1
|
Grigoryan GA. From memory disorders to the development of depression: A system approach. Biosystems 2025; 251:105440. [PMID: 40049440 DOI: 10.1016/j.biosystems.2025.105440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/12/2025] [Accepted: 02/26/2025] [Indexed: 05/06/2025]
Abstract
In this review, a hypothesis explaining the origin and genesis of depression development from the perspective of a holistic functional system of behavioral control is proposed. The core of the functional system is the memory apparatus, on which all other key components of the behavioral control system (sensory information, motivation, reinforcement, and motor activity) are interlocked. In the organization of memory traces (engrams) there are two inputs, sensory and motivational, through which the stimulus-stimulus (S-S) and stimulus-motor (S-R) engrams are formed. These engrams are organized and actualized by means of forward and backward conditional connections between cortical representations of sensory information and motivational structures of the brain. Through feedback connections from reinforcing (emotional) input to the memory apparatus, the S-S and S-R engrams are consolidated or weakened depending on the strength of reward or negative events. Depression begins with a breakdown in memory mechanisms. These breakdowns are related to problems with the three mentioned memory inputs: sensory, motivational, and reinforcing (emotional). Disruptions in sensory and motivational input lead to an inability to form new memory engrams, their actualization and retrieval. This creates difficulty in solving current and past unresolved problems, eliciting more accumulation and increasing difficulties in their solving. Unresolved tasks lead to weakening of the reinforcing input, and further impairment of consolidation of the acting engrams. Another reason for the weakening of reinforcing input is excessive action of directly harmful events or constant chronic stress. The review presents the current literature and some data from our laboratory in favor of each memory input's contribution and their impact on the development of depression, when they are problematic.
Collapse
Affiliation(s)
- Grigory A Grigoryan
- Department of Conditioned Reflexes and Physiology of Emotions, Institute of Higher Nervous Activity and Neurophysiology RAS, 5a Butlerov str., Moscow, 117485, Russian Federation.
| |
Collapse
|
2
|
de Klerk-Sluis JM, Geugies H, Mocking RJT, Figueroa CA, Groot PFC, Marsman JBC, van Eijndhoven PFP, Geurts DEM, Ruhé HG. Aberrant aversive learning signals in the habenula in remitted patients with recurrent depression. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2025:S2451-9022(25)00134-X. [PMID: 40274233 DOI: 10.1016/j.bpsc.2025.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 04/08/2025] [Accepted: 04/09/2025] [Indexed: 04/26/2025]
Abstract
BACKGROUND Hypersensitivity to punishment is one of the core features of major depressive disorder. Hypersensitivity to punishment has been proposed to originate from aberrant aversive learning. One of the key areas in aversive learning is the habenula. Although evidence for dysfunctional aversive learning in depressed patients is well established, it remains largely unexplored whether this dysfunction and its neural correlates persists during symptomatic remission of depression. METHODS Functional MRI data from 36 medication-free remitted patients with recurrent major depressive disorder (MDD) and 27 healthy control subjects participating in a Pavlovian classical conditioning task, were assessed within a computational modeling framework to evaluate temporal difference related activation of the habenula during aversive learning. Furthermore, generalized psychophysiological interaction analyses were performed to assess functional connectivity of the temporal difference signal with the habenula as an a priori region of interest. RESULTS Relative to healthy controls, patients showed significantly increased temporal difference related aversive learning activation in the bilateral habenula. This activation was correlated with residual symptoms in the remitted MDD group. Furthermore, patients exhibited decreased functional connectivity between the habenula and the ventral tegmental area compared to controls. CONCLUSIONS The increased habenula activity during aversive learning, particularly during the expectation of punishment, along with decreased functional habenula-ventral tegmental area connectivity in remitted MDD patients, reflect hypersensitivity to, and/or inability to regulate, the impact of aversive environmental cues and punishment. TRIAL REGISTRATION NTR3768.
Collapse
Affiliation(s)
- Jessica M de Klerk-Sluis
- Radboud University Medical Center, Department of Psychiatry, Nijmegen, Netherlands; Donders Institute for Brain- Cognition and Behavior, Nijmegen, Netherlands.
| | - Hanneke Geugies
- Martini Ziekenhuis, Waardegedreven Verbeteren, Groningen, Netherlands
| | | | - Caroline A Figueroa
- Delft University of Technology, Department of Technology- Policy- and Management, Delft, Netherlands
| | - Paul F C Groot
- Amsterdam UMC, department of Radiology and Nuclear Medicine, Amsterdam, Netherlands
| | - Jan-Bernard C Marsman
- University Medical Center Groningen, Department of Biomedical Sciences of Cells & Systems- Cognitive Neuroscience Center, Groningen, Netherlands
| | - Philip F P van Eijndhoven
- Radboud University Medical Center, Department of Psychiatry, Nijmegen, Netherlands; Donders Institute for Brain- Cognition and Behavior, Nijmegen, Netherlands
| | - Dirk E M Geurts
- Radboud University Medical Center, Department of Psychiatry, Nijmegen, Netherlands; Donders Institute for Brain- Cognition and Behavior, Nijmegen, Netherlands
| | - Henricus G Ruhé
- Radboud University Medical Center, Department of Psychiatry, Nijmegen, Netherlands; Donders Institute for Brain- Cognition and Behavior, Nijmegen, Netherlands
| |
Collapse
|
3
|
Guo H, Ali T, Li S. Neural circuits mediating chronic stress: Implications for major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2025; 137:111280. [PMID: 39909171 DOI: 10.1016/j.pnpbp.2025.111280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/18/2025] [Accepted: 01/29/2025] [Indexed: 02/07/2025]
Abstract
Major depressive disorder (MDD), also known as depression, is a prevalent mental disorder that leads to severe disease burden worldwide. Over the past two decades, significant progress has been made in understanding the pathogenesis and developing novel treatments for MDD. Among the complicated etiologies of MDD, chronic stress is a major risk factor. Exploring the underlying brain circuit mechanisms of chronic stress regulation has been an area of active research for recent years. A growing body of preclinical and clinical research has revealed that abnormalities in the brain circuits are closely associated with failures in coping with stress in depressed individuals. Nevertheless, neural circuit mechanisms underlying chronic stress processing and the onset of depression remain a major puzzle. Here, we review recent literature focusing on circuit- and cell-type-specific dissection of depression-like behaviors in chronic stress-related animal models of MDD and outline the key questions.
Collapse
Affiliation(s)
- Hongling Guo
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, Guangdong, China.
| | - Tahir Ali
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Shupeng Li
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, Guangdong, China; Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
4
|
Yu W, Zhang R, Zhang A, Mei Y. Deciphering the Functions of Raphe-Hippocampal Serotonergic and Glutamatergic Circuits and Their Deficits in Alzheimer's Disease. Int J Mol Sci 2025; 26:1234. [PMID: 39941002 PMCID: PMC11818420 DOI: 10.3390/ijms26031234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 01/28/2025] [Accepted: 01/29/2025] [Indexed: 02/16/2025] Open
Abstract
Subcortical innervation of the hippocampus by the raphe nucleus is essential for emotional and cognitive control. The two major afferents from raphe to hippocampus originate from serotonergic and glutamatergic neurons, of which the serotonergic control of hippocampal inhibitory network, theta activity, and synaptic plasticity have been extensively explored in the growing body of literature, whereas those of glutamatergic circuits have received little attention. Notably, both serotonergic and glutamatergic circuits between raphe and hippocampus are disrupted in Alzheimer's disease (AD), which may contribute to initiation and progression of behavioral and psychological symptoms of dementia. Thus, deciphering the mechanism underlying abnormal raphe-hippocampal circuits in AD is crucial to prevent dementia-associated emotional and cognitive symptoms. In this review, we summarize the anatomical, neurochemical, and electrophysiological diversity of raphe nuclei as well as the architecture of raphe-hippocampal circuitry. We then elucidate subcortical control of hippocampal activity by raphe nuclei and their role in regulation of emotion and cognition. Additionally, we present an overview of disrupted raphe-hippocampal circuits in AD pathogenesis and analyze the available therapies that can potentially be used clinically to alleviate the neuropsychiatric symptoms and cognitive decline in AD course.
