1
|
Levi A, Blais E, Davelaar J, Ebia MI, Minasyan A, Nikravesh N, Gresham G, Zheng L, Chuy JW, Shroff RT, Wadlow RC, DeArbeloa P, Matrisian LM, Petricoin E, Pishvaian MJ, Gong J, Hendifar AE, Osipov A. Clinical outcomes and molecular characteristics of lung-only and liver-only metastatic pancreatic cancer: results from a real-world evidence database. Oncologist 2025; 30:oyaf007. [PMID: 40079530 PMCID: PMC11904785 DOI: 10.1093/oncolo/oyaf007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 01/03/2025] [Indexed: 03/15/2025] Open
Abstract
BACKGROUND Previous research demonstrates longer survival for patients with lung-only metastatic pancreatic adenocarcinoma (mPDAC) compared to liver-only mPDAC. The objective of this study is to understand the survival differences, impact of chemotherapy, and associated genomic features of mPDAC that is isolated to either the liver or lung. PATIENTS AND METHODS Longitudinal clinical outcomes and molecular sequencing data were retrospectively analyzed across 831 patients with PDAC across all stages whose tumors first metastasized to the liver or lung. Survival differences were evaluated using Cox regression. Mutational frequency differences were evaluated using Fisher's exact test. RESULTS Median overall survival (mOS) was shorter in patients with liver-only metastasis (1.3y [1.2-1.4], n = 689) compared to lung-only metastasis (2.1y [1.9-2.5], n = 142) (P = .000000588, HR = 2.00 [1.53-2.63]. Survival differences were observed regardless of choice of 1st-line standard-of-care therapy. For 5-fluorouracil-based therapies, mOS for liver-only mPDAC was 1.4y [1.3-1.6] (n = 211) compared to 2.1y [1.8-3.3] for lung-only mPDAC (n = 175) (P = .008113, HR = 1.75 [1.16-2.65]). For gemcitabine/nab-paclitaxel therapy, mOS for liver-only mPDAC was 1.2y [1.1-1.5] (n = 175) compared to 2.1y [1.6-3.4] for lung-only disease (n = 32) (P = .01863, HR = 1.84 [1.11-3.06]). PDAC tumors with liver-only metastases were modestly enriched (unadjustable P < .05) for: TP53 mutations, MYC amplifications, inactivating CDK2NA alterations, inactivating SMAD alterations, and SWI/SWF pathway mutations. PDAC tumors with lung-only metastases were enriched for: STK11 mutations, CCND1 amplifications, and GNAS alterations. CONCLUSION Patients with lung-only mPDAC demonstrate an improved prognosis relative to those with liver-only mPDAC. Responses to chemotherapy do not explain these differences. Organotropic metastatic tumor diversity is mirrored at the molecular level in PDAC.
