy Kapaettu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Raghu Radhakrishnan
- Department of Oral Pathology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal 576104, India
| |
Collapse
|
19
|
Mosaddad SA, Beigi K, Doroodizadeh T, Haghnegahdar M, Golfeshan F, Ranjbar R, Tebyanian H. Therapeutic applications of herbal/synthetic/bio-drug in oral cancer: An update. Eur J Pharmacol 2020; 890:173657. [PMID: 33096111 DOI: 10.1016/j.ejphar.2020.173657] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/01/2020] [Accepted: 10/20/2020] [Indexed: 12/18/2022]
Abstract
Oral cancer, as one of the most prevalent and invasive cancers that invade local tissue, can cause metastasis, and have high mortality. In 2018, around 355,000 worldwide oral cancers occurred and resulted in 177,000 deaths. Estimates for the year 2020 include about 53,260 new cases added to previous year's cases, and the estimated death toll from this cancer in 2020 is about 10,750 deaths more than previous years. Despite recent advances in cancer diagnosis and treatment, unfortunately, 50% of people with cancer cannot be cured. Of course, it should be remembered that the type of treatment used greatly influences patient recovery. There are not many choices when it comes to treating oral cancer. Research efforts focusing on the discovery and evolution of innovative therapeutic approaches for oral cancer are essential. Such traditional methods of treating this type of cancer like surgery and chemotherapy, have evolved dramatically during the past thirty to forty years, but they continue to cause panic among patients due to their side effects. Therefore, it is necessary to study and use drugs that are less risky for the patient as well as to provide solutions to reduce chemotherapy-induced adverse events that prevent many therapeutic risks. As mentioned above, this study examines low-risk therapies such as herbal remedies, biological drugs, and synthetic drugs in the hope that they will be useful to physicians, researchers, and scientists around the world.
Collapse
Affiliation(s)
- Seyed Ali Mosaddad
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kimia Beigi
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tayebeh Doroodizadeh
- Department of Pediatric Dentistry, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maral Haghnegahdar
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farzaneh Golfeshan
- Orthodontic Research Center, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Ranjbar
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hamid Tebyanian
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Gupta S, Kamboj M, Narwal A. Knowing the unknown in oral squamous cell carcinoma: An observational study. J Cancer Res Ther 2020; 16:494-499. [PMID: 32719256 DOI: 10.4103/jcrt.jcrt_898_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Introduction Conventional oral squamous cell carcinoma (OSCC) is relatively easy to diagnose on histopathology, as it comprises dysplastic epithelial cells with variable degrees of squamous differentiation. Different grading systems have been employed in grading OSCC based on its dysplastic features and host response. Some unusual features such as clear cell change, epithelial-mesenchymal transition (EMT), stromal hyalinization, stromal desmoplasia, perineural invasion, vascular invasion, tissue eosinophilia, giant cells, and tertiary lymphoid follicle formation are evident in OSCC histologically but have not yet been accounted in any grading systems of OSCC except perineural and vascular invasion. Aim The aim of the present study was to identify these uncommon features and to correlate them with different grades of OSCC.Materials and Methods:This study was conducted on 100 histopathologically confirmed OSCC cases retrieved from the archives of our department. They were graded on the basis of Broder's grading system and were reviewed for the features mentioned above. Data collected were subjected to statistical analysis. Results Clear cell change, EMT, foreign body giant cells, and tumor giant cells were observed in 13%, 20%, 1%, and 3% of cases, respectively. We found stromal desmoplasia in 15% and stromal hyalinization in 9% of cases. Tissue eosinophilia, tertiary lymphoid follicle formation, and perineural invasion were observed in 12%, 3%, and 2% of cases, respectively. Vascular invasion was not evident in any of the cases examined. Conclusion The incidence of the unusual features was 7.8% in our study.