Collapse
Affiliation(s)
| | | | | | - Yufei Mei
- Hubei Clinical Research Center for Alzheimer’s Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| |
Collapse
|
5
|
Balbinot G, Milosevic M, Morshead CM, Iwasa SN, Zariffa J, Milosevic L, Valiante TA, Hoffer JA, Popovic MR. The mechanisms of electrical neuromodulation. J Physiol 2025; 603:247-284. [PMID: 39740777 DOI: 10.1113/jp286205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 11/20/2024] [Indexed: 01/02/2025] Open
Abstract
The central and peripheral nervous systems are specialized to conduct electrical currents that underlie behaviour. When this multidimensional electrical system is disrupted by degeneration, damage, or disuse, externally applied electrical currents may act to modulate neural structures and provide therapeutic benefit. The administration of electrical stimulation can exert precise and multi-faceted effects at cellular, circuit and systems levels to restore or enhance the functionality of the central nervous system by providing an access route to target specific cells, fibres of passage, neurotransmitter systems, and/or afferent/efferent communication to enable positive changes in behaviour. Here we examine the neural mechanisms that are thought to underlie the therapeutic effects seen with current neuromodulation technologies. To gain further insights into the mechanisms associated with electrical stimulation, we summarize recent findings from genetic dissection studies conducted in animal models. KEY POINTS: Electricity is everywhere around us and is essential for how our nerves communicate within our bodies. When nerves are damaged or not working properly, using exogenous electricity can help improve their function at distinct levels - inside individual cells, within neural circuits, and across entire systems. This method can be tailored to target specific types of cells, nerve fibres, neurotransmitters and communication pathways, offering significant therapeutic potential. This overview explains how exogenous electricity affects nerve function and its potential benefits, based on research in animal studies. Understanding these effects is important because electrical neuromodulation plays a key role in medical treatments for neurological conditions.
Collapse
Affiliation(s)
- Gustavo Balbinot
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
- Institute for Neuroscience and Neurotechnology, Simon Fraser University, Burnaby, BC, Canada
- Center for Advancing Neurotechnological Innovation to Application - CRANIA, University Health Network, Toronto, ON, Canada
| | - Matija Milosevic
- The Miami Project to Cure Paralysis, University of Miami, Miami, FL, USA
- Department of Neurological Surgery, University of Miami, Miami, FL, USA
- Department of Biomedical Engineering, University of Miami, Miami, FL, USA
| | - Cindi M Morshead
- Center for Advancing Neurotechnological Innovation to Application - CRANIA, University Health Network, Toronto, ON, Canada
- KITE Research Institute - University Health Network, Toronto, ON, Canada
- Division of Anatomy, Department of Surgery, University of Toronto, Toronto, ON, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada
| | - Stephanie N Iwasa
- Center for Advancing Neurotechnological Innovation to Application - CRANIA, University Health Network, Toronto, ON, Canada
- KITE Research Institute - University Health Network, Toronto, ON, Canada
| | - Jose Zariffa
- KITE Research Institute - University Health Network, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada
- Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
| | - Luka Milosevic
- Center for Advancing Neurotechnological Innovation to Application - CRANIA, University Health Network, Toronto, ON, Canada
- KITE Research Institute - University Health Network, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Taufik A Valiante
- Center for Advancing Neurotechnological Innovation to Application - CRANIA, University Health Network, Toronto, ON, Canada
- KITE Research Institute - University Health Network, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
| | - Joaquín Andrés Hoffer
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Milos R Popovic
- Center for Advancing Neurotechnological Innovation to Application - CRANIA, University Health Network, Toronto, ON, Canada
- KITE Research Institute - University Health Network, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada
- Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
6
|
Cameron S, Weston-Green K, Newell KA. The disappointment centre of the brain gets exciting: a systematic review of habenula dysfunction in depression. Transl Psychiatry 2024; 14:499. [PMID: 39702626 DOI: 10.1038/s41398-024-03199-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/28/2024] [Accepted: 12/09/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND The habenula is an epithalamic brain structure that acts as a neuroanatomical hub connecting the limbic forebrain to the major monoamine centres. Abnormal habenula activity is increasingly implicated in depression, with a surge in publications on this topic in the last 5 years. Direct activation of the habenula is sufficient to induce a depressive phenotype in rodents, suggesting a causative role in depression. However, the molecular basis of habenula dysfunction in depression remains elusive and it is unclear how the preclinical advancements translate to the clinical field. METHODS A systematic literature search was conducted following the PRISMA guidelines. The two search terms depress* and habenula* were applied across Scopus, Web of Science and PubMed databases. Studies eligible for inclusion must have examined the habenula in clinical cases of depression or preclinical models of depression and compared their measures to an appropriate control. RESULTS Preclinical studies (n = 63) measured markers of habenula activity (n = 16) and neuronal firing (n = 22), largely implicating habenula hyperactivity in depression. Neurotransmission was briefly explored (n = 15), suggesting imbalances within excitatory and inhibitory habenula signalling. Additional preclinical studies reported neuroconnectivity (n = 1), inflammatory (n = 3), genomic (n = 3) and circadian rhythm (n = 3) abnormalities. Seven preclinical studies (11%) included both males and females. From these, 5 studies (71%) reported a significant difference between the sexes in at least one habenula measure taken. Clinical studies (n = 24) reported abnormalities in habenula connectivity (n = 15), volume (n = 6) and molecular markers (n = 3). Clinical studies generally included male and female subjects (n = 16), however, few of these studies examined sex as a biological variable (n = 6). CONCLUSIONS Both preclinical and clinical evidence suggest the habenula is disrupted in depression. However, there are opportunities for sex-specific analyses across both areas. Preclinical evidence consistently suggests habenula hyperactivity as a primary driver for the development of depressive symptoms. Clinical studies support gross habenula abnormalities such as altered activation, connectivity, and volume, with emerging evidence of blood brain barrier dysfunction, however, progress is limited by a lack of detailed molecular analyses and limited imaging resolution.
Collapse
Affiliation(s)
- Sarah Cameron
- School of Medical, Indigenous and Health Sciences and Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Katrina Weston-Green
- School of Medical, Indigenous and Health Sciences and Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Kelly A Newell
- School of Medical, Indigenous and Health Sciences and Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia.
| |
Collapse
|
7
|
Mondoloni S, Molina P, Lecca S, Wu CH, Michel L, Osypenko D, Cachin F, Flanigan M, Congiu M, Lalive AL, Kash T, Deng F, Li Y, Mameli M. Serotonin release in the habenula during emotional contagion promotes resilience. Science 2024; 385:1081-1086. [PMID: 39236168 DOI: 10.1126/science.adp3897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/08/2024] [Indexed: 09/07/2024]
Abstract
Negative emotional contagion-witnessing others in distress-affects an individual's emotional responsivity. However, whether it shapes coping strategies when facing future threats remains unknown. We found that mice that briefly observe a conspecific being harmed become resilient, withstanding behavioral despair after an adverse experience. Photometric recordings during negative emotional contagion revealed increased serotonin (5-HT) release in the lateral habenula. Whereas 5-HT and emotional contagion reduced habenular burst firing, limiting 5-HT synthesis prevented burst plasticity. Enhancing raphe-to-habenula 5-HT was sufficient to recapitulate resilience. In contrast, reducing 5-HT release in the habenula made witnessing a conspecific in distress ineffective to promote the resilient phenotype after adversity. These findings reveal that 5-HT supports vicarious emotions and leads to resilience by tuning definite patterns of habenular neuronal activity.