Collapse
Affiliation(s)
- Abrahm Levi
- Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Edik Blais
- Perthera Inc., McLean, VA, United States
| | - John Davelaar
- Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Matthew I Ebia
- Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | | | - Nima Nikravesh
- Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | | | - Lei Zheng
- University of Texas Health Science Center San Antonio, Hematology and Oncology, San Antonio, TX, United States
| | | | - Rachna T Shroff
- University of Arizona College of Medicine, Hematology and Oncology, Tucson, AZ, United States
| | | | | | | | | | - Michael J Pishvaian
- University of Texas Health Science Center San Antonio, Hematology and Oncology, San Antonio, TX, United States
- Johns Hopkins Medicine, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, United States
| | - Jun Gong
- Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | | | - Arsen Osipov
- Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
2
|
Zhou Z, Huang D, Cai Y, Yang S, Jiang N, Zhan Q. Characteristic abnormal expression of galectin-3 in serrated colon lesions and its pathological significance. Histol Histopathol 2025; 40:67-72. [PMID: 38804139 DOI: 10.14670/hh-18-759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Serrated lesions are precursors of some colon cancers. The expression of galectin-3 has been reported to be involved in BRAF and KRAS mutations (the key pathogenic drivers of serrated lesions). This study aimed to investigate the expression intensity and subcellular localization of galectin-3 in serrated colon lesions by immunohistochemistry. The results demonstrated that, regarding expression intensity, galectin-3 expression in serrated colon lesions was significantly upregulated; regarding subcellular localization, the membrane expression of hyperplastic polyps/ sessile serrated lesions (HP/SSL) was weakened, the structure was disorganized and that of traditional serrated adenoma (TSA) was significantly weakened or disappeared, and the nuclear expression of both was positive; in the dysplasia of SSL (SSL-D) and TSA (TSA-HD), galectin-3 expression intensity remained high, and was weakened or disappeared in some nuclei, the expression disorder of the SSL-D cell membrane was reduced, the polarity of the cell was restored, weak expression appeared in the local cell membrane of TSA-HD, and the "serrated" structure of both was reduced or disappeared and seemed to revert more to that seen in common adenomas. In summary, abnormal galectin-3 expression occurs in the early stages of serrated lesions, its expression is characteristic, the dynamic changes in galectin-3 expression are closely related to the histopathological changes and progression of serrated lesions, and further accumulated molecular alterations contribute to this process.
Collapse
Affiliation(s)
- Zhiyi Zhou
- Department of Pathology, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, PR China
| | - Dandan Huang
- Center of Digestive Endoscopy, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, PR China
| | - Ying Cai
- Department of Pathology, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, PR China
| | - Shudong Yang
- Department of Pathology, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, PR China
| | - Nanxing Jiang
- Department of Pathology, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, PR China
| | - Qiang Zhan
- Department of Gastroenterology, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, PR China.
| |
Collapse
|
3
|
Michl M, Taverna F, Woischke C, Li P, Klauschen F, Kirchner T, Heinemann V, von Bergwelt-Baildon M, Stahler A, Herold TM, Jurinovic V, Engel J, Kumbrink J, Neumann J. Identification of a gene expression signature associated with brain metastasis in colorectal cancer. Clin Transl Oncol 2024; 26:1886-1895. [PMID: 38558282 PMCID: PMC11249597 DOI: 10.1007/s12094-024-03408-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 02/11/2024] [Indexed: 04/04/2024]
Abstract
PURPOSE Brain metastasis (BM) in colorectal cancer (CRC) is a rare event with poor prognosis. Apart from (K)RAS status and lung and bone metastasis no biomarkers exist to identify patients at risk. This study aimed to identify a gene expression signature associated with colorectal BM. METHODS Three patient groups were formed: 1. CRC with brain metastasis (BRA), 2. exclusive liver metastasis (HEP) and, 3. non-metastatic disease (M0). RNA was extracted from primary tumors and mRNA expression was measured using a NanoString Panel (770 genes). Expression was confirmed by qPCR in a validation cohort. Statistical analyses including multivariate logistic regression followed by receiver operating characteristic (ROC) analysis were performed. RESULTS EMILIN3, MTA1, SV2B, TMPRSS6, ACVR1C, NFAT5 and SMC3 were differentially expressed in BRA and HEP/M0 groups. In the validation cohort, differential NFAT5, ACVR1C and SMC3 expressions were confirmed. BRA patients showed highest NFAT5 levels compared to HEP/M0 groups (global p = 0.02). High ACVR1C expression was observed more frequently in the BRA group (42.9%) than in HEP (0%) and M0 (7.1%) groups (global p = 0.01). High SMC3 expressions were only detectable in the BRA group (global p = 0.003). Only patients with BM showed a combined high expression of NFAT5, ACVR1C or SMC3 as well as of all three genes. ROC analysis revealed a good prediction of brain metastasis by the three genes (area under the curve (AUC) = 0.78). CONCLUSIONS The NFAT5, ACVR1C and SMC3 gene expression signature is associated with colorectal BM. Future studies should further investigate the importance of this biomarker signature.