Collapse
Affiliation(s)
- Shruti Gupta
- Department of Oral Anatomy, Postgraduate Institute of Dental Sciences, Rohtak, Haryana, India
| | - Mala Kamboj
- Department of Oral Pathology, Postgraduate Institute of Dental Sciences, Rohtak, Haryana, India
| | - Anjali Narwal
- Department of Oral Pathology, Postgraduate Institute of Dental Sciences, Rohtak, Haryana, India
| |
Collapse
|
21
|
Yang R, Shui Y, Hu S, Zhang K, Wang Y, Peng Y. Silenced Myeloblastosis Protein Suppresses Oral Tongue Squamous Cell Carcinoma via the microRNA-130a/Cylindromatosis Axis. Cancer Manag Res 2020; 12:6935-6946. [PMID: 32821162 PMCID: PMC7425089 DOI: 10.2147/cmar.s252340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/29/2020] [Indexed: 02/05/2023] Open
Abstract
Background Oral tongue squamous cell carcinoma (OTSCC) represents oral epithelial cell damage. Myeloblastosis (MYB) is involved in OTSCC. This study tried to probe roles of MYB in OSCC with potential axis. Methods Expression of MYB and miR-130a in OTSCC was detected. Western blot analysis was utilized to determine epithelial-mesenchymal transition-related protein levels. Dual-luciferase reporter gene assay certified the target relation between miR-130a and CYLD. Moreover, xenograft tumors in nude mice were applied to confirm the in vitro experiments. Results Both MYB and miR-130a were highly expressed in OTSCC, which promoted cell growth. Meanwhile, silenced miR-130a discouraged cell development enhanced by overexpressed MYB. CYLD was poorly expressed in OTSCC and targeted by miR-130a. Additionally, MYB knockdown activated CYLD to suppress OTSCC by downregulating miR-130a. Conclusion Our experiment supported that silenced MYB suppressed OTSCC malignancy by inhibiting miR-130a and activating CYLD. This investigation may provide novel insights for OTSCC treatment.
Collapse
Affiliation(s)
- Ran Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chengdu 610041, Sichuan, People's Republic of China
| | - Yusen Shui
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
| | - Shoushan Hu
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
| | - Kun Zhang
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
| | - Yuru Wang
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
| | - Yiran Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chengdu 610041, Sichuan, People's Republic of China
| |
Collapse
|
22
|
Expression of NANOG and Its Regulation in Oral Squamous Cell Carcinoma. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8573793. [PMID: 32733958 PMCID: PMC7383335 DOI: 10.1155/2020/8573793] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/11/2020] [Accepted: 05/30/2020] [Indexed: 02/07/2023]
Abstract
Background Results of previous studies suggest that NANOG may be an important prognostic biomarker in oral squamous cell carcinoma (OSCC), but there are contradictory results regarding NANOG expression patterns on mRNA and protein levels, and the mechanisms of its regulation are poorly understood. Our aim was to analyze the expression and diagnostic significance of NANOG in OSCC, and the possible mechanisms of its regulation, i.e., protein regulators on mRNA level (OCT4, SOX2, KLF4, AGR2, and NOTCH1), methylation status, copy number variation, and regulatory miRNAs, miR-145, miR-335, miR-150, miR-34a, miR-128, and miR-27a. Methods Our study included 120 patients with OSCC. Expression of NANOG protein and mRNA was analyzed using immunohistochemistry and qPCR. Expression of regulatory factors, miRNAs, and copy number variation was performed using qPCR. Methylation status of NANOG promoter was determined using PCR and Sanger sequencing. Results We detected upregulation of NANOG and OCT4 and downregulation of NOTCH1 and AGR2 mRNA in OSCC with lymph node metastases compared to OSCC without lymph node metastases. We observed a strong positive correlation between mRNAs of NANOG and those of its protein regulators OCT4, SOX2, NOTCH1, AGR2, and KLF4. The expression of NANOG was in positive correlation with the expression of miR-34a. There was also a correlation between T status of OSCC and the expression of miR-335 and miR-150 and a correlation of miR-150 with the N status of T2 OSCC. NANOG promoter methylation and copy number variation were only observed in a small proportion of samples. Conclusions Our findings confirm the diagnostic significance of NANOG in OSCC and provide information on NANOG expression patterns on both mRNA and protein levels. They also suggest that protein regulators and microRNAs might play a crucial role, whereas methylation of its promoter and copy number variation probably have a minor role in the regulation of NANOG expression in OSCC.