Collapse
Affiliation(s)
- Sarah Mondoloni
- The Department of Fundamental Neuroscience, The University of Lausanne, 1005 Lausanne, Switzerland
| | - Patricia Molina
- The Department of Fundamental Neuroscience, The University of Lausanne, 1005 Lausanne, Switzerland
| | - Salvatore Lecca
- The Department of Fundamental Neuroscience, The University of Lausanne, 1005 Lausanne, Switzerland
| | - Cheng-Hsi Wu
- The Department of Fundamental Neuroscience, The University of Lausanne, 1005 Lausanne, Switzerland
| | - Léo Michel
- The Department of Fundamental Neuroscience, The University of Lausanne, 1005 Lausanne, Switzerland
| | - Denys Osypenko
- The Department of Fundamental Neuroscience, The University of Lausanne, 1005 Lausanne, Switzerland
| | - Fanchon Cachin
- The Department of Fundamental Neuroscience, The University of Lausanne, 1005 Lausanne, Switzerland
| | - Meghan Flanigan
- The Bowles Center for Alcohol Studies, The University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Mauro Congiu
- The Department of Fundamental Neuroscience, The University of Lausanne, 1005 Lausanne, Switzerland
| | - Arnaud L Lalive
- The Department of Fundamental Neuroscience, The University of Lausanne, 1005 Lausanne, Switzerland
| | - Thomas Kash
- The Bowles Center for Alcohol Studies, The University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Fei Deng
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
| | - Manuel Mameli
- The Department of Fundamental Neuroscience, The University of Lausanne, 1005 Lausanne, Switzerland
- Inserm, UMR-S 839, 75005 Paris, France
| |
Collapse
|
8
|
Cobb-Lewis D, George A, Hu S, Packard K, Song M, Nikitah I, Nguyen-Lopez O, Tesone E, Rowden J, Wang J, Opendak M. The lateral habenula integrates age and experience to promote social transitions in developing rats. Cell Rep 2024; 43:114556. [PMID: 39096491 PMCID: PMC11444650 DOI: 10.1016/j.celrep.2024.114556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/29/2024] [Accepted: 07/13/2024] [Indexed: 08/05/2024] Open
Abstract
Early caregiving adversity (ECA) is associated with social behavior deficits and later development of psychopathology. However, the infant neural substrates of ECA are poorly understood. The lateral habenula (LHb), a highly conserved brain region with consistent links to adult psychopathology, is understudied in development, when the brain is most vulnerable to environmental impacts. Here, we describe the structural and functional ontogeny of the LHb and its behavioral role in infant and juvenile rat pups. We show that the LHb promotes a developmental transition in social approach behavior under threat as typically reared infants mature. By contrast, we show that ECA disrupts habenular ontogeny, including volume, protein expression, firing properties, and corticohabenular connectivity. Furthermore, inhibiting a specific corticohabenular projection rescues infant social approach deficits following ECA. Together, these results identify immediate biomarkers of ECA in the LHb and highlight this region as a site of early social processing and behavior control.
Collapse
Affiliation(s)
- Dana Cobb-Lewis
- Kennedy Krieger Institute, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Anne George
- Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Shannon Hu
- Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | | | - Mingyuan Song
- Kennedy Krieger Institute, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | - Oliver Nguyen-Lopez
- Kennedy Krieger Institute, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Emily Tesone
- Kennedy Krieger Institute, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jhanay Rowden
- Kennedy Krieger Institute, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Julie Wang
- Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Maya Opendak
- Kennedy Krieger Institute, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
9
|
Carli S, Brugnano L, Caligiore D. Simulating combined monoaminergic depletions in a PD animal model through a bio-constrained differential equations system. Front Comput Neurosci 2024; 18:1386841. [PMID: 39247252 PMCID: PMC11378529 DOI: 10.3389/fncom.2024.1386841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/31/2024] [Indexed: 09/10/2024] Open
Abstract
Introduction Historically, Parkinson's Disease (PD) research has focused on the dysfunction of dopamine-producing cells in the substantia nigra pars compacta, which is linked to motor regulation in the basal ganglia. Therapies have mainly aimed at restoring dopamine (DA) levels, showing effectiveness but variable outcomes and side effects. Recent evidence indicates that PD complexity implicates disruptions in DA, noradrenaline (NA), and serotonin (5-HT) systems, which may underlie the variations in therapy effects. Methods We present a system-level bio-constrained computational model that comprehensively investigates the dynamic interactions between these neurotransmitter systems. The model was designed to replicate experimental data demonstrating the impact of NA and 5-HT depletion in a PD animal model, providing insights into the causal relationships between basal ganglia regions and neuromodulator release areas. Results The model successfully replicates experimental data and generates predictions regarding changes in unexplored brain regions, suggesting avenues for further investigation. It highlights the potential efficacy of alternative treatments targeting the locus coeruleus and dorsal raphe nucleus, though these preliminary findings require further validation. Sensitivity analysis identifies critical model parameters, offering insights into key factors influencing brain area activity. A stability analysis underscores the robustness of our mathematical formulation, bolstering the model validity. Discussion Our holistic approach emphasizes that PD is a multifactorial disorder and opens promising avenues for early diagnostic tools that harness the intricate interactions among monoaminergic systems. Investigating NA and 5-HT systems alongside the DA system may yield more effective, subtype-specific therapies. The exploration of multisystem dysregulation in PD is poised to revolutionize our understanding and management of this complex neurodegenerative disorder.
Collapse
Affiliation(s)
- Samuele Carli
- Computational and Translational Neuroscience Laboratory, Institute of Cognitive Sciences and Technologies, National Research Council (CTNLab-ISTC-CNR), Rome, Italy
- Entersys s.r.l., Padua, Italy
- AI2Life s.r.l., Innovative Start-Up, ISTC-CNR Spin-Off, Rome, Italy
- Department of Mathematics and Computer Science "U. Dini", University of Florence, Florence, Italy
| | - Luigi Brugnano
- Department of Mathematics and Computer Science "U. Dini", University of Florence, Florence, Italy
| | - Daniele Caligiore
- Computational and Translational Neuroscience Laboratory, Institute of Cognitive Sciences and Technologies, National Research Council (CTNLab-ISTC-CNR), Rome, Italy
- AI2Life s.r.l., Innovative Start-Up, ISTC-CNR Spin-Off, Rome, Italy
| |
Collapse
|
10
|
Spreen A, Alkhoury D, Walter H, Müller S. Optogenetic behavioral studies in depression research: A systematic review. iScience 2024; 27:109776. [PMID: 38726370 PMCID: PMC11079475 DOI: 10.1016/j.isci.2024.109776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/21/2023] [Accepted: 04/15/2024] [Indexed: 05/12/2024] Open
Abstract
Optogenetics has made substantial contributions to our understanding of the mechanistic underpinnings of depression. This systematic review employs quantitative analysis to investigate the impact of optogenetic stimulation in mice and rats on behavioral alterations in social interaction, sucrose consumption, and mobility. The review analyses optogenetic behavioral studies using standardized behavioral tests to detect behavioral changes induced via optogenetic stimulation in stressed or stress-naive mice and rats. Behavioral changes were evaluated as either positive, negative, or not effective. The analysis comprises the outcomes of 248 behavioral tests of 168 studies described in 37 articles, including negative and null results. Test outcomes were compared for each behavior, depending on the animal cohort, applied type of stimulation and the stimulated neuronal circuit and cell type. The presented synthesis contributes toward a comprehensive picture of optogenetic behavioral research in the context of depression.
Collapse
Affiliation(s)
- Anika Spreen
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Psychiatry and Neurosciences, CCM, Berlin, Germany
- Experimental Biophysics, Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Dana Alkhoury
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Psychiatry and Neurosciences, CCM, Berlin, Germany
| | - Henrik Walter
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Psychiatry and Neurosciences, CCM, Berlin, Germany
| | - Sabine Müller
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Psychiatry and Neurosciences, CCM, Berlin, Germany
| |
Collapse
|
11
|
Groos D, Helmchen F. The lateral habenula: A hub for value-guided behavior. Cell Rep 2024; 43:113968. [PMID: 38522071 DOI: 10.1016/j.celrep.2024.113968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/20/2024] [Accepted: 02/29/2024] [Indexed: 03/26/2024] Open
Abstract
The habenula is an evolutionarily highly conserved diencephalic brain region divided into two major parts, medial and lateral. Over the past two decades, studies of the lateral habenula (LHb), in particular, have identified key functions in value-guided behavior in health and disease. In this review, we focus on recent insights into LHb connectivity and its functional relevance for different types of aversive and appetitive value-guided behavior. First, we give an overview of the anatomical organization of the LHb and its main cellular composition. Next, we elaborate on how distinct LHb neuronal subpopulations encode aversive and appetitive stimuli and on their involvement in more complex decision-making processes. Finally, we scrutinize the afferent and efferent connections of the LHb and discuss their functional implications for LHb-dependent behavior. A deepened understanding of distinct LHb circuit components will substantially contribute to our knowledge of value-guided behavior.
