1
|
Spencer AP, Vilaça A, Xavier M, Santos R, Ionescu A, Lázaro M, Leiro V, Perlson E, Guimarães SC, Maoz BM, Pêgo AP. Engineered Chitosan-Derived Nanocarrier for Efficient siRNA Delivery to Peripheral and Central Neurons. Adv Healthc Mater 2025:e2500107. [PMID: 40364633 DOI: 10.1002/adhm.202500107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/17/2025] [Indexed: 05/15/2025]
Abstract
Gene therapy using small interfering RNA (siRNA) holds promise for treating neurological disorders by silencing specific genes, like the phosphatase and tensin homolog (PTEN) gene, which restricts axonal growth. Effective siRNA delivery to neurons, however, poses challenges due to premature nucleic acid degradation and unspecific delivery. Chitosan-based delivery systems, noted for their biocompatibility, face limitations such as low transfection efficiency and lack of neurotropism. Building on the previous successes with neuron-targeted DNA delivery using chitosan, a novel approach for siRNA delivery aimed at PTEN downregulation is proposed. This involves using thiolated trimethyl chitosan (TMCSH)-based siRNA nanoparticles functionalized with the neurotropic C-terminal fragment of the tetanus neurotoxin heavy chain (HC) for efficient delivery to peripheral and central neurons. These polyplexes demonstrate suitable physicochemical properties, biocompatibility, and no adverse effects on neuronal electrophysiology. Diverse neuronal models, including 3D ex vivo cultures and microfluidics, confirm the polyplexes' efficiency and neurospecificity. HC-functionalization significantly enhances neuronal binding, and live cell imaging reveals fivefold faster retrograde transport along axons. Furthermore, siRNA delivery targeting PTEN promoted axonal outgrowth in embryonic cortical neurons. In conclusion, the proposed polyplexes represent a promising platform for neuronal siRNA delivery, offering potential for clinical translation and therapeutic applications.
Collapse
Affiliation(s)
- Ana P Spencer
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
| | - Adriana Vilaça
- International Iberian Nanotechnology Laboratory (INL), Braga, Portugal
| | - Miguel Xavier
- International Iberian Nanotechnology Laboratory (INL), Braga, Portugal
| | - Rafael Santos
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Ariel Ionescu
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - María Lázaro
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Victoria Leiro
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Eran Perlson
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sofia C Guimarães
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Ben M Maoz
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel
- Sagol Center for Regenerative Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ana P Pêgo
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| |
Collapse
|
2
|
Gregg BM, Gupta S, Tepp WH, Pellett S. Expression of Recombinant Clostridial Neurotoxin by C. tetani. Microorganisms 2024; 12:2611. [PMID: 39770813 PMCID: PMC11678509 DOI: 10.3390/microorganisms12122611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/11/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Tetanus neurotoxins (TeNT) and botulinum neurotoxins (BoNTs) are closely related ~150 kDa protein toxins that together comprise the group of clostridial neurotoxins (CNTs) expressed by various species of Clostridia. While TeNT is expressed as a single polypeptide, BoNTs are always produced alongside multiple non-toxic proteins that form a stabilizing complex with BoNT and are encoded in a conserved toxin gene cluster. It is unknown how tent evolved without a similar gene cluster and why complex-free TeNT is secreted as a stable and soluble protein by C. tetani, whereas complexing proteins appear to be essential for BoNT stability in culture supernatants of C. botulinum. To assess whether the stability of TeNT is due to an innate property of the toxin or is a result of C. tetani's intra- and extra-cellular environment, both TeNT and complex-free BoNT/A1ERY were expressed recombinantly in atoxic C. tetani and analyzed for expression and stability. The strong clostridial ferredoxin (fdx) promotor resulted in the expression of recombinant TeNT at greater levels and earlier time points than endogenously produced TeNT. Recombinant BoNT/A1ERY was similarly expressed by atoxic C. tetani, although partial degradation was observed. The rBoNT/A1ERY produced in C. tetani was also partially proteolytically processed to the dichain form. Investigations of bacterial growth media and pH conditions found that the stability of rTeNT and rBoNT/A1ERY in spent media of C. tetani or C. botulinum was affected by growth media but not by pH. These data indicate that the distinct metabolism of C. tetani or C. botulinum under various growth conditions is a primary factor in creating a more or less favorable environment for complex-free CNT stability.
Collapse
Affiliation(s)
- Brieana M. Gregg
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
- Wake Forest Institute for Regenerative Medicine, Winston Salem, NC 27157, USA
| | - Sonal Gupta
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - William H. Tepp
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sabine Pellett
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
3
|
Bijjam R, Shorter S, Bratt AM, O'Leary VB, Ntziachristos V, Ovsepian SV. Neurotoxin-Derived Optical Probes for Elucidating Molecular and Developmental Biology of Neurons and Synaptic Connections : Toxin-Derived Optical Probes for Neuroimaging. Mol Imaging Biol 2024; 26:912-925. [PMID: 39348040 PMCID: PMC11634926 DOI: 10.1007/s11307-024-01954-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/21/2024] [Accepted: 09/12/2024] [Indexed: 10/01/2024]
Abstract
Botulinum neurotoxins (BoNTs) and tetanus toxin (TeTX) are the deadliest biological substances that cause botulism and tetanus, respectively. Their astonishing potency and capacity to enter neurons and interfere with neurotransmitter release at presynaptic terminals have attracted much interest in experimental neurobiology and clinical research. Fused with reporter proteins or labelled with fluorophores, BoNTs and TeTX and their non-toxic fragments also offer remarkable opportunities to visualize cellular processes and functions in neurons and synaptic connections. This study presents the state-of-the-art optical probes derived from BoNTs and TeTX and discusses their applications in molecular and synaptic biology and neurodevelopmental research. It reviews the principles of the design and production of probes, revisits their applications with advantages and limitations and considers prospects for future improvements. The versatile characteristics of discussed probes and reporters make them an integral part of the expanding toolkit for molecular neuroimaging, promoting the discovery process in neurobiology and translational neurosciences.