Collapse
|
23
|
Kuzmanov A, Johansen P, Hofbauer G. FBXO25 Promotes Cutaneous Squamous Cell Carcinoma Growth and Metastasis through Cyclin D1. J Invest Dermatol 2020; 140:2496-2504. [PMID: 32335130 DOI: 10.1016/j.jid.2020.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 02/07/2023]
Abstract
FBPs are components of the SCF protein E3 ubiquitin ligase and can specifically bind to substrates and thereby regulate multiple tumor behaviors. However, the role of FBPs, FBXO25 in particular, in cutaneous squamous cell carcinoma (cSCC) has not been explored yet. In this study, we found FBXO25 to be highly expressed in cSCC in mice and in vitro, whereas it was significantly less expressed in normal keratinocytes. Stable silencing of FBXO25 in SCC13 cells led to reduced tumor growth, and the knockdown of FBXO25 was accompanied by downregulation of cyclin D1. Correspondingly, stable overexpression of cyclin D1 in FBXO25-deficient SCC13 tumors increased tumor growth, supporting the hypothesis that FBXO25 promotes cSCC growth and metastasis through cyclin D1. Moreover, we found FBXO25 and cyclin D1 interaction to be facilitated through the repressor (Oct-1) of cyclin D1. Our data indicate that Oct-1 interacts directly with FBXO25 and undergoes downregulation, consequently stabilizing cyclin D1 and promoting tumor growth and metastasis.
Collapse
Affiliation(s)
| | - Pål Johansen
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Günther Hofbauer
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
24
|
Epithelial-Mesenchymal Transition in a Case of Metastatic Thyroid Carcinoma in a Brown Bear (Ursus arctos). J Comp Pathol 2020; 176:10-13. [PMID: 32359621 DOI: 10.1016/j.jcpa.2020.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 01/16/2020] [Accepted: 01/20/2020] [Indexed: 11/24/2022]
Abstract
A 20-year-old male brown bear (Ursus arctos) with a 20 × 25 cm necrotic mass adjacent to the trachea was diagnosed as having an anaplastic thyroid carcinoma. Metastases were observed in the lungs and one adrenal gland and, histologically, these had anaplastic and follicular carcinoma patterns, respectively. E-cadherin labelling was observed in the adrenal mass only, while N-cadherin immunolabelling was detected in the thyroid gland and lung masses. Thyroid-specific markers (thyroid transcription factor-1, thyroglobulin) were expressed in the adrenal gland metastasis. This case illustrates an example of a primary epithelial-mesenchymal transition (EMT) enabling metastasis to distant organ sites, followed by a mesenchymal-epithelial transition within the adrenal gland microenvironment, allowing invasion and reacquisition of thyroid epithelial cell features. EMTs help to understand the phenomenon of carcinoma cell plasticity in enabling colonization and growth of metastases.
Collapse
|
25
|
Tuguzbaeva G, Yue E, Chen X, He L, Li X, Ju J, Qin Y, Pavlov V, Lu Y, Jia W, Bai Y, Niu Y, Yang B. PEP06 polypeptide 30 is a novel cluster-dissociating agent inhibiting α v integrin/FAK/Src signaling in oral squamous cell carcinoma cells. Acta Pharm Sin B 2019; 9:1163-1173. [PMID: 31867162 PMCID: PMC6900557 DOI: 10.1016/j.apsb.2019.10.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/09/2019] [Accepted: 10/11/2019] [Indexed: 12/30/2022] Open
Abstract
Collectively migrating tumor cells have been recently implicated in enhanced metastasis of epithelial malignancies. In oral squamous cell carcinoma (OSCC), αv integrin is a crucial mediator of multicellular clustering and collective movement in vitro; however, its contribution to metastatic spread remains to be addressed. According to the emerging therapeutic concept, dissociation of tumor clusters into single cells could significantly suppress metastasis-seeding ability of carcinomas. This study aimed to investigate the anti-OSCC potential of novel endostatin-derived polypeptide PEP06 as a cluster-dissociating therapeutic agent in vitro. Firstly, we found marked enrichment of αv integrin in collectively invading multicellular clusters in human OSCCs. Our study revealed that metastatic progression of OSCC was associated with augmented immunostaining of αv integrin in cancerous lesions. Following PEP06 treatment, cell clustering on fibronectin, migration, multicellular aggregation, anchorage-independent survival and colony formation of OSCC were significantly inhibited. Moreover, PEP06 suppressed αv integrin/FAK/Src signaling in OSCC cells. PEP06-induced loss of active Src and E-cadherin from cell–cell contacts contributed to diminished collective migration of OSCC in vitro. Overall, these results suggest that PEP06 polypeptide 30 inhibiting αv integrin/FAK/Src signaling and disrupting E-cadherin-based intercellular junctions possesses anti-metastatic potential in OSCC by acting as a cluster-dissociating therapeutic agent.
