1
|
Sánchez-Martínez H, Jiménez-Castillo V, Illescas-Barbosa D, Ávila-Curiel BX, Hernández-Huerta MT, Díaz-Castillejos R, Torres-Rosas R, Zenteno E, Pereyra-Morales MA, Solórzano-Mata CJ. Expression of 9- O-Acetylated Sialic Acid in HPV+ Oral Squamous Cell Carcinoma Cells. Life (Basel) 2025; 15:663. [PMID: 40283217 PMCID: PMC12028955 DOI: 10.3390/life15040663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/09/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a common type of head and neck malignancy that represents a significant global health issue. Sialylations are common events in tumor transformation, proliferation, metastasis, and immune evasion. Modifications in sialylation can be detected by lectins, whose changes in OSCC have been related to grade, invasion, and metastasis. The presence of 9-O-acetylated sialic acid (Neu5,9Ac2) in OSCC cells and its potential expression, modification, and role are unknown. This study aimed to analyze the expression of Neu5,9Ac2 using the Macrobrachium rosenbergii lectin (MrL) that recognizes this sialic acid (Neu5Ac) residue and also compare its effect on the SCC-152 cell line (CRL-3240, ATCC) and immortalized keratinocytes (HaCaT) as a control. We observed by immunocytochemistry that SCC-152 cells expressed more Neu5,9Ac2 compared to HaCaT cells; the specificity of MrL was confirmed after the sialidase treatment of cells in which the loss of lectin's recognition of Neu5,9Ac2 was observed. The electrophoretic profile was similar between both cell line types; however, the Western blot showed differences in the glycoprotein patterns recognized by lectin for each cell type. MrL increased the proliferation of SCC-152 cells, as well as the integrity and morphology of the colonies. Therefore, our results suggest that Neu5,9Ac2 glycosylated receptors could be involved in the survival and proliferation of OSCC cells, which offers a promising avenue for developing diagnostic and prognostic tools (tumor markers) against oral squamous cell carcinoma in the future.
Collapse
Affiliation(s)
- Hugo Sánchez-Martínez
- Faculty of Dentistry, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca 68120, Mexico; (H.S.-M.); (D.I.-B.); (B.X.Á.-C.); (R.D.-C.); (R.T.-R.)
| | - Victoria Jiménez-Castillo
- Faculty of Medicine and Surgery, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca 68120, Mexico;
| | - Daniela Illescas-Barbosa
- Faculty of Dentistry, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca 68120, Mexico; (H.S.-M.); (D.I.-B.); (B.X.Á.-C.); (R.D.-C.); (R.T.-R.)
| | - Beatriz Xochitl Ávila-Curiel
- Faculty of Dentistry, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca 68120, Mexico; (H.S.-M.); (D.I.-B.); (B.X.Á.-C.); (R.D.-C.); (R.T.-R.)
| | | | - Risk Díaz-Castillejos
- Faculty of Dentistry, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca 68120, Mexico; (H.S.-M.); (D.I.-B.); (B.X.Á.-C.); (R.D.-C.); (R.T.-R.)
| | - Rafael Torres-Rosas
- Faculty of Dentistry, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca 68120, Mexico; (H.S.-M.); (D.I.-B.); (B.X.Á.-C.); (R.D.-C.); (R.T.-R.)
| | - Edgar Zenteno
- Departament of Biochemistry, Faculty of Medicine, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (E.Z.); (M.A.P.-M.)
| | - Mohamed Alí Pereyra-Morales
- Departament of Biochemistry, Faculty of Medicine, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (E.Z.); (M.A.P.-M.)
| | - Carlos Josué Solórzano-Mata
- Faculty of Dentistry, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca 68120, Mexico; (H.S.-M.); (D.I.-B.); (B.X.Á.-C.); (R.D.-C.); (R.T.-R.)
- Faculty of Medicine and Surgery, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca 68120, Mexico;
| |
Collapse
|
2
|
Zhang SZ, Lobo A, Li PF, Zhang YF. Sialylated glycoproteins and sialyltransferases in digestive cancers: Mechanisms, diagnostic biomarkers, and therapeutic targets. Crit Rev Oncol Hematol 2024; 197:104330. [PMID: 38556071 DOI: 10.1016/j.critrevonc.2024.104330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 04/02/2024] Open
Abstract
Sialic acid (SA), as the ultimate epitope of polysaccharides, can act as a cap at the end of polysaccharide chains to prevent their overextension. Sialylation is the enzymatic process of transferring SA residues onto polysaccharides and is catalyzed by a group of enzymes known as sialyltransferases (SiaTs). It is noteworthy that the sialylation level of glycoproteins is significantly altered when digestive cancer occurs. And this alteration exhibits a close correlation with the progression of these cancers. In this review, from the perspective of altered SiaTs expression levels and changed glycoprotein sialylation patterns, we summarize the pathogenesis of gastric cancer (GC), colorectal cancer (CRC), pancreatic ductal adenocarcinoma (PDAC), and hepatocellular carcinoma (HCC). Furthermore, we propose potential early diagnostic biomarkers and prognostic indicators for different digestive cancers. Finally, we summarize the therapeutic value of sialylation in digestive system cancers.
Collapse
Affiliation(s)
- Shao-Ze Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Amara Lobo
- Department of Critical Care Medicine Holy Family Hospital, St Andrew's Road, Bandra (West), Mumbai 400050, India
| | - Pei-Feng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
| | - Yin-Feng Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
| |
Collapse
|
3
|
Man D, Jiang Y, Zhang D, Wu J, Ding B, Liu H, Xu G, Lu J, Ru J, Tong R, Zheng S, Chen D, Wu J. ST6GALNAC4 promotes hepatocellular carcinogenesis by inducing abnormal glycosylation. J Transl Med 2023; 21:420. [PMID: 37381011 DOI: 10.1186/s12967-023-04191-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/10/2023] [Indexed: 06/30/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most lethal tumor types worldwide. Glycosylation has shown promise in the study of tumor mechanisms and treatment. The glycosylation status of HCC and the underlying molecular mechanisms are still not fully elucidated. Using bioinformatic analysis we obtained a more comprehensive characterization of glycosylation of HCC. Our analysis presented that high glycosylation levels might correlate with tumor progression and poor prognosis. Subsequent Experiments identified key molecular mechanisms for ST6GALNAC4 promoting malignant progression by inducing abnormal glycosylation. We confirmed the contribution of ST6GALNAC4 to proliferation, migration, and invasion in vitro and in vivo. Mechanistic studies revealed that ST6GALNAC4 may be induced abnormal TGFBR2 glycosylation, resulting in the higher protein levels of TGFBR2 and TGF[Formula: see text] pathway increased activation. Our study also provided a further understand of immunosuppressive function of ST6GALNAC4 through T antigen-galectin3+ TAMs axis. This study has provided one such possibility that galectin3 inhibitors might be an acceptable treatment choice for HCC patients with high T antigen expression.
Collapse
Affiliation(s)
- Da Man
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, Zhejiang, China
- Key Laboratory of the diagnosis and treatment of organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, 310003, Zhejiang, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, 310003, Zhejiang, China
| | - Yifan Jiang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, Zhejiang, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, 310003, Zhejiang, China
| | - Deguo Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, Zhejiang, China
- Key Laboratory of the diagnosis and treatment of organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, 310003, Zhejiang, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, 310003, Zhejiang, China
| | - Jingjing Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bo Ding
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China
- Key Laboratory of the diagnosis and treatment of organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, 310003, Zhejiang, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, 310003, Zhejiang, China
| | - Hanqing Liu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China
- Key Laboratory of the diagnosis and treatment of organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, 310003, Zhejiang, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, 310003, Zhejiang, China
| | - Guangming Xu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China
- Key Laboratory of the diagnosis and treatment of organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, 310003, Zhejiang, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, 310003, Zhejiang, China
| | - Jiahua Lu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China
- Key Laboratory of the diagnosis and treatment of organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, 310003, Zhejiang, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, 310003, Zhejiang, China
| | - Junnan Ru
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China
- Key Laboratory of the diagnosis and treatment of organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, 310003, Zhejiang, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, 310003, Zhejiang, China
| | - Rongliang Tong
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, Zhejiang, China
- Key Laboratory of the diagnosis and treatment of organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, 310003, Zhejiang, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, 310003, Zhejiang, China
| | - Shusheng Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China
- Key Laboratory of the diagnosis and treatment of organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, 310003, Zhejiang, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, 310003, Zhejiang, China
| | - Diyu Chen
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China.
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, Zhejiang, China.
- Key Laboratory of the diagnosis and treatment of organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, 310003, Zhejiang, China.
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, 310003, Zhejiang, China.
| | - Jian Wu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China.
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, Zhejiang, China.
- Key Laboratory of the diagnosis and treatment of organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, 310003, Zhejiang, China.
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, 310003, Zhejiang, China.
| |
Collapse
|
4
|
Gautam SK, Khan P, Natarajan G, Atri P, Aithal A, Ganti AK, Batra SK, Nasser MW, Jain M. Mucins as Potential Biomarkers for Early Detection of Cancer. Cancers (Basel) 2023; 15:1640. [PMID: 36980526 PMCID: PMC10046558 DOI: 10.3390/cancers15061640] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 03/10/2023] Open
Abstract
Early detection significantly correlates with improved survival in cancer patients. So far, a limited number of biomarkers have been validated to diagnose cancers at an early stage. Considering the leading cancer types that contribute to more than 50% of deaths in the USA, we discuss the ongoing endeavors toward early detection of lung, breast, ovarian, colon, prostate, liver, and pancreatic cancers to highlight the significance of mucin glycoproteins in cancer diagnosis. As mucin deregulation is one of the earliest events in most epithelial malignancies following oncogenic transformation, these high-molecular-weight glycoproteins are considered potential candidates for biomarker development. The diagnostic potential of mucins is mainly attributed to their deregulated expression, altered glycosylation, splicing, and ability to induce autoantibodies. Secretory and shed mucins are commonly detected in patients' sera, body fluids, and tumor biopsies. For instance, CA125, also called MUC16, is one of the biomarkers implemented for the diagnosis of ovarian cancer and is currently being investigated for other malignancies. Similarly, MUC5AC, a secretory mucin, is a potential biomarker for pancreatic cancer. Moreover, anti-mucin autoantibodies and mucin-packaged exosomes have opened new avenues of biomarker development for early cancer diagnosis. In this review, we discuss the diagnostic potential of mucins in epithelial cancers and provide evidence and a rationale for developing a mucin-based biomarker panel for early cancer detection.
Collapse
Affiliation(s)
- Shailendra K. Gautam
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Parvez Khan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Gopalakrishnan Natarajan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Pranita Atri
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Abhijit Aithal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Apar K. Ganti
- Fred & Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Division of Oncology-Hematology, Department of Internal Medicine, VA Nebraska Western Iowa Health Care System, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred & Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mohd W. Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred & Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred & Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
5
|
Kumar AR, Devan AR, Nair B, Nair RR, Nath LR. Biology, Significance and Immune Signaling of Mucin 1 in Hepatocellular Carcinoma. Curr Cancer Drug Targets 2022; 22:725-740. [PMID: 35301949 DOI: 10.2174/1568009622666220317090552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/14/2021] [Accepted: 12/21/2021] [Indexed: 02/08/2023]
Abstract
Mucin 1 (MUC 1) is a highly glycosylated tumor-associated antigen (TAA) overexpressed in hepatocellular carcinoma (HCC). This protein plays a critical role in various immune-mediated signaling pathways at its transcriptional and post-transcriptional levels, leading to immune evasion and metastasis in HCC. HCC cells maintain an immune-suppressive environment with the help of immunesuppressive tumor-associated antigens, resulting in a metastatic spread of the disease. The development of intense immunotherapeutic strategies to target tumor-associated antigen is critical to overcoming the progression of HCC. MUC 1 remains the most recognized tumor-associated antigen since its discovery over 30 years ago. A few promising immunotherapies targeting MUC 1 are currently under clinical trials, including CAR-T and CAR-pNK-mediated therapies. This review highlights the biosynthesis, significance, and clinical implication of MUC 1 as an immune target in HCC.
