1
|
Lee CE, Charmantier G, Lorin-Nebel C. Mechanisms of Na + uptake from freshwater habitats in animals. Front Physiol 2022; 13:1006113. [PMID: 36388090 PMCID: PMC9644288 DOI: 10.3389/fphys.2022.1006113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/28/2022] [Indexed: 07/20/2023] Open
Abstract
Life in fresh water is osmotically and energetically challenging for living organisms, requiring increases in ion uptake from dilute environments. However, mechanisms of ion uptake from freshwater environments are still poorly understood and controversial, especially in arthropods, for which several hypothetical models have been proposed based on incomplete data. One compelling model involves the proton pump V-type H+ ATPase (VHA), which energizes the apical membrane, enabling the uptake of Na+ (and other cations) via an unknown Na+ transporter (referred to as the "Wieczorek Exchanger" in insects). What evidence exists for this model of ion uptake and what is this mystery exchanger or channel that cooperates with VHA? We present results from studies that explore this question in crustaceans, insects, and teleost fish. We argue that the Na+/H+ antiporter (NHA) is a likely candidate for the Wieczorek Exchanger in many crustaceans and insects; although, there is no evidence that this is the case for fish. NHA was discovered relatively recently in animals and its functions have not been well characterized. Teleost fish exhibit redundancy of Na+ uptake pathways at the gill level, performed by different ion transporter paralogs in diverse cell types, apparently enabling tolerance of low environmental salinity and various pH levels. We argue that much more research is needed on overall mechanisms of ion uptake from freshwater habitats, especially on NHA and other potential Wieczorek Exchangers. Such insights gained would contribute greatly to our general understanding of ionic regulation in diverse species across habitats.
Collapse
Affiliation(s)
- Carol Eunmi Lee
- Department of Integrative Biology, University of Wisconsin, Madison, WI, United States
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Guy Charmantier
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | | |
Collapse
|
2
|
Breves JP, Nelson NN, Koltenyuk V, Petro-Sakuma CK, Celino-Brady FT, Seale AP. Enhanced expression of ncc1 and clc2c in the kidney and urinary bladder accompanies freshwater acclimation in Mozambique tilapia. Comp Biochem Physiol A Mol Integr Physiol 2021; 260:111021. [PMID: 34174427 PMCID: PMC8355173 DOI: 10.1016/j.cbpa.2021.111021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 11/15/2022]
Abstract
Euryhaline fishes maintain hydromineral balance in a broad range of environmental salinities via the activities of multiple osmoregulatory organs, namely the gill, gastrointestinal tract, skin, kidney, and urinary bladder. Teleosts residing in freshwater (FW) environments are faced with the diffusive loss of ions and the osmotic gain of water, and, therefore, the kidney and urinary bladder reabsorb Na+ and Cl- to support the production of dilute urine. Nonetheless, the regulated pathways for Na+ and Cl- transport by euryhaline fishes, especially in the urinary bladder, have not been fully resolved. Here, we first investigated the ultrastructure of epithelial cells within the urinary bladder of FW-acclimated Mozambique tilapia (Oreochromis mossambicus) by electron microscopy. We then investigated whether tilapia employ Na+/Cl- cotransporter 1 (Ncc1) and Clc family Cl- channel 2c (Clc2c) for the reabsorption of Na+ and Cl- by the kidney and urinary bladder. We hypothesized that levels of their associated gene transcripts vary inversely with environmental salinity. In whole kidney and urinary bladder homogenates, ncc1 and clc2c mRNA levels were markedly higher in steady-state FW- versus SW (seawater)-acclimated tilapia. Following transfer from SW to FW, ncc1 and clc2c in both the kidney and urinary bladder were elevated within 48 h. A concomitant increase in branchial ncc2, and decreases in Na+/K+/2Cl-cotransporter 1a (nkcc1a) and cystic fibrosis transmembrane regulator 1 (cftr1) levels indicated a transition from Na+ and Cl- secretion to absorption by the gills in parallel with the identified renal and urinary bladder responses to FW transfer. Our findings suggest that Ncc1 and Clc2c contribute to the functional plasticity of the kidney and urinary bladder in tilapia.
Collapse
Affiliation(s)
- Jason P Breves
- Department of Biology, Skidmore College, Saratoga Springs, NY 12866, USA.
| | - Nastasia N Nelson
- Department of Biology, Skidmore College, Saratoga Springs, NY 12866, USA
| | - Victor Koltenyuk
- Department of Biology, Skidmore College, Saratoga Springs, NY 12866, USA
| | - Cody K Petro-Sakuma
- Department of Human Nutrition, Food and Animal Sciences, University of Hawai'i at Mānoa, 1955 East-West Road, Honolulu, HI 96822, USA
| | - Fritzie T Celino-Brady
- Department of Human Nutrition, Food and Animal Sciences, University of Hawai'i at Mānoa, 1955 East-West Road, Honolulu, HI 96822, USA
| | - Andre P Seale
- Department of Human Nutrition, Food and Animal Sciences, University of Hawai'i at Mānoa, 1955 East-West Road, Honolulu, HI 96822, USA
| |
Collapse
|
3
|
|
4
|
Myosho T, Takahashi H, Yoshida K, Sato T, Hamaguchi S, Sakamoto T, Sakaizumi M. Hyperosmotic tolerance of adult fish and early embryos are determined by discrete, single loci in the genus Oryzias. Sci Rep 2018; 8:6897. [PMID: 29720646 PMCID: PMC5932013 DOI: 10.1038/s41598-018-24621-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 03/29/2018] [Indexed: 11/09/2022] Open
Abstract
The acquisition of environmental osmolality tolerance traits in individuals and gametes is an important event in the evolution and diversification of organisms. Although teleost fish exhibit considerable intra- and interspecific variation in salinity tolerance, the genetic mechanisms underlying this trait remain unclear. Oryzias celebensis survives in sea and fresh water during both the embryonic and adult stages, whereas its close relative Oryzias woworae cannot survive in sea water at either stage. A linkage analysis using backcross progeny identified a single locus responsible for adult hyperosmotic tolerance on a fused chromosome that corresponds to O. latipes linkage groups (LGs) 6 and 23. Conversely, O. woworae eggs fertilised with O. celebensis sperm died in sea water at the cleavage stages, whereas O. celebensis eggs fertilised with O. woworae sperm developed normally, demonstrating that maternal factor(s) from O. celebensis are responsible for hyperosmotic tolerance during early development. A further linkage analysis using backcrossed females revealed a discrete single locus relating to the maternal hyperosmotic tolerance factor in a fused chromosomal region homologous to O. latipes LGs 17 and 19. These results indicate that a maternal factor governs embryonic hyperosmotic tolerance and maps to a locus distinct from that associated with adult hyperosmotic tolerance.