Collapse
|
26
|
Chen X, Cao Y, Sedhom W, Lu L, Liu Y, Wang H, Oka M, Bornstein S, Said S, Song J, Lu SL. Distinct roles of PIK3CA in the enrichment and maintenance of cancer stem cells in head and neck squamous cell carcinoma. Mol Oncol 2019; 14:139-158. [PMID: 31600013 PMCID: PMC6944113 DOI: 10.1002/1878-0261.12584] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 08/20/2019] [Accepted: 10/08/2019] [Indexed: 01/26/2023] Open
Abstract
Recurrence and metastasis are the major causes of mortality in head and neck squamous cell carcinoma (HNSCC). It is suggested that cancer stem cells (CSCs) play pivotal roles in recurrence and metastasis. Thus, a greater understanding of the mechanisms of CSC regulation may provide opportunities to develop novel therapies for improving survival by controlling recurrence or metastasis. Here, we report that overexpression of the gene encoding the catalytic subunit of PI3K (PIK3CA), the most frequently amplified oncogene in HNSCC, promotes epithelial‐to‐mesenchymal transition and enriches the CSC population. However, PIK3CA is not required to maintain these traits and inhibition of the phosphatidylinositol 3‐kinase (PI3K) signaling pathway paradoxically promotes CSC population. Molecular analysis revealed that overexpression of PIK3CA activates multiple receptor tyrosine kinases (RTKs), in which ephrin receptors (Ephs), tropomyosin receptor kinases (TRK) and mast/stem cell growth factor receptor (c‐Kit) contribute to maintain CSC population. Accordingly, simultaneous inhibition of these RTKs using a multi‐kinase inhibitor ponatinib has a superior effect at eliminating the CSC population and reduces metastasis of PIK3CA‐overexpressing HNSCC cells. Our result suggests that co‐targeting of Ephs, TRKs and the c‐Kit pathway may be effective at eliminating the PI3K‐independent CSC population, thereby providing potential targets for future development of a novel anti‐CSC therapeutic approach for HNSCC patients, particularly for patients with PIK3CA amplification.
Collapse
Affiliation(s)
- Xi Chen
- Department of Otolaryngology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Yu Cao
- Department of Otolaryngology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Department of Surgical Oncology, First Hospital of China Medical University, Shengyang, China
| | - Wafik Sedhom
- Department of Otolaryngology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ling Lu
- Department of Otolaryngology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Yanqiu Liu
- Department of Otolaryngology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Institute of Integrative Medicine, Dalian Medical University, China
| | - Haibo Wang
- Department of Otolaryngology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Department of Surgical Oncology, Second Hospital of Dalian Medical University, China
| | - Masako Oka
- Department of Otolaryngology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Sophia Bornstein
- Department of Radiation Oncology, Cornell University, New York, NY, USA
| | - Sherif Said
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - John Song
- Department of Otolaryngology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Shi-Long Lu
- Department of Otolaryngology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
27
|
Cancer Stem Cells and Oral Carcinogenesis; a Review Article. INTERNATIONAL JOURNAL OF CANCER MANAGEMENT 2019. [DOI: 10.5812/ijcm.96139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
28
|
Siar CH, Ng KH. Epithelial-to-mesenchymal transition in ameloblastoma: focus on morphologically evident mesenchymal phenotypic transition. Pathology 2019; 51:494-501. [PMID: 31262562 DOI: 10.1016/j.pathol.2019.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/08/2019] [Accepted: 04/14/2019] [Indexed: 01/06/2023]
Abstract