Collapse
Affiliation(s)
- Ayana R Kumar
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi-682041, Kerala, India
| | - Aswathy R Devan
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi-682041, Kerala, India
| | - Bhagyalakshmi Nair
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi-682041, Kerala, India
| | | | - Lekshmi R Nath
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi-682041, Kerala, India
| |
Collapse
|
6
|
Tao L, Wang S, Yang L, Jiang L, Li J, Wang X. Reduced Siglec-7 expression on NK cells predicts NK cell dysfunction in primary hepatocellular carcinoma. Clin Exp Immunol 2020; 201:161-170. [PMID: 32319079 DOI: 10.1111/cei.13444] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/22/2020] [Accepted: 04/13/2020] [Indexed: 12/11/2022] Open
Abstract
Major histocompatibility complex class I (MHC-I)-dependent inhibitory receptors on natural killer (NK) cells have been found to contribute to NK cell dysfunction in hepatocellular carcinoma (HCC). However, the roles of MHC-I-independent inhibitory receptors on NK cells in HCC remain poorly defined. In this study, we analyzed the expression of the MHC-I-independent inhibitory receptors sialic acid-binding immunoglobulin-like lectin (Siglec)-7 and Siglec-9 on NK cells by analyzing the peripheral blood of 35 HCC patients and 63 healthy donors. We observed that HCC patients had lower frequencies and total numbers of NK cells in the peripheral blood. Importantly, both the expression levels of Siglec-7 on NK cells and the frequencies of Siglec-7+ NK cells were significantly reduced in HCC patients, which was accompanied by a decrease in activating receptor and an increase in inhibitory receptor expression on NK cells. Moreover, Siglec-7+ NK cells expressed higher levels of activating receptors and displayed stronger effector functions, compared with Siglec-7- NK cells. Our findings demonstrate for the first time that reduced Siglec-7 expression predicts NK cell dysfunction in HCC patients, suggesting that Siglec-7 may be a potential marker of functional NK cell subset in HCC patients.
Collapse
Affiliation(s)
- L Tao
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - S Wang
- The First Clinical Medical College of Anhui Medical University, Hefei, China
| | - L Yang
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - L Jiang
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - J Li
- School of Life Sciences, Anhui Medical University, Hefei, China
| | - X Wang
- School of Pharmacy, Anhui Medical University, Hefei, China
| |
Collapse
|
7
|
Zhao T, Jia L, Li J, Ma C, Wu J, Shen J, Dang L, Zhu B, Li P, Zhi Y, Lan R, Xu Y, Hao Z, Chai Y, Li Q, Hu L, Sun S. Heterogeneities of Site-Specific N-Glycosylation in HCC Tumors With Low and High AFP Concentrations. Front Oncol 2020; 10:496. [PMID: 32426269 PMCID: PMC7212448 DOI: 10.3389/fonc.2020.00496] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 03/19/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is still one of the malignant tumors with high morbidity and mortality in China and worldwide. Although alpha-fetoprotein (AFP) as well as core fucosylated AFP-L3 have been widely used as important biomarkers for HCC diagnosis and evaluation, the AFP level shows a huge variation among HCC patient populations. In addition, the AFP level has also been proved to be associated with pathological grade, progression, and survival of HCC patients. Understanding the intrinsic heterogeneities of HCC associated with AFP levels is essential for the molecular mechanism studies of HCC with different AFP levels as well as for the potential early diagnosis and personalized treatment of HCC with AFP negative. In this study, an integrated N-glycoproteomic and proteomic analysis of low and high AFP levels of HCC tumors was performed to investigate the intrinsic heterogeneities of site-specific glycosylation associated with different AFP levels of HCC. By large-scale profiling and quantifying more than 4,700 intact N-glycopeptides from 20 HCC and 20 paired paracancer samples, we identified many commonly altered site-specific N-glycans from HCC tumors regardless of AFP levels, including decreased modifications by oligo-mannose and sialylated bi-antennary glycans, and increased modifications by bisecting glycans. By relative quantifying the intact N-glycopeptides between low and high AFP tumor groups, the great heterogeneities of site-specific N-glycans between two groups of HCC tumors were also uncovered. We found that several sialylated but not core fucosylated tri-antennary glycans were uniquely increased in low AFP level of HCC tumors, while many core fucosylated bi-antennary or hybrid glycans as well as bisecting glycans were uniquely increased in high AFP tumors. The data provide a valuable resource for future HCC studies regarding the mechanism, heterogeneities and new biomarker discovery.
Collapse
Affiliation(s)
- Ting Zhao
- College of Life Science, Northwest University, Xi'an, China
| | - Li Jia
- College of Life Science, Northwest University, Xi'an, China
| | - Jun Li
- College of Life Science, Northwest University, Xi'an, China
| | - Chen Ma
- College of Life Science, Northwest University, Xi'an, China
| | - Jingyu Wu
- College of Life Science, Northwest University, Xi'an, China
| | - Jiechen Shen
- College of Life Science, Northwest University, Xi'an, China
| | - Liuyi Dang
- College of Life Science, Northwest University, Xi'an, China
| | - Bojing Zhu
- College of Life Science, Northwest University, Xi'an, China
| | - Pengfei Li
- College of Life Science, Northwest University, Xi'an, China
| | - Yuan Zhi
- College of Life Science, Northwest University, Xi'an, China
| | - Rongxia Lan
- College of Life Science, Northwest University, Xi'an, China
| | - Yintai Xu
- College of Life Science, Northwest University, Xi'an, China
| | - Zhifang Hao
- College of Life Science, Northwest University, Xi'an, China
| | - Yichao Chai
- Department of Hepatobiliary Surgery, Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qingshan Li
- Department of Hepatobiliary Surgery, Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Liangshuo Hu
- Department of Hepatobiliary Surgery, Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shisheng Sun
- College of Life Science, Northwest University, Xi'an, China
| |
Collapse
|
8
|
Siracusano G, Tagliamonte M, Buonaguro L, Lopalco L. Cell Surface Proteins in Hepatocellular Carcinoma: From Bench to Bedside. Vaccines (Basel) 2020; 8:vaccines8010041. [PMID: 31991677 PMCID: PMC7157713 DOI: 10.3390/vaccines8010041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/16/2020] [Accepted: 01/22/2020] [Indexed: 12/20/2022] Open
Abstract
Cell surface proteins act as the go-between in carrying the information from the extracellular environment to the intracellular signaling proteins. However, these proteins are often deregulated in neoplastic diseases, including hepatocellular carcinoma. This review discusses several recent studies that have investigated the role of cell surface proteins in the occurrence and progression of HCC, highlighting the possibility to use them as biomarkers of the disease and/or targets for vaccines and therapeutics.
Collapse
Affiliation(s)
- Gabriel Siracusano
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, 20132 Milan, Italy;
- Correspondence: ; Tel.: +39-022643-4957
| | - Maria Tagliamonte
- Cancer Immunoregulation Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori IRCCS, “Fondazione Pascale”, 80131 Naples, Italy; (M.T.); (L.B.)
| | - Luigi Buonaguro
- Cancer Immunoregulation Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori IRCCS, “Fondazione Pascale”, 80131 Naples, Italy; (M.T.); (L.B.)
| | - Lucia Lopalco
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, 20132 Milan, Italy;
| |
Collapse
|
9
|
Hossain MK, Vartak A, Karmakar P, Sucheck SJ, Wall KA. Augmenting Vaccine Immunogenicity through the Use of Natural Human Anti-rhamnose Antibodies. ACS Chem Biol 2018; 13:2130-2142. [PMID: 29916701 PMCID: PMC6103300 DOI: 10.1021/acschembio.8b00312] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
Utilizing
natural antibodies to augment vaccine immunogenicity
is a promising approach toward cancer immunotherapy. Anti-rhamnose
(anti-Rha) antibodies are some of the most common natural anti-carbohydrate
antibodies present in human serum. Therefore, rhamnose can be utilized
as a targeting moiety for a rhamnose-containing vaccine to prepare
an effective vaccine formulation. It was shown previously that anti-Rha
antibody generated in mice binds effectively with Rha-conjugated vaccine
and is picked up by antigen presenting cells (APCs) through stimulatory
Fc receptors. This leads to the effective uptake and processing of
antigen and eventually presentation by major histocompatibility complex
(MHC) molecules. In this article, we show that natural human anti-Rha
antibodies can also be used in a similar mechanism and immunogenicity
can be enhanced by targeting Rha-conjugated antigens. In doing so,
we have purified human anti-Rha antibodies from human serum using
a rhamnose affinity column. In vitro, human anti-Rha
antibodies are shown to enhance the uptake of a model antigen, Rha-ovalbumin
(Rha-Ova), by APCs. In vivo, they improved the priming
of CD4+ T cells to Rha-Ova in comparison to non-anti-Rha human antibodies.
Additionally, increased priming of both CD4+ and CD8+ T cells toward
the cancer antigen MUC1-Tn was observed in mice that received human
anti-Rha antibodies prior to vaccination with a rhamnose-modified
MUC1-Tn cancer vaccine. The vaccine conjugate contained Pam3CysSK4, a Toll-like receptor (TLR) agonist linked via copper-free cycloaddition chemistry to a 20-amino-acid
glycopeptide derived from the tumor marker MUC-1 containing the tumor-associated
carbohydrate antigen α-N-acetyl galactosamine
(GalNAc). The primed CD8+ T cells released IFN-γ and killed
tumor cells. Therefore, we have confirmed that human anti-Rha antibodies
can be effectively utilized as a targeting moiety for making an effective
vaccine.
Collapse
Affiliation(s)
- Md Kamal Hossain
- Dept. of Medicinal and Biological Chemistry, University of Toledo, Toledo, Ohio 43606, United States
| | - Abhishek Vartak
- Dept. of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio 43606, United States
| | - Partha Karmakar
- Dept. of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio 43606, United States
| | - Steven J. Sucheck
- Dept. of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio 43606, United States
| | - Katherine A. Wall
- Dept. of Medicinal and Biological Chemistry, University of Toledo, Toledo, Ohio 43606, United States
| |
Collapse
|
10
|
Chang T, Manabe Y, Fujimoto Y, Ohshima S, Kametani Y, Kabayama K, Nimura Y, Lin C, Fukase K. Syntheses and Immunological Evaluation of Self‐Adjuvanting Clustered
N
‐Acetyl and
N
‐Propionyl Sialyl‐Tn Combined with a T‐helper Cell Epitope as Antitumor Vaccine Candidates. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201804437] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Tsung‐Che Chang
- Department of ChemistryGraduate School of ScienceOsaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
| | - Yoshiyuki Manabe
- Department of ChemistryGraduate School of ScienceOsaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
- Core for Medicine and Science Collaborative Research and EducationProject Research Center for Fundamental ScienceOsaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
| | - Yukari Fujimoto
- Department of ChemistryFaculty of Science and TechnologyKeio University 3-14-1 Hiyoshi Kohoku-ku Yokohama, Kanagawa 223-8522 Japan
| | - Shino Ohshima
- Faculty of MedicineSchool of MedicineTokai University 143 Shimokasuya, Isehara-shi Kanagawa 259-1193 Japan
| | - Yoshie Kametani
- Faculty of MedicineSchool of MedicineTokai University 143 Shimokasuya, Isehara-shi Kanagawa 259-1193 Japan
| | - Kazuya Kabayama
- Department of ChemistryGraduate School of ScienceOsaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
- Core for Medicine and Science Collaborative Research and EducationProject Research Center for Fundamental ScienceOsaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
| | - Yuka Nimura
- Department of ChemistryGraduate School of ScienceOsaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
| | - Chun‐Cheng Lin
- Department of ChemistryNational Tsing Hua University 101 Sec. 2, Kuang Fu Rd. Hsinchu 30013 Taiwan
| | - Koichi Fukase
- Department of ChemistryGraduate School of ScienceOsaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
- Core for Medicine and Science Collaborative Research and EducationProject Research Center for Fundamental ScienceOsaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
| |
Collapse
|
11
|
Chang TC, Manabe Y, Fujimoto Y, Ohshima S, Kametani Y, Kabayama K, Nimura Y, Lin CC, Fukase K. Syntheses and Immunological Evaluation of Self-Adjuvanting Clustered N-Acetyl and N-Propionyl Sialyl-Tn Combined with a T-helper Cell Epitope as Antitumor Vaccine Candidates. Angew Chem Int Ed Engl 2018; 57:8219-8224. [PMID: 29768704 DOI: 10.1002/anie.201804437] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 05/14/2018] [Indexed: 01/08/2023]
Abstract
Sialyl-Tn (STn) is a tumor-associated carbohydrate antigen (TACA) rarely observed on healthy tissues. We synthesized two fully synthetic N-acetyl and N-propionyl STn trimer (triSTn) vaccines possessing a T-helper epitope and a TLR2 agonist, since the clustered STn antigens are highly expressed on many cancer cells. Immunization of both vaccines in mice induced the anti-triSTn IgG antibodies, which recognized triSTn-expressing cell lines PANC-1 and HepG2. The N-propionyl triSTn vaccine induced the triSTn-specific IgGs, while IgGs induced by the N-acetyl triSTn vaccine were less specific. These results illustrated that N-propionyl triSTn is a valuable unnatural TACA for anticancer vaccines.
