1
|
Ahmed E, Abo-Ahmed AI, Latifi F. Ultrastructure and histochemistry of the subepithelial glands of the nasal septal island in dromedaries with special reference to the possible functions. Saudi J Biol Sci 2021; 28:5325-5331. [PMID: 34466111 PMCID: PMC8381000 DOI: 10.1016/j.sjbs.2021.05.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 11/26/2022] Open
Abstract
The NSI subepithelial glands in dromedaries had unique anatomical features. Their ultrastructural features are typical for APUD cells. They may have the structures required for synthesis of active peptides, amines and chemical mediators.
The nasal septal island (NSI) is a sensory patch of neuroepithelium located within the soft tissue of the nasal septum in dromedaries. The island has unique anatomical features, including the specialized subepithelial glands. The aim of the present study was to describe the microscopic features and ultrastructure of these subepithelial glands and to speculate the possible functions. A total of 10 camel heads were used for the study. Unlike the serous and mucous airway glands, the NSI glands’ ultrastructural features were typical for cells of the (Amine Precursor Uptake and Decarboxylation, APUD) system. These features were included, membrane bound secretory vesicles of varying electron density, smooth endoplasmic reticulum in the form of vesicles; electron dense mitochondria, abundant rough endoplasmic reticulum and free ribosomes. Alcian-PAS identifiable mucus granules were not observed, except for few clusters of cells, located at the luminal surface. The probable functions were discussed on basis of cellular morphology and context. In a conclusion, the NSI subepithelial glands in dromedaries had unique anatomical structures, and as many other APUD cells, they had the machinery required for synthesis of a variable number of biologically active peptides, amines and chemical mediators.
Collapse
Affiliation(s)
- E Ahmed
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Benha University, Egypt
| | - Ahmed I Abo-Ahmed
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Benha University, Egypt
| | - Fatgzim Latifi
- Department of veterinary medicine, Faculty of Agriculture and Veterinary, University of Prishtina "Hasan Prishtina", Bul. "Bill Clinton", p.n, 10000 Prishtina, Kosovo
| |
Collapse
|
2
|
Ren L, Oleinick A, Svir I, Amatore C, Ewing AG. Amperometric Measurements and Dynamic Models Reveal a Mechanism for How Zinc Alters Neurotransmitter Release. Angew Chem Int Ed Engl 2020; 59:3083-3087. [DOI: 10.1002/anie.201913184] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/06/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Lin Ren
- Department of Chemistry and Molecular BiologyUniversity of Gothenburg Kemivägen 10 41296 Gothenburg Sweden
| | - Alexander Oleinick
- CNRS—École Normale SupérieurePSL Research University—Sorbonne UniversityUMR 8640 “PASTEUR”Département de Chimie 24 rue Lhomond 75005 Paris France
| | - Irina Svir
- CNRS—École Normale SupérieurePSL Research University—Sorbonne UniversityUMR 8640 “PASTEUR”Département de Chimie 24 rue Lhomond 75005 Paris France
| | - Christian Amatore
- CNRS—École Normale SupérieurePSL Research University—Sorbonne UniversityUMR 8640 “PASTEUR”Département de Chimie 24 rue Lhomond 75005 Paris France
- State Key Laboratory of Physical Chemistry of Solid SurfacesCollege of Chemistry and Chemical EngineeringXiamen University 361005 Xiamen China
| | - Andrew G. Ewing
- Department of Chemistry and Molecular BiologyUniversity of Gothenburg Kemivägen 10 41296 Gothenburg Sweden
| |
Collapse
|
3
|
Ren L, Oleinick A, Svir I, Amatore C, Ewing AG. Amperometric Measurements and Dynamic Models Reveal a Mechanism for How Zinc Alters Neurotransmitter Release. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201913184] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Lin Ren
- Department of Chemistry and Molecular Biology University of Gothenburg Kemivägen 10 41296 Gothenburg Sweden
| | - Alexander Oleinick
- CNRS—École Normale Supérieure PSL Research University—Sorbonne University UMR 8640 “PASTEUR” Département de Chimie 24 rue Lhomond 75005 Paris France
| | - Irina Svir
- CNRS—École Normale Supérieure PSL Research University—Sorbonne University UMR 8640 “PASTEUR” Département de Chimie 24 rue Lhomond 75005 Paris France