The ameloblastoma is the most common and clinically significant odontogenic epithelial neoplasm known for its locally-invasive behaviour and high recurrence risk. Epithelial-to-mesenchymal transition (EMT) is a fundamental process whereby epithelial cells lose their epithelial characteristics and gain mesenchymal properties. EMT induction via transcription repression has been investigated in ameloblastoma. However, morphologically evident mesenchymal phenotypic transition remains ill-defined. To determine this, 24 unicystic (UA), 34 solid/multicystic (SA) and 18 recurrent ameloblastoma (RA) were immunohistochemically examined for three EMT-related mesenchymal markers, alpha smooth muscle actin (α-SMA), osteonectin and neuronal cadherin (N-cadherin). All three factors were heterogeneously detected in ameloblastoma samples (α-SMA, n=71/76, 93.4%; osteonectin, n=72/76, 94.7%; N-cadherin, n=24/76, 31.6%). In the tumoural parenchyma, immunoreactive cells were not morphologically distinct from their non-reactive cellular counterparts. Rather, α-SMA and osteonectin predominantly labelled the cytoplasm of central polyhedral > peripheral columnar/cuboidal tumour cells. N-cadherin demonstrated weak-to-moderate circumferential membranous staining in both neoplastic cell types and cytoplasmic expression in spindle-celled epithelium of desmoplastic amelobastoma. For all tumour subsets, α-SMA and osteonectin scored significantly higher in the stroma > parenchyma whilst α-SMA was overexpressed along the tumour invasive front > centre (p<0.05). Stromal N-cadherin scored higher in SA > UA and RA > UA (p<0.05). Other clinicopathological parameters showed no significant associations. Taken together, acquisition of mesenchymal traits without morphologically evident mesenchymal alteration suggests partial EMT in ameloblastoma. Stromal upregulation of these proteins in SA and RA implicates a role in local invasiveness.
Collapse
Affiliation(s)
- Chong Huat Siar
- Department of Oral and Maxillofacial Clinical Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia.
| | - Kok Han Ng
- formerly Unit of Stomatology, Institute for Medical Research, Kuala Lumpur, Malaysia
| |
Collapse
|
29
|
Ling Z, Yang X, Chen X, Xia J, Cheng B, Tao X. CCL2 promotes cell migration by inducing epithelial-mesenchymal transition in oral squamous cell carcinoma. J Oral Pathol Med 2019; 48:477-482. [PMID: 31077446 DOI: 10.1111/jop.12869] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/15/2019] [Accepted: 05/02/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND Although a few studies suggested that the chemokine CCL2 might be involved in the development of oral squamous cell carcinoma (OSCC), the exact mechanism remains unclear. In this study, we aimed to determine the resource of CCL2 in lesions and explored a potential mechanism that CCL2 promotes tumor progression. The study was an effort to provide new insights into the pathological role of CCL2 in OSCC. METHODS Specimens of OSCC and normal oral mucosa were stained using immunohistochemistry (IHC) to assess the CCL2 expression. Enzyme-linked immunosorbent assay (ELISA) was used to detect the difference of CCL2 between OSCC and normal oral mucosa cell lines. In addition, we treated OSCC cells with exogenous rCCL2 combined with or without CCL2 neutralizing antibody and then determined the changes of in epithelial-mesenchymal transition (EMT) markers and cell migration capacity using immunofluorescence, Western blotting, transwell migration, and wound healing assays. RESULTS We have found that CCL2 expression was upregulated significantly in both lesions and cell culture supernatant of OSCC compared with controls. IHC staining demonstrated that CCL2 expression was primarily located in the cytoplasm and cell membrane of cells. We have also found that rCCL2 could effectively induce EMT through upregulating Snail in OSCC cells, which was demonstrated by the decrease of E-cadherin and the increase of vimentin. In addition, we have found that CCL2 neutralizing antibody could block EMT induced by CCL2 in OSCC. CONCLUSIONS CCL2 secreted by cancer cells can promote cell migration by inducing EMT via paracrine or autocrine in OSCC.