Collapse
Affiliation(s)
- Tsung-Che Chang
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Yoshiyuki Manabe
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.,Core for Medicine and Science Collaborative Research and Education, Project Research Center for Fundamental Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Yukari Fujimoto
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
| | - Shino Ohshima
- Faculty of Medicine, School of Medicine, Tokai University, 143 Shimokasuya, Isehara-shi, Kanagawa, 259-1193, Japan
| | - Yoshie Kametani
- Faculty of Medicine, School of Medicine, Tokai University, 143 Shimokasuya, Isehara-shi, Kanagawa, 259-1193, Japan
| | - Kazuya Kabayama
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.,Core for Medicine and Science Collaborative Research and Education, Project Research Center for Fundamental Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Yuka Nimura
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Chun-Cheng Lin
- Department of Chemistry, National Tsing Hua University, 101 Sec. 2, Kuang Fu Rd., Hsinchu, 30013, Taiwan
| | - Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.,Core for Medicine and Science Collaborative Research and Education, Project Research Center for Fundamental Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| |
Collapse
|
12
|
Karacosta LG, Fisk JC, Jessee J, Tati S, Turner B, Ghazal D, Ludwig R, Johnson H, Adams J, Sajjad M, Koury S, Roy R, Olson JR, Rittenhouse-Olson K. Preclinical Analysis of JAA-F11, a Specific Anti-Thomsen-Friedenreich Antibody via Immunohistochemistry and In Vivo Imaging. Transl Oncol 2018; 11:450-466. [PMID: 29477636 PMCID: PMC5834658 DOI: 10.1016/j.tranon.2018.01.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 01/10/2018] [Accepted: 01/16/2018] [Indexed: 01/20/2023] Open
Abstract
The tumor specificity of JAA-F11, a novel monoclonal antibody specific for the Thomsen-Friedenreich cancer antigen (TF-Ag-alpha linked), has been comprehensively studied by in vitro immunohistochemical (IHC) staining of human tumor and normal tissue microarrays and in vivo biodistribution and imaging by micro-positron emission tomography imaging in breast and lung tumor models in mice. The IHC analysis detailed herein is the comprehensive biological analysis of the tumor specificity of JAA-F11 antibody performed as JAA-F11 is progressing towards preclinical safety testing and clinical trials. Wide tumor reactivity of JAA-F11, relative to the matched mouse IgG3 (control), was observed in 85% of 1269 cases of breast, lung, prostate, colon, bladder, and ovarian cancer. Staining on tissues from breast cancer cases was similar regardless of hormonal or Her2 status, and this is particularly important in finding a target on the currently untargetable triple-negative breast cancer subtype. Humanization of JAA-F11 was recently carried out as explained in a companion paper "Humanization of JAA-F11, a Highly Specific Anti-Thomsen-Friedenreich Pancarcinoma Antibody and In Vitro Efficacy Analysis" (Neoplasia 19: 716-733, 2017), and it was confirmed that humanization did not affect chemical specificity. IHC studies with humanized JAA-F11 showed similar binding to human breast tumor tissues. In vivo imaging and biodistribution studies in a mouse syngeneic breast cancer model and in a mouse-human xenograft lung cancer model with humanized 124I- JAA-F11 construct confirmed in vitro tumor reactivity and specificity. In conclusion, the tumor reactivity of JAA-F11 supports the continued development of JAA-F11 as a targeted cancer therapeutic for multiple cancers, including those with unmet need.
Collapse
Affiliation(s)
| | | | | | | | - Bradley Turner
- Department of Pathology, University of Rochester, Rochester, NY.
| | | | | | | | - Julia Adams
- Department of Biotechnical and Clinical Laboratory Sciences, University at Buffalo, Buffalo, NY.
| | - Munawwar Sajjad
- Department of Nuclear Medicine, University at Buffalo, Buffalo, NY.
| | - Steven Koury
- Department of Biotechnical and Clinical Laboratory Sciences, University at Buffalo, Buffalo, NY.
| | - Rene Roy
- Glycovax Pharma Inc., Montreal, Quebec, Canada.
| | - James R Olson
- For-Robin, Inc, Buffalo, NY; Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY.
| | - Kate Rittenhouse-Olson
- For-Robin, Inc, Buffalo, NY; Department of Biotechnical and Clinical Laboratory Sciences, University at Buffalo, Buffalo, NY.
| |
Collapse
|
13
|
Dai B, Hu Y, Duan J, Yang XD. Aptamer-guided DNA tetrahedron as a novel targeted drug delivery system for MUC1-expressing breast cancer cells in vitro. Oncotarget 2018; 7:38257-38269. [PMID: 27203221 PMCID: PMC5122387 DOI: 10.18632/oncotarget.9431] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 05/01/2016] [Indexed: 02/07/2023] Open
Abstract
Mucin 1 (MUC1) is an important molecular target for cancer treatment because it is overexpressed in most adenocarcinomas. In this study, a new MUC1-targeted drug delivery system was assembled using an aptamer (Apt) that could recognize MUC1 and a DNA tetrahedron (Td) that could carry doxorubicin (Dox) within its DNA structure. The complex thus formed (Apt-Td) had an average size of 12.38 nm and was negatively charged. Similar to the MUC1 aptamer, the Apt-Td could preferentially bind with MUC1-positive MCF-7 breast cancer cells. A drug loading experiment revealed that each Apt-Td complex could carry approximately 25 Dox molecules. Moreover, Apt-Td selectively delivered Dox into the MUC1-positive breast cancer cells but reduced Dox uptake by the MUC1-negative control cells. Dox-loaded Apt-Td also induced a significantly higher cytotoxicity to the MUC1-positive cancer cells versus the MUC1-negative control cells in vitro (p<0.01). These results suggest that Apt-Td may potentially serve as a drug carrier in the targeted treatment of MUC1-expressing breast cancers.
Collapse
Affiliation(s)
- Bindong Dai
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yan Hu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - JinHong Duan
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xian-Da Yang
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
14
|
Rêgo MJBM, Silva Filho AF, Sobral APV, Beltrão EIC. Glycomic profile of the human parotid gland between 18th and 26th week of fetal development. J Oral Sci 2016; 58:353-60. [PMID: 27665974 DOI: 10.2334/josnusd.15-0299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The formation of new and functional structural components of several organs, such as parotid glands, can be influenced by the glycocode. This study analyzed the glycobiology of parotid salivary gland tissue during fetal development using specific biochemical probes (lectins and antibodies). Eleven parotid gland samples from human fetuses were obtained from spontaneous abortions at 14-28 weeks of gestation, and tissue sections were analyzed for lectin histochemistry and immunohistochemistry. From the 18th to 26th week, Canavalia ensiformis agglutinin, wheat germ agglutinin, Ulex europaeus agglutinin-I, peanut agglutinin, Sambucus nigra agglutinin, and Vicia villosa agglutinin lectin staining were predominantly observed in the apical and/or basement membranes of the ducts and tubulo-acinar units. Moreover, the presence of galectin-1 was found in the membrane, cytoplasm, and nucleus of both structures. Conversely, Gal-3 and mucin-1 were restricted to the glandular ducts. The lectin staining pattern changed during the weeks evaluated. Nevertheless, the carbohydrate subcellular localization represented a key factor in the investigation of structural distribution profiles and possible roles of these glycans in initial parotid gland development. These findings are defined by their high biological value and provide an important base for the development of subsequent studies. (J Oral Sci 58, 353-360, 2016).
Collapse
Affiliation(s)
- Moacyr J B M Rêgo
- Laboratory of Immunomodulation and New Therapeutic Approaches, Center for Research on Therapeutic Innovation Suelly Galdino
| | | | | | | |
Collapse
|
15
|
Karsten U, Goletz S. What controls the expression of the core-1 (Thomsen-Friedenreich) glycotope on tumor cells? BIOCHEMISTRY (MOSCOW) 2016; 80:801-7. [PMID: 26541995 DOI: 10.1134/s0006297915070019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Malignant transformation is tightly connected with changes in the glycosylation of proteins and lipids, which in turn are contributing to the invasive and metastatic behavior of tumor cells. One example of such changes is demasking of the otherwise hidden core-1 structure, also known as Thomsen-Friedenreich antigen, which is a highly tumor-specific glycotope and potentially a cancer stem cell marker. This review summarizes what is known about the mechanism(s) of its expression on tumor cells. New data reveal a close connection between tumor metabolism and Golgi function. Based on these data, we suggest that the expression of this antigen is also a marker of aerobic glycolysis.
Collapse
Affiliation(s)
- U Karsten
- Glycotope GmbH, Berlin-Buch, D-13125, Germany.
| | | |
Collapse
|
16
|
Attallah AM, El-Far M, Abdel Malak CA, Farid K, Omran MM, Yahya RS, Saad EA, Albannan MS, Attallah AA, El Basuni MA, Ali IS, Abed SB, El Naggar MA. A simple diagnostic index comprising epithelial membrane antigen and fibronectin for hepatocellular carcinoma. Ann Hepatol 2015; 14:869-880. [PMID: 26436359 DOI: 10.5604/16652681.1171774] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
UNLABELLED Background and rationale for the study. Continuing search for suitable tumor-markers is of clinical value in managing patients with various malignancies. These markers may be presented as intracellular substances in tissues or may be released into the circulation and appear in serum. Therefore, this work is concerned with identification and quantitative determination of epithelial membrane antigen (EMA) and fibronectin and estimating their performances as surrogate markers for identifying hepatocellular carcinoma (HCC). RESULTS A total of 627 individuals constituted this study [fibrosis (F1-F3) = 217; cirrhosis = 191; HCC = 219]. Western-blot was used for identifying EMA and fibronectin in sera. As a result, a single immunoreactive band was shown at 130-kDa and 90-kDa corresponding to EMA and fibronectin, respectively. They were quantified using ELISA providing values in HCC higher than fibrosis or cirrhosis with a significant difference (P < 0.0001). For identifying HCC, EMA showed 0.82 area under receiver-operating characteristic curve (AUC) with sensitivity = 70% and specificity = 78% while fibronectin yielded AUC = 0.70 with sensitivity = 67% and specificity = 82%. FEBA-Test comprising fibronectin and EMA together with total-bilirubin and AFP was constructed yielding AUC = 0.92 for identifying HCC from cirrhosis with sensitivity = 89% and specificity = 85%. FEBA-Test was then tested for differentiating HCC from fibrosis showing AUC = 0.97 with sensitivity = 90% and specificity = 89%. FEBA-Test enabled the correct identification of HCC patients with CLIP 0-1 and size ≤ 3 cm with AUC = 0.80 and AUC = 0.84, respectively, indicating its ability in identifying early HCC. CONCLUSIONS A four-marker index may improve the early detection of HCC with a high degree of accuracy.