Collapse
Affiliation(s)
- Dominik Groos
- Laboratory of Neural Circuit Dynamics, Brain Research Institute, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland.
| | - Fritjof Helmchen
- Laboratory of Neural Circuit Dynamics, Brain Research Institute, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland; University Research Priority Program (URPP), Adaptive Brain Circuits in Development and Learning, University of Zurich, Zurich, Switzerland
| |
Collapse
|
12
|
Lin R, Mitsuhashi H, Fiori LM, Denniston R, Ibrahim EC, Belzung C, Mechawar N, Turecki G. SNORA69 is up-regulated in the lateral habenula of individuals with major depressive disorder. Sci Rep 2024; 14:8258. [PMID: 38589409 PMCID: PMC11001866 DOI: 10.1038/s41598-024-58278-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 03/27/2024] [Indexed: 04/10/2024] Open
Abstract
Major depressive disorder (MDD) is a complex and potentially debilitating illness whose etiology and pathology remains unclear. Non-coding RNAs have been implicated in MDD, where they display differential expression in the brain and the periphery. In this study, we quantified small nucleolar RNA (snoRNA) expression by small RNA sequencing in the lateral habenula (LHb) of individuals with MDD (n = 15) and psychiatrically-healthy controls (n = 15). We uncovered five snoRNAs that exhibited differential expression between MDD and controls (FDR < 0.01). Specifically, SNORA69 showed increased expression in MDD and was technically validated via RT-qPCR. We further investigated the expression of Snora69 in the LHb and peripheral blood of an unpredicted chronic mild stress (UCMS) mouse model of depression. Snora69 was specifically up-regulated in mice that underwent the UCMS paradigm. SNORA69 is known to guide pseudouridylation onto 5.8S and 18S rRNAs. We quantified the relative abundance of pseudouridines on 5.8S and 18S rRNA in human post-mortem LHb samples and found increased abundance of pseudouridines in the MDD group. Overall, our findings indicate the importance of brain snoRNAs in the pathology of MDD. Future studies characterizing SNORA69's role in MDD pathology is warranted.
Collapse
Affiliation(s)
- Rixing Lin
- Department of Psychiatry, McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Haruka Mitsuhashi
- Department of Psychiatry, McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Laura M Fiori
- Department of Psychiatry, McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Ryan Denniston
- Department of Psychiatry, McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - El Cherif Ibrahim
- CNRS, INT, Institute Neuroscience Timone, Aix-Marseille Université, Marseille, France
| | - Catherine Belzung
- Imaging Brain and Neuropsychiatry iBraiN U1253, INSERM, Université de Tours, Tours, France
| | - Naguib Mechawar
- Department of Psychiatry, McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Gustavo Turecki
- Department of Psychiatry, McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada.
| |
Collapse
|
13
|
Huang T, Guo X, Huang X, Yi C, Cui Y, Dong Y. Input-output specific orchestration of aversive valence in lateral habenula during stress dynamics. J Zhejiang Univ Sci B 2024; 25:1-11. [PMID: 38616136 DOI: 10.1631/jzus.b2300933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 01/14/2024] [Indexed: 04/16/2024]
Abstract
Stress has been considered as a major risk factor for depressive disorders, triggering depression onset via inducing persistent dysfunctions in specialized brain regions and neural circuits. Among various regions across the brain, the lateral habenula (LHb) serves as a critical hub for processing aversive information during the dynamic process of stress accumulation, thus having been implicated in the pathogenesis of depression. LHb neurons integrate aversive valence conveyed by distinct upstream inputs, many of which selectively innervate the medial part (LHbM) or lateral part (LHbL) of LHb. LHb subregions also separately assign aversive valence via dissociable projections to the downstream targets in the midbrain which provides feedback loops. Despite these strides, the spatiotemporal dynamics of LHb-centric neural circuits remain elusive during the progression of depression-like state under stress. In this review, we attempt to describe a framework in which LHb orchestrates aversive valence via the input-output specific neuronal architecture. Notably, a physiological form of Hebbian plasticity in LHb under multiple stressors has been unveiled to incubate neuronal hyperactivity in an input-specific manner, which causally encodes chronic stress experience and drives depression onset. Collectively, the recent progress and future efforts in elucidating LHb circuits shed light on early interventions and circuit-specific antidepressant therapies.
Collapse
Affiliation(s)
- Taida Huang
- Department of Neurology and International Institutes of Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
- Department of Neurology of Sir Run Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University, Hangzhou 310058, China
- Research Centre, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Xiaonan Guo
- Department of Neurology of Sir Run Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiaomin Huang
- Research Centre, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Chenju Yi
- Research Centre, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China.
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou 510080, China.
- Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen 518107, China.
| | - Yihui Cui
- Department of Neurology of Sir Run Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China. ,
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University, Hangzhou 310058, China. ,
| | - Yiyan Dong
- Department of Neurology and International Institutes of Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China. ,
| |
Collapse
|
14
|
Zheng JY, Wang ZH, Zhu ZY, Huang ZH, Song KX, Ye BL, Zhou HY, Gao SQ. The Lateral Parabrachial Nucleus Inputs to the Lateral Hypothalamus Trigger Nocifensive Behaviors. Neuroscience 2024; 537:12-20. [PMID: 38036057 DOI: 10.1016/j.neuroscience.2023.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 12/02/2023]
Abstract
The lateral parabrachial nucleus (LPBN) is known to play a key role in relaying noxious information from the spinal cord to the brain. Different LPBN efferent mediate different aspects of the nocifensive response. However, the function of the LPBN → lateral hypothalamus (LH) circuit in response to noxious stimuli has remained unknown. Here, we show that LPBN → LH circuit is activated by noxious stimuli. Interestingly, either activation or inhibition of this circuit induced analgesia. Optogenetic activation of LPBN afferents in the LH elicited spontaneous jumping and induced place aversion. Optogenetic inhibition inhibited jumping behavior to noxious heat. Ablation of LH glutamatergic neurons could abolish light-evoked analgesia and jumping behavior. Our study revealed a role for the LPBN → LH pathway in nocifensive behaviors.
Collapse
Affiliation(s)
- Jie-Yan Zheng
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Zi-Hao Wang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Zi-Yu Zhu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Zi-Han Huang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Ke-Xin Song
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Bao-Lin Ye
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Hai-Yun Zhou
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shuang-Qi Gao
- Departments of Neurosurgery, The Third Affiliated Hospital, Sun Yat-Sen University, 510630 Guangzhou, Guangdong Province, China.
| |
Collapse
|
15
|
Cobb-Lewis D, George A, Hu S, Packard K, Song M, Nguyen-Lopez O, Tesone E, Rowden J, Wang J, Opendak M. The lateral habenula integrates age and experience to promote social transitions in developing rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.12.575446. [PMID: 38260652 PMCID: PMC10802604 DOI: 10.1101/2024.01.12.575446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Social behavior deficits are an early-emerging marker of psychopathology and are linked with early caregiving quality. However, the infant neural substrates linking early care to social development are poorly understood. Here, we focused on the infant lateral habenula (LHb), a highly-conserved brain region at the nexus between forebrain and monoaminergic circuits. Despite its consistent links to adult psychopathology, this brain region has been understudied in development when the brain is most vulnerable to environmental impacts. In a task combining social and threat cues, suppressing LHb principal neurons had opposing effects in infants versus juveniles, suggesting the LHb promotes a developmental switch in social approach behavior under threat. We observed that early caregiving adversity (ECA) disrupts typical growth curves of LHb baseline structure and function, including volume, firing patterns, neuromodulatory receptor expression, and functional connectivity with cortical regions. Further, we observed that suppressing cortical projections to the LHb rescued social approach deficits following ECA, identifying this microcircuit as a substrate for disrupted social behavior. Together, these results identify immediate biomarkers of ECA in the LHb and highlight this region as a site of early social processing and behavior control.