Collapse
Affiliation(s)
- Rohini Bijjam
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, Kent, ME4 4TB, UK
| | - Susan Shorter
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, Kent, ME4 4TB, UK
| | - Alison M Bratt
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, Kent, ME4 4TB, UK
| | - Valerie B O'Leary
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Ruská 87, 10000, Prague, Czech Republic
| | - Vasilis Ntziachristos
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675, Munich, Germany
- Institute of Biological and Medical Imaging and Healthcare, Helmholtz Zentrum München (GmbH), 85764, Neuherberg, Germany
- Munich Institute of Robotics and Machine Intelligence (MIRMI), Technical University of Munich, 80992, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Saak Victor Ovsepian
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, Kent, ME4 4TB, UK.
- Faculty of Medicine, Ivane Javakhishvili Tbilisi State University, 0159, Tbilisi, Georgia.
| |
Collapse
|
4
|
Israel A, Magen E, Ruppin E, Merzon E, Vinker S, Giladi N. Anti-Tetanus Vaccination Is Associated with Reduced Occurrence and Slower Progression of Parkinson's Disease-A Retrospective Study. Biomedicines 2024; 12:2687. [PMID: 39767594 PMCID: PMC11726988 DOI: 10.3390/biomedicines12122687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/08/2024] [Accepted: 11/20/2024] [Indexed: 01/16/2025] Open
Abstract
Background: Parkinson's disease (PD) is a neurodegenerative disorder that progressively damages the autonomic and central nervous systems, leading to hallmark symptoms such as resting tremor, bradykinesia, and rigidity. Despite extensive research, the underlying cause of PD remains unclear, and current treatments are unable to halt the progression of the disease. In this retrospective study, based on historical electronic health records (EHR) from a national health provider covering the period from 2003 to 2023, we investigated the impact of vaccination and medication purchases on PD occurrence and severity. Methods: Using a case-control design, we compared the vaccination histories of 1446 PD patients with 7230 matched controls to assess the association between vaccination and PD onset. Additionally, we explored statistical associations between vaccination, medication purchases, and PD severity over an average of 9 years of follow-up, utilizing a machine learning algorithm to quantify disease severity based on annual antiparkinsonian medication purchases. Results: Our analysis revealed a significant reduction in PD occurrence following tetanus-diphtheria (Td) vaccination, with an adjusted odds ratio of 0.17 (95% CI [0.04, 0.70]) for PD onset within 5 years post-vaccination. Furthermore, a time-dependent relationship was identified between the duration since vaccination and both the rate of PD onset and disease progression. Notably, we observed that antimicrobial treatments significantly influenced disease severity, consistent with the antibiotic sensitivity profile of Clostridium tetani. Conclusions: These findings support the hypothesis that tetanus vaccination and/or C. tetani eradication may reduce PD occurrence and slow its progression, suggesting promising directions for future research in PD prevention and treatment.
Collapse
Affiliation(s)
- Ariel Israel
- Leumit Research Institute, Leumit Health Services, Tel-Aviv 6473817, Israel; (E.M.)
- Department of Epidemiology and Preventive Medicine, School of Public Health, Faculty of Medical & Health Sciences, Tel Aviv University, Tel-Aviv 6997801, Israel
| | - Eli Magen
- Medicine A Department, Assuta Ashdod University Medical Center, Ben Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Eytan Ruppin
- Cancer Data Science Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA;
| | - Eugene Merzon
- Leumit Research Institute, Leumit Health Services, Tel-Aviv 6473817, Israel; (E.M.)
- Adelson School of Medicine, Ariel University, Ariel 4070000, Israel
| | - Shlomo Vinker
- Leumit Research Institute, Leumit Health Services, Tel-Aviv 6473817, Israel; (E.M.)
- Department of Family Medicine, Faculty of Medical & Health Sciences, Tel-Aviv 6997801, Israel
| | - Nir Giladi
- Brain Institute, Tel-Aviv Sourasky Medical Center, Faculty of Medical & Health Sciences, Sagol School of Neurosciences, Tel Aviv University, Tel-Aviv 6997801, Israel;
| |
Collapse
|
5
|
Bagordo F, Grassi T, Rota MC, Castiglia P, Baldovin T, Della Polla G, Panico A, Ogliastro M, Marchi S, Vicentini C, Immordino P, Savio M, Gabutti G. Seroprotection against tetanus in the Italian general population. Vaccine 2024; 42:4040-4045. [PMID: 38762356 DOI: 10.1016/j.vaccine.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/01/2024] [Accepted: 05/10/2024] [Indexed: 05/20/2024]
Abstract
BACKGROUND Tetanus is a non-communicable disease, preventable with vaccination. Despite the implemented vaccination strategy, a certain number of tetanus cases per year continue to occur. The aim of the study was to evaluate the seroprevalence of anti-tetanus antibodies in the Italian population by age, sex and geographical area. METHODS To determine the level of tetanus-specific antibodies, an immunoenzymatic assay was used. RESULTS A total of 3,821 serum samples were collected in the years 2019-20 from healthy subjects aged 6-90 years residing in 13 Italian regions. Overall, 85 % of the tested subjects resulted positive. The rate of subjects protected against tetanus showed a gradual decrease from the younger age groups to the older ones (6-12 years: 93.6 %, 13-24 years: 91.8 %, 25-39 years: 91.0 %, 40-64 years: 78.2 %, ≥ 65 years: 45.3 %); this is particularly evident in the Southern regions and Islands. Moreover, the prevalence of subjects with low protection (<0.1 IU/ml) was significantly higher in the ≥ 65 age group (10.3 %). Males and females' prevalence showed a significant difference only in the oldest age group (M: 60.8 %, F: 30.4 %). In general, a higher prevalence was observed for Northern (90.8 %) and Central regions (87.3 %) than Southern regions and Islands (80.0 %). CONCLUSION These data, compared with epidemiological ones which showed a high number of cases in the elderly, confirmed that the population with lower protection has a greater risk of contracting the disease, demonstrating the need for adequate immunization through both primary vaccination and boosters for all ages and both sexes, in order to provide lifelong protection.