Collapse
Affiliation(s)
- Abdelfattah M Attallah
- Research & Development Department, Biotechnology Research Center, New Damietta City, Egypt
| | - Mohamed El-Far
- Faculty of Science, Mansoura University, Mansoura, Egypt
| | | | - Khaled Farid
- Tropical Medicine Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | | | - Raida S Yahya
- Faculty of Medicine, Children's Hospital, Mansoura University, Mansoura, Egypt
| | - Entsar A Saad
- Faculty of Science, Damietta University, New Damietta, Egypt
| | - Mohamed S Albannan
- Research & Development Department, Biotechnology Research Center, New Damietta City, Egypt
| | - Ahmed A Attallah
- Research & Development Department, Biotechnology Research Center, New Damietta City, Egypt
| | - Mohamed A El Basuni
- Research & Development Department, Biotechnology Research Center, New Damietta City, Egypt
| | | | - Safaa B Abed
- Research & Development Department, Biotechnology Research Center, New Damietta City, Egypt
| | | |
Collapse
|
17
|
Tumour antigen expression in hepatocellular carcinoma in a low-endemic western area. Br J Cancer 2015; 112:1911-20. [PMID: 26057582 PMCID: PMC4580401 DOI: 10.1038/bjc.2015.92] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 01/21/2015] [Accepted: 02/12/2015] [Indexed: 02/06/2023] Open
Abstract
Background: Identification of tumour antigens is crucial for the development of
vaccination strategies against hepatocellular carcinoma (HCC). Most studies
come from eastern-Asia, where hepatitis-B is the main cause of HCC. However,
tumour antigen expression is poorly studied in low-endemic, western areas
where the aetiology of HCC differs. Methods: We constructed tissue microarrays from resected HCC tissue of 133 patients.
Expression of a comprehensive panel of cancer-testis (MAGE-A1,
MAGE-A3/4, MAGE-A10, MAGE-C1, MAGE-C2, NY-ESO-1, SSX-2, sperm protein
17), onco-fetal (AFP, Glypican-3) and overexpressed tumour antigens
(Annexin-A2, Wilms tumor-1, Survivin, Midkine, MUC-1) was determined by
immunohistochemistry. Results: A higher prevalence of MAGE antigens was observed in patients with
hepatitis-B. Patients with expression of more tumour antigens in general had
better HCC-specific survival (P=0.022). The four tumour
antigens with high expression in HCC and no, or weak, expression in
surrounding tumour-free-liver tissue, were Annexin-A2, GPC-3, MAGE-C1 and
MAGE-C2, expressed in 90, 39, 17 and 20% of HCCs, respectively.
Ninety-five percent of HCCs expressed at least one of these four tumour
antigens. Interestingly, GPC-3 was associated with SALL-4 expression
(P=0.001), an oncofetal transcription factor highly
expressed in embryonal stem cells. SALL-4 and GPC-3 expression levels were
correlated with vascular invasion, poor differentiation and higher AFP
levels before surgery. Moreover, patients who co-expressed higher levels of
both GPC-3 and SALL-4 had worse HCC-specific survival
(P=0.018). Conclusions: We describe a panel of four tumour antigens with excellent coverage and good
tumour specificity in a western area, low-endemic for hepatitis-B. The
association between GPC-3 and SALL-4 is a novel finding and suggests that
GPC-3 targeting may specifically attack the tumour stem-cell
compartment.
Collapse
|
18
|
Zhan XX, Zhao B, Diao C, Cao Y, Cheng RC. Expression of MUC1 and CD176 (Thomsen-Friedenreich antigen) in papillary thyroid carcinomas. Endocr Pathol 2015; 26:21-6. [PMID: 25614211 DOI: 10.1007/s12022-015-9356-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The incidence of thyroid cancer has appeared as an increasing trend globally, especially in Asian countries. In this study, the expression of mucin-1 (MUC1) and Thomsen-Friedenreich antigen, Galβ1-3GalNAcα1-R (CD176) was investigated by immunohistochemistry in papillary thyroid carcinomas (PTCs), which accounts for approximately 80 % of all thyroid cancer. We found that 78 % of PTC overexpressed MUC1. Importantly, we observed firstly that CD176 was expressed in 63 % of PTC, but was faintly or not expressed in normal thyroid tissues and benign thyroid disease tissues, indicating that CD176 is also a tumour-associated antigen for PTCs. Moreover, expression of CD176 was strongly correlated with MUC1 by immunohistochemical staining in PTCs. Furthermore, we used the immunochemical method to confirm that MUC1 is a common and main carrier of CD176 in PTCs. Our data demonstrated that MUC1 and CD176 might be promising biomarkers for thyroid cancer.
Collapse
Affiliation(s)
- Xiang-xiang Zhan
- Thyroid Disease Diagnosis and Treatment Center, First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650031, Yunnan, China
| | | | | | | | | |
Collapse
|
19
|
Wu Q, Liu HO, Liu YD, Liu WS, Pan D, Zhang WJ, Yang L, Fu Q, Xu JJ, Gu JX. Decreased expression of hepatocyte nuclear factor 4α (Hnf4α)/microRNA-122 (miR-122) axis in hepatitis B virus-associated hepatocellular carcinoma enhances potential oncogenic GALNT10 protein activity. J Biol Chem 2015; 290:1170-85. [PMID: 25422324 PMCID: PMC4294483 DOI: 10.1074/jbc.m114.601203] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 11/16/2014] [Indexed: 12/19/2022] Open
Abstract
MicroRNA-122 (miR-122), a mammalian liver-specific miRNA, has been reported to play crucial roles in the control of diverse aspects of hepatic function and dysfunction, including viral infection and hepatocarcinogenesis. In this study, we explored the clinical significance, transcriptional regulation, and direct target of miR-122 in hepatitis B virus (HBV)-associated hepatocellular carcinoma. Reduced expression of miR-122 in patients with HBV-associated hepatocellular carcinoma was correlated with venous invasion and poor prognosis. Furthermore, UDP-N-acetyl-α-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase-10 (GALNT10) was identified as a bona fide target of miR-122 in hepatoma cells. Ectopic expression and knockdown studies showed that GALNT10 indeed promotes proliferation and apoptosis resistance of hepatoma cells in a glycosyltransferase-dependent manner. Critically, adverse correlation between miR-122 and GALNT10, a poor prognosticator of clinical outcome, was demonstrated in hepatoma patients. Hepatocyte nuclear factor 4α (Hnf4α), a liver-enriched transcription factor that activates miR-122 gene transcription, was suppressed in HBV-infected hepatoma cells. Chromatin immunoprecipitation assay showed significantly reduced association of Hnf4α with the miR-122 promoter in HBV-infected hepatoma cells. Moreover, GALNT10 was found to intensify O-glycosylation following signal activation of the epidermal growth factor receptor. In addition, in a therapeutic perspective, we proved that GALNT10 silencing increases sensitivity to sorafenib and doxorubicin challenge. In summary, our results reveal a novel Hnf4α/miR-122/GALNT10 regulatory pathway that facilitates EGF miR-122 activation and hepatoma growth in HBV-associated hepatocarcinogenesis.
Collapse
Affiliation(s)
- Qian Wu
- From the Key Laboratory of Glycoconjugate Research, Ministry of Health, Department of Biochemistry and Molecular Biology and
| | - Hai-Ou Liu
- From the Key Laboratory of Glycoconjugate Research, Ministry of Health, Department of Biochemistry and Molecular Biology and
| | - Yi-Dong Liu
- From the Key Laboratory of Glycoconjugate Research, Ministry of Health, Department of Biochemistry and Molecular Biology and
| | - Wei-Si Liu
- From the Key Laboratory of Glycoconjugate Research, Ministry of Health, Department of Biochemistry and Molecular Biology and
| | - Deng Pan
- From the Key Laboratory of Glycoconjugate Research, Ministry of Health, Department of Biochemistry and Molecular Biology and
| | - Wei-Juan Zhang
- Department of Immunology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Liu Yang
- From the Key Laboratory of Glycoconjugate Research, Ministry of Health, Department of Biochemistry and Molecular Biology and
| | - Qiang Fu
- From the Key Laboratory of Glycoconjugate Research, Ministry of Health, Department of Biochemistry and Molecular Biology and
| | - Jie-Jie Xu
- From the Key Laboratory of Glycoconjugate Research, Ministry of Health, Department of Biochemistry and Molecular Biology and
| | - Jian-Xin Gu
- From the Key Laboratory of Glycoconjugate Research, Ministry of Health, Department of Biochemistry and Molecular Biology and
| |
Collapse
|
20
|
Wu YM, Liu CH, Huang MJ, Lai HS, Lee PH, Hu RH, Huang MC. C1GALT1 enhances proliferation of hepatocellular carcinoma cells via modulating MET glycosylation and dimerization. Cancer Res 2013; 73:5580-90. [PMID: 23832667 DOI: 10.1158/0008-5472.can-13-0869] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Altered glycosylation is a hallmark of cancer. The core 1 β1,3-galactosyltransferase (C1GALT1) controls the formation of mucin-type O-glycans, far overlooked and underestimated in cancer. Here, we report that C1GALT1 mRNA and protein are frequently overexpressed in hepatocellular carcinoma tumors compared with nontumor liver tissues, where it correlates with advanced tumor stage, metastasis, and poor survival. Enforced expression of C1GALT1 was sufficient to enhance cell proliferation, whereas RNA interference-mediated silencing of C1GALT1 was sufficient to suppress cell proliferation in vitro and in vivo. Notably, C1GALT1 attenuation also suppressed hepatocyte growth factor (HGF)-mediated phosphorylation of the MET kinase in hepatocellular carcinoma cells, whereas enforced expression of C1GALT1 enhanced MET phosphorylation. MET blockade with PHA665752 inhibited C1GALT1-enhanced cell viability. In support of these results, we found that the expression level of phospho-MET and C1GALT1 were associated in primary hepatocellular carcinoma tissues. Mechanistic investigations showed that MET was decorated with O-glycans, as revealed by binding to Vicia villosa agglutinin and peanut agglutinin. Moreover, C1GALT1 modified the O-glycosylation of MET, enhancing its HGF-induced dimerization and activation. Together, our results indicate that C1GALT1 overexpression in hepatocellular carcinoma activates HGF signaling via modulation of MET O-glycosylation and dimerization, providing new insights into how O-glycosylation drives hepatocellular carcinoma pathogenesis.
Collapse
Affiliation(s)
- Yao-Ming Wu
- Department of Surgery, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
21
|
Karsten U, Goletz S. What makes cancer stem cell markers different? SPRINGERPLUS 2013; 2:301. [PMID: 23888272 PMCID: PMC3710573 DOI: 10.1186/2193-1801-2-301] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 06/26/2013] [Indexed: 01/06/2023]
Abstract
Since the cancer stem cell concept has been widely accepted, several strategies have been proposed to attack cancer stem cells (CSC). Accordingly, stem cell markers are now preferred therapeutic targets. However, the problem of tumor specificity has not disappeared but shifted to another question: how can cancer stem cells be distinguished from normal stem cells, or more specifically, how do CSC markers differ from normal stem cell markers? A hypothesis is proposed which might help to solve this problem in at least a subgroup of stem cell markers. Glycosylation may provide the key.