Collapse
Affiliation(s)
- Dana Cobb-Lewis
- Kennedy Krieger Institute, Baltimore MD USA 21205
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore MD USA 21205
| | - Anne George
- Kennedy Krieger Institute, Baltimore MD USA 21205
| | - Shannon Hu
- Kennedy Krieger Institute, Baltimore MD USA 21205
| | | | - Mingyuan Song
- Kennedy Krieger Institute, Baltimore MD USA 21205
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore MD USA 21205
| | - Oliver Nguyen-Lopez
- Kennedy Krieger Institute, Baltimore MD USA 21205
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore MD USA 21205
| | - Emily Tesone
- Kennedy Krieger Institute, Baltimore MD USA 21205
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore MD USA 21205
| | - Jhanay Rowden
- Kennedy Krieger Institute, Baltimore MD USA 21205
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore MD USA 21205
| | - Julie Wang
- Kennedy Krieger Institute, Baltimore MD USA 21205
| | - Maya Opendak
- Kennedy Krieger Institute, Baltimore MD USA 21205
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore MD USA 21205
| |
Collapse
|
16
|
Tian JS, Wu ZN, Wu D, Yang C, Gao Y, Yan DL, Qin XM. Combining network pharmacology and experimental verification to reveal the mechanism of Chaigui granules in the treatment of depression through PI3K/Akt/mTOR signaling pathways. Metab Brain Dis 2023; 38:2849-2864. [PMID: 37906393 DOI: 10.1007/s11011-023-01312-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/20/2023] [Indexed: 11/02/2023]
Abstract
INTRODUCTION Chaigui granules are a novel manufactured traditional Chinese antidepressant medicine, which is originated from the ancient classical prescription of Xiaoyaosan. It ameliorated depression-like behavior and concomitant symptoms in animal models. But its antidepressant mechanism is still unclear. Therefore, network pharmacology and molecular biology were used to explore underlying antidepressant mechanism in this study. METHODS Firstly, network pharmacology was used to screen main active ingredients and potential targets in the treatment of depression with Chaigui granules, and to perform pathway enrichment analysis. Secondly, chronic and unpredictable mild stress-induced depression model rats were used, and behavioral tests were used to evaluate the antidepressant effect of Chaigui granules. Finally, the core targets and key pathways predicted by network pharmacology were validated by qRT-PCR and Western blot to determine the relevant gene and protein expression levels in rat hippocampus. RESULTS The results of network pharmacology indicated that the PI3K/Akt signaling pathway may play a key role in antidepressant of Chaigui granules. The results of animal experiments showed that Chaigui granules significantly modulated behavioral indicators. Subsequently, the upregulation of relative mRNA levels of mTOR, Akt and PI3K and downregulation of GSK-3β and FoxO3a were observed in rat hippocampus by molecular biology diagnosis. In addition, the decreased expression of Akt and mTOR in CUMS rats hippocampus was significantly reversed, and the expression levels of GSK-3β and FoxO3a were upregulated. CONCLUSIONS Based on the results of network pharmacology and animal experiment validation, Chaigui granules may reverse CUMS-induced depression-like behavior in rats through PI3K/Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Jun-Sheng Tian
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, China.
- The Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Shanxi University, Taiyuan, Shanxi, 030006, China.
| | - Zhen-Ning Wu
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, China
- The Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Dan Wu
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, China
- The Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Chen Yang
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, China
- The Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Yao Gao
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | | | - Xue-Mei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, China.
- The Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Shanxi University, Taiyuan, Shanxi, 030006, China.
| |
Collapse
|
17
|
Tong T, Chen Y, Hao C, Shen J, Chen W, Cheng W, Yan S, Li J, Li Y, Gulizhaerkezi T, Zeng J, Meng X. The effects of acupuncture on depression by regulating BDNF-related balance via lateral habenular nucleus BDNF/TrkB/CREB signaling pathway in rats. Behav Brain Res 2023; 451:114509. [PMID: 37244435 DOI: 10.1016/j.bbr.2023.114509] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/08/2023] [Accepted: 05/24/2023] [Indexed: 05/29/2023]
Abstract
Depression is a major mental disease worldwide, causing dysfunction of Lateral Habenular (LHb). As a non-invasive alternative, acupuncture (AP) has been widely used to treat depression in clinic, yet few basic studies have been focused on the effects and mechanism of acupuncture on synaptic plasticity in LHb. Therefore, this study aimed to explore the potential mechanism of the antidepressant effect of acupuncture. Male Sprague-Dawley (SD) rats were randomly divided into control, chronic unpredictable mild stress (CUMS), AP, fluoxetine (FLX), acupoint catgut embedding (ACE), sham-ACE groups (n = 9/group). Rats were given a 28-day treatment at the Shangxing (GV23) and Fengfu (GV16) acupoints with acupuncture, ACE, sham-ACE or fluoxetine (2.1 mg/kg). The results showed that AP, FLX and ACE suppressed the behavioral deficits, increased the level of the 5-hydroxytryptamine and FNDC5/IRISIN in serum, also reduced the expression of pro-BDNF impacted by CUMS. Both AP and FLX ameliorated the %area of IBA-1, GFAP, BrdU and DCX in the LHb and increased the expression of BDNF/TrkB/CREB, with non-significant difference between the two groups These findings suggest that AP therapy relieves depression-related manifestations in depressed rats, suggesting a potential mechanism via the BDNF/TrkB/CREB pathway in LHb.
Collapse
Affiliation(s)
- Tao Tong
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen, Fujian, P. R. China; Second Clinical College, Shanxi University of Traditional Chinese Medicine, Taiyuan, Shanxi, P. R. China
| | - Yiping Chen
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen, Fujian, P. R. China; Second Clinical College, Shanxi University of Traditional Chinese Medicine, Taiyuan, Shanxi, P. R. China
| | - Chonyao Hao
- Second Clinical College, Shanxi University of Traditional Chinese Medicine, Taiyuan, Shanxi, P. R. China
| | - Junliang Shen
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen, Fujian, P. R. China
| | - Wenjie Chen
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen, Fujian, P. R. China
| | - Wenjing Cheng
- Department of Rehabilitation Medicine, Ezhou Central Hospital, Ezhou, Hubei, P. R. China
| | - Simin Yan
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen, Fujian, P. R. China
| | - Jianguo Li
- Second Clinical College, Shanxi University of Traditional Chinese Medicine, Taiyuan, Shanxi, P. R. China
| | - Yuhan Li
- The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, P. R. China
| | - Tuergong Gulizhaerkezi
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen, Fujian, P. R. China
| | - Jingyu Zeng
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen, Fujian, P. R. China
| | - Xianjun Meng
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen, Fujian, P. R. China.
| |
Collapse
|
18
|
Cardona-Acosta AM, Bolaños-Guzmán CA. Role of the mesolimbic dopamine pathway in the antidepressant effects of ketamine. Neuropharmacology 2023; 225:109374. [PMID: 36516891 PMCID: PMC9839658 DOI: 10.1016/j.neuropharm.2022.109374] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/27/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
Depression is a complex and highly heterogeneous disorder which diagnosis is based on an exceedingly variable set of clinical symptoms. Current treatments focus almost exclusively on the manipulation of monoamine neurotransmitter systems, but despite considerable efforts, these remain inadequate for a significant proportion of those afflicted by the disorder. The emergence of racemic (R, S)-ketamine as a fast-acting antidepressant has provided an exciting new path for the study of major depressive disorder (MDD) and the search for better therapeutics for its treatment. Previous work suggested that ketamine's mechanism of action is primarily mediated via blockaded of N-methyl-d-aspartate (NMDA) receptors, however, this is an area of active research and clinical and preclinical evidence now indicate that ketamine acts on multiple systems. The last couple of decades have cemented the mesolimbic dopamine reward pathway's involvement in the pathogenesis of MDD and related mood disorders. Exposure to negative stress dysregulates dopamine neuronal activity disrupting reward and motivational processes resulting in anhedonia (lack of pleasure), a hallmark symptom of depression. Although the mechanism(s) underlying ketamine's antidepressant activity continue to be elucidated, current evidence indicate that its therapeutic effects are mediated, at least in part, via long-lasting synaptic changes and subsequent molecular adaptations in brain regions within the mesolimbic dopamine system. Notwithstanding, ketamine is a drug of abuse, and this liability may pose limitations for long term use as an antidepressant. This review outlines the current knowledge of ketamine's actions within the mesolimbic dopamine system and its abuse potential. This article is part of the Special Issue on 'Ketamine and its Metabolites'.