Collapse
Affiliation(s)
- Francesco Bagordo
- Dept. of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Tiziana Grassi
- Dept. of Experimental Medicine, University of Salento, Lecce, Italy.
| | - Maria Cristina Rota
- Dept. of Infectious Diseases, Italian Institute of Health (ISS), Roma, Italy
| | - Paolo Castiglia
- Dept. of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
| | - Tatjana Baldovin
- Dept. of Cardiac, Thoracic, Vascular Sciences and Public Health, Hygiene and Public Health Unit, University of Padua, Padua, Italy
| | - Giorgia Della Polla
- Dept. of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | | | | | - Serena Marchi
- Dept. of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Costanza Vicentini
- Department of Public Health and Paediatrics, University of Turin, Turin, Italy
| | - Palmira Immordino
- Dept. of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Marta Savio
- Dept. of Public Health, OU of Hygiene, LHU Ferrara, Ferrara, Italy
| | - Giovanni Gabutti
- National Coordinator of the Working Group "Vaccines and Immunization Policies", Italian Society of Hygiene, Preventive Medicine and Public Health, Italy
| |
Collapse
|
6
|
Ergen PH, Shorter S, Ntziachristos V, Ovsepian SV. Neurotoxin-Derived Optical Probes for Biological and Medical Imaging. Mol Imaging Biol 2023; 25:799-814. [PMID: 37468801 PMCID: PMC10598172 DOI: 10.1007/s11307-023-01838-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/21/2023]
Abstract
The superb specificity and potency of biological toxins targeting various ion channels and receptors are of major interest for the delivery of therapeutics to distinct cell types and subcellular compartments. Fused with reporter proteins or labelled with fluorophores and nanocomposites, animal toxins and their detoxified variants also offer expanding opportunities for visualisation of a range of molecular processes and functions in preclinical models, as well as clinical studies. This article presents state-of-the-art optical probes derived from neurotoxins targeting ion channels, with discussions of their applications in basic and translational biomedical research. It describes the design and production of probes and reviews their applications with advantages and limitations, with prospects for future improvements. Given the advances in imaging tools and expanding research areas benefiting from the use of optical probes, described here resources should assist the discovery process and facilitate high-precision interrogation and therapeutic interventions.
Collapse
Affiliation(s)
- Pinar Helin Ergen
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, Kent, ME4 4TB, United Kingdom
| | - Susan Shorter
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, Kent, ME4 4TB, United Kingdom
| | - Vasilis Ntziachristos
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675, Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München (GmbH), 85764, Neuherberg, Germany
- Munich Institute of Robotics and Machine Intelligence (MIRMI), Technical University of Munich, 80992, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Saak Victor Ovsepian
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, Kent, ME4 4TB, United Kingdom.
| |
Collapse
|
7
|
Dremencov E, Jezova D, Barak S, Gaburjakova J, Gaburjakova M, Kutna V, Ovsepian SV. Trophic factors as potential therapies for treatment of major mental disorders. Neurosci Lett 2021; 764:136194. [PMID: 34433100 DOI: 10.1016/j.neulet.2021.136194] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 08/02/2021] [Accepted: 08/20/2021] [Indexed: 12/20/2022]
Abstract
Notwithstanding major advances in psychotherapeutics, their efficacy and specificity remain limited. The slow onset of beneficial outcomes and numerous adverse effects of widely used medications remain of chief concern, warranting in-depth studies. The majority of frontline therapies are thought to enhance the endogenous monoaminergic drive, to initiate a cascade of molecular events leading to lasting functional and structural plasticity. They also involve alterations in trophic factor signalling, including brain-derived neurotrophic factor (BDNF), VGF (non-acronymic), vascular endothelial growth factor (VEGF), fibroblast growth factor 2 (FGF2), glial cell-derived neurotrophic factor (GDNF), and others. In several major mental disorders, emerging data suggest protective and restorative effects of trophic factors in preclinical models, when applied on their own. Antidepressant outcomes of VGF and FGF2, for instance, were shown in experimental animals, while BDNF and GDNF prove useful in the treatment of addiction, schizophrenia, and autism spectrum disorders. The main challenge with the effective translation of these and other findings in the clinic is the knowledge gap in action mechanisms with potential risks, as well as the lack of effective platforms for validation under clinical settings. Herein, we review the state-of-the-art and advances in the therapeutic use of trophic factors in several major neuropsychiatric disorders.