Collapse
Affiliation(s)
- Taijun Myosho
- Laboratory of Molecular Reproductive Biology, Institute for Environmental Science, University of Shizuoka, Shizuoka, 422-8526, Japan. .,Department of Environmental Science, Institute of Science and Technology, Niigata University, Ikarashi, Niigata, 950-2181, Japan.
| | - Hideya Takahashi
- Department of Environmental Science, Institute of Science and Technology, Niigata University, Ikarashi, Niigata, 950-2181, Japan.,Ushimado Marine Institute, Faculty of Science, Okayama University, Setouchi, Okayama, 701-4303, Japan
| | - Kento Yoshida
- Department of Environmental Science, Institute of Science and Technology, Niigata University, Ikarashi, Niigata, 950-2181, Japan
| | - Tadashi Sato
- Department of Environmental Science, Institute of Science and Technology, Niigata University, Ikarashi, Niigata, 950-2181, Japan
| | - Satoshi Hamaguchi
- Department of Environmental Science, Institute of Science and Technology, Niigata University, Ikarashi, Niigata, 950-2181, Japan
| | - Tatsuya Sakamoto
- Ushimado Marine Institute, Faculty of Science, Okayama University, Setouchi, Okayama, 701-4303, Japan
| | - Mitsuru Sakaizumi
- Department of Environmental Science, Institute of Science and Technology, Niigata University, Ikarashi, Niigata, 950-2181, Japan
| |
Collapse
|
5
|
Oğuz AR. Development of osmoregulatory tissues in the Lake van fish (Alburnus tarichi) during larval development. FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:227-233. [PMID: 28952027 DOI: 10.1007/s10695-017-0427-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 09/21/2017] [Indexed: 06/07/2023]
Abstract
Lake Van is one of the largest alkaline lakes worldwide and Lake Van Fish (Alburnus tarichi Güldenstädt, 1814) is the only vertebrate species inhabiting it. Lake Van Fish is an anadromous species that migrates to the streams (salinity 0.02%, pH 8.42) flowing into Lake Van (salinity 0.22%, pH 9.8) during the spawning period (April-July). Following spawning, fish return to Lake Van while larvae remain in fresh water. This study examined the development of osmoregulatory organs and the distribution of ionocytes in Lake Van Fish larvae adapting to the highly alkaline water characterizing the lake. Ionocytes were marked immunohistochemically and observed in whole mounts with immunofluorescence staining using the Na+/K+ ATPase antibody. Ionocytes were first identified in the yolk sac membrane and skin, and then in the gills, digestive tract, and kidneys of larvae. The number of ionocytes on yolk sac membrane and skin decreased during larval development, indicating ionocytes on these tissues have a role in larvae osmoregulation. Larvae hatched from eggs in stream waters die when transferred to Lake Van water but survived in lake water diluted with deionized water. Thus, larvae need to go through certain alterations at the cellular and organ levels in order to adapt to the conditions of Lake Van water, indicating they do not enter this lake immediately after hatching.
Collapse
Affiliation(s)
- Ahmet R Oğuz
- Department of Biology, Faculty of Science, Van Yüzüncü Yıl University, 65080, Van, Turkey.
| |
Collapse
|
6
|
Crespel A, Zambonino-Infante JL, Mazurais D, Koumoundouros G, Fragkoulis S, Quazuguel P, Huelvan C, Madec L, Servili A, Claireaux G. The development of contemporary European sea bass larvae ( Dicentrarchus labrax) is not affected by projected ocean acidification scenarios. MARINE BIOLOGY 2017; 164:155. [PMID: 28751791 PMCID: PMC5491573 DOI: 10.1007/s00227-017-3178-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 06/05/2017] [Indexed: 05/15/2023]
Abstract
Ocean acidification is a recognized consequence of anthropogenic carbon dioxide (CO2) emission in the atmosphere. Despite its threat to marine ecosystems, little is presently known about the capacity for fish to respond efficiently to this acidification. In adult fish, acid-base regulatory capacities are believed to be relatively competent to respond to hypercapnic conditions. However, fish in early life stage could be particularly sensitive to environmental factors as organs and important physiological functions become progressively operational during this period. In this study, the response of European sea bass (Dicentrarchus labrax) larvae reared under three ocean acidification scenarios, i.e., control (present condition, [Formula: see text] = 590 µatm, pH total = 7.9), low acidification (intermediate IPCC scenario, [Formula: see text] = 980 µatm, pH total = 7.7), and high acidification (most severe IPCC scenario, [Formula: see text] = 1520 µatm, pH total = 7.5) were compared across multiple levels of biological organizations. From 2 to 45 days-post-hatching, the chronic exposure to the different scenarios had limited influence on the survival and growth of the larvae (in the low acidification condition only) and had no apparent effect on the digestive developmental processes. The high acidification condition induced both faster mineralization and reduction in skeletal deformities. Global (microarray) and targeted (qPCR) analysis of transcript levels in whole larvae did not reveal any significant changes in gene expression across tested acidification conditions. Overall, this study suggests that contemporary sea bass larvae are already capable of coping with projected acidification conditions without having to mobilize specific defense mechanisms.