Collapse
Affiliation(s)
- Zihang Ling
- Guangdong Provincial Key Laboratory of Stomatology, Department of Oral Medicine, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Xi Yang
- Department of Periodontology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Xiaobin Chen
- Guangdong Provincial Key Laboratory of Stomatology, Department of Oral Medicine, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Juan Xia
- Guangdong Provincial Key Laboratory of Stomatology, Department of Oral Medicine, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Bin Cheng
- Guangdong Provincial Key Laboratory of Stomatology, Department of Oral Medicine, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Xiaoan Tao
- Guangdong Provincial Key Laboratory of Stomatology, Department of Oral Medicine, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
30
|
Silva DFB, Santos HBDP, León JE, Gomes DQDC, Alves PM, Nonaka CFW. Clinicopathological and immunohistochemical analysis of spindle cell squamous cell carcinoma of the tongue: a rare case. EINSTEIN-SAO PAULO 2019; 17:eRC4610. [PMID: 30785474 PMCID: PMC6377040 DOI: 10.31744/einstein_journal/2019rc4610] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 11/23/2018] [Indexed: 01/21/2023] Open
Abstract
Spindle cell squamous cell carcinoma of the tongue is a rare variant of squamous cell carcinoma. This paper reports the case of a spindle cell squamous cell carcinoma of the tongue, in a 64-year-old male patient, and presents a review of the etiopathogenesis, clinicopathological and immunohistochemical features and treatment of the malignancy. The patient presented for evaluation of a painful swelling on his tongue. Extraoral examination revealed palpable submandibular and superior cervical lymph nodes. Based on the presumptive diagnoses of squamous cell carcinoma or malignant salivary gland neoplasm, an incisional biopsy was performed. Histopathological analysis showed a proliferation of atypical spindle cells, exhibiting extensive pleomorphism. Tumor cells were positive for vimentin, P53 and alpha-smooth muscle actin, focally positive for epithelial membrane antigen and P63, and negative for pan-cytokeratin (AE1/AE3), CK7, CD138, CD34, CD56, and S-100. The positivity index for Ki-67 was approximately 40%. The diagnosis of spindle cell squamous cell carcinoma was established and the patient was referred to a head and neck surgery service. In the oral cavity, spindle cell squamous cell carcinoma of the tongue is an aggressive variant of squamous cell carcinoma, which usually presents as an exophytic mass located on the tongue of elderly males. Due to its distinct histopathological characteristics, immunohistochemistry is a valuable and helpful tool to establish the diagnosis of spindle cell squamous cell carcinoma of the tongue.
Collapse
Affiliation(s)
| | | | - Jorge Esquiche León
- Faculdade de Odontologia de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | | | | | | |
Collapse
|
31
|
Li W, Zhu D, Qin S. SIRT7 suppresses the epithelial-to-mesenchymal transition in oral squamous cell carcinoma metastasis by promoting SMAD4 deacetylation. J Exp Clin Cancer Res 2018; 37:148. [PMID: 30001742 PMCID: PMC6044017 DOI: 10.1186/s13046-018-0819-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 06/28/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is one of the most common malignancies and has a poor prognosis. The epithelial-to-mesenchymal transition (EMT) is crucial for increasing the metastasis of OSCC. Recently, studies have indicated that sirtuin7 (SIRT7) is implicated in tumor genesis; however, the potential role of SIRT7 in the EMT and metastasis of OSCC has not been reported. METHODS We investigated the cellular responses to SIRT7 silencing or overexpression in OSCC cell lines by wound healing assay, migration and invasion assay, western blotting, immunofluorescence and immunohistochemistry. RESULTS In the present study, we found that SIRT7 was significantly downregulated in OSCC cell lines and human OSCC/OSCC tissues with lymph node metastasis. Overexpression of SIRT7 decreased the proliferation and invasion of OSCC cells in vitro, whereas SIRT7 knockdown significantly increased OSCC cell growth and invasion. Upregulation of SIRT7 concomitantly increased the expression of E-cadherin, and decreased the expression of mesenchymal markers. SIRT7 overexpression also reduced the level of acetylated SMAD4 in OSCC cells. Moreover, SIRT7 overexpression significantly inhibited OSCC lung metastasis in vivo. CONCLUSION Together, these findings suggested that SIRT7 suppressed EMT in OSCC metastasis by promoting SMAD4 deacetylation.
Collapse
Affiliation(s)
- Wenlu Li
- Department of Stomatology, The First affiliated hospital of Zhengzhou University, 1# East Jianshe Road 1, Zhengzhou, 450000 Henan China
| | - Dandan Zhu
- Department of Stomatology, The First affiliated hospital of Zhengzhou University, 1# East Jianshe Road 1, Zhengzhou, 450000 Henan China
| | - Shuaihua Qin
- Department of Stomatology, The First affiliated hospital of Zhengzhou University, 1# East Jianshe Road 1, Zhengzhou, 450000 Henan China
| |
Collapse
|