Collapse
Affiliation(s)
- Eliyahu Dremencov
- Institute of Molecular Physiology and Genetics, Center of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia.
| | - Daniela Jezova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Segev Barak
- School of Psychological Sciences and the Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Jana Gaburjakova
- Institute of Molecular Physiology and Genetics, Center of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Marta Gaburjakova
- Institute of Molecular Physiology and Genetics, Center of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Viera Kutna
- Department of Experimental Neurobiology, National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic
| | - Saak V Ovsepian
- Department of Experimental Neurobiology, National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic
| |
Collapse
|
8
|
The C-terminal domain of the heavy chain of tetanus toxin prevents the oxidative and nitrosative stress induced by acute toxicity of 1-methyl-4-phenylpyridinium, a rat model of Parkinson's disease. Neurosci Res 2021; 174:36-45. [PMID: 34453989 DOI: 10.1016/j.neures.2021.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/11/2021] [Accepted: 08/22/2021] [Indexed: 12/21/2022]
Abstract
The recombinant carboxyl-terminal domain of the heavy chain of tetanus toxin (Hc-TeTx) exerts neuroprotective and neurorestorative effects on the dopaminergic system of animal models of Parkinson's disease (PD). The present study aimed to determine the effect of the Hc-TeTx fragment on the markers of oxidative stress and nitrosative stress generated by the acute toxicity of 1-methyl-4-phenylpyridinium (MPP+). For this purpose, the Hc-TeTx fragment was administered once a day in three 20 μg/kg consecutive injections into the grastrocnemius muscle of the rats, with an intra-striatal unilateral injection of 1 μL of MPP+ [10 μg/mL] then administered in order to cause a dopaminergic lesion. The results obtained show that the rats treated with Hc-TeTx plus MPP+ presented an increase in the expression of tyrosine hydroxylase (TH), a significantly greater decrease in the levels of the markers of oxidative stress, nitrosative stress, and neurodegeneration than that observed for the group injured with only MPP+. Moreover, it was observed that total superoxide dismutase (SOD) and copper/zinc SOD activity increased with the administration of Hc-TeTx. Finally, immunoreactivity levels were observed to decrease for the levels of 3-nitrotyrosine and the glial fibrillary acidic protein in the ipsilateral striatum of the rats treated with Hc-TeTx plus MPP+, in contrast with those lesioned with MPP+ alone. Our results demonstrate that the recombinant Hc-TeTx fragment may be a potent antioxidant and, therefore, could be suggested as a therapeutic tool against the dopaminergic neuronal impairment observed in the early stages of PD.
Collapse
|
9
|
Vazquez-Roque R, Pacheco-Flores M, Penagos-Corzo JC, Flores G, Aguilera J, Treviño S, Guevara J, Diaz A, Venegas B. The C-terminal fragment of the heavy chain of the tetanus toxin (Hc-TeTx) improves motor activity and neuronal morphology in the limbic system of aged mice. Synapse 2021; 75:e22193. [PMID: 33141999 DOI: 10.1002/syn.22193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/24/2020] [Accepted: 10/27/2020] [Indexed: 12/23/2022]
Abstract
In the aging process, the brain presents biochemical and morphological alterations. The neurons of the limbic system show reduced size dendrites, in addition to the loss of dendritic spines. These disturbances trigger a decrease in motor and cognitive function. Likewise, it is reported that during aging, in the brain, there is a significant decrease in neurotrophic factors, which are essential in promoting the survival and plasticity of neurons. The carboxyl-terminal fragment of the heavy chain of the tetanus toxin (Hc-TeTx) acts similarly to neurotrophic factors, inducing neuroprotection in different models of neuronal damage. The aim here, was to evaluate the effect of Hc-TeTx on the motor processes of elderly mice (18 months old), and its impact on the dendritic morphology and density of dendritic spines of neurons in the limbic system. The morphological analysis in the dendrites was evaluated employing Golgi-Cox staining. Hc-TeTx was administered (0.5 mg/kg) intraperitoneally for three days in 18-month-old mice. Locomotor activity was evaluated in a novel environment 30 days after the last administration of Hc-TeTx. Mice treated with Hc-TeTx showed significant changes in their motor behavior, and an increased dendritic spine density of pyramidal neurons in layers 3 and 5 of the prefrontal cortex in the hippocampus, and medium spiny neurons of the nucleus accumbens (NAcc). In conclusion, the Hc-TeTx improves the plasticity of the brain regions of the limbic system of aged mice. Therefore, it is proposed as a pharmacological alternative to prevent or delay brain damage during aging.
Collapse
Affiliation(s)
- Ruben Vazquez-Roque
- Neuropsychiatry Laboratory, Institute of Physiology, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | | | | | - Gonzalo Flores
- Neuropsychiatry Laboratory, Institute of Physiology, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - José Aguilera
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
- Networked Biomedical Research Center on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Samuel Treviño
- Faculty of Chemical Sciences, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Jorge Guevara
- Department of Biochemistry, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Alfonso Diaz
- Faculty of Chemical Sciences, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Berenice Venegas
- Faculty of Biological Sciences, Benemérita Universidad Autónoma de Puebla, Puebla, México
| |
Collapse
|
10
|
Amin A, Perera ND, Beart PM, Turner BJ, Shabanpoor F. Amyotrophic Lateral Sclerosis and Autophagy: Dysfunction and Therapeutic Targeting. Cells 2020; 9:E2413. [PMID: 33158177 PMCID: PMC7694295 DOI: 10.3390/cells9112413] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/30/2020] [Accepted: 11/01/2020] [Indexed: 02/07/2023] Open
Abstract
Over the past 20 years, there has been a drastically increased understanding of the genetic basis of Amyotrophic Lateral Sclerosis. Despite the identification of more than 40 different ALS-causing mutations, the accumulation of neurotoxic misfolded proteins, inclusions, and aggregates within motor neurons is the main pathological hallmark in all cases of ALS. These protein aggregates are proposed to disrupt cellular processes and ultimately result in neurodegeneration. One of the main reasons implicated in the accumulation of protein aggregates may be defective autophagy, a highly conserved intracellular "clearance" system delivering misfolded proteins, aggregates, and damaged organelles to lysosomes for degradation. Autophagy is one of the primary stress response mechanisms activated in highly sensitive and specialised neurons following insult to ensure their survival. The upregulation of autophagy through pharmacological autophagy-inducing agents has largely been shown to reduce intracellular protein aggregate levels and disease phenotypes in different in vitro and in vivo models of neurodegenerative diseases. In this review, we explore the intriguing interface between ALS and autophagy, provide a most comprehensive summary of autophagy-targeted drugs that have been examined or are being developed as potential treatments for ALS to date, and discuss potential therapeutic strategies for targeting autophagy in ALS.