Collapse
Affiliation(s)
- Amélie Crespel
- Ifremer, Laboratoire Adaptation, Reproduction et Nutrition des poissons, LEMAR (UMR 6539), 29280 Plouzané, France
| | - José-Luis Zambonino-Infante
- Ifremer, Laboratoire Adaptation, Reproduction et Nutrition des poissons, LEMAR (UMR 6539), 29280 Plouzané, France
| | - David Mazurais
- Ifremer, Laboratoire Adaptation, Reproduction et Nutrition des poissons, LEMAR (UMR 6539), 29280 Plouzané, France
| | - George Koumoundouros
- Biology Department, University of Crete, Vasilika Vouton, 70013 Heraklio, Crete Greece
| | - Stefanos Fragkoulis
- Biology Department, University of Crete, Vasilika Vouton, 70013 Heraklio, Crete Greece
| | - Patrick Quazuguel
- Ifremer, Laboratoire Adaptation, Reproduction et Nutrition des poissons, LEMAR (UMR 6539), 29280 Plouzané, France
| | - Christine Huelvan
- Ifremer, Laboratoire Adaptation, Reproduction et Nutrition des poissons, LEMAR (UMR 6539), 29280 Plouzané, France
| | - Laurianne Madec
- Ifremer, Laboratoire Adaptation, Reproduction et Nutrition des poissons, LEMAR (UMR 6539), 29280 Plouzané, France
| | - Arianna Servili
- Ifremer, Laboratoire Adaptation, Reproduction et Nutrition des poissons, LEMAR (UMR 6539), 29280 Plouzané, France
| | - Guy Claireaux
- Université de Bretagne Occidentale, LEMAR, (UMR 6539), Laboratoire Adaptation, Reproduction et Nutrition des poissons, 29280 Plouzané, France
| |
Collapse
|
7
|
Blondeau-Bidet E, Bossus M, Maugars G, Farcy E, Lignot JH, Lorin-Nebel C. Molecular characterization and expression of Na +/K +-ATPase α1 isoforms in the European sea bass Dicentrarchus labrax osmoregulatory tissues following salinity transfer. FISH PHYSIOLOGY AND BIOCHEMISTRY 2016; 42:1647-1664. [PMID: 27289588 DOI: 10.1007/s10695-016-0247-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 06/01/2016] [Indexed: 05/14/2023]
Abstract
The Na+/K+-ATPase (NKA) is considered as the main pump involved in active ion transport. In the European sea bass, Dicentrarchus labrax, we found two genes encoding for the alpha 1 subunit isoforms (NKA α1a and NKA α1b). NKA α1a and NKA α1b isoform amino acid (aa) sequences were compared through phylogeny and regarding key functional motifs between salmonids and other acanthomorph species. Analysis of aa sequences of both isoforms revealed a high degree of conservation across teleosts. The expression pattern of both nka α1a and nka α1b was measured in the gill, kidney and posterior intestine of fish in seawater (SW) and transferred to fresh water (FW) at different exposure times. Nka α1a was more expressed than nka α1b whatever the condition and the tissue analyzed. After long-term salinity acclimation (2.5 years) either in FW or SW, transcript levels of nka α1a were higher in the kidney followed by the posterior intestine and the gill. Compared to SW conditions, expression of nka α1a in FW was significantly increased or decreased, respectively, in gill and posterior intestine. In contrast, branchial nka α1b was significantly decreased in FW-acclimated fish. Short-term FW acclimation seems to rapidly increase nka α1a transcript levels in the kidney unlike in gill tissues where different gene expression levels are detected only after long-term acclimation.
Collapse
Affiliation(s)
- Eva Blondeau-Bidet
- Adaptation Ecophysiologique et Ontogenèse (AEO, UMR 9190 MARBEC), Université de Montpellier, Place Eugène Bataillon - CC092, 34095, Montpellier Cedex 5, France
| | - Maryline Bossus
- Adaptation Ecophysiologique et Ontogenèse (AEO, UMR 9190 MARBEC), Université de Montpellier, Place Eugène Bataillon - CC092, 34095, Montpellier Cedex 5, France
| | - Gersende Maugars
- Unité Biologie des Organismes et écosystèmes aquatiques (BOREA, UMR 7208), CNRS, IRD 207, Sorbonne Universités, Muséum national d'Histoire naturelle, Université Pierre et Marie Curie, Université de Caen Basse Normandie, CP32, 7 rue Cuvier, 75005, Paris, France
| | - Emilie Farcy
- Adaptation Ecophysiologique et Ontogenèse (AEO, UMR 9190 MARBEC), Université de Montpellier, Place Eugène Bataillon - CC092, 34095, Montpellier Cedex 5, France
| | - Jehan-Hervé Lignot
- Adaptation Ecophysiologique et Ontogenèse (AEO, UMR 9190 MARBEC), Université de Montpellier, Place Eugène Bataillon - CC092, 34095, Montpellier Cedex 5, France
| | - Catherine Lorin-Nebel
- Adaptation Ecophysiologique et Ontogenèse (AEO, UMR 9190 MARBEC), Université de Montpellier, Place Eugène Bataillon - CC092, 34095, Montpellier Cedex 5, France.
| |
Collapse
|
8
|
Synergic stress in striped catfish (Pangasianodon hypophthalmus, S.) exposed to chronic salinity and bacterial infection: Effects on kidney protein expression profile. J Proteomics 2016; 142:91-101. [DOI: 10.1016/j.jprot.2016.04.046] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 04/28/2016] [Accepted: 04/28/2016] [Indexed: 12/14/2022]
|
9
|
Ontogeny and osmoregulatory function of the urinary system in the Persian sturgeon, Acipenser persicus (Borodin, 1897). Tissue Cell 2014; 46:287-98. [PMID: 25024093 DOI: 10.1016/j.tice.2014.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 02/27/2014] [Indexed: 11/21/2022]
Abstract
The structure of the kidney and the localization of Na(+), K(+)-ATPase (NKA) immunopositive cells were examined throughout the postembryonic development of the Persian sturgeon, Acipenser persicus, from newly hatched prelarvae (10mm) to 20 days post hatch (20 DPH) larvae (31mm). Investigations were conducted through histology and immunohistochemistry by using the light and immunofluorescence microscopy. The pronephros was observed in newly hatched prelarvae. The cells lining the distal pronephric tubules and their collecting ducts showed laterally expressed NKA immunofluorescence that later extended throughout the whole cytoplasm. Mesonephrogenous placodes and pre-glomeruli were distinguished at 2 DPH along the collecting ducts posteriorly. Their tubules were formed and present in kidney mesenchyma, differentiated into neck, proximal, distal and collecting segments at 7 DPH when NKA immunopositive cells were observed. Their distal and collecting tubules showed an increasing immunofluorescence throughout their cytoplasm while the glomeruli remained unstained. From D 9 to D 17, the epithelial layer of pronephric collecting duct changed along the mesonephros to form ureters. Ureters, possessing isolated strong NKA immunopositive cells, appeared as two sac-like structures hanging under the trunk kidney. Since NKA immunopositive cells were not observed on the tegument or along the digestive tract of newly hatched prelarva, and also the gills are not formed yet, the pronephros is the only osmoregulatory organ until 4 DPH. At the larval stage, the pronephros and mesonephros are functional osmoregulatory organs and actively reabsorb necessary ions from the filtrate.