Collapse
Affiliation(s)
- Astrid M Cardona-Acosta
- Department of Psychological and Brain Sciences and Program in Neuroscience, Texas A&M University, College Station, TX, 77843, USA
| | - Carlos A Bolaños-Guzmán
- Department of Psychological and Brain Sciences and Program in Neuroscience, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
19
|
Campos ACP, Pople C, Silk E, Surendrakumar S, Rabelo TK, Meng Y, Gouveia FV, Lipsman N, Giacobbe P, Hamani C. Neurochemical mechanisms of deep brain stimulation for depression in animal models. Eur Neuropsychopharmacol 2023; 68:11-26. [PMID: 36640729 DOI: 10.1016/j.euroneuro.2022.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 01/13/2023]
Abstract
Deep brain stimulation (DBS) has emerged as a neuromodulation therapy for treatment-resistant depression, but its actual efficacy and mechanisms of action are still unclear. Changes in neurochemical transmission are important mechanisms of antidepressant therapies. Here, we review the preclinical DBS literature reporting behavioural and neurochemical data associated with its antidepressant-like effects. The most commonly studied target in preclinical models was the ventromedial prefrontal cortex (vmPFC). In rodents, DBS delivered to this target induced serotonin (5-HT) release and increased 5-HT1B receptor expression. The antidepressant-like effects of vmPFC DBS seemed to be independent of the serotonin transporter and potentially mediated by the direct modulation of prefrontal projections to the raphe. Adenosinergic and glutamatergic transmission might have also play a role. Medial forebrain bundle (MFB) DBS increased dopamine levels and reduced D2 receptor expression, whereas nucleus accumbens (NAcc), and lateral habenula (LHb) stimulation increased catecholamine levels in different brain regions. In rodents, subthalamic nucleus (STN) DBS induced robust depression-like responses associated with a reduction in serotonergic transmission, as revealed by a decrease in serotonin release. Some of these effects seemed to be mediated by 5HT1A receptors. In conclusion, the antidepressant-like effects of DBS in preclinical models have been well documented in multiple targets. Though variable mechanisms have been proposed, DBS-induced acute and long-term changes in neurochemical substrates seem to play an important role in the antidepressant-like effects of this therapy.
Collapse
Affiliation(s)
- Ana Carolina P Campos
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Christopher Pople
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Esther Silk
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Shanan Surendrakumar
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Thallita K Rabelo
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Ying Meng
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Flavia Venetucci Gouveia
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Nir Lipsman
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; Hurvitz Brain Sciences Centre, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; Division of Neurosurgery, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Peter Giacobbe
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; Hurvitz Brain Sciences Centre, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; Neuropsychiatry Program, Department of Psychiatry, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Clement Hamani
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; Hurvitz Brain Sciences Centre, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; Division of Neurosurgery, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON M4N 3M5, Canada.
| |
Collapse
|
20
|
Raphe serotonin projections dynamically regulate feeding behavior through targeting inhibitory circuits from rostral zona incerta to paraventricular thalamus. Mol Metab 2022; 66:101634. [PMID: 36351530 PMCID: PMC9672487 DOI: 10.1016/j.molmet.2022.101634] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/08/2022] Open
Abstract
OBJECTIVE Rostral zona incerta (ZIR) evokes feeding by sending GABA transmission to paraventricular thalamus (PVT). Although central serotonin (5-HT) signaling is known to play critical roles in the regulation of food intake and eating disorders, it remains unknown whether raphe 5-HT neurons functionally innervate ZIR-PVT neural pathway for feeding control. Here, we sought to reveal how raphe 5-HT signaling regulates both ZIR and PVT for feeding control. METHODS We used retrograde neural tracers to map 5-HT projections in Sert-Cre mice and slice electrophysiology to examine the mechanism by which 5-HT modulates ZIR GABA neurons. We also used optogenetics to test the effects of raphe-ZIR and raphe-PVT 5-HT projections on feeding motivation and food intake in mice regularly fed, 24 h fasted, and with intermittent high-fat high-sugar (HFHS) diet. In addition, we applied RNAscope in situ hybridization to identify 5-HT receptor subtype mRNA in ZIR. RESULTS We show raphe 5-HT neurons sent projections to both ZIR and PVT with partial collateral axons. Photostimulation of 5-HT projections inhibited ZIR but excited PVT neurons to decrease motivated food consumption. However, both acute food deprivation and intermittent HFHS diet downregulated 5-HT inhibition on ZIR GABA neurons, abolishing the inhibitory regulation of raphe-ZIR 5-HT projections on feeding motivation and food intake. Furthermore, we found high-level 5-HT1a and 5-HT2c as well as low-level 5-HT7 mRNA expression in ZIR. Intermittent HFHS diet increased 5-HT7 but not 5-HT1a or 5-HT2c mRNA levels in the ZIR. CONCLUSIONS Our results reveal that raphe-ZIR 5-HT projections dynamically regulate ZIR GABA neurons for feeding control, supporting that a dynamic fluctuation of ZIR 5-HT inhibition authorizes daily food intake but a sustained change of ZIR 5-HT signaling leads to overeating induced by HFHS diet.
Collapse
|
21
|
Chen W. Neural circuits provide insights into reward and aversion. Front Neural Circuits 2022; 16:1002485. [PMID: 36389177 PMCID: PMC9650032 DOI: 10.3389/fncir.2022.1002485] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/12/2022] [Indexed: 01/07/2023] Open
Abstract
Maladaptive changes in the neural circuits associated with reward and aversion result in some common symptoms, such as drug addiction, anxiety, and depression. Historically, the study of these circuits has been hampered by technical limitations. In recent years, however, much progress has been made in understanding the neural mechanisms of reward and aversion owing to the development of technologies such as cell type-specific electrophysiology, neuronal tracing, and behavioral manipulation based on optogenetics. The aim of this paper is to summarize the latest findings on the mechanisms of the neural circuits associated with reward and aversion in a review of previous studies with a focus on the ventral tegmental area (VTA), nucleus accumbens (NAc), and basal forebrain (BF). These findings may inform efforts to prevent and treat mental illnesses associated with dysfunctions of the brain's reward and aversion system.
Collapse
|
22
|
Kovács LÁ, Füredi N, Ujvári B, Golgol A, Gaszner B. Age-Dependent FOSB/ΔFOSB Response to Acute and Chronic Stress in the Extended Amygdala, Hypothalamic Paraventricular, Habenular, Centrally-Projecting Edinger-Westphal, and Dorsal Raphe Nuclei in Male Rats. Front Aging Neurosci 2022; 14:862098. [PMID: 35592695 PMCID: PMC9110804 DOI: 10.3389/fnagi.2022.862098] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/04/2022] [Indexed: 11/29/2022] Open
Abstract
FOS proteins are early-responding gene products that contribute to the formation of activator protein-1. Several acute and chronic stimuli lead to Fos gene expression, accompanied by an increase of nuclear FOS, which appears to decline with aging. FOSB is another marker to detect acute cellular response, while ΔFOSB mirrors long-lasting changes in neuronal activity upon chronic stress. The notion that the occurrence of stress-related mood disorders shows some age dependence suggests that the brain's stress sensitivity is also a function of age. To study age-dependent stress vulnerability at the immediate-early gene level, we aimed to describe how the course of aging affects the neural responses of FOSB/ΔFOSB in the acute restraint stress (ARS), and chronic variable mild stress (CVMS) in male rats. Fourteen brain areas [central, medial, basolateral (BLA) amygdala; dorsolateral- (BNSTdl), oval- (BNSTov), dorsomedial-, ventral- (BNSTv), and fusiform- (BNSTfu) divisions of the bed nucleus of the stria terminalis; medial and lateral habenula, hypothalamic paraventricular nucleus (PVN), centrally-projecting Edinger-Westphal nucleus, dorsal raphe nucleus, barrel field of somatosensory cortex (S1)] were examined in the course of aging. Eight age groups [1-month-old (M), 1.5 M, 2 M, 3 M, 6 M, 12 M, 18 M, and 24 M] of rats were exposed to a single ARS vs. controls. In addition, rats in six age groups (2, 3, 6, 12, 18, and 24 M) were subjected to CVMS. The FOSB/ΔFOSB immunoreactivity (IR) was a function of age in both controls, ARS- and CVMS-exposed rats. ARS increased the FOSB/ΔFOSB in all nuclei (except in BLA), but only BNSTfu, BNSTv, and PVN reacted throughout the examined lifespan. The CVMS did not increase the FOSB/ΔFOSB in BLA, BNSTov, BNSTdl, and S1. PVN showed a constantly maintained FOSB/ΔFOSB IR during the examined life period. The maximum stress-evoked FOSB/ΔFOSB signal was detected at 2-3 M periods in the ARS- and at 6 M, 18 M in CVMS- model. Corresponding to our previous observations on FOS, the FOSB/ΔFOSB response to stress decreased with age in most of the examined nuclei. Only the PVN exerted a sustained age-independent FOSB/ΔFOSB, which may reflect the long-lasting adaptation response and plasticity of neurons that maintain the hypothalamus-pituitary-adrenal axis response throughout the lifespan.