| | - Christian Amatore
- CNRS—École Normale Supérieure PSL Research University—Sorbonne University UMR 8640 “PASTEUR” Département de Chimie 24 rue Lhomond 75005 Paris France
- State Key Laboratory of Physical Chemistry of Solid Surfaces College of Chemistry and Chemical Engineering Xiamen University 361005 Xiamen China
| | - Andrew G. Ewing
- Department of Chemistry and Molecular Biology University of Gothenburg Kemivägen 10 41296 Gothenburg Sweden
| |
Collapse
|
4
|
Park Y, Ryu JK. Models of synaptotagmin-1 to trigger Ca 2+ -dependent vesicle fusion. FEBS Lett 2018; 592:3480-3492. [PMID: 30004579 DOI: 10.1002/1873-3468.13193] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/02/2018] [Accepted: 07/06/2018] [Indexed: 11/08/2022]
Abstract
Vesicles in neurons and neuroendocrine cells store neurotransmitters and peptide hormones, which are released by vesicle fusion in response to Ca2+ -evoking stimuli. Synaptotagmin-1 (Syt1), a Ca2+ sensor, mediates ultrafast exocytosis in neurons and neuroendocrine cells. After vesicle docking, Syt1 has two main groups of binding partners: anionic phospholipids and the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) complex. The molecular mechanisms by which Syt1 triggers vesicle fusion remain controversial. This Review introduces and summarizes six molecular models of Syt1: (a) Syt1 triggers SNARE unclamping by displacing complexin, (b) Syt1 clamps SNARE zippering, (c) Syt1 causes membrane curvature, (d) membrane bridging by Syt1, (e) Syt1 is a vesicle-plasma membrane distance regulator, and (f) Syt1 undergoes circular oligomerization. We discuss important conditions to test Syt1 activity in vitro and attempt to illustrate the possible roles of Syt1.
Collapse
Affiliation(s)
- Yongsoo Park
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| | - Je-Kyung Ryu
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, The Netherlands
| |
Collapse
|
5
|
Vukman KV, Försönits A, Oszvald Á, Tóth EÁ, Buzás EI. Mast cell secretome: Soluble and vesicular components. Semin Cell Dev Biol 2017; 67:65-73. [PMID: 28189858 DOI: 10.1016/j.semcdb.2017.02.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 01/17/2017] [Accepted: 02/07/2017] [Indexed: 12/20/2022]
Abstract
Mast cells are multifunctional master cells implicated in both innate and adaptive immune responses. Their role has been best characterized in allergy and anaphylaxis; however, emerging evidences support their contribution to a wide variety of human diseases. Mast cells, being capable of both degranulation and subsequent recovery, have recently attracted substantial attention as also being rich sources of secreted extracellular vesicles (including exosomes and microvesicles). Along with secreted de novo synthesized soluble molecules and secreted preformed granules, the membrane-enclosed extracellular vesicles represent a previously unexplored part of the mast cell secretome. In this review article we summarize available data regarding the different soluble molecules and membrane-enclosed structures secreted by mast cells. Furthermore, we provide an overview of the release mechanisms including degranulation, piecemeal degranulation, transgranulation, and secretion of different types of extracellular vesicles. Finally, we aim to give a summary of the known biological functions associated with the different mast cell-derived secretion products. The increasingly recognized complexity of mast cell secretome may provide important novel clues to processes by which mast cells contribute to the development of different pathologies and are capable of orchestrating immune responses both in health and disease.
Collapse
Affiliation(s)
- Krisztina V Vukman
- Semmelweis University Department of Genetics, Cell- and Immunobiology, H-1089 Budapest, Hungary
| | - András Försönits
- Semmelweis University Department of Genetics, Cell- and Immunobiology, H-1089 Budapest, Hungary
| | - Ádám Oszvald
- Semmelweis University Department of Genetics, Cell- and Immunobiology, H-1089 Budapest, Hungary
| | - Eszter Á Tóth
- Semmelweis University Department of Genetics, Cell- and Immunobiology, H-1089 Budapest, Hungary
| | - Edit I Buzás
- Semmelweis University Department of Genetics, Cell- and Immunobiology, H-1089 Budapest, Hungary.