Collapse
|
10
|
Bossus M, Charmantier G, Blondeau-Bidet E, Valletta B, Boulo V, Lorin-Nebel C. The ClC-3 chloride channel and osmoregulation in the European sea bass, Dicentrarchus labrax. J Comp Physiol B 2013; 183:641-62. [PMID: 23292336 DOI: 10.1007/s00360-012-0737-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 09/27/2012] [Accepted: 11/23/2012] [Indexed: 11/29/2022]
Abstract
Dicentrarchus labrax migrates between sea (SW), brackish and fresh water (FW) where chloride concentrations and requirements for chloride handling change: in FW, fish absorb chloride and restrict renal losses; in SW, they excrete chloride. In this study, the expression and localization of ClC-3 and Na(+)/K(+)-ATPase (NKA) were studied in fish adapted to SW, or exposed to FW from 10 min to 30 days. In gills, NKA-α1 subunit expression transiently increased from 10 min and reached a stabilized intermediate expression level after 24 h in FW. ClC-3 co-localized with NKA in the basolateral membrane of mitochondria-rich cells (MRCs) at all conditions. The intensity of MRC ClC-3 immunostaining was significantly higher (by 50 %) 1 h after the transfer to FW, whereas the branchial ClC-3 protein expression was 30 % higher 7 days after the transfer as compared to SW. This is consistent with the increased number of immunopositive MRCs (immunostained for NKA and ClC-3). However, the ClC-3 mRNA expression was significantly lower in FW gills. In the kidney, after FW transfer, a transient decrease in NKA-α1 subunit expression was followed by significantly higher stable levels from 24 h. The low ClC-3 protein expression detected at both salinities was not observed by immunocytochemistry in the SW kidney; ClC-3 was localized in the basal membrane of the collecting ducts and tubules 7 and 30 days after transfer to FW. Renal ClC-3 mRNA expression, however, seemed higher in SW than in FW. The potential role of this chloride channel ClC-3 in osmoregulatory and osmosensing mechanisms is discussed.
Collapse
Affiliation(s)
- Maryline Bossus
- Equipe Adaptation Ecophysiologique et Ontogenèse, UMR5119 - EcoSyM, UM2-UM1-CNRS-IRD-IFREMER, cc 092, Place E. Bataillon, 34095 Montpellier cedex 05, France.
| | | | | | | | | | | |
Collapse
|
11
|
Lorin-Nebel C, Felten V, Blondeau-Bidet E, Grousset E, Amilhat E, Simon G, Biagianti S, Charmantier G. Individual and combined effects of copper and parasitism on osmoregulation in the European eel Anguilla anguilla. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 130-131:41-50. [PMID: 23340332 DOI: 10.1016/j.aquatox.2012.11.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 11/19/2012] [Accepted: 11/22/2012] [Indexed: 06/01/2023]
Abstract
The European eel (Anguilla anguilla), a catadromous species, breeds in the sea and migrates to estuarine, lagoon or freshwater habitats for growth and development. Yellow eels, exposed to low or fluctuating salinities, are also exposed to multiple other stressors as pollution, over-fishing and parasitism, which contribute to the dramatic decrease of eel populations in several European countries. The objective of this study was to evaluate the single and combined effects of waterborne copper and experimental infestation of eels with the nematode Anguillicoloides crassus after a salinity challenge from nearly isotonic (18ppt) to hypo- (5ppt) and hypertonic (29ppt) conditions, in order to investigate the osmoregulatory capacity of eels exposed to these stressors. In a nearly isotonic condition (18ppt), blood osmolality remained constant over the 6 weeks contamination to Cu(2+) and Anguillicoloides crassus. In fish exposed to a salinity challenge of 29ppt for 2 weeks, no significant effect was recorded in blood osmolality, Na(+)/K(+)-ATPase (NKA) activity, Na(+) and Cl(-) concentrations. After 2 weeks at 5ppt however, a significant blood osmolality decrease was detected in fish exposed to Anguillicoloides crassus infestation with or without Cu(2+) addition. This decrease may originate from lower Cl(-) levels measured in eels exposed to both stressors. Blood Na(+) levels remained relatively stable in all tested animals, but gill NKA activities were lower in eels exposed to combined stress. No apparent branchial lesions were detected following the different treatments and immunolocalization of NKA revealed well-differentiated ionocytes. Thus, the 5ppt challenge in eels exposed to copper and Anguillicoloides crassus seems to clearly enhance iono/osmoregulatory disturbances. Funded by ANR CES/CIEL 2008-12.