Collapse
Affiliation(s)
- Marlies Michl
- Department of Medicine III, University Hospital, Ludwig-Maximilian-University of Munich, Munich, Germany
- Department of Haematology and Oncology, Comprehensive Cancer Center Munich, Ludwig-Maximilian-University of Munich, Munich, Germany
| | - Francesco Taverna
- Institute of Pathology, Faculty of Medicine, Ludwig-Maximilian-University of Munich, Munich, Germany
| | - Christine Woischke
- Institute of Pathology, Faculty of Medicine, Ludwig-Maximilian-University of Munich, Munich, Germany
| | - Pan Li
- Institute of Pathology, Faculty of Medicine, Ludwig-Maximilian-University of Munich, Munich, Germany
| | - Frederick Klauschen
- Department of Haematology and Oncology, Comprehensive Cancer Center Munich, Ludwig-Maximilian-University of Munich, Munich, Germany
- Institute of Pathology, Faculty of Medicine, Ludwig-Maximilian-University of Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich and German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Thomas Kirchner
- Institute of Pathology, Faculty of Medicine, Ludwig-Maximilian-University of Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich and German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Volker Heinemann
- Department of Medicine III, University Hospital, Ludwig-Maximilian-University of Munich, Munich, Germany
- Department of Haematology and Oncology, Comprehensive Cancer Center Munich, Ludwig-Maximilian-University of Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich and German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Michael von Bergwelt-Baildon
- Department of Medicine III, University Hospital, Ludwig-Maximilian-University of Munich, Munich, Germany
- Department of Haematology and Oncology, Comprehensive Cancer Center Munich, Ludwig-Maximilian-University of Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich and German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Arndt Stahler
- Department of Hematology, Oncology, and Tumorimmunology, Corporate Member of Freie Universitaet Berlin and Humbolt-Universitaet zu Berlin, Charité - Universitaetsmedizin Berlin, Berlin, Germany
| | - Tobias Marcus Herold
- Department of Medicine III, University Hospital, Ludwig-Maximilian-University of Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich and German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Vindi Jurinovic
- Institute for Medical Information Processing, Biometry and Epidemiology, Ludwig-Maximilian-University of Munich, Munich, Germany
| | - Jutta Engel
- Munich Cancer Registry (MCR), Ludwig-Maximilian-University of Munich, Munich, Germany
| | - Jörg Kumbrink
- Institute of Pathology, Faculty of Medicine, Ludwig-Maximilian-University of Munich, Munich, Germany.
- German Cancer Consortium (DKTK), Partner Site Munich and German Cancer Research Centre (DKFZ), Heidelberg, Germany.
| | - Jens Neumann
- Institute of Pathology, Faculty of Medicine, Ludwig-Maximilian-University of Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich and German Cancer Research Centre (DKFZ), Heidelberg, Germany
| |
Collapse
|
4
|
Zeng J, Fan W, Li J, Wu G, Wu H. KRAS/NRAS Mutations Associated with Distant Metastasis and BRAF/PIK3CA Mutations Associated with Poor Tumor Differentiation in Colorectal Cancer. Int J Gen Med 2023; 16:4109-4120. [PMID: 37720173 PMCID: PMC10503567 DOI: 10.2147/ijgm.s428580] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 08/30/2023] [Indexed: 09/19/2023] Open
Abstract
Background The occurrence, progression, and prognosis of colorectal cancer (CRC) are regulated by EGFR-mediated signaling pathways. However, the relationship between the core genes (KRAS/NRAS/BRAF/PIK3CA) status in the signaling pathways and clinicopathological characteristics of CRC patients in Hakka population remains controversial. Methods Patients were genotyped for KRAS (codons 12, 13, 61, 117, and 146), NRAS (codons 12, 61, 117, and 146), BRAF (codons 600), and PIK3CA (codons 542, 545 and 1047) mutations. Clinical records were collected, and clinicopathological characteristic associations were analyzed together with mutations of studied genes. Results Four hundred and eight patients (256 men and 152 women) were included in the analysis. At least one mutation in the four genes was detected in 216 (52.9%) patients, while none was detected in 192 (47.1%) patients. KRAS, NRAS, BRAF, and PIK3CA mutation status were detected in 190 (46.6%), 11 (2.7%), 10 (2.5%), 34 (8.3%) samples, respectively. KRAS exon 2 had the highest proportion (62.5%). Age, tumor site, tumor size, lymphovascular invasion, and perineural invasion were not associated with gene mutations. KRAS mutations (adjusted OR 1.675, 95% CI 1.017-2.760, P=0.043) and NRAS mutations (adjusted OR 5.183, 95% CI 1.239-21.687, P=0.024) appeared more frequently in patients with distant metastasis. BRAF mutations (adjusted OR 7.224, 95% CI 1.356-38.488, P=0.021) and PIK3CA mutations (adjusted OR 3.811, 95% CI 1.268-11.455, P=0.017) associated with poorly differentiated tumor. Conclusion KRAS/NRAS mutations are associated with distant metastasis and BRAF/PIK3CA mutations are associated with poor tumor differentiation in CRC. And the results provided a better understanding between clinicopathological characteristics and gene mutations in CRC patients.
Collapse
Affiliation(s)
- Juanzi Zeng
- Department of Medical Oncology, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
- Center for Precision Medicine, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| | - Wenwei Fan
- Department of Gastroenterology, Dongguan Eighth People’s Hospital, Dongguan, People’s Republic of China
| | - Jiaquan Li
- Department of Medical Oncology, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
- Center for Precision Medicine, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| | - Guowu Wu
- Department of Medical Oncology, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
- Center for Precision Medicine, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| | - Heming Wu
- Center for Precision Medicine, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| |
Collapse
|
5
|
Ito K, Osakabe M, Sugimoto R, Yamada S, Sato A, Uesugi N, Yanagawa N, Suzuki H, Sugai T. Differential Expression in the Tumor Microenvironment of mRNAs Closely Associated with Colorectal Cancer Metastasis. Ann Surg Oncol 2023; 30:1255-1266. [PMID: 36222933 PMCID: PMC9807483 DOI: 10.1245/s10434-022-12574-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/28/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND Metastasis of colorectal cancer (CRC) is a major cause of CRC-related mortality. However, the detailed molecular mechanism of CRC metastasis remains unknown. A recent study showed that the tumor microenvironment, which includes cancer cells and the surrounding stromal cells, plays a major role in tumor invasion and metastasis. Identification of altered messenger RNA (mRNA) expression in the tumor microenvironment is essential to elucidation of the mechanisms responsible for tumor progression. This study investigated the mRNA expression of genes closely associated with metastatic CRC compared with non-metastatic CRC. METHODS The samples examined were divided into cancer tissue and isolated cancer stromal tissue. The study examined altered mRNA expression in the cancer tissues using The Cancer Genome Atlas (TCGA) (377cases) and in 17 stromal tissues obtained from our laboratory via stromal isolation using an array-based analysis. In addition, 259 patients with CRC were enrolled to identify the association of the candidate markers identified with the prognosis of patients with stage 2 or 3 CRC. The study examined the enriched pathways identified by gene set enrichment analysis (GSEA) based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) module in both the TCGA dataset and isolated stromal tissue. RESULTS As a result, whereas tenascin-C, secreted phosphoprotein 1 and laminin were expressed in metastatic CRC cells, olfactory receptors (ORs) 11H1 and OR11H4 were expressed in stromal tissue cells isolated from metastatic CRC cases. Finally, upregulated expression of tenascin-C and OR11H4 was correlated with the outcome for CRC patients. CONCLUSION The authors suggest that upregulated expression levels of tenascin-C and OR11H1 play an important role in CRC progression.