Collapse
Affiliation(s)
| | | | | | | | - Fazel Shabanpoor
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3052, Australia; (A.A.); (N.D.P.); (P.M.B.); (B.J.T.)
| |
Collapse
|
11
|
McLean T, Norbury L, Conduit R, Shepherd N, Coloe P, Sasse A, Smooker P. Inactivated tetanus as an immunological smokescreen: A major step towards harnessing tetanus-based therapeutics. Mol Immunol 2020; 127:164-174. [PMID: 33002728 DOI: 10.1016/j.molimm.2020.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/01/2020] [Accepted: 09/08/2020] [Indexed: 11/24/2022]
Abstract
BACKGROUND AND PURPOSE Tetanus neurotoxin has many potential therapeutic applications, due to its ability to increase localised muscle tone when injected directly into a muscle. It is a closely related molecule to botulinum neurotoxin (most commonly known as Botox), which has been widely used to release muscle tension for therapeutic and cosmetic applications. However, tetanus toxin has been relegated to the "maybe pile" for protein therapeutics - as most of the population is vaccinated, leading to highly effective antibody-mediated protection against the toxin. The potential for tetanus-based therapeutics remains substantial if the problem of pre-existing immunity can be resolved. EXPERIMENTAL APPROACH A well-established murine model of localised muscular contraction was utilised. We administered functional tetanus toxin combined with an immunogenic, but functionally inactive, decoy molecule. KEY RESULTS Incorporation of the decoy molecule greatly reduces the dose of active toxin required to induce a localised increase in muscle tone in mice vaccinated with the human toxoid vaccine. CONCLUSION AND IMPLICATIONS Our results clearly demonstrate that the barriers to developing a tetanus toxin therapeutic are not insurmountable and the technology presented here is the first major step towards realising the therapeutic potential of this powerful neurotoxin. Opening the therapeutic potential of tetanus toxin will have huge implications for the wide range of diseases caused by low-tone muscle.
Collapse
Affiliation(s)
- Thomas McLean
- Bioscience and Food Technology, School of Science, Plenty Road, Building 223 Bundoora West campus, RMIT University, Bundoora, VIC 3083, Australia.
| | - Luke Norbury
- Bioscience and Food Technology, School of Science, Plenty Road, Building 223 Bundoora West campus, RMIT University, Bundoora, VIC 3083, Australia.
| | - Russell Conduit
- School of Health and Biomedical Sciences, College of Science, Engineering and Health, RMIT University, Bundoora, VIC 3083, Australia.
| | - Natalie Shepherd
- Bioscience and Food Technology, School of Science, Plenty Road, Building 223 Bundoora West campus, RMIT University, Bundoora, VIC 3083, Australia
| | - Peter Coloe
- Bioscience and Food Technology, School of Science, Plenty Road, Building 223 Bundoora West campus, RMIT University, Bundoora, VIC 3083, Australia.
| | - Anthony Sasse
- Bioscience and Food Technology, School of Science, Plenty Road, Building 223 Bundoora West campus, RMIT University, Bundoora, VIC 3083, Australia; Latrobe Regional Hospital, Gippsland, Australia.
| | - Peter Smooker
- Bioscience and Food Technology, School of Science, Plenty Road, Building 223 Bundoora West campus, RMIT University, Bundoora, VIC 3083, Australia.
| |
Collapse
|
12
|
Zakyrjanova GF, Gilmutdinov AI, Tsentsevitsky AN, Petrov AM. Olesoxime, a cholesterol-like neuroprotectant restrains synaptic vesicle exocytosis in the mice motor nerve terminals: Possible role of VDACs. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158739. [PMID: 32428575 DOI: 10.1016/j.bbalip.2020.158739] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 12/13/2022]
Abstract
Olesoxime is a cholesterol-like neuroprotective compound that targets to mitochondrial voltage dependent anion channels (VDACs). VDACs were also found in the plasma membrane and highly expressed in the presynaptic compartment. Here, we studied the effects of olesoxime and VDAC inhibitors on neurotransmission in the mouse neuromuscular junction. Electrophysiological analysis revealed that olesoxime suppressed selectively evoked neurotransmitter release in response to a single stimulus and 20 Hz activity. Also olesoxime decreased the rate of FM1-43 dye loss (an indicator of synaptic vesicle exocytosis) at low frequency stimulation and 20 Hz. Furthermore, an increase in extracellular Cl- enhanced the action of olesoxime on the exocytosis and olesoxime increased intracellular Cl- levels. The effects of olesoxime on the evoked synaptic vesicle exocytosis and [Cl-]i were blocked by membrane-permeable and impermeable VDAC inhibitors. Immunofluorescent labeling pointed on the presence of VDACs on the synaptic membranes. Rotenone-induced mitochondrial dysfunction perturbed the exocytotic release of FM1-43 and cell-permeable VDAC inhibitor (but not olesoxime or impermeable VDAC inhibitor) partially mitigated the rotenone-driven alterations in the FM1-43 unloading and mitochondrial superoxide production. Thus, olesoxime restrains neurotransmission by acting on plasmalemmal VDACs whose activation can limit synaptic vesicle exocytosis probably via increasing anion flux into the nerve terminals.