| |
Collapse
|
6
|
Scalettar BA, Jacobs C, Fulwiler A, Prahl L, Simon A, Hilken L, Lochner JE. Hindered submicron mobility and long-term storage of presynaptic dense-core granules revealed by single-particle tracking. Dev Neurobiol 2012; 72:1181-95. [PMID: 21976424 DOI: 10.1002/dneu.20984] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 09/26/2011] [Accepted: 09/27/2011] [Indexed: 01/29/2023]
Abstract
Dense-core granules (DCGs) are organelles found in neuroendocrine cells and neurons that house, transport, and release a number of important peptides and proteins. In neurons, DCG cargo can include the secreted neuromodulatory proteins tissue plasminogen activator (tPA) and/or brain-derived neurotrophic factor (BDNF), which play a key role in modulating synaptic efficacy in the hippocampus. This function has spurred interest in DCGs that localize to synaptic contacts between hippocampal neurons, and several studies recently have established that DCGs localize to, and undergo regulated exocytosis from, postsynaptic sites. To complement this work, we have studied presynaptically localized DCGs in hippocampal neurons, which are much more poorly understood than their postsynaptic analogs. Moreover, to enhance relevance, we visualized DCGs via fluorescence labeling of exogenous and endogenous tPA and BDNF. Using single-particle tracking, we determined trajectories of more than 150 presynaptically localized DCGs. These trajectories reveal that mobility of DCGs in presynaptic boutons is highly hindered and that storage is long-lived. We also computed mean-squared displacement curves, which can be used to elucidate mechanisms of transport. Over shorter time windows, most curves are linear, demonstrating that DCG transport in boutons is driven predominantly by diffusion. The remaining curves plateau with time, consistent with motion constrained by a submicron-sized corral. These results have relevance to recent models of presynaptic organization and to recent hypotheses about DCG cargo function. The results also provide estimates for transit times to the presynaptic plasma membrane that are consistent with measured times for onset of neurotrophin release from synaptically localized DCGs.
Collapse
Affiliation(s)
- B A Scalettar
- Department of Physics, Lewis and Clark College, Portland, Oregon 97219, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Harris KM, Weinberg RJ. Ultrastructure of synapses in the mammalian brain. Cold Spring Harb Perspect Biol 2012; 4:cshperspect.a005587. [PMID: 22357909 DOI: 10.1101/cshperspect.a005587] [Citation(s) in RCA: 282] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The morphology and molecular composition of synapses provide the structural basis for synaptic function. This article reviews the electron microscopy of excitatory synapses on dendritic spines, using data from rodent hippocampus, cerebral cortex, and cerebellar cortex. Excitatory synapses have a prominent postsynaptic density, in contrast with inhibitory synapses, which have less dense presynaptic or postsynaptic specializations and are usually found on the cell body or proximal dendritic shaft. Immunogold labeling shows that the presynaptic active zone provides a scaffold for key molecules involved in the release of neurotransmitter, whereas the postsynaptic density contains ligand-gated ionic channels, other receptors, and a complex network of signaling molecules. Delineating the structure and molecular organization of these axospinous synapses represents a crucial step toward understanding the mechanisms that underlie synaptic transmission and the dynamic modulation of neurotransmission associated with short- and long-term synaptic plasticity.
Collapse
Affiliation(s)
- Kristen M Harris
- Center for Learning and Memory, Neurobiology Section, University of Texas, Austin, 78712, USA.
| | | |
Collapse
|
8
|
Wilhelm M. Neuro-immune interactions in the dove brain. Gen Comp Endocrinol 2011; 172:173-80. [PMID: 21447334 DOI: 10.1016/j.ygcen.2011.03.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 03/16/2011] [Accepted: 03/19/2011] [Indexed: 11/30/2022]
Abstract
Mast cells (MC) are of hematopoetic origin. Connective tissue type MCs are able to function in IgE dependent and independent fashion, change their phenotype according to the tissue environment. They are able to enter the brain under normal physiological conditions, and move into this compact tissue made of neurons. In doves MCs are found only in the medial habenula (MH) and their number is changing according to the amount of sex steroids in the body. MCs are able to synthesize and store a great variety of biologically active compounds, like transmitters, neuromodulators and hormones. They are able to secrete GnRH. With the aid of electron microscopy we were able to describe MC-neuron interactions between GnRH-positive MCs and neurons. Piecemeal degranulation (secretory vesicles budding off swollen and active granules) seems to be a very efficient type of communication between MCs and surrounding neurons. Different types of granular and vesicular transports are seen between GnRH-immunoreactive MCs and neurons in the MH of doves. Sometimes whole granules are visible in the neuronal cytoplasm, in other cases exocytotic vesicles empty materials of MC origin. Thus MCs might modulate neuronal functions. Double staining experiments with IP3-receptor (IP3R), Ryanodine-receptor (RyR) and serotonin antibodies showed active MC population in the habenula. Light IP3R-labeling was present in 64-97% of the cells, few granules were labeled in 7-10% of MCs, while strong immunoreactivity was visible in 1-2% of TB stained cells. No immunoreactivity was visible in 28-73% of MCs. According to cell counts, light RyR-positivity appeared in 27-52%, few granules were immunoreactive in 4-19%, while strong immunopositivity was found only in one animal. In this case 22% of MCs were strongly RyR-positive. No staining was registered in 44-73% of MCs. Double staining with 5HT and these receptor markers proved that indeed only a part of MCs is actively secreting. Resting cells with only 5HT-immunopositivity are often visible. The activational state of MCs is changing at higher estrogen/testosterone level, thus with the secretion of neuromodulators they might alter sexual and parental behavior of the animals.