Collapse
Affiliation(s)
- Kazuhiro Ito
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Shiwagun’yahabachou, Japan
| | - Mitsumasa Osakabe
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Shiwagun’yahabachou, Japan
| | - Ryo Sugimoto
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Shiwagun’yahabachou, Japan
| | - Shun Yamada
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Shiwagun’yahabachou, Japan
| | - Ayaka Sato
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Shiwagun’yahabachou, Japan
| | - Noriyuki Uesugi
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Shiwagun’yahabachou, Japan
| | - Naoki Yanagawa
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Shiwagun’yahabachou, Japan
| | - Hiromu Suzuki
- Department of Molecular Biology, Sapporo Medical University, Sapporo, Japan
| | - Tamotsu Sugai
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Shiwagun’yahabachou, Japan
| |
Collapse
|
6
|
Lin L, Zeng X, Liang S, Wang Y, Dai X, Sun Y, Wu Z. Construction of a co-expression network and prediction of metastasis markers in colorectal cancer patients with liver metastasis. J Gastrointest Oncol 2022; 13:2426-2438. [PMID: 36388701 PMCID: PMC9660078 DOI: 10.21037/jgo-22-965] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/18/2022] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a common global malignancy associated with high invasiveness, high metastasis, and poor prognosis. CRC commonly metastasizes to the liver, where the treatment of metastasis is both difficult and an important topic in current CRC management. METHODS Microarrays data of human CRC with liver metastasis (CRCLM) were downloaded from the National Center for Biotechnology Information (NCBI) Gene Expression Omnibus (GEO) database to identify potential key genes. Differentially expressed (DE) genes (DEGs) and DEmiRNAs of primary CRC tumor tissues and metastatic liver tissues were identified. Microenvironment Cell Populations (MCP)-counter was used to estimate the abundance of immune cells in the tumor micro-environment (TME), and weighted gene correlation network analysis (WGCNA) was used to construct the co-expression network analysis. Gene Ontology and Kyoto Encyclopaedia of Gene and Genome (KEGG) pathway enrichment analyses were conducted, and the protein-protein interaction (PPI) network for the DEGs were constructed and gene modules were screened. RESULTS Thirty-five pairs of matched colorectal primary cancer and liver metastatic gene expression profiles were screened, and 610 DEGs (265 up-regulated and 345 down-regulated) and 284 DEmiRNAs were identified. The DEGs were mainly enriched in the complement and coagulation cascade pathways and renin secretion. Immune infiltrating cells including neutrophils, monocytic lineage, and cancer-associated fibroblasts (CAFs) differed significantly between primary tumor tissues and metastatic liver tissues. WGCN analysis obtained 12 modules and identified 62 genes with significant interactions which were mainly related to complement and coagulation cascade and the focal adhesion pathway. The best subset regression analysis and backward stepwise regression analysis were performed, and eight genes were determined, including F10, FGG, KNG1, MBL2, PROC, SERPINA1, CAV1, and SPP1. Further analysis showed four genes, including FGG, KNG1, CAV1, and SPP1 were significantly associated with CRCLM. CONCLUSIONS Our study implies complement and coagulation cascade and the focal adhesion pathway play a significant role in the development and progression of CRCLM, and FGG, KNG1, CAV1, and SPP1 may be metastatic markers for its early diagnosis.