Collapse
Affiliation(s)
- Guzalia F Zakyrjanova
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, box 30, Kazan 420111, Russia; Institute of Neuroscience, Kazan State Medial University, 49 Butlerova Street, Kazan 420012, Russia
| | - Amir I Gilmutdinov
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, box 30, Kazan 420111, Russia
| | - Andrey N Tsentsevitsky
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, box 30, Kazan 420111, Russia
| | - Alexey M Petrov
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, box 30, Kazan 420111, Russia; Institute of Neuroscience, Kazan State Medial University, 49 Butlerova Street, Kazan 420012, Russia.
| |
Collapse
|
13
|
Solabre Valois L, Wilkinson KA, Nakamura Y, Henley JM. Endocytosis, trafficking and exocytosis of intact full-length botulinum neurotoxin type a in cultured rat neurons. Neurotoxicology 2020; 78:80-87. [PMID: 32088326 PMCID: PMC7225749 DOI: 10.1016/j.neuro.2020.02.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 01/08/2023]
Abstract
Botulinum toxin A (BoNT/A) is a potent neurotoxin that acts primarily by silencing synaptic transmission by blocking neurotransmitter release. BoNT/A comprises a light chain (LC/A) intracellular protease and a heavy chain (HC/A) composed of a receptor binding domain (HCC/A) and a translocation domain (HCN/A) that mediates cell entry. Following entry into the neuron, the disulphide bond linking the two peptide chains is reduced to release the LC/A. To gain better insight into the trafficking and fate of BoNT/A before dissociation we have used a catalytically inactive, non-toxic full-length BoNT/A(0) mutant. Our data confirm that BoNT/A(0) enters cortical neurons both in an activity-dependent manner and via a pathway dependent on fibroblast growth factor receptor 3 (Fgfr3) signalling. We demonstrate that both dynamin-dependent endocytosis and lipid rafts are involved in BoNT/A internalisation and that full-length BoNT/A(0) traffics to early endosomes. Furthermore, while a proportion of BoNT/A remains stable in neurons for 3 days, BoNT/A degradation is primarily mediated by the proteasome. Finally, we demonstrate that a fraction of the endocytosed full-length BoNT/A(0) is capable of exiting the cell to intoxicate other neurons. Together, our data shed new light on the entry routes, trafficking and degradation of BoNT/A, and confirm that trafficking properties previously described for the isolated HCC/A receptor binding domain of are also applicable to the intact, full-length toxin.
Collapse
Affiliation(s)
- Luis Solabre Valois
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - Kevin A Wilkinson
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - Yasuko Nakamura
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - Jeremy M Henley
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK.
| |
Collapse
|
14
|
Yin X, Yu T, Chen B, Xu J, Chen W, Qi Y, Zhang P, Li Y, Kou Y, Ma Y, Han N, Wan P, Luo Q, Zhu D, Jiang B. Spatial Distribution of Motor Endplates and its Adaptive Change in Skeletal Muscle. Theranostics 2019; 9:734-746. [PMID: 30809305 PMCID: PMC6376466 DOI: 10.7150/thno.28729] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 12/22/2018] [Indexed: 12/21/2022] Open
Abstract
Motor endplates (MEPs) are the important interfaces between peripheral nerves and muscle fibers. Investigation of the spatial distribution of MEPs could help us better understand neuromuscular functional activities and improve the diagnosis and therapy of related diseases. Methods: Fluorescent α-bungarotoxin was injected to label the motor endplates in whole-mount skeletal muscles, and tissue optical clearing combined with light-sheet microscopy was used to investigate the spatial distribution of MEPs and in-muscle nerve branches in different skeletal muscles in wild-type and transgenic fluorescent mice. Electrophysiology was used to determine the relationship between the spatial distribution of MEPs and muscle function. Results: The exact three-dimensional distribution of MEPs in whole skeletal muscles was first obtained. We found that the MEPs in the muscle were distributed in an organized pattern of lamella clusters, with no MEPs outside the lamella zone. Each MEP lamella was innervated by one independent in-muscle nerve branch and mediated an independent muscle subgroup contraction. Additionally, the MEPs changed along the lamella clusters after denervation and regained the initial pattern after reinnervation. The integrity and spatial distribution of MEPs could reflect the functional state of muscles. The signal absence of a certain MEP lamella could suggest a problem in certain part of the muscle. Conclusions: The MEP lamella clusters might be the basis of neuromuscular function, and the spatial distribution of MEPs could serve as a testbed for evaluating the functional status of muscle and the therapeutic targeting map related to MEPs.
Collapse
|
15
|
Simó A, Cilleros-Mañé V, Just-Borràs L, Hurtado E, Nadal L, Tomàs M, Garcia N, Lanuza MA, Tomàs J. nPKCε Mediates SNAP-25 Phosphorylation of Ser-187 in Basal Conditions and After Synaptic Activity at the Neuromuscular Junction. Mol Neurobiol 2019; 56:5346-5364. [PMID: 30607888 DOI: 10.1007/s12035-018-1462-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 12/18/2018] [Indexed: 12/14/2022]
Abstract
Protein kinase C (PKC) and substrates like SNAP-25 regulate neurotransmission. At the neuromuscular junction (NMJ), PKC promotes neurotransmitter release during synaptic activity. Thirty minutes of muscle contraction enhances presynaptic PKC isoform levels, specifically cPKCβI and nPKCε, through retrograde BDNF/TrkB signaling. This establishes a larger pool of these PKC isoforms ready to promote neuromuscular transmission. The PKC phosphorylation site in SNAP-25 has been mapped to the serine 187 (Ser-187), which is known to enhance calcium-dependent neurotransmitter release in vitro. Here, we localize SNAP-25 at the NMJ and investigate whether cPKCβI and/or nPKCε regulate SNAP-25 phosphorylation. We also investigate whether nerve and muscle cell activities regulate differently SNAP-25 phosphorylation and the involvement of BDNF/TrkB signaling. Our results demonstrate that nPKCε isoform is essential to positively regulate SNAP-25 phosphorylation on Ser-187 and that muscle contraction prevents it. TrkB and cPKCβI do not regulate SNAP-25 protein level or its phosphorylation during neuromuscular activity. The results provide evidence that nerve terminals need both pre- and postsynaptic activities to modulate SNAP-25 phosphorylation and ensure an accurate neurotransmission process.