Collapse
Affiliation(s)
- Uwe Karsten
- Glycotope GmbH, Robert-Rössle-Str.10, D-13125 Berlin-Buch, Germany
| | | |
Collapse
|
22
|
Ling Y, Zhu J, Gao L, Liu Y, Zhu C, Li R, Wei L, Zhang C. The silence of MUC2 mRNA induced by promoter hypermethylation associated with HBV in Hepatocellular Carcinoma. BMC MEDICAL GENETICS 2013; 14:14. [PMID: 23347460 PMCID: PMC3583682 DOI: 10.1186/1471-2350-14-14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 01/23/2013] [Indexed: 12/22/2022]
Abstract
Background To evaluate the promoter methylation status of MUC2 gene and mRNA expression in patients with hepatocellular carcinoma. Methods We analyzed MUC2 methylation by MSP, and MUC2 mRNA by real-time PCR in 74 HCC. Results MUC2 mRNA were lower in HCC tissues (Mean -ΔCt = −4.70) than that in Non-HCC tissues (Mean -ΔCt = −2.98). Expression of MUC2 was elevated in only 23 (31.08%) of the 74 HCC patients. MUC2 promoter was hypermethylated in 62.2% (46/74) of HCCs, and in only 18.9% (14/74) of non-tumor samples. MUC2 mRNA were lower in HCC patients with hypermethylation (Mean -ΔΔCt = −2.25) than those with demethylation (Mean -ΔΔCt = −0.22), and there is a decreased tendency for MUC2 mRNA in HCC patients with promoter hypermethylation (p = 0.011). There was a significantly correlation found between MUC2 mRNA and HBV and AFP in HCC. The loss of MUC2 mRNA and hypermethylation could be poor prognostic factors. After treated by 5-Aza-CdR and TSA, we found that MUC2 mRNA induced significantly in 7721, Huh7 and HepG2 cells. Conclusion The results suggested that MUC2 mRNA silenced by promoter hypermethylation is associated with high levels HBV in HCC.
Collapse
Affiliation(s)
- Yang Ling
- Clinical Oncology Laboratory, Changzhou Tumor Hospital, Soochow University, Changzhou, No,1 North Huaide Road, Changzhou, 213001, China
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Julien S, Videira PA, Delannoy P. Sialyl-tn in cancer: (how) did we miss the target? Biomolecules 2012; 2:435-66. [PMID: 24970145 PMCID: PMC4030860 DOI: 10.3390/biom2040435] [Citation(s) in RCA: 310] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 09/27/2012] [Accepted: 09/30/2012] [Indexed: 11/16/2022] Open
Abstract
Sialyl-Tn antigen (STn) is a short O-glycan containing a sialic acid residue α2,6-linked to GalNAcα-O-Ser/Thr. The biosynthesis of STn is mediated by a specific sialyltransferase termed ST6GalNAc I, which competes with O-glycans elongating glycosyltransferases and prevents cancer cells from exhibiting longer O-glycans. While weakly expressed by fetal and normal adult tissues, STn is expressed by more than 80% of human carcinomas and in all cases, STn detection is associated with adverse outcome and decreased overall survival for the patients. Because of its pan-carcinoma expression associated with an adverse outcome, an anti-cancer vaccine, named Theratope, has been designed towards the STn epitope. In spite of the great enthusiasm around this immunotherapy, Theratope failed on Phase III clinical trial. However, in lieu of missing this target, one should consider to revise the Theratope design and the actual facts. In this review, we highlight the many lessons that can be learned from this failure from the immunological standpoint, as well as from the drug design and formulation and patient selection. Moreover, an irrefutable knowledge is arising from novel immunotherapies targeting other carbohydrate antigens and STn carrier proteins, such as MUC1, that will warrantee the future development of more successful anti-STn immunotherapy strategies.
Collapse
Affiliation(s)
- Sylvain Julien
- Structural and Functional Glycobiology Unit, UMR CNRS 8576, University of Sciences and Technologies of Lille, 59655 Villeneuve d'Ascq, France.
| | - Paula A Videira
- CEDOC, Departamento de Imunologia, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal.
| | - Philippe Delannoy
- Structural and Functional Glycobiology Unit, UMR CNRS 8576, University of Sciences and Technologies of Lille, 59655 Villeneuve d'Ascq, France.
| |
Collapse
|
24
|
Bozkaya G, Korhan P, Cokaklı M, Erdal E, Sağol O, Karademir S, Korch C, Atabey N. Cooperative interaction of MUC1 with the HGF/c-Met pathway during hepatocarcinogenesis. Mol Cancer 2012; 11:64. [PMID: 22962849 PMCID: PMC3542123 DOI: 10.1186/1476-4598-11-64] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 09/05/2012] [Indexed: 12/16/2022] Open
Abstract
Background Hepatocyte growth factor (HGF) induced c-Met activation is known as the main stimulus for hepatocyte proliferation and is essential for liver development and regeneration. Activation of HGF/c-Met signaling has been correlated with aggressive phenotype and poor prognosis in hepatocellular carcinoma (HCC). MUC1 is a transmembrane mucin, whose over-expression is reported in most cancers. Many of the oncogenic effects of MUC1 are believed to occur through the interaction of MUC1 with signaling molecules. To clarify the role of MUC1 in HGF/c-Met signaling, we determined whether MUC1 and c-Met interact cooperatively and what their role(s) is in hepatocarcinogenesis. Results MUC1 and c-Met over-expression levels were determined in highly motile and invasive, mesenchymal-like HCC cell lines, and in serial sections of cirrhotic and HCC tissues, and these levels were compared to those in normal liver tissues. Co-expression of both c-Met and MUC1 was found to be associated with the differentiation status of HCC. We further demonstrated an interaction between c-Met and MUC1 in HCC cells. HGF-induced c-Met phosphorylation decreased this interaction, and down-regulated MUC1 expression. Inhibition of c-Met activation restored HGF-mediated MUC1 down-regulation, and decreased the migratory and invasive abilities of HCC cells via inhibition of β-catenin activation and c-Myc expression. In contrast, siRNA silencing of MUC1 increased HGF-induced c-Met activation and HGF-induced cell motility and invasion. Conclusions These findings indicate that the crosstalk between MUC1 and c-Met in HCC could provide an advantage for invasion to HCC cells through the β-catenin/c-Myc pathway. Thus, MUC1 and c-Met could serve as potential therapeutic targets in HCC.
Collapse
Affiliation(s)
- Giray Bozkaya
- Department of Medical Biology and Genetics, Dokuz Eylul University, Medical School, Balcova-Izmir, Turkey
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Hu Y, Duan J, Zhan Q, Wang F, Lu X, Yang XD. Novel MUC1 aptamer selectively delivers cytotoxic agent to cancer cells in vitro. PLoS One 2012; 7:e31970. [PMID: 22384115 PMCID: PMC3284512 DOI: 10.1371/journal.pone.0031970] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 01/19/2012] [Indexed: 11/18/2022] Open
Abstract
Chemotherapy is a primary treatment for cancer, but its efficacy is often limited by the adverse effects of cytotoxic agents. Targeted drug delivery may reduce the non-specific toxicity of chemotherapy by selectively directing anticancer drugs to tumor cells. MUC1 protein is an attractive target for tumor-specific drug delivery owning to its overexpression in most adenocarcinomas. In this study, a novel MUC1 aptamer is exploited as the targeting ligand for carrying doxorubicin (Dox) to cancer cells. We developed an 86-base DNA aptamer (MA3) that bound to a peptide epitope of MUC1 with a Kd of 38.3 nM and minimal cross reactivity to albumin. Using A549 lung cancer and MCF-7 breast cancer cells as MUC1-expressing models, MA3 was found to preferentially bind to MUC1-positive but not MUC1-negative cells. An aptamer-doxorubicin complex (Apt-Dox) was formulated by intercalating doxorubicin into the DNA structure of MA3. Apt-Dox was found capable of carrying doxorubicin into MUC1-positive tumor cells, while significantly reducing the drug intake by MUC1-negative cells. Moreover, Apt-Dox retained the efficacy of doxorubicin against MUC1-positive tumor cells, but lowered the toxicity to MUC1-negative cells (P<0.01). The results suggest that the MUC1 aptamer may have potential utility as a targeting ligand for selective delivery of cytotoxic agent to MUC1-expressing tumors.
Collapse
Affiliation(s)
- Yan Hu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jinhong Duan
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qimin Zhan
- Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fengdan Wang
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin Lu
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xian-Da Yang
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- * E-mail:
| |
Collapse
|
26
|
Schwartz-Albiez R. Naturally occurring antibodies directed against carbohydrate tumor antigens. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 750:27-43. [PMID: 22903664 DOI: 10.1007/978-1-4614-3461-0_3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Healthy persons carry within their pool of circulating antibodies immunoglobulins preferentially of IgM isotype, which are directed against a variety of tumor-associated antigens. In closer scrutiny of their nature, some of these antibodies could be defined as naturally occurring antibodies due to the germline configuration of the variable immunoglobulin region. The majority of these immunoglobulins recognize carbohydrate antigens which can be classified as oncofetal antigens. Many of these IgM antibodies present in the peripheral blood circulation can bind to tumor cells and of these a minor portion are also able to destroy tumor cells by several mechanisms, as for instance complement-mediated cytolysis or apoptosis. It was postulated that anti-carbohydrate antibodies are part of an anti-tumor immune response, while their presence in the peripheral blood of healthy donors is still waiting for a plausible explanation. It may be that recognition of defined epitopes, including carbohydrate sequences, by naturally occurring antibodies constitutes the humoral arm of an anti-tumor immune response as part of the often postulated tumor surveillance. The cytotoxic capacity of these antibodies inspired several research groups and pharmaceutical companies to design novel strategies of immunoglobulin-based anti-tumor immunotherapy.
Collapse
|
27
|
Wu YM, Liu CH, Hu RH, Huang MJ, Lee JJ, Chen CH, Huang J, Lai HS, Lee PH, Hsu WM, Huang HC, Huang MC. Mucin glycosylating enzyme GALNT2 regulates the malignant character of hepatocellular carcinoma by modifying the EGF receptor. Cancer Res 2011; 71:7270-9. [PMID: 21990321 DOI: 10.1158/0008-5472.can-11-1161] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Extracellular glycosylation is a critical determinant of malignant character. Here, we report that N-acetylgalactosaminyltransferase 2 (GALNT2), the enzyme that mediates the initial step of mucin type-O glycosylation, is a critical mediator of malignant character in hepatocellular carcinoma (HCC) that acts by modifying the activity of the epidermal growth factor receptor (EGFR). GALNT2 mRNA and protein were downregulated frequently in HCC tumors where these events were associated with vascular invasion and recurrence. Restoring GALNT2 expression in HCC cells suppressed EGF-induced cell growth, migration, and invasion in vitro and in vivo. Mechanistic investigations revealed that the status of the O-glycans attached to the EGFR was altered by GALNT2, changing EGFR responses after EGF binding. Inhibiting EGFR activity with erlotinib decreased the malignant characters caused by siRNA-mediated knockdown of GALNT2 in HCC cells, establishing the critical role of EGFR in mediating the effects of GALNT2 expression. Taken together, our results suggest that GALNT2 dysregulation contributes to the malignant behavior of HCC cells, and they provide novel insights into the significance of O-glycosylation in EGFR activity and HCC pathogenesis.