Collapse
Affiliation(s)
- Catherine Lorin-Nebel
- Equipe Adaptation Ecophysiologique et Ontogenèse, UMR 5119 EcoSym (UM2, UM1, CNRS, IRD, IFREMER), Montpellier, France.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
A comparative analysis of glomerulus development in the pronephros of medaka and zebrafish. PLoS One 2012; 7:e45286. [PMID: 23028906 PMCID: PMC3445478 DOI: 10.1371/journal.pone.0045286] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 08/15/2012] [Indexed: 11/19/2022] Open
Abstract
The glomerulus of the vertebrate kidney links the vasculature to the excretory system and produces the primary urine. It is a component of every single nephron in the complex mammalian metanephros and also in the primitive pronephros of fish and amphibian larvae. This systematic work highlights the benefits of using teleost models to understand the pronephric glomerulus development. The morphological processes forming the pronephric glomerulus are astoundingly different between medaka and zebrafish. (1) The glomerular primordium of medaka - unlike the one of zebrafish - exhibits a C-shaped epithelial layer. (2) The C-shaped primordium contains a characteristic balloon-like capillary, which is subsequently divided into several smaller capillaries. (3) In zebrafish, the bilateral pair of pronephric glomeruli is fused at the midline to form a glomerulus, while in medaka the two parts remain unmerged due to the interposition of the interglomerular mesangium. (4) Throughout pronephric development the interglomerular mesangial cells exhibit numerous cytoplasmic granules, which are reminiscent of renin-producing (juxtaglomerular) cells in the mammalian afferent arterioles. Our systematic analysis of medaka and zebrafish demonstrates that in fish, the morphogenesis of the pronephric glomerulus is not stereotypical. These differences need be taken into account in future analyses of medaka mutants with glomerulus defects.
Collapse
|
13
|
Bossus M, Charmantier G, Lorin-Nebel C. Transient receptor potential vanilloid 4 in the European sea bass Dicentrarchus labrax: A candidate protein for osmosensing. Comp Biochem Physiol A Mol Integr Physiol 2011; 160:43-51. [DOI: 10.1016/j.cbpa.2011.04.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 04/26/2011] [Accepted: 04/27/2011] [Indexed: 10/18/2022]
|
14
|
Giffard-Mena I, Boulo V, Abed C, Cramb G, Charmantier G. Expression and Localization of Aquaporin 1a in the Sea-Bass (Dicentrarchus labrax) during Ontogeny. Front Physiol 2011; 2:34. [PMID: 21808622 PMCID: PMC3137954 DOI: 10.3389/fphys.2011.00034] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Accepted: 06/20/2011] [Indexed: 01/24/2023] Open
Abstract
The successful establishment of a species in a given habitat depends on the ability of each of its developing stages to adapt to the environment. In order to understand this process we have studied the adaptation of a euryhaline fish, the sea-bass Dicentrarchus labrax, to various salinities during its ontogeny. The expression and localization of Aquaporin 1a (AQP1a) mRNA and protein were determined in different osmoregulatory tissues. In larvae, the sites of AQP1a expression are variable and they shift according to age, implying functional changes. In juveniles after metamorphosis (D32-D48 post-hatch, 15-25 mm) and in pre-adults, an increase in AQP1a transcript abundance was noted in the digestive tract, and the AQP1a location was observed in the intestine. In juveniles (D87-D100 post-hatch, 38-48 mm), the transcript levels of AQP1a in the digestive tract and in the kidney were higher in sea water (SW) than at lower salinity. These observations, in agreement with existing models, suggest that in SW-acclimated fish, the imbibed water is absorbed via AQP1a through the digestive tract, particularly the intestine and the rectum. In addition, AQP1a may play a role in water reabsorption in the kidney. These mechanisms compensate dehydration in SW, and they contribute to the adaptation of juveniles to salinity changes during sea-lagoon migrations. These results contribute to the interpretation of the adaptation of populations to habitats where salinity varies.
Collapse
Affiliation(s)
- Ivone Giffard-Mena
- Molecular Ecology Laboratory, Universidad Autónoma de Baja CaliforniaEnsenada, Baja California, Mexico
| | - Viviane Boulo
- Adaptation Ecophysiologique et Ontogenèse Team, UMR5119, CNRS, IFREMER Ecosym, Université Montpellier 2Montpellier, France
| | - Charline Abed
- Adaptation Ecophysiologique et Ontogenèse Team, UMR5119, CNRS, IFREMER Ecosym, Université Montpellier 2Montpellier, France
| | - Gordon Cramb
- School of Biology, University of St AndrewsSt Andrews, Fife, UK
| | - Guy Charmantier
- Adaptation Ecophysiologique et Ontogenèse Team, UMR5119, CNRS, IFREMER Ecosym, Université Montpellier 2Montpellier, France
| |
Collapse
|
15
|
Taghizadeh Rahmat Abadi Z, Khodabandeh S, Abtahi B, Charmantier G, Charmantier-Daures M. Ultrastructure and osmoregulatory function of the kidney in larvae of the Persian sturgeon Acipenser persicus. JOURNAL OF FISH BIOLOGY 2011; 78:1359-1374. [PMID: 21539547 DOI: 10.1111/j.1095-8649.2011.02939.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The localization of Na(+) , K(+) -ATPase (NKA) and the ultrastructural features of kidney were examined in larvae of the Persian sturgeon Acipenser persicus (L 31-41 mm total length and 182·3-417·3 mg). Investigations were conducted through light and electron microscopy and through immunofluorescence for NKA detection. The kidney nephrons consisted of a large glomerulus and tubules (neck, proximal, distal and collecting), which connected to the ureters. Posteriorly, ureters extended and joined together into a thin-walled ureter terminal sac. Ultrastructurally, the glomerular cells (podocytes) possessed distinctive pedicels that extended to the basal membrane. The proximal tubule (PT) showed two different cells. The cells lining the anterior part of PT possessed apical tall microvilli (c. 2·7 µm), a sub-apical tubular system, a basal nucleus and dense granules. Posteriorly in the cells, the sub-apical tubular system and granules were absent and round mitochondria associated with basolateral infoldings were found; the apical microvilli were reduced. Distal and collecting tubular cells showed the typical features of osmoregulatory cells, i.e. well-developed basolateral infoldings associated with numerous mitochondria. No immunofluorescence of NKA was detected in the glomeruli. A weak immunostaining was observed at the basolateral side of the cells lining the neck and PT. A strong immunostaining of NKA was observed in the entire cells of the distal tubules, collecting tubules and in some isolated cells of the ureters. In all immunostained cells, the basolateral region showed a much higher fluorescence and nuclei were immunonegative. In conclusion, the epithelial cells of kidney tubules had morphological and enzymatic features of ionocytes, particularly in the distal and collecting tubules. Thus, the kidney of A. persicus larvae possesses active ion exchange capabilities and, beside its implication in excretion, participates in osmoregulation.