Collapse
Affiliation(s)
- Marta Wilhelm
- University of Pécs, Institute of Physical Education and Sport Sciences, Pécs, Ifjúság útja 6, H-7624, Hungary.
| |
Collapse
|
9
|
Crivellato E, Nico B, Gallo VP, Ribatti D. Cell secretion mediated by granule-associated vesicle transport: a glimpse at evolution. Anat Rec (Hoboken) 2010; 293:1115-24. [PMID: 20340095 DOI: 10.1002/ar.21146] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Regulated secretion allows extrusion of cell products stored in specialized membrane-bound organelles called secretory granules or secretory vesicles. Regulated secretion provides basic functions in living organisms, and in a phylogenetic perspective, it is recognizable in the most primitive eukaryotic forms. This article is an attempt to trace the evolutionary history of a special type of secretory pattern, which has been referred to as vesicle-mediated degranulation or piecemeal degranulation (PMD). First described in the early 70s of the last century in inflammatory cells, such as the basophils, mast cells, and eosinophils, this regulated secretory route has subsequently been recognized in endocrine cells, in particular in the chromaffin cells of the adrenal medulla. This vesicle-mediated degranulation is held to mobilize small and specific aliquots of granule-associated material for selective paracrine or endocrine transport to the cell exterior. PMD has been identified in many vertebrate classes. By contrast, no data are available for invertebrates. We speculate that this pattern of cell secretion emerged early in phylogenesis, when the first metazoans appeared. In this review article, we will first revise the concept of vesicle-mediated degranulation in the light of the most recent experimental discoveries and theoretical implications. Then, the distribution of this secretory mode among vertebrates and its molecular basis will be highlighted. Finally, the potential occurrence of PMD in invertebrates, its biological significance from an evolutionary perspective and the future direction of investigations will be briefly sketched.
Collapse
Affiliation(s)
- Enrico Crivellato
- Department of Medical and Morphological Research, Section of Anatomy, University of Udine School of Medicine, Udine, Italy.
| | | | | | | |
Collapse
|
10
|
Wilkie IC, Barbaglio A, Maclaren WM, Carnevali MDC. Physiological and immunocytochemical evidence that glutamatergic neurotransmission is involved in the activation of arm autotomy in the featherstar Antedon mediterranea (Echinodermata: Crinoidea). ACTA ACUST UNITED AC 2010; 213:2104-15. [PMID: 20511525 DOI: 10.1242/jeb.039578] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The crinoid echinoderm Antedon mediterranea autotomises its arms at specialised skeletal joints known as syzygies that occur at regular intervals along the length of each arm. Detachment is achieved through the nervously mediated destabilisation of ligament fibres at a particular syzygy. The aim of this investigation was to identify neurotransmitters that are involved in the autotomy response. Physiological experiments were conducted on isolated preparations of syzygial joints, which can be induced to undergo autotomy-like fracture by applying stimulatory agents such as elevated [K(+)](o). Initial experiments with elevated [K(+)](o) showed that the autotomy threshold (the minimum amount of stimulation required to provoke autotomy) is lowest in syzygies at the arm base and rises distally. Of a range of neurotransmitter agonists tested, only l-glutamate invoked syzygial destabilisation, as did its analogues l-aspartate, alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) and kainate, but not l-(+)-2-amino-4-phosphonobutyrate (l-AP4) or N-methyl-d-aspartate (NMDA). The implication that l-glutamate stimulates syzygial fracture through AMPA/kainate-like receptors was supported by the finding that the action of l-glutamate was inhibited by the AMPA/kainate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). Acetylcholine depressed the response of syzygial preparations to l-glutamate, suggesting a possible mechanism by which the autotomy threshold could be varied constitutively and facultatively. An immunocytochemical method employing a polyclonal antibody against l-glutamate conjugated to glutaraldehyde revealed l-glutamate-like immunoreactivity in all components of the putative neural pathway controlling the autotomy reflex, including the epidermis, brachial nerve, syzygial nerves and cellular elements close to the syzygial ligaments. We conclude that it is highly probable that l-glutamate acts as an excitatory neurotransmitter in the activation of arm autotomy in A. mediterranea.