Collapse
MESH Headings
- Animals
- Carcinoma, Hepatocellular/enzymology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cell Line, Tumor
- Cell Movement/drug effects
- Cell Movement/genetics
- Cell Proliferation/drug effects
- Down-Regulation
- Epidermal Growth Factor/metabolism
- ErbB Receptors/antagonists & inhibitors
- ErbB Receptors/metabolism
- Erlotinib Hydrochloride
- Female
- Gene Knockdown Techniques/methods
- Glycosylation/drug effects
- Hep G2 Cells
- Humans
- Liver Neoplasms/enzymology
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Mucins/metabolism
- N-Acetylgalactosaminyltransferases/genetics
- N-Acetylgalactosaminyltransferases/metabolism
- Neoplasm Invasiveness
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/metabolism
- Neoplasm Recurrence, Local/pathology
- Quinazolines/pharmacology
- RNA, Messenger/genetics
- Polypeptide N-acetylgalactosaminyltransferase
Collapse
Affiliation(s)
- Yao-Ming Wu
- Department of Surgery and Obstetrics, National Taiwan University Hospital, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Ju T, Otto VI, Cummings RD. The Tn antigen-structural simplicity and biological complexity. Angew Chem Int Ed Engl 2011; 50:1770-91. [PMID: 21259410 PMCID: PMC7159538 DOI: 10.1002/anie.201002313] [Citation(s) in RCA: 286] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Indexed: 01/01/2023]
Abstract
Glycoproteins in animal cells contain a variety of glycan structures that are added co- and/or posttranslationally to proteins. Of over 20 different types of sugar-amino acid linkages known, the two major types are N-glycans (Asn-linked) and O-glycans (Ser/Thr-linked). An abnormal mucin-type O-glycan whose expression is associated with cancer and several human disorders is the Tn antigen. It has a relatively simple structure composed of N-acetyl-D-galactosamine with a glycosidic α linkage to serine/threonine residues in glycoproteins (GalNAcα1-O-Ser/Thr), and was one of the first glycoconjugates to be chemically synthesized. The Tn antigen is normally modified by a specific galactosyltransferase (T-synthase) in the Golgi apparatus of cells. Expression of active T-synthase is uniquely dependent on the molecular chaperone Cosmc, which is encoded by a gene on the X chromosome. Expression of the Tn antigen can arise as a consequence of mutations in the genes for T-synthase or Cosmc, or genes affecting other steps of O-glycosylation pathways. Because of the association of the Tn antigen with disease, there is much interest in the development of Tn-based vaccines and other therapeutic approaches based on Tn expression.
Collapse
Affiliation(s)
- Tongzhong Ju
- Department of Biochemistry, Emory University School of Medicine, O. Wayne Rollins Research Center, 1510 Clifton Road, Suite 4001, Atlanta, GA 30322 (USA), Fax: (+1) 404‐727‐2738
| | - Vivianne I. Otto
- Institute of Pharmaceutical Sciences, ETH Zurich, 8093 Zurich (Switzerland)
| | - Richard D. Cummings
- Department of Biochemistry, Emory University School of Medicine, O. Wayne Rollins Research Center, 1510 Clifton Road, Suite 4001, Atlanta, GA 30322 (USA), Fax: (+1) 404‐727‐2738
| |
Collapse
|
29
|
Ju T, Otto VI, Cummings RD. Das Tn-Antigen - strukturell einfach und biologisch komplex. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201002313] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
30
|
Differences in CD75s- and iso-CD75s-ganglioside content and altered mRNA expression of sialyltransferases ST6GAL1 and ST3GAL6 in human hepatocellular carcinomas and nontumoral liver tissues. Glycobiology 2010; 21:584-94. [DOI: 10.1093/glycob/cwq200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
31
|
Lin WM, Karsten U, Goletz S, Cheng RC, Cao Y. Expression of CD176 (Thomsen-Friedenreich antigen) on lung, breast and liver cancer-initiating cells. Int J Exp Pathol 2010; 92:97-105. [PMID: 21070402 DOI: 10.1111/j.1365-2613.2010.00747.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The cancer-initiating capacity of most malignant tumours is considered to reside in a small subpopulation of cells. Therapeutical interventions should target these cells rather than the tumour mass. Numerous studies have shown that the carbohydrate antigen structure CD176 (Thomsen-Friedenreich antigen, core-1) is present in many types of cancer and absent in normal adult human tissues. In this study, we assessed whether CD176 is co-expressed with CD44 or CD133 [markers of cancer-initiating cells (CIC)] in human lung, breast and liver carcinoma. A variety of human cancer cell lines and surgical specimens of these malignancies were examined. It was found that in most cases the majority of tumour cells stained strongly for CD44 by immunohistochemistry and flow cytometry, whereas CD133 expression was found on a smaller, but varying proportion of cells. Co-expression of CD176 with CD44 was found at a surprisingly high percentage of cancer cells in vitro and in vivo. Co-expression of CD176 with CD133 was also detected, although at a lower rate. Tamoxifen treatment of MDA-435 breast cancer cells enhanced the CD44(+) /CD176(+) phenotype. Evidence is provided through a new sandwich solid-phase enzyme-linked immunosorbent assay (ELISA) suggesting that CD44 is a carrier molecule for CD176 not only in colorectal cancer as previously reported, but also in lung, breast and liver cancer. The expression of CD176 in CIC suggests that it may represent an effective target for tumour therapies.
Collapse
Affiliation(s)
- Wei-Ming Lin
- Key Laboratory of Animal Models and Human Disease Mechanisms of CAS and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | | | | | | | | |
Collapse
|
32
|
Reactivity of a humanized antibody (hPankoMab) towards a tumor-related MUC1 epitope (TA-MUC1) with various human carcinomas. Pathol Res Pract 2010; 206:585-9. [PMID: 20400237 DOI: 10.1016/j.prp.2010.03.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2009] [Revised: 03/04/2010] [Accepted: 03/18/2010] [Indexed: 11/22/2022]
Abstract
Humanized antibodies against tumor-related antigens are now established reagents for in vivo diagnostics and for therapeutic approaches, and are increasingly developed. Humanized PankoMab (hPankoMab), a humanized form of PankoMab directed against a novel tumor-related MUC1 epitope (TA-MUC1), was recently developed for clinical application. In the present study, the reactivity of hPankoMab with various human cancers was systematically studied by immunohistochemistry on 137 surgical specimens, including lung, breast, gastric, colorectal, liver, cervical, kidney, thyroid, and other carcinomas, as well as on several non-epithelial malignancies. The study was performed on paraffin sections without antigen retrieval. hPankoMab reacted strongly with carcinomas originating from glandular or squamous epithelia, weakly with hepatocellular carcinomas, and not with sarcomas. The binding sites of hPankoMab in carcinomas were found around the whole cell surface and, in most cases, also in the cytoplasm of cancer cells.
Collapse
|
33
|
Mayoral MA, Mayoral C, Meneses A, Villalvazo L, Guzmán A, Espinosa B, Ochoa JL, Zenteno E, Guevara J. Identification of Galectin-3 and Mucin-Type O-Glycans in Breast Cancer and Its Metastasis to Brain. Cancer Invest 2009; 26:615-23. [DOI: 10.1080/07357900701837051] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
34
|
Schwartz-Albiez R, Laban S, Eichmüller S, Kirschfink M. Cytotoxic natural antibodies against human tumours: an option for anti-cancer immunotherapy? Autoimmun Rev 2008; 7:491-5. [PMID: 18558368 DOI: 10.1016/j.autrev.2008.03.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Accepted: 03/12/2008] [Indexed: 11/27/2022]
Abstract
Healthy individuals may contain in their peripheral blood antibodies which are able to destroy human tumour cells mediated either by complement-dependent cytotoxicity or by apoptosis. The largest proportion of these antibodies is of IgM isotype and directed against distinct tumour associated carbohydrate epitopes. Although the origin of these antibodies is not clear they seem to belong to the class of natural antibodies because they are not affinity matured and are encoded by distinct germ-line restricted gene families. It is most likely that this class of natural antibodies has in vivo an anti-tumour protective effect which may contribute to so-called tumour surveillance. On the other hand malignant tumour cells exert mechanisms to counteract such an antibody attack. These comprise soluble factors as well as cell surface expressed membrane complement regulatory proteins (mCRP). Further studies are needed to elucidate molecular mechanisms leading to either tumour destruction induced by natural antibodies or to overcome the protective strategies of the tumour against antibody attack.
Collapse
|
35
|
Cao Y, Chang H, Li L, Cheng RC, Fan XN. Alteration of adhesion molecule expression and cellular polarity in hepatocellular carcinoma. Histopathology 2007; 51:528-38. [PMID: 17880531 DOI: 10.1111/j.1365-2559.2007.02820.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS To study the expression of adhesion molecules in human liver and their possible roles during hepatocarcinogenesis. METHODS AND RESULTS The expression of adhesion molecules in normal liver tissues, benign including probable premalignant lesions and malignant lesions was systematically investigated by immunohistochemistry and Western blotting. In normal liver, both hepatocytes and bile duct cells expressed symplekin, desmoglein 1/2, desmocollin 2, desmoplakin and plakophilin 2, but did not express desmocollin 1/3 or plakophilin 1. In benign hepatocyte lesions, expression of the adherens junctions and desmosomes was uniform and slightly increased, but symplekin appeared to show reduced expression in dysplastic lesions. In hepatocellular carcinoma (HCC), the expression of adhesion molecules was often heterogeneous and of abnormal location. Tumour cells with an abnormal distribution or loss of adhesion molecules showed an apolar arrangement of tissue architecture. The expression levels of the adhesion molecules correlated with the differentiation grades of HCC cells. CONCLUSIONS The decreased expression of symplekin may be an early step in the transformation of hepatocytes, whereas alteration of the expression of adherens junctions and desmosomes may indicate more serious changes.
Collapse
Affiliation(s)
- Y Cao
- Laboratory of Molecular and Experimental Pathology, Kunming Institute of Zoology, Chinese Academy of Sciences, Yunnan, China.
| | | | | | | | | |
Collapse
|
36
|
Vlad AM, Diaconu I, Gantt KR. MUC1 in endometriosis and ovarian cancer. Immunol Res 2007; 36:229-36. [PMID: 17337783 DOI: 10.1385/ir:36:1:229] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 11/11/2022]
Abstract
Endometriosis is a chronic, debilitating disease, associated with pelvic pain and infertility. Recent epidemiological studies suggest that women with endometriosis are at increased risk for ovarian cancer. Although the causative factors for both endometriosis and ovarian cancer remain largely unknown, several similarities between the proposed etiology of ovarian cancer and the observed pathophysiology of endometriosis have been reported. MUC1 glycoprotein is present in endometriotic lesions and overexpressed in epithelial ovarian tumors. We are currently studying immunity to MUC1 antigen in newly emerging preclinical models for endometriosis and ovarian cancer and exploring the potential for immune therapy/prevention with MUC1 in both diseases.
Collapse
Affiliation(s)
- Anda M Vlad
- University of Pittsburgh, School of Medicine, Department of Immunology, Pittsburgh, PA 15261, USA.
| | | | | |
Collapse
|
37
|
Lee SM, Lee EJ, Hong HY, Kwon MK, Kwon TH, Choi JY, Park RW, Kwon TG, Yoo ES, Yoon GS, Kim IS, Ruoslahti E, Lee BH. Targeting bladder tumor cells in vivo and in the urine with a peptide identified by phage display. Mol Cancer Res 2007; 5:11-9. [PMID: 17259343 DOI: 10.1158/1541-7786.mcr-06-0069] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Bladder cancer is one of the most common tumors of the genitourinary tract. Here, we use phage display to identify a peptide that targets bladder tumor cells. A phage library containing random peptides was screened for binding to cells from human bladder tumor xenografts. Phage clones were further selected for binding to a bladder tumor cell line in culture. Six clones displaying the consensus sequence CXNXDXR(X)/(R)C showed selective binding to cells from primary human bladder cancer tissue. Of these, the CSNRDARRC sequence was selected for further study as a synthetic peptide. Fluorescein-conjugated CSNRDARRC peptide selectively bound to frozen sections of human bladder tumor tissue, whereas only negligible binding to normal bladder tissue was observed. When the fluorescent peptide was introduced into the bladder lumen, in a carcinogen-induced rat tumor model, it selectively bound to tumor epithelium. Moreover, when the peptide was intravenously injected into the tail vein, it homed to the bladder tumor but was not detectable in normal bladder and control organs. Next, we examined whether the peptide can detect tumor cells in urine. The fluorescent peptide bound to cultured bladder tumor cells but not to other types of tumor cell lines. Moreover, it bound to urinary cells of patients with bladder cancer, while showing little binding to urinary cells of patients with inflammation or healthy individuals. The CSNRDARRC peptide may be useful as a targeting moiety for selective delivery of therapeutics and as a diagnostic probe for the detection of bladder cancer.