Collapse
Affiliation(s)
- Lihong Lin
- Department of Anorectal Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Xiuxiu Zeng
- Department of Anorectal Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Shanyan Liang
- Department of Anorectal Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Yunzhi Wang
- School of Health Sciences, University of Sydney, Lidcombe, NSW, Australia
| | - Xiaoyu Dai
- Department of Anorectal Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Yuechao Sun
- Department of Anorectal Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, China;,Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
| | - Zhou Wu
- Department of Anorectal Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| |
Collapse
|
7
|
Sánchez-Díez M, Alegría-Aravena N, López-Montes M, Quiroz-Troncoso J, González-Martos R, Menéndez-Rey A, Sánchez-Sánchez JL, Pastor JM, Ramírez-Castillejo C. Implication of Different Tumor Biomarkers in Drug Resistance and Invasiveness in Primary and Metastatic Colorectal Cancer Cell Lines. Biomedicines 2022; 10:1083. [PMID: 35625820 PMCID: PMC9139065 DOI: 10.3390/biomedicines10051083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/28/2022] [Accepted: 05/04/2022] [Indexed: 12/04/2022] Open
Abstract
Protein expression profiles are directly related to the different properties of cells and are conditioned by the cellular niche. As an example, they are the cause of the characteristic cell plasticity, epithelium-mesenchymal transition (EMT), and drug resistance of cancer cells. This article characterizes ten biomarkers related to these features in three human colorectal cancer cell lines: SW-480, SW-620, and DLD-1, evaluated by flow cytometry; and in turn, resistance to oxaliplatin is studied through dose-response trials. The main biomarkers present in the three studied lines correspond to EpCAM, CD-133, and AC-133, with the latter two in low proportions in the DLD-1 line. The biomarker CD166 is present in greater amounts in SW-620 and DLD-1 compared to SW-480. Finally, DLD-1 shows high values of Trop2, which may explain the aggressiveness and resistance of these cells to oxaliplatin treatments, as EpCAM is also highly expressed. Exposure to oxaliplatin slows cell growth but also helps generate resistance to the treatment. In conclusion, the response of the cell lines is variable, due to their genetic variability, which will condition protein expression and cell growth. Further analyses in this area will provide important information for better understanding of patients' cellular response and how to prevent resistance.
Collapse
Affiliation(s)
- Marta Sánchez-Díez
- CTB (CTB-UPM) Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain; (N.A.-A.); (M.L.-M.); (J.Q.-T.); (R.G.-M.); (A.M.-R.)
- Grupo de Sistemas Complejos, Universidad Politécnica de Madrid, 28040 Madrid, Spain;
| | - Nicolás Alegría-Aravena
- CTB (CTB-UPM) Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain; (N.A.-A.); (M.L.-M.); (J.Q.-T.); (R.G.-M.); (A.M.-R.)
| | - Marta López-Montes
- CTB (CTB-UPM) Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain; (N.A.-A.); (M.L.-M.); (J.Q.-T.); (R.G.-M.); (A.M.-R.)
| | - Josefa Quiroz-Troncoso
- CTB (CTB-UPM) Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain; (N.A.-A.); (M.L.-M.); (J.Q.-T.); (R.G.-M.); (A.M.-R.)
- Grupo de Sistemas Complejos, Universidad Politécnica de Madrid, 28040 Madrid, Spain;
| | - Raquel González-Martos
- CTB (CTB-UPM) Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain; (N.A.-A.); (M.L.-M.); (J.Q.-T.); (R.G.-M.); (A.M.-R.)
- Grupo de Sistemas Complejos, Universidad Politécnica de Madrid, 28040 Madrid, Spain;
| | - Adrián Menéndez-Rey
- CTB (CTB-UPM) Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain; (N.A.-A.); (M.L.-M.); (J.Q.-T.); (R.G.-M.); (A.M.-R.)
| | | | - Juan Manuel Pastor
- Grupo de Sistemas Complejos, Universidad Politécnica de Madrid, 28040 Madrid, Spain;
| | - Carmen Ramírez-Castillejo
- CTB (CTB-UPM) Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain; (N.A.-A.); (M.L.-M.); (J.Q.-T.); (R.G.-M.); (A.M.-R.)
- Grupo de Sistemas Complejos, Universidad Politécnica de Madrid, 28040 Madrid, Spain;
- ETSIAAB, Departamento Biotecnología-Biología Vegetal, Universidad Politécnica de Madrid, IdISSC, 28040 Madrid, Spain
| |
Collapse
|