Collapse
Affiliation(s)
- László Ákos Kovács
- Department of Anatomy, Research Group for Mood Disorders, Medical School, University of Pécs, Pécs, Hungary
- Center for Neuroscience & Szentagothai Research Center, Pécs University, Pécs, Hungary
| | - Nóra Füredi
- Department of Anatomy, Research Group for Mood Disorders, Medical School, University of Pécs, Pécs, Hungary
- Center for Neuroscience & Szentagothai Research Center, Pécs University, Pécs, Hungary
| | - Balázs Ujvári
- Department of Anatomy, Research Group for Mood Disorders, Medical School, University of Pécs, Pécs, Hungary
| | - Abolfazl Golgol
- Department of Anatomy, Research Group for Mood Disorders, Medical School, University of Pécs, Pécs, Hungary
| | - Balázs Gaszner
- Department of Anatomy, Research Group for Mood Disorders, Medical School, University of Pécs, Pécs, Hungary
- Center for Neuroscience & Szentagothai Research Center, Pécs University, Pécs, Hungary
| |
Collapse
|
23
|
Baicalin Attenuates Continuous Activation of β-Catenin Induced by Lipopolysaccharide (LPS) and Depression Complicated by Infertility in Male Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2112359. [PMID: 35432561 PMCID: PMC9010181 DOI: 10.1155/2022/2112359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/08/2022] [Indexed: 11/18/2022]
Abstract
Background Baicalin (BA) is a potential candidate drug to inhibit depressive behavior. However, the mechanism of BA's role on depression complicated with male infertility (DCMI) is still unclear. This study aimed to investigate the role of BA in alleviating inflammatory factor-induced DCMI by regulating β-catenin. Methods Firstly, we performed sucrose preference test (SPT), open field test (OFT), tail suspension test (TST), and forced swim test (FST) in the chronic unpredictable mild stress (CUMS) + lipopolysaccharide (LPS) model rats to study the effect of BA on depressive behavior. The levels of neuropeptide Y (NPY), testosterone (T), and IL-1β, IL-6, TNF-α, IL-10, and IL-4 in the peripheral blood plasma of normal people, patients with depression, and patients with DCMI were measured. Then, the levels of IL-1β, IL-6, TNF-α, IL-10, IL-4, β-catenin in rat testis and peripheral blood and ANXA2, APP, SEMG1, and SEMG2 in seminal plasma proteins were examined. Moreover, the level of β-catenin in the testicular tissue was detected. LPS was used to treat Sertoli cells, and the level of β-catenin was detected. Finally, we evaluated the reproductive phenotype and sperm motility of rats. Results BA (especially 100 mg/kg) could notably ameliorate depression-like behavior induced by CUMS + LPS. The levels of IL-4, IL-10, T, and NPY in depression patients, DCMI patients, and CUMS + LPS model rats elevated, while the levels of IL-1β, IL-6, and TNF-α were reduced. However, BA alleviated the changes in these factors. Moreover, BA alleviated male rat depression induced by CUMS + LPS. LPS upregulated β-catenin (NP) but could not adjust β-catenin (TP) level in rat Sertoli cells. BA relieved the symptoms of DCMI by regulating β-catenin. Furthermore, BA ameliorated the reproductive ability of depressed rats. Conclusion BA modulated β-catenin in the relief of inflammatory factor-induced DCMI.
Collapse
|
24
|
Zhang SQ, Xia ZX, Deng Q, Yang PF, Long LH, Wang F, Chen JG. Repeated vagus nerve stimulation produces anxiolytic effects via upregulation of AMPAR function in centrolateral amygdala of male rats. Neurobiol Stress 2022; 18:100453. [PMID: 35685681 PMCID: PMC9170826 DOI: 10.1016/j.ynstr.2022.100453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 03/27/2022] [Accepted: 04/18/2022] [Indexed: 11/12/2022] Open
Abstract
Repeated vagus nerve stimulation (rVNS) exerts anxiolytic effect by activation of noradrenergic pathway. Centrolateral amygdala (CeL), a lateral subdivision of central amygdala, receives noradrenergic inputs, and its neuronal activity is positively correlated to anxiolytic effect of benzodiazepines. The activation of β-adrenergic receptors (β-ARs) could enhance glutamatergic transmission in CeL. However, it is unclear whether the neurobiological mechanism of noradrenergic system in CeL mediates the anxiolytic effect induced by rVNS. Here, we find that rVNS treatment produces an anxiolytic effect in male rats by increasing the neuronal activity of CeL. Electrophysiology recording reveals that rVNS treatment enhances the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR)-mediated excitatory neurotransmission in CeL, which is mimicked by β-ARs agonist isoproterenol or blocked by β-ARs antagonist propranolol. Moreover, chemogenetic inhibition of CeL neurons or pharmacological inhibition of β-ARs in CeL intercepts both enhanced glutamatergic neurotransmission and the anxiolytic effects by rVNS treatment. These results suggest that the amplified AMPAR trafficking in CeL via activation of β-ARs is critical for the anxiolytic effects induced by rVNS treatment. rVNS amplifies the noradrenergic system in CeL and results in anxiolysis. rVNS treatment enhances AMPAR-mediated excitatory neurotransmission CeL via β-ARs. Pharmacological inhibition β-ARs in CeL intercept the anxiolytic effects by rVNS. Exciting CeL neurons lead to an increase in inhibitory inputs into CeM neurons. Inhibiting CeL neurons abate inhibitory inputs into CeM and anxiolysis by rVNS.
Collapse
|
25
|
Zheng D, Fu JY, Tang MY, Yu XD, Zhu Y, Shen CJ, Li CY, Xie SZ, Lin S, Luo M, Li XM. A Deep Mesencephalic Nucleus Circuit Regulates Licking Behavior. Neurosci Bull 2022; 38:565-575. [PMID: 35080731 DOI: 10.1007/s12264-021-00817-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 10/26/2021] [Indexed: 10/19/2022] Open
Abstract
Licking behavior is important for water intake. The deep mesencephalic nucleus (DpMe) has been implicated in instinctive behaviors. However, whether the DpMe is involved in licking behavior and the precise neural circuit behind this behavior remains unknown. Here, we found that the activity of the DpMe decreased during water intake. Inhibition of vesicular glutamate transporter 2-positive (VGLUT2+) neurons in the DpMe resulted in increased water intake. Somatostatin-expressing (SST+), but not protein kinase C-δ-expressing (PKC-δ+), GABAergic neurons in the central amygdala (CeA) preferentially innervated DpMe VGLUT2+ neurons. The SST+ neurons in the CeA projecting to the DpMe were activated at the onset of licking behavior. Activation of these CeA SST+ GABAergic neurons, but not PKC-δ+ GABAergic neurons, projecting to the DpMe was sufficient to induce licking behavior and promote water intake. These findings redefine the roles of the DpMe and reveal a novel CeASST-DpMeVGLUT2 circuit that regulates licking behavior and promotes water intake.