Collapse
Affiliation(s)
- Seung-Min Lee
- Department of Biochemistry, School of Medicine, Kyungpook National University, 101 Dongin-Dong, Jung-Gu, Daegu 700-421, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Ichikawa T, Yamamoto T, Uenishi T, Tanaka H, Takemura S, Ogawa M, Tanaka S, Suehiro S, Hirohashi K, Kubo S. Clinicopathological implications of immunohistochemically demonstrated mucin core protein expression in hepatocellular carcinoma. ACTA ACUST UNITED AC 2006; 13:245-51. [PMID: 16708303 DOI: 10.1007/s00534-005-1070-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2005] [Accepted: 10/26/2005] [Indexed: 10/24/2022]
Abstract
METHODS We examined the expression of mucin core protein 1 (MUC1) immunohistochemically in 186 surgical specimens of histopathologically nonmucinous hepatocellular carcinoma (HCC) and compared the clinicopathological features in patients with MUC1-positive HCC (MUC1-positive group) with those in patients with MUC1-negative HCC (MUC1-negative group). RESULTS MUC1 immunoreactively was present in 85 of the 186 HCCs. Of the clinicopathological variables examined, the serum concentration of alpha-fetoprotein, tumor differentiation, bile duct invasion, lymph node metastasis, and cytokeratin 19 expression exhibited significant associations with MUC1 expression. Although cumulative and tumor-free survival rates were not different between the two groups, the percentage of patients with first recurrence of HCC in distant organs (distant metastasis) within 2 years after surgery was significantly higher in the MUC1-positive group than in the MUC1-negative group (P = 0.0104). The risk ratio of MUC1 positivity for this type of distant metastasis was 3.156 (95% confidence interval, 1.064-9.358). CONCLUSIONS In patients with MUC1-positive HCC, careful follow-up is necessary, not only for intrahepatic recurrence but also for distant metastasis, after the resection of primary HCC.
Collapse
Affiliation(s)
- Tsuyoshi Ichikawa
- Department of Hepato-Biliary-Pancreatic Surgery, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Sewell R, Bäckström M, Dalziel M, Gschmeissner S, Karlsson H, Noll T, Gätgens J, Clausen H, Hansson GC, Burchell J, Taylor-Papadimitriou J. The ST6GalNAc-I sialyltransferase localizes throughout the Golgi and is responsible for the synthesis of the tumor-associated sialyl-Tn O-glycan in human breast cancer. J Biol Chem 2005; 281:3586-94. [PMID: 16319059 DOI: 10.1074/jbc.m511826200] [Citation(s) in RCA: 180] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The functional properties of glycoproteins are strongly influenced by their profile of glycosylation, and changes in this profile are seen in malignancy. In mucin-type O-linked glycosylation these changes can result in the production of mucins such as MUC1, carrying shorter sialylated O-glycans, and with different site occupancy. Of the tumor-associated sialylated O-glycans, the disaccharide, sialyl-Tn (sialic acid alpha2,6GalNAc), is expressed by 30% of breast carcinomas and is the most tumor-specific. The ST6GalNAc-I glycosyltransferase, which can catalyze the transfer of sialic acid to GalNAc, shows a highly restricted pattern of expression in normal adult tissues, being largely limited to the gastrointestinal tract and absent in mammary gland. In breast carcinomas, however, a complete correlation between the expression of RNA-encoding ST6GalNAc-I and the expression of sialyl-Tn is evident, demonstrating that the expression of sialyl-Tn results from switching on expression of hST6GalNAc-I. Endogenous or exogenous expression of hST6GalNAc-I (but not ST6GalNAc-II) always results in the expression of sialyl-Tn. This ability to override core 1/core 2 pathways of O- linked glycosylation is explained by the localization of ST6GalNAc-I, which is found throughout the Golgi stacks. The development of a Chinese hamster ovary (CHO) cell line expressing MUC1 and ST6GalNAc-I allowed the large scale production of MUC1 carrying 83% sialyl-Tn O-glycans. The presence of ST6GalNAc-I in the CHO cells reduced the number of O-glycosylation sites occupied in MUC1, from an average of 4.3 to 3.8 per tandem repeat. The availability of large quantities of this MUC1 glycoform will allow the evaluation of its efficacy as an immunogen for immunotherapy of MUC1/STn-expressing tumors.
Collapse
MESH Headings
- Animals
- Antigens, Neoplasm/chemistry
- Antigens, Tumor-Associated, Carbohydrate/chemistry
- Blotting, Northern
- Blotting, Western
- Breast Neoplasms/enzymology
- Breast Neoplasms/pathology
- CHO Cells
- Cell Line, Tumor
- Chromatography, Liquid
- Cloning, Molecular
- Cricetinae
- Female
- Flow Cytometry
- Glycosylation
- Golgi Apparatus/enzymology
- Golgi Apparatus/metabolism
- Humans
- Immunotherapy/methods
- K562 Cells
- Mammary Glands, Human/metabolism
- Microscopy, Fluorescence
- Microscopy, Immunoelectron
- Models, Chemical
- Polysaccharides/chemistry
- Polysaccharides/metabolism
- Recombinant Fusion Proteins/chemistry
- Reverse Transcriptase Polymerase Chain Reaction
- Sialyltransferases/chemistry
- Sialyltransferases/metabolism
- Spectrometry, Mass, Electrospray Ionization
- Transfection
Collapse
Affiliation(s)
- Robert Sewell
- Cancer Research-UK Breast Cancer Biology Group, 3rd Floor, Guy's Hospital, London SE1 9RT, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Yuan SF, Li KZ, Wang L, Dou KF, Yan Z, Han W, Zhang YQ. Expression of MUC1 and its significance in hepatocellular and cholangiocarcinoma tissue. World J Gastroenterol 2005; 11:4661-6. [PMID: 16094706 PMCID: PMC4615407 DOI: 10.3748/wjg.v11.i30.4661] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the relation between MUC1 expression, distribution, and prognosis in hepatocellular and cholangiocarcinoma (HCC and CC) and cirrhotic liver tissues, and their significance in HCC and CC diagnosis.
METHODS: Expression and distribution of MUC1 were examined by immunohistochemical assay with anti-MUC1 mAb in 59 samples of HCC and 37 samples of CC, 20 samples of cirrhotic liver tissues, and 10 samples of normal liver tissues, seeking possible associations between MUC1 positive expression, distribution in HCC and CC (primary liver cancer, PLC) cases and the studied clinical data.
RESULTS: Immunohistochemical analysis of MUC1 expression showed that in the 96 PLC samples, 68 (70.8%) were strong positive, and 6 (6.2%) were weak positive. Only 4 in the 20 cirrhotic liver tissues were found to be weak positive, while no expression of MUC1 was detected in normal liver tissues. Apparently, the high expression rate of MUC1 in PLC tissues was statistically significant in comparison to that in cirrhotic and normal liver tissues. The expressed MUC1 protein, stained in dark brownish or brownish-yellow particles, chiefly localized on the cancer cell membranes or in cytoplasm. In the 68 strong positive samples, 40 were detected on cell membrane and the other 28 were in cytoplasm. In addition, follow-up studies of those PLC cases demonstrated that MUC1 expression on cell membrane or in cytoplasm was closely associated with PLC prognosis. The expression of MUC1 in PLC had little statistical significance in respect of the pathological types and sizes of the tumors, but a strong relationship regarding histological differentiation, metastasis of lymph nodes, portal canal emboli, and post-operational recurrence of the carcinomas. After 3 years of tumor excision, the metastasis rate in MUC1 positive expression group (67.6%) was much higher than that in MUC1 weak expression group (33.3%) and negative expression group (31.8%), and thus the survival rate in MUC1-positive expression group was significantly different from that in weak and negative expression groups.
CONCLUSION: Expression and localization of MUC1 proteins in primary liver carcinomas (PLCs) may act as prognostic markers, and MUC1 molecules might be helpful in differential diagnosis.
Collapse
Affiliation(s)
- Shi-Fang Yuan
- Department of Vascular and Endocrine Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, China.
| | | | | | | | | | | | | |
Collapse
|
41
|
Carlos CA, Dong HF, Howard OMZ, Oppenheim JJ, Hanisch FG, Finn OJ. Human Tumor Antigen MUC1 Is Chemotactic for Immature Dendritic Cells and Elicits Maturation but Does Not Promote Th1 Type Immunity. THE JOURNAL OF IMMUNOLOGY 2005; 175:1628-35. [PMID: 16034102 DOI: 10.4049/jimmunol.175.3.1628] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The immunostimulatory outcome of the interactions of many pathogens with dendritic cells (DCs) has been well characterized. There are many fewer examples of similar interactions between DCs and self-molecules, especially the abnormal self-proteins such as many tumor Ags, and their effects on DC function and the immune response. We show that human epithelial cell Ag MUC1 mucin is recognized in its aberrantly glycosylated form on tumor cells by immature human myeloid DCs as both a chemoattractant (through its polypeptide core) and a maturation and activation signal (through its carbohydrate moieties). On encounter with MUC1, similar to the encounter with LPS, immature DCs increase cell surface expression of CD80, CD86, CD40, and CD83 molecules and the production of IL-6 and TNF-alpha cytokines but fail to make IL-12. When these DCs are cocultured with allogeneic CD4+ T cells, they induce production of IL-13 and IL-5 and lower levels of IL-2, thus failing to induce a type 1 response. Our data suggest that, in vivo in cancer patients, MUC1 attracts immature DCs to the tumor through chemotaxis and subverts their function by negatively affecting their ability to stimulate type 1 helper T cell responses important for tumor rejection.
Collapse
Affiliation(s)
- Casey A Carlos
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | | | | | | | |
Collapse
|
42
|
Enders AC, Meyers S, Vandevoort CA, Douglas GC. Interactions of macaque blastocysts with epithelial cells in vitro. Hum Reprod 2005; 20:3026-32. [PMID: 16006466 DOI: 10.1093/humrep/dei178] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Early in vitro studies of blastocyst formation in several primate species have demonstrated the feasibility of such studies. Initial studies of in vitro-fertilized oocytes cultured with buffalo rat liver cells suggested that other epithelial cells might be used to assess blastocyst adherence and penetration in vitro. METHODS Macaque blastocysts were incubated with different epithelial cell lines or with Matrigel. The interaction was studied using light and transmission electron microscopy. RESULTS In general, zona-free blastocysts attached 2 days after placing on the substrates. MDCK cells provided optimal conditions for blastocyst development. The best preparations showed some development of an amniotic cavity and distribution of cytotrophoblast and syncytial trophoblast. Distribution of syncytial trophoblast at the margin of the site and cytotrophoblast centrally was similar to that seen at the trophoblastic plate stage in this species. However, there was less syncytial trophoblast than is normally found at this stage, and total time from fertilization to the trophoblastic plate stage was delayed 2 days. CONCLUSIONS While in vitro studies with blastocysts cannot completely mimic the intrauterine environment, they can illustrate some of the potential interactions and provide a situation in which parameters may be manipulated.