Collapse
Affiliation(s)
- Anna Simó
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Spain
| | - Victor Cilleros-Mañé
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Spain
| | - Laia Just-Borràs
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Spain
| | - Erica Hurtado
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Spain
| | - Laura Nadal
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Spain
| | - Marta Tomàs
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Spain
| | - Neus Garcia
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Spain
| | - Maria A Lanuza
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Spain.
| | - Josep Tomàs
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Spain.
| |
Collapse
|
16
|
Effectiveness of Fragment C Domain of Tetanus Toxin and Pramipexole in an Animal Model of Parkinson’s Disease. Neurotox Res 2019; 35:699-710. [DOI: 10.1007/s12640-018-9990-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 12/05/2018] [Accepted: 12/11/2018] [Indexed: 12/13/2022]
|
17
|
Neurobiology and therapeutic applications of neurotoxins targeting transmitter release. Pharmacol Ther 2019; 193:135-155. [DOI: 10.1016/j.pharmthera.2018.08.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
18
|
Netzahualcoyotzi C, Tapia R. Tetanus toxin C-fragment protects against excitotoxic spinal motoneuron degeneration in vivo. Sci Rep 2018; 8:16584. [PMID: 30410110 PMCID: PMC6224557 DOI: 10.1038/s41598-018-35027-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/24/2018] [Indexed: 12/11/2022] Open
Abstract
The tetanus toxin C-fragment is a non-toxic peptide that can be transported from peripheral axons into spinal motoneurons. In in vitro experiments it has been shown that this peptide activates signaling pathways associated with Trk receptors, leading to cellular survival. Because motoneuron degeneration is the main pathological hallmark in motoneuron diseases, and excitotoxicity is an important mechanism of neuronal death in this type of disorders, in this work we tested whether the tetanus toxin C-fragment is able to protect MN in the spinal cord in vivo. For this purpose, we administered the peptide to rats subjected to excitotoxic motoneuron degeneration induced by the chronic infusion of AMPA in the rat lumbar spinal cord, a well-established model developed in our laboratory. Because the intraspinal infusion of the fragment was only weakly effective, whereas the i.m. administration was remarkably neuroprotective, and because the i.m. injection of an inhibitor of Trk receptors diminished the protection, we conclude that such effects require a retrograde signaling from the neuromuscular junction to the spinal motoneurons. The protection after a simple peripheral route of administration of the fragment suggests a potential therapeutic use of this peptide to target spinal MNs exposed to excitotoxic conditions in vivo.
Collapse
Affiliation(s)
- Citlalli Netzahualcoyotzi
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico.
| | - Ricardo Tapia
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico.
| |
Collapse
|
19
|
Abstract
Botulinum neurotoxins (BoNTs) and tetanus neurotoxin (TeNT) are the most potent toxins known and cause botulism and tetanus, respectively. BoNTs are also widely utilized as therapeutic toxins. They contain three functional domains responsible for receptor-binding, membrane translocation, and proteolytic cleavage of host proteins required for synaptic vesicle exocytosis. These toxins also have distinct features: BoNTs exist within a progenitor toxin complex (PTC), which protects the toxin and facilitates its absorption in the gastrointestinal tract, whereas TeNT is uniquely transported retrogradely within motor neurons. Our increasing knowledge of these toxins has allowed the development of engineered toxins for medical uses. The discovery of new BoNTs and BoNT-like proteins provides additional tools to understand the evolution of the toxins and to engineer toxin-based therapeutics. This review summarizes the progress on our understanding of BoNTs and TeNT, focusing on the PTC, receptor recognition, new BoNT-like toxins, and therapeutic toxin engineering.
Collapse
Affiliation(s)
- Min Dong
- Department of Urology, Boston Children's Hospital, Boston, Massachusetts 02115, USA; .,Department of Microbiology and Immunobiology and Department of Surgery, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Geoffrey Masuyer
- Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden;
| | - Pål Stenmark
- Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden; .,Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden
| |
Collapse
|
20
|
Surana S, Tosolini AP, Meyer IF, Fellows AD, Novoselov SS, Schiavo G. The travel diaries of tetanus and botulinum neurotoxins. Toxicon 2018; 147:58-67. [DOI: 10.1016/j.toxicon.2017.10.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/09/2017] [Accepted: 10/11/2017] [Indexed: 10/18/2022]
|
21
|
Pushing the Boundaries of Neuroimaging with Optoacoustics. Neuron 2017; 96:966-988. [DOI: 10.1016/j.neuron.2017.10.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 09/22/2017] [Accepted: 10/16/2017] [Indexed: 02/07/2023]
|
22
|
Masuyer G, Conrad J, Stenmark P. The structure of the tetanus toxin reveals pH-mediated domain dynamics. EMBO Rep 2017; 18:1306-1317. [PMID: 28645943 PMCID: PMC5538627 DOI: 10.15252/embr.201744198] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/16/2017] [Accepted: 05/23/2017] [Indexed: 11/09/2022] Open
Abstract
The tetanus neurotoxin (TeNT) is a highly potent toxin produced by Clostridium tetani that inhibits neurotransmission of inhibitory interneurons, causing spastic paralysis in the tetanus disease. TeNT differs from the other clostridial neurotoxins by its unique ability to target the central nervous system by retrograde axonal transport. The crystal structure of the tetanus toxin reveals a "closed" domain arrangement stabilised by two disulphide bridges, and the molecular details of the toxin's interaction with its polysaccharide receptor. An integrative analysis combining X-ray crystallography, solution scattering and single particle electron cryo-microscopy reveals pH-mediated domain rearrangements that may give TeNT the ability to adapt to the multiple environments encountered during intoxication, and facilitate binding to distinct receptors.