Collapse
|
16
|
Bodinier C, Boulo V, Lorin-Nebel C, Charmantier G. Influence of salinity on the localization and expression of the CFTR chloride channel in the ionocytes of Dicentrarchus labrax during ontogeny. J Anat 2010; 214:318-29. [PMID: 19245499 DOI: 10.1111/j.1469-7580.2009.01050.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The expression and localization of the cystic fibrosis transmembrane conductance regulator (CFTR) were determined in four osmoregulatory tissues during the ontogeny of the sea-bass Dicentrarchus labrax acclimated to fresh water and sea water. At hatch in sea water, immunolocalization showed an apical CFTR in the digestive tract and integumental ionocytes. During the ontogeny, although CFTR was consistently detected in the digestive tract, it shifted from the integument to the gills. In fresh water, CFTR was not present in the integument and the gills, suggesting the absence of chloride secretion. In the kidney, the CFTR expression was brief from D4 to D35, prior to the larva-juvenile transition. CFTR was apical in the renal tubules, suggesting a chloride secretion at both salinities, and it was basolateral only in sea water in the collecting ducts, suggesting chloride absorption. In the posterior intestine, CFTR was located differently from D4 depending on salinity. In sea water, the basolateral CFTR may facilitate ionic absorption, perhaps in relation to water uptake. In fresh water, CFTR was apical in the gut, suggesting chloride secretion. Increased osmoregulatory ability was acquired just before metamorphosis, which is followed by the sea-lagoon migration.
Collapse
Affiliation(s)
- Charlotte Bodinier
- Université Montpellier 2, UMR 5119-UM2-CNRS-IFREMER Ecolag, Equipe Adapatation Ecophysiologique et Ontogenèse, Montpellier Cedex 05, France. Charlotte.Bodinier@ univ-montp2.fr
| | | | | | | |
Collapse
|
17
|
Hu MY, Sucré E, Charmantier-Daures M, Charmantier G, Lucassen M, Himmerkus N, Melzner F. Localization of ion-regulatory epithelia in embryos and hatchlings of two cephalopods. Cell Tissue Res 2010; 339:571-83. [PMID: 20127256 DOI: 10.1007/s00441-009-0921-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Accepted: 12/16/2009] [Indexed: 10/19/2022]
Abstract
The tissue distribution and ontogeny of Na(+)/K(+)-ATPase has been examined as an indicator for ion-regulatory epithelia in whole animal sections of embryos and hatchlings of two cephalopod species: the squid Loligo vulgaris and the cuttlefish Sepia officinalis. This is the first report of the immunohistochemical localization of cephalopod Na(+)/K(+)-ATPase with the polyclonal antibody alpha (H-300) raised against the human alpha1-subunit of Na(+)/K(+)-ATPase. Na(+)/K(+)-ATPase immunoreactivity was observed in several tissues (gills, pancreatic appendages, nerves), exclusively located in baso-lateral membranes lining blood sinuses. Furthermore, large single cells in the gill of adult L. vulgaris specimens closely resembled Na(+)/K(+)-ATPase-rich cells described in fish. Immunohistochemical observations indicated that the amount and distribution of Na(+)/K(+)-ATPase in late cuttlefish embryos was similar to that found in juvenile and adult stages. The ion-regulatory epithelia (e.g., gills, excretory organs) of the squid embryos and paralarvae exhibited less differentiation than adults. Na(+)/K(+)-ATPase activities for whole animals were higher in hatchlings of S. officinalis (157.0 +/- 32.4 micromol g (FM) (-1) h(-1)) than in those of L. vulgaris (31.8 +/- 3.3 micromol g (FM) (-1) h(-1)). S. officinalis gills and pancreatic appendages achieved activities of 94.8 +/- 18.5 and 421.8 +/- 102.3 micromol(ATP) g (FM) (-1) h(-1), respectively. High concentrations of Na(+)/K(+)-ATPase in late cephalopod embryos might be important in coping with the challenging abiotic conditions (low pH, high pCO(2)) that these organisms encounter inside their eggs. Our results also suggest a higher sensitivity of squid vs. cuttlefish embryos to environmental acid-base disturbances.
Collapse
Affiliation(s)
- Marian Y Hu
- Leibniz Institute of Marine Sciences, Kiel, Germany.
| | | | | | | | | | | | | |
Collapse
|
18
|
Embryonic occurrence of ionocytes in the sea bass Dicentrarchus labrax. Cell Tissue Res 2010; 339:543-50. [DOI: 10.1007/s00441-009-0911-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Accepted: 11/18/2009] [Indexed: 10/20/2022]
|
19
|
Sucré E, Charmantier-Daures M, Grousset E, Charmantier G, Cucchi-Mouillot P. Early development of the digestive tract (pharynx and gut) in the embryos and pre-larvae of the European sea bass Dicentrarchus labrax. JOURNAL OF FISH BIOLOGY 2009; 75:1302-1322. [PMID: 20738616 DOI: 10.1111/j.1095-8649.2009.02365.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The European sea bass Dicentrarchus labrax is a marine teleost important in Mediterranean aquaculture. The development of the entire digestive tract of D. labrax, including the pharynx, was investigated from early embryonic development to day 5 post hatching (dph), when the mouth opens. The digestive tract is initialized at stage 12 somites independently from two distinct infoldings of the endodermal sheet. In the pharyngeal region, the anterior infolding forms the pharynx and the first gill slits at stage 25 somites. The other three gill arches and slits are formed between 1 and 5 dph. Posteriorly, in the gut tube region, a posterior infolding forms the foregut, midgut and hindgut. The anus opens before hatching, at stage 28 somites. Associated organs (liver, pancreas and gall bladder) are all discernable from 3 dph. Some aspects of the development of the two independent initial infoldings seem original compared with data in the literature. These results are discussed and compared with embryonic and post-embryonic development patterns in other teleosts.