Collapse
Affiliation(s)
- I C Wilkie
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK.
| | | | | | | |
Collapse
|
11
|
Miśkiewicz K, Schürmann FW, Pyza E. Circadian release of pigment-dispersing factor in the visual system of the housefly,Musca domestica. J Comp Neurol 2008; 509:422-35. [DOI: 10.1002/cne.21765] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
12
|
Cifuentes F, Montoya M, Morales M. High-frequency stimuli preferentially release large dense-core vesicles located in the proximity of nonspecialized zones of the presynaptic membrane in sympathetic ganglia. Dev Neurobiol 2008; 68:446-56. [DOI: 10.1002/dneu.20604] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
13
|
Chiti Z, Teschemacher AG. Exocytosis of norepinephrine at axon varicosities and neuronal cell bodies in the rat brain. FASEB J 2007; 21:2540-50. [PMID: 17405853 DOI: 10.1096/fj.06-7342com] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Norepinephrine secretion from central neurons was widely assumed to occur by exocytosis, but the essential characteristics of this process remained unknown. We developed an approach to study it directly by amperometry using carbon fiber microelectrodes in organotypic rat brainstem slice cultures. Noradrenergic neurons from areas A1 and A2 were fluorescently labeled by an adenoviral vector with noradrenergic-specific promoter. Quantal events, consistent with exocytotic release of norepinephrine, were registered at noradrenergic axonal varicosities as well as at cell bodies. According to their charge integrals, events were grouped into two populations. The majority (approximately 40 fC) were compatible with full exocytotic fusion of small clear and dense core vesicles shown in previous morphometric studies. The quantal size distribution was modulated by treatment with reserpine and amitriptyline. In addition, much larger quantal events (>1 pC) occurred at predominantly axonal release sites. The time course of signals was severalfold faster than in adrenal chromaffin cells, suggesting profound differences in the release machinery between these cell types. Tetrodotoxin eliminated the majority of events, indicating that release was partially, but not entirely, action potential driven. In conclusion, central norepinephrine release has unique characteristics, distinguishing it from those of other monoaminergic cells in periphery and brain.
Collapse
Affiliation(s)
- Zohreh Chiti
- Department of Pharmacology, School of Medical Sciences, Bristol Heart Institute, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | | |
Collapse
|
14
|
Crivellato E, Civinini A, Gallo VP. Chromaffin cells in the adrenal homolog ofAphanius fasciatus (teleost fish) express piecemeal degranulation in response to osmotic stress: A hint for a conservative evolutionary process. ACTA ACUST UNITED AC 2006; 288:1077-86. [PMID: 16964607 DOI: 10.1002/ar.a.20372] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The effect of severe osmotic stress on the ultrastructural morphology of chromaffin cells in the adrenal homolog of Aphanius fasciatus, a small eurhyaline teleost living in saltpans, was evaluated by electron microscopy quantitative analysis. Fishes were transferred from salt water, whose salinity was 3.7%, to dechlorinated tap water and chromaffin cells were studied at resting condition and after 2 and 48 hr from the beginning of the experiment. Ultrastructural examination revealed a series of granule and cytoplasmic changes highly specific for piecemeal degranulation (PMD), a secretory process based on vesicular transport of cargoes from within granules for extracellular release, which was previously described in chromaffin cells of the mouse, rat, and human adrenal medulla. There was indeed a significant trend toward loss of content material from chromaffin granules accompanied by enlargement of granule size. Remarkably, chromaffin granules maintained their individual close structure during the whole releasing process and eventually transformed into large empty containers. A dramatic increase in the density of small, membrane-bound, variably electron-dense vesicles free in the cytoplasm or attached to granules was recognized during the first 2 hr of stress response. These features fell to control levels after 48 hr. A similar time-course pattern was observed concerning the formation of budding projections from the surface of chromaffin granules. This study provides new insight into PMD physiology and suggests that PMD is part of an adaptive secretory response to severe osmotic stress in fishes. From an evolutionary point of view, this study lends support to the concept that PMD is a secretory mechanism highly conserved throughout vertebrate classes.
Collapse
Affiliation(s)
- Enrico Crivellato
- Department of Medical and Morphological Research, Section of Anatomy, University of Udine School of Medicine, Udine, Italy.
| | | | | |
Collapse
|