Collapse
Affiliation(s)
- Di Zheng
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brian Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Jia-Yu Fu
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brian Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Meng-Yu Tang
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brian Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Xiao-Dan Yu
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brian Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Yi Zhu
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brian Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Chen-Jie Shen
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brian Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Chun-Yue Li
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brian Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Shi-Ze Xie
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brian Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Shan Lin
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brian Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Minmin Luo
- National Institute of Biological Sciences (NIBS), Beijing, 102206, China.,Chinese Institute for Brain Research, Beijing, 102206, China.,School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xiao-Ming Li
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China. .,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brian Medicine, Zhejiang University, Hangzhou, 310058, China. .,Center for Brain Science and Brain-Inspired Intelligence, Research Units for Emotion and Emotion Disorders, Chinese Academy of Medical Sciences, China/Guangdong-Hong Kong-Macao Greater Bay Area, Joint Institute for Genetics and Genome Medicine Between Zhejiang University and University of Toronto, Hangzhou, 310058, China.
| |
Collapse
|
26
|
Zhang GM, Wu HY, Cui WQ, Peng W. Multi-level variations of lateral habenula in depression: A comprehensive review of current evidence. Front Psychiatry 2022; 13:1043846. [PMID: 36386995 PMCID: PMC9649931 DOI: 10.3389/fpsyt.2022.1043846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/13/2022] [Indexed: 11/13/2022] Open
Abstract
Despite extensive research in recent decades, knowledge of the pathophysiology of depression in neural circuits remains limited. Recently, the lateral habenula (LHb) has been extensively reported to undergo a series of adaptive changes at multiple levels during the depression state. As a crucial relay in brain networks associated with emotion regulation, LHb receives excitatory or inhibitory projections from upstream brain regions related to stress and cognition and interacts with brain regions involved in emotion regulation. A series of pathological alterations induced by aberrant inputs cause abnormal function of the LHb, resulting in dysregulation of mood and motivation, which present with depressive-like phenotypes in rodents. Herein, we systematically combed advances from rodents, summarized changes in the LHb and related neural circuits in depression, and attempted to analyze the intrinsic logical relationship among these pathological alterations. We expect that this summary will greatly enhance our understanding of the pathological processes of depression. This is advantageous for fostering the understanding and screening of potential antidepressant targets against LHb.
Collapse
Affiliation(s)
- Guang-Ming Zhang
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hong-Yun Wu
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.,Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wen-Qiang Cui
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.,Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wei Peng
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.,Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
27
|
Pekarskaya EA, Holt ES, Gingrich JA, Ansorge MS, Javitch JA, Canetta SE. Tianeptine, but not fluoxetine, decreases avoidant behavior in a mouse model of early developmental exposure to fluoxetine. Sci Rep 2021; 11:22852. [PMID: 34819526 PMCID: PMC8613176 DOI: 10.1038/s41598-021-02074-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/14/2021] [Indexed: 01/12/2023] Open
Abstract
Depression and anxiety, two of the most common mental health disorders, share common symptoms and treatments. Most pharmacological agents available to treat these disorders target monoamine systems. Currently, finding the most effective treatment for an individual is a process of trial and error. To better understand how disease etiology may predict treatment response, we studied mice exposed developmentally to the selective serotonin reuptake inhibitor (SSRI) fluoxetine (FLX). These mice show the murine equivalent of anxiety- and depression-like symptoms in adulthood and here we report that these mice are also behaviorally resistant to the antidepressant-like effects of adult SSRI administration. We investigated whether tianeptine (TIA), which exerts its therapeutic effects through agonism of the mu-opioid receptor instead of targeting monoaminergic systems, would be more effective in this model. We found that C57BL/6J pups exposed to FLX from postnatal day 2 to 11 (PNFLX, the mouse equivalent in terms of brain development to the human third trimester) showed increased avoidant behaviors as adults that failed to improve, or were even exacerbated, by chronic SSRI treatment. By contrast, avoidant behaviors in these same mice were drastically improved following chronic treatment with TIA. Overall, this demonstrates that TIA may be a promising alternative treatment for patients that fail to respond to typical antidepressants, especially in patients whose serotonergic system has been altered by in utero exposure to SSRIs.
Collapse
Affiliation(s)
- Elizabeth A Pekarskaya
- Department of Neuroscience, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Division of Molecular Therapeutics, Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons and the New York State Psychiatric Institute, New York, NY, USA
| | - Emma S Holt
- Division of Molecular Therapeutics, Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons and the New York State Psychiatric Institute, New York, NY, USA
- Division of Developmental Neuroscience, Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons and the New York State Psychiatric Institute, New York, NY, USA
| | - Jay A Gingrich
- Division of Developmental Neuroscience, Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons and the New York State Psychiatric Institute, New York, NY, USA
- Sackler Institute for Developmental Psychobiology, Columbia University Vagelos College of Physicians and Surgeons and the New York State Psychiatric Institute, New York, NY, USA
| | - Mark S Ansorge
- Division of Developmental Neuroscience, Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons and the New York State Psychiatric Institute, New York, NY, USA
- Sackler Institute for Developmental Psychobiology, Columbia University Vagelos College of Physicians and Surgeons and the New York State Psychiatric Institute, New York, NY, USA
| | - Jonathan A Javitch
- Division of Molecular Therapeutics, Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons and the New York State Psychiatric Institute, New York, NY, USA.
- Department of Molecular Pharmacology and Therapeutics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
| | - Sarah E Canetta
- Division of Molecular Therapeutics, Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons and the New York State Psychiatric Institute, New York, NY, USA.
- Division of Developmental Neuroscience, Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons and the New York State Psychiatric Institute, New York, NY, USA.
- Sackler Institute for Developmental Psychobiology, Columbia University Vagelos College of Physicians and Surgeons and the New York State Psychiatric Institute, New York, NY, USA.
| |
Collapse
|
28
|
Xu Z, Feng Z, Zhao M, Sun Q, Deng L, Jia X, Jiang T, Luo P, Chen W, Tudi A, Yuan J, Li X, Gong H, Luo Q, Li A. Whole-brain connectivity atlas of glutamatergic and GABAergic neurons in the mouse dorsal and median raphe nuclei. eLife 2021; 10:65502. [PMID: 34792021 PMCID: PMC8626088 DOI: 10.7554/elife.65502] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 11/17/2021] [Indexed: 11/25/2022] Open
Abstract
The dorsal raphe nucleus (DR) and median raphe nucleus (MR) contain populations of glutamatergic and GABAergic neurons that regulate diverse behavioral functions. However, their whole-brain input-output circuits remain incompletely elucidated. We used viral tracing combined with fluorescence micro-optical sectioning tomography to generate a comprehensive whole-brain atlas of inputs and outputs of glutamatergic and GABAergic neurons in the DR and MR. We found that these neurons received inputs from similar upstream brain regions. The glutamatergic and GABAergic neurons in the same raphe nucleus had divergent projection patterns with differences in critical brain regions. Specifically, MR glutamatergic neurons projected to the lateral habenula through multiple pathways. Correlation and cluster analysis revealed that glutamatergic and GABAergic neurons in the same raphe nucleus received heterogeneous inputs and sent different collateral projections. This connectivity atlas further elucidates the anatomical architecture of the raphe nuclei, which could facilitate better understanding of their behavioral functions.
Collapse
Affiliation(s)
- Zhengchao Xu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Zhao Feng
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China.,HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, China
| | - Mengting Zhao
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Qingtao Sun
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, China
| | - Lei Deng
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Xueyan Jia
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, China
| | - Tao Jiang
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, China
| | - Pan Luo
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Wu Chen
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Ayizuohere Tudi
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Yuan
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China.,HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, China
| | - Xiangning Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China.,HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, China
| | - Hui Gong
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China.,HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Science, Shanghai, China
| | - Qingming Luo
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China.,HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, China.,School of Biomedical Engineering, Hainan University, Haikou, China
| | - Anan Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China.,HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Science, Shanghai, China
| |
Collapse
|
29
|
Zhang L, Wang J, Niu C, Zhang Y, Zhu T, Huang D, Ma J, Sun H, Gamper N, Du X, Zhang H. Activation of parabrachial nucleus - ventral tegmental area pathway underlies the comorbid depression in chronic neuropathic pain in mice. Cell Rep 2021; 