Collapse
Affiliation(s)
- E Sucré
- Equipe Adaptation Ecophysiologique et Ontogenèse, UMR 5119, Laboratoire Ecosystèmes Lagunaires, Université Montpellier II, Place Eugène Bataillon, CC 092, 34095 Montpellier, Cedex 05, France
| | | | | | | | | |
Collapse
|
20
|
Influence of salinity on the localization and expression of the CFTR chloride channel in the ionocytes of juvenile Dicentrarchus labrax exposed to seawater and freshwater. Comp Biochem Physiol A Mol Integr Physiol 2009; 153:345-51. [DOI: 10.1016/j.cbpa.2009.03.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Revised: 03/17/2009] [Accepted: 03/18/2009] [Indexed: 01/08/2023]
|
21
|
Allen PJ, Cech JJ, Kültz D. Mechanisms of seawater acclimation in a primitive, anadromous fish, the green sturgeon. J Comp Physiol B 2009; 179:903-20. [PMID: 19517116 PMCID: PMC2745624 DOI: 10.1007/s00360-009-0372-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 05/21/2009] [Accepted: 05/22/2009] [Indexed: 11/25/2022]
Abstract
Relatively little is known about salinity acclimation in the primitive groups of fishes. To test whether physiological preparative changes occur and to investigate the mechanisms of salinity acclimation, anadromous green sturgeon, Acipenser medirostris (Chondrostei) of three different ages (100, 170, and 533 dph) were acclimated for 7 weeks to three different salinities (<3, 10, and 33 ppt). Gill, kidney, pyloric caeca, and spiral intestine tissues were assayed for Na(+), K(+)-ATPase activity; and gills were analyzed for mitochondria-rich cell (MRC) size, abundance, localization and Na(+), K(+)-ATPase content. Kidneys were analyzed for Na(+), K(+)-ATPase localization and the gastro-intestinal tract (GIT) was assessed for changes in ion and base content. Na(+), K(+)-ATPase activities increased in the gills and decreased in the kidneys with increasing salinity. Gill MRCs increased in size and decreased in relative abundance with fish size/age. Gill MRC Na(+), K(+)-ATPase content (e.g., ion-pumping capacity) was proportional to MRC size, indicating greater abilities to regulate ions with size/age. Developmental/ontogenetic changes were seen in the rapid increases in gill MRC size and lamellar length between 100 and 170 dph. Na(+), K(+)-ATPase activities increased fourfold in the pyloric caeca in 33 ppt, presumably due to increased salt and water absorption as indicated by GIT fluids, solids, and ion concentrations. In contrast to teleosts, a greater proportion of base (HCO(3) (-) and 2CO(3) (2-)) was found in intestinal precipitates than fluids. Green sturgeon osmo- and ionoregulate with similar mechanisms to more-derived teleosts, indicating the importance of these mechanisms during the evolution of fishes, although salinity acclimation may be more dependent on body size.
Collapse
Affiliation(s)
- Peter J Allen
- Department of Wildlife, Fish, and Conservation Biology, University of California, 1 Shields Avenue, Davis, CA, 95616, USA.
| | | | | |
Collapse
|
22
|
Giffard-Mena I, Lorin-Nebel C, Charmantier G, Castille R, Boulo V. Adaptation of the sea-bass (Dicentrarchus labrax) to fresh water: Role of aquaporins and Na+/K+-ATPases. Comp Biochem Physiol A Mol Integr Physiol 2008; 150:332-8. [DOI: 10.1016/j.cbpa.2008.04.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Revised: 04/01/2008] [Accepted: 04/02/2008] [Indexed: 01/10/2023]
|
23
|
Giffard-Mena I, Boulo V, Aujoulat F, Fowden H, Castille R, Charmantier G, Cramb G. Aquaporin molecular characterization in the sea-bass (Dicentrarchus labrax): the effect of salinity on AQP1 and AQP3 expression. Comp Biochem Physiol A Mol Integr Physiol 2007; 148:430-44. [PMID: 17618150 DOI: 10.1016/j.cbpa.2007.06.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Revised: 06/04/2007] [Accepted: 06/05/2007] [Indexed: 12/20/2022]
Abstract
Euryhaline fish possess the ability to compensate for environmental salinity changes through hydro-mineral regulation. A number of proteins have been studied in order to understand water and ion exchanges, known as fish osmoregulation. Sea-bass (Dicentrarchus labrax) cDNA sequences encoding a homologue of mammalian aquaporin (termed AQP1) and a homologue of mammalian aquaglyceroporin (termed AQP3) have been isolated and sequenced. The aquaporin amino acid sequences share respectively more than 60% and 65% identity with other known aquaporins. We have shown that salinity influences aquaporin expression levels in the gill, kidney and digestive tract, the main osmoregulatory organs. AQP1 may have a major osmoregulatory role in water transport in kidney and gut in SW-acclimated fish, whereas AQP3 could be implicated in gill water transport in FW-acclimated fish.
Collapse
Affiliation(s)
- Ivone Giffard-Mena
- AEO team, UMR 5119 Ecolag, Université Montpellier II, Montpellier Cedex 05, 34095, France.