Collapse
Affiliation(s)
- Allen C Enders
- Department of Cell Biology and Human Anatomy, University of California, Davis, California 95616, USA.
| | | | | | | |
Collapse
|
43
|
Varma V, Cohen C. Immunohistochemical and molecular markers in the diagnosis of hepatocellular carcinoma. Adv Anat Pathol 2004; 11:239-49. [PMID: 15322490 DOI: 10.1097/01.pap.0000131822.31576.9d] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) has distinct morphologic features and can be identified in the majority of cases by routine hematoxylin and eosin (H&E)-stained formalin-fixed paraffin-embedded sections. However, distinguishing a well-differentiated HCC from normal or regenerative tissue may be very difficult in some cases, particularly in small needle aspiration or core biopsies. Furthermore, some of the unusual morphologic variants, including clear-cell, pleomorphic, and sarcomatoid variants, may be mistaken for metastases. Similarly, metastases from various primary tumors to the liver may be mistaken for primary hepatic tumors. In this overview, we summarize the immunohistochemical and molecular markers that have been developed to address these diagnostic challenges. Among the numerous diagnostic markers studied, pCEA, HepPar 1, CD34, CK 7, CK 19, CK 20, and albumin in situ (ISH) have been found to be valuable in distinguishing HCC from metastatic neoplasms of extrahepatic sites.
Collapse
Affiliation(s)
- Vijay Varma
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA.
| | | |
Collapse
|
44
|
Vlad AM, Kettel JC, Alajez NM, Carlos CA, Finn OJ. MUC1 immunobiology: from discovery to clinical applications. Adv Immunol 2004; 82:249-93. [PMID: 14975259 DOI: 10.1016/s0065-2776(04)82006-6] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Anda M Vlad
- Department of Immunology, University of Pittsburgh School of Medicine Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | |
Collapse
|
45
|
Zheng M, Ruan Y, Yang M, Guan Y, Wu Z. The comparative study on ultrastructure and immunohistochemistry in AFP negative and positive hepatocellular carcinoma. Curr Med Sci 2004; 24:547-9, 559. [PMID: 15791836 DOI: 10.1007/bf02911350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2004] [Indexed: 12/12/2022]
Abstract
SUMMARY To comparatively investigate ultrastructural characteristics and expressions of AFP (alpha-fetoprotein) and Tn (Thomsen-Friedenreich-related antigen) protein in AFP negative (AFP-) and AFP positive (AFP+) primary hepatocellular carcinoma. Fourty-three cases of AFP- and AFP+ hepatocellular carcinoma (HCC) tissues and five cases of normal liver tissues were divided into three groups: control group (normal liver tissue, n=5); AFP+ HCC group (the serum AFP level was higher than 10 ng/ml, n = 22); AFP- HCC group (the serum AFP level was lower than 10 ng/ml, n=21). The ultrastructural morphology was studied by transmission electron microscopy, the expressions of AFP and Tn protein were detected by immunohistochemistry and cell image analysis. 1. The immunohistochemical study showed that (1) the expression intensity and positive rate of Tn protein in AFP- HCC group were markedly higher than that in AFP+ HCC group (P<0.01); (2) The expression intensity of AFP in AFP- HCC group was lower than that in AFP+ HCC group (P<0.01). 2. The transmission electron microscopy demonstrated that some AFP- HCC cells linked closely with each other, others dispersed loosely just as cultured cells, the remarkable morphologic features in AFP- HCC cells were simple organelles, but they were abundant in the free polyribosomes. In AFP+ HCC group, all the HCC cells linked closely together and were rich organelles in their cytoplasm, especially the rough endoplasmic reticula. In addition, mitochondria and Golgi complex were obviously observed. (1) The AFP and Tn protein had discrepancy distribution in AFP- and AFP+ HCC tissues, Tn protein may be one of the early diagnostic indicators in AFP- HCC; (2) The synthetic locations of the AFP and Tn protein were different in hepatocarcinoma cells by ultrastructural observation.
Collapse
Affiliation(s)
- Meirong Zheng
- Department of Ultrastructural Pathology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | | | | | | | | |
Collapse
|
46
|
Yuan SF, Wang L, Li KZ, Yan Z, Han W, Zhang YQ. Inhibitory effect of MUC1 gene immunization on H22 hepatocellular carcinoma growth. Shijie Huaren Xiaohua Zazhi 2003; 11:1322-1325. [DOI: 10.11569/wcjd.v11.i9.1322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the special anti-H22 hepatocellular carcinoma growth effect of the MUC1 gene immunization.
METHODS Balb/c mice were immunized intramuscularly with 100 mg MUC1 cDNA 3 times at 3-weekly intervals. Three weeks after the last immunization, tumor challenge experiments were performed by using MUC1 expressing tumor cell line H22. Tumor growth inhibition and body protection were observed two weeks later. After 43d of challenge experiments, all mice were killed and tumors were weighed. Histological analysis of tumor tissue was carried out with HE staining.
RESULTS After 43 d of challenge experiments, the volumes of H22 hepatocellular carcinoma in MUC1cDNA, pcDNA3.1(+) and NS groups were 547±59 mm3, 1 185±84 mm3 and 1 220±95 mm3 (P <0.01), respectively. The average mass of H22 hepatocellular carcinoma in the three groups was 1.87±0.96 g, 4.19±1.34 g and 4.23±1.32 g (P <0.01), respectively . Tumorigenic rate was only 50 % in MUC1cDNA group, and was 100 % in pcDNA3.1(+) and NS group. H22 hepatocellular carcinoma growth in mice of MUC1cDNA group was significantly suppressed (P <0.01), and a significant body protective effect was found in mice of MUC1cDNA group (P <0.05), compared with control group. Histological analysis showed that the H22 hepatocellular carcinoma tissues were markedly necrosed in mice of MUC1cDNA group compared with that in control group.
CONCLUSION MUC1 gene immunization can significantly suppress H22 hepatocellular carcinoma growth.
Collapse
Affiliation(s)
- Shi-Fang Yuan
- Department of Vascular and Endocrine Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710033, Shaanxi Provice, China
| | - Ling Wang
- Department of Vascular and Endocrine Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710033, Shaanxi Provice, China
| | - Kai-Zong Li
- Department of Hepato-biliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710033, Shaanxi Provice, China
| | - Zhen Yan
- Biotechnology Center, Fourth Military Medical University, Xi'an 710033, Shaanxi Provice, China
| | - Wei Han
- Biotechnology Center, Fourth Military Medical University, Xi'an 710033, Shaanxi Provice, China
| | - Ying-Qi Zhang
- Biotechnology Center, Fourth Military Medical University, Xi'an 710033, Shaanxi Provice, China
| |
Collapse
|
47
|
Goletz S, Cao Y, Danielczyk A, Ravn P, Schoeber U, Karsten U. Thomsen-Friedenreich Antigen: The “Hidden” Tumor Antigen. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 535:147-62. [PMID: 14714894 DOI: 10.1007/978-1-4615-0065-0_10] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Affiliation(s)
- S Goletz
- NEMOD Immuntherapie AG and Max Delbrück Centre for Molecular Medicine, Berlin-Buch, Germany
| | | | | | | | | | | |
Collapse
|
48
|
Cao Y, Merling A, Crocker PR, Keller R, Schwartz-Albiez R. Differential expression of beta-galactoside alpha2,6 sialyltransferase and sialoglycans in normal and cirrhotic liver and hepatocellular carcinoma. J Transl Med 2002; 82:1515-24. [PMID: 12429811 DOI: 10.1097/01.lab.0000038503.34655.98] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
SUMMARY Sialyltransferases sialylate plasma glycoproteins in hepatocytes and may (as hepatic key enzymes) constitute markers for liver diseases. We examined expression of the prevalent alpha2,6 sialyltransferase (ST6Gal I) and sialoglycans in normal liver, cirrhotic liver, and hepatocellular carcinoma (HCC) using a new ST6Gal I-specific mAb and recombinant fusion proteins of CD22 and sialoadhesin recognizing alpha2,6- or alpha2,3-sialylated glycans in immunohistology and flow cytometry. In normal and cirrhotic liver, ST6Gal I and sialoglycans were localized in the Golgi region of hepatocytes surrounding the bile canaliculi and along the bile canaliculi, respectively. Sialoglycans were additionally recognized in Kupffer cells, bile ducts, endothelial cells, and oval cells. Well-differentiated and moderately differentiated HCC showed Golgi and diffuse cytoplasmic staining of ST6Gal I and sialoglycans, whereas the cytoplasmic staining for ST6Gal I and sialoglycans was decreased or even absent in poorly differentiated HCC. Detection of sialoglycans by the recombinant fusion proteins in Western blots of cell lysates derived from cell lines revealed two major double bands of sialoglycoproteins at 65 and 120 kDa for hepatocytes, three major bands at 54, 49, and 44 kDa for colonic epithelial cells, and one band at 60 kDa for endothelial cells. Our results describe the expression patterns of ST6Gal I and sialoglycans in various liver tissues and demonstrate an altered expression of these structures between benign and malignant hepatocellular lesions.
Collapse
Affiliation(s)
- Yi Cao
- Tumor Immunology Program, German Cancer Research Center, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
49
|
Schuman J, Qiu D, Koganty RR, Longenecker BM, Campbell AP. Glycosylations versus conformational preferences of cancer associated mucin core. Glycoconj J 2000; 17:835-48. [PMID: 11511808 DOI: 10.1023/a:1010909011496] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Synthetic oligosaccharide vaccines based on core STn (sialyl alpha2-6 GalNAc) carbohydrate epitopes are being evaluated by a number of biopharmaceutical firms as potential immunotherapeutics in the treatment of mucin-expressing adenocarcinomas. The STn carbohydrate epitopes exist as discontinuous clusters, O-linked to proximal serine and threonine residues within the mucin sequence. In an effort to probe the structure and dynamics of STn carbohydrate clusters as they may exist on the cancer-associated mucin, we have used NMR spectroscopy and MD simulations to study the effect of O-glycosylation of adjacent serine residues in a repeating (Ser)n sequence. Three model peptides/glyco-peptides were studied: a serine trimer containing no carbohydrate groups ((Ser)3 trimer); a serine trimer containing three Tn (GalNAc) carbohydrates alpha-linked to the hydroxyls of adjacent serine sidechains ((Ser.Tn)3 trimer); and a serine trimer containing three STn carbohydrates alpha-linked to the hydroxyls of adjacent serine sidechains ((Ser.STn)3 trimer). Our results demonstrate that clustering of carbohydrates shifts the conformational equilibrium of the underlying peptide backbone into a more extended and rigid state, an arrangement that could function to optimally present the clustered carbohydrate antigen to the immune system. Steric effects appear to drive these changes since an increase in the size of the attached carbohydrate (STn versus Tn) is accompanied by a stronger shift in the equilibrium toward the extended state. In addition, NMR evidence points to the formation of hydrogen bonds between the peptide backbone NH protons and the proximal GalNAc groups in the (Ser.Tn)3 and (Ser.STn)3 trimers. The putative peptide-sugar hydrogen bonds may also play a role in influencing the conformation of the underlying peptide backbone, as well as the orientation of the O-linked carbohydrate. The significance of these results will be discussed within the framework of developing clustered STn-based vaccines, capable of targeting the clustered STn epitopes on the cancer-associated mucin.
Collapse
Affiliation(s)
- J Schuman
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|
50
|
Wu X, Yao JF, Xin Y, Tsuyama S, Yonezawa S, Murata F. Expression of Mucin 1 (MUC1) in Benign, Premalignant and Malignant Vulvar Tumors. Acta Histochem Cytochem 2000. [DOI: 10.1267/ahc.33.267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Xin Wu
- Department of Gynecology,The First Clinical College,China Medical University,Shenyang,110001,China
| | - Jia-Fei Yao
- Department of Gynecology,The First Clinical College,China Medical University,Shenyang,110001,China
| | - Yan Xin
- Tumor Research Institute,China Medical University,Shenyang,110001,China
| | - Shinichiro Tsuyama
- Department of Anatomy,Faculty of Medicine,Kagoshima University,8-35-1,Sakuragaoka,Kagoshima 890-8520
| | - Suguru Yonezawa
- Department of Pathology,Faculty of Medicine,Kagoshima University,8-35-1,Sakuragaoka,Kagoshima 890-8520
| | - Fusayoshi Murata
- Department of Anatomy,Faculty of Medicine,Kagoshima University,8-35-1,Sakuragaoka,Kagoshima 890-8520
| |
Collapse
|