Collapse
Affiliation(s)
- Geoffrey Masuyer
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Julian Conrad
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
- Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Pål Stenmark
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| |
Collapse
|
23
|
Hong B, Yao L, Ni L, Wang L, Hu X. Antinociceptive effect of botulinum toxin A involves alterations in AMPA receptor expression and glutamate release in spinal dorsal horn neurons. Neuroscience 2017; 357:197-207. [DOI: 10.1016/j.neuroscience.2017.06.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 05/31/2017] [Accepted: 06/01/2017] [Indexed: 11/29/2022]
|
24
|
Ovsepian SV, O'Leary VB, Ntziachristos V, Dolly JO. Circumventing Brain Barriers: Nanovehicles for Retroaxonal Therapeutic Delivery. Trends Mol Med 2016; 22:983-993. [PMID: 27720365 DOI: 10.1016/j.molmed.2016.09.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 09/09/2016] [Accepted: 09/12/2016] [Indexed: 02/06/2023]
Abstract
In addition to safeguarding the central nervous system (CNS) from the vast majority of pathogens and toxins, transvascular barriers impose immense challenges to the delivery of beneficial cargo. A few toxins and neurotropic viruses capable of penetrating the brain have proved to be potentially valuable for neuron targeting and enhanced transfer of restorative medicine and therapeutic genes. Here we review molecular concepts and implications of the highly neurotropic tetanus toxin (TeTx) and botulinum neurotoxins (BoNTs) and their ability to infiltrate and migrate throughout neurons. We discuss recent applications of their detoxified variants as versatile nanovehicles for retroaxonal delivery of therapeutics to motor neurons and synapses. Continued advances in research on these remarkable agents in preclinical trials might facilitate their future use for medical benefit.
Collapse
Affiliation(s)
- Saak V Ovsepian
- Institute for Biological and Medical Imaging, Helmholtz Zentrum Munich, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany; Munich School of Bioengineering, Technical University Munich, 81675 Munich, Germany; International Centre for Neurotherapeutics, Dublin City University, Dublin 9, Ireland.
| | - Valerie B O'Leary
- Institute of Radiation Biology, Helmholtz Zentrum Munich, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| | - Vasilis Ntziachristos
- Institute for Biological and Medical Imaging, Helmholtz Zentrum Munich, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany; Munich School of Bioengineering, Technical University Munich, 81675 Munich, Germany
| | - J Oliver Dolly
- International Centre for Neurotherapeutics, Dublin City University, Dublin 9, Ireland
| |
Collapse
|
25
|
Antyborzec I, O'Leary VB, Dolly JO, Ovsepian SV. Low-Affinity Neurotrophin Receptor p75 Promotes the Transduction of Targeted Lentiviral Vectors to Cholinergic Neurons of Rat Basal Forebrain. Neurotherapeutics 2016; 13:859-870. [PMID: 27220617 PMCID: PMC5081123 DOI: 10.1007/s13311-016-0445-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Basal forebrain cholinergic neurons (BFCNs) are one of the most affected neuronal types in Alzheimer's disease (AD), with their extensive loss documented at late stages of the pathology. While discriminatory provision of neuroprotective agents and trophic factors to these cells is thought to be of substantial therapeutic potential, the intricate topography and structure of the forebrain cholinergic system imposes a major challenge. To overcome this, we took advantage of the physiological enrichment of BFCNs with a low-affinity p75 neurotrophin receptor (p75NTR) for their targeting by lentiviral vectors within the intact brain of adult rat. Herein, a method is described that affords selective and effective transduction of BFCNs with a green fluorescence protein (GFP) reporter, which combines streptavidin-biotin technology with anti-p75NTR antibody-coated lentiviral vectors. Specific GFP expression in cholinergic neurons was attained in the medial septum and nuclei of the diagonal band Broca after a single intraventricular administration of such targeted vectors. Bioelectrical activity of GFP-labeled neurons was proven to be unchanged. Thus, proof of principle is obtained for the utility of the low-affinity p75NTR for targeted transduction of vectors to BFCNs in vivo.
Collapse
Affiliation(s)
- Inga Antyborzec
- International Centre for Neurotherapeutics, Dublin City University, Dublin, Ireland
| | - Valerie B O'Leary
- International Centre for Neurotherapeutics, Dublin City University, Dublin, Ireland
- Institute of Radiation Biology, Helmholtz Zentrum Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - James O Dolly
- International Centre for Neurotherapeutics, Dublin City University, Dublin, Ireland
| | - Saak V Ovsepian
- International Centre for Neurotherapeutics, Dublin City University, Dublin, Ireland.
- Institute for Biological and Medical Imaging, Helmholtz Zentrum Munich, German Research Center for Environmental Health, Neuherberg, Germany.
- Munich School of Bioengineering, Technical University Munich, Munich, Germany.
| |
Collapse
|