| | | | | | | | | | | | | |
Collapse
|
24
|
Lorin-Nebel C, Boulo V, Bodinier C, Charmantier G. The Na+/K+/2Cl- cotransporter in the sea bass Dicentrarchus labrax during ontogeny: involvement in osmoregulation. ACTA ACUST UNITED AC 2007; 209:4908-22. [PMID: 17142680 DOI: 10.1242/jeb.02591] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This study combines a cellular and molecular analysis of the Na(+)/K(+)/2Cl(-) cotransporter (NKCC) to determine the osmoregulatory role of this protein in different tissues during the ontogeny of the sea bass. We have characterized the complete sequence of the NKCC1 isoform isolated from the sea bass gills and have identified, by immunofluorescence, NKCC1, and other isoforms, within the epithelium of the major osmoregulatory organs. Different (absorptive and secretory) functions have been attributed to this protein according to the tissue and salinity. The effects of short- (1-4 days), medium- (7-21 days) and long (6 months)-term freshwater (FW) adaptations were investigated, in comparison with seawater (SW)-maintained sea bass. In adult sea bass after long-term adaptation to FW and SW, the gills had the highest expression of NKCC mRNA compared with the median/posterior kidney and to the posterior intestine. Expression of NKCC mRNA in the kidney was 95% (SW) and 63% (FW) lower, and in the intestine 98% (SW) and 77% (FW) lower. Compared to SW-maintained sea bass, long-term FW adaptation induced a significant 5.6-fold decrease in the branchial NKCC gene expression whereas the intestinal and renal expressions did not vary significantly. The cells of the intestine and collecting ducts as well as a part of the epithelium lining the urinary bladder expressed NKCC apically. Within the gill chloride cells, NKCC was found basolaterally in SW-acclimated fish; some apically stained cells were detected after 7 days of FW exposure and their relative number increased progressively following FW acclimation. The appearance of FW-type chloride cells induces a functional shift of the gills from a secretory to an absorptive epithelium, which was only completed after long-term exposure to FW. Short- and medium-term exposure to FW induced a progressive decrease in total NKCC content and an increase in functionally different branchial chloride cells. During development, the cotransporter was already expressed in tegumentary ionocytes and along the digestive tract of late embryos. NKCC was recorded in the branchial chamber and along the renal collecting ducts in prelarvae and also in the dorsal part of the urinary bladder in larvae. The expression of NKCC along the osmoregulatory epithelial cells and the presence of Na(+)/K(+)-ATPase within these cells contribute to the increase of the osmoregulatory capacity during sea bass ontogeny.
Collapse
Affiliation(s)
- Catherine Lorin-Nebel
- Equipe Adaptation Ecophysiologique et Ontogenèse, UMR 5171 UM2-CNRS-IFREMER Génome Populations Interactions Adaptation, Université Montpellier II, cc 092, Place E. Bataillon, 34095 Montpellier cedex 05, France.
| | | | | | | |
Collapse
|
25
|
Giffard-Mena I, Charmantier G, Grousset E, Aujoulat F, Castille R. Digestive tract ontogeny of Dicentrarchus labrax: implication in osmoregulation. Dev Growth Differ 2006; 48:139-51. [PMID: 16573732 DOI: 10.1111/j.1440-169x.2006.00852.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The ontogeny of the digestive tract (DT) and of Na(+)/K(+)-ATPase localization was investigated during the early postembryonic development (from yolk sac larva to juvenile) of the euryhaline teleost Dicentrarchus labrax reared at two salinities: seawater and diluted seawater. Histology, electron microscopy and immunocytochemistry were used to determine the presence and differentiation of ion transporting cells. At hatching, the DT is an undifferentiated straight tube over the yolk sac. At the mouth opening (day 5), it comprises six segments: buccopharynx, esophagus, stomach, anterior intestine, posterior intestine and rectum, well differentiated at the juvenile stage (day 72). The enterocytes displayed ultrastructural features similar to those of mitochondria-rich cells known to be involved in active ion transport. At hatching, ion transporting cells lining the intestine and the rectum exhibited a Na(+)/K(+)-ATPase activity which increased mainly after the larva/juvenile (20 mm) metamorphic transition. The immunofluorescence intensity was dependent upon the stage of development of the gut as well as on the histological configuration of the analyzed segment. The appearance and distribution of enteric ionocytes and the implication of the DT in osmoregulation are discussed.
Collapse
Affiliation(s)
- Ivone Giffard-Mena
- Adaptation Ecophysiologique et Ontogenèse, UMR 5171, GPIA, Université Montpellier II, Place E. Bataillon, CC 092, 34095 Montpellier, Cedex 05, France
| | | | | | | | | |
Collapse
|
26
|
Nebel C, Romestand B, Nègre-Sadargues G, Grousset E, Aujoulat F, Bacal J, Bonhomme F, Charmantier G. Differential freshwater adaptation in juvenile sea-bassDicentrarchus labrax: involvement of gills and urinary system. J Exp Biol 2005; 208:3859-71. [PMID: 16215214 DOI: 10.1242/jeb.01853] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYThe effects of long-term freshwater acclimatization were investigated in juvenile sea-bass Dicentrarchus labrax to determine whether all sea-bass juveniles are able to live in freshwater and to investigate the physiological basis of a successful adaptation to freshwater. This study particularly focused on the ability of sea-bass to maintain their hydromineral balance in freshwater and on their ion (re)absorbing abilities through the gills and kidneys. Two different responses were recorded after a long-term freshwater acclimatization. (1) Successfully adapted sea-bass displayed standard behavior; their blood osmolality was maintained almost constant after the freshwater challenge, attesting to their efficient hyperosmoregulation. Their branchial and renal Na+/K+-ATPase abundance and activity were high compared to seawater fish due to a high number of branchial ionocytes and to the involvement of the urinary system in active ion reabsorption, producing hypotonic urine. (2) Sea-bass that had not successfully adapted to freshwater were recognized by abnormal schooling behavior. Their blood osmolality was low (30% lower than in the successfully adapted sea-bass), which is a sign of acute osmoregulatory failure. High branchial Na+/K+-ATPase abundance and activity compared to successfully adapted fish were coupled to a proliferation of gill chloride cells, whose ultrastructure did not display pathological signs. The large surface used by the gill chloride cells might negatively interfere with respiratory gas exchanges. In their urinary system, enzyme abundance and activity were low, in accordance with the observed lower density of the kidney tubules. Urine was isotonic to blood in unsuccessfully adapted fish, ruling out any participation of the kidney in hyperosmoregulation. The kidney failure seems to generate a compensatory ion absorption through increased gill activity, but net ion loss through urine seems higher than ion absorption by the gills, leading to lower hyper-osmoregulatory performance and to death.
Collapse
Affiliation(s)
- Catherine Nebel
- Laboratoire Génome, Populations, Interactions, Adaptation, UMR 5171, Université Montpellier II, Place E. Bataillon, 34095 Montpellier, Cedex 05, France.
| | | | | | | | | | | | | | | |
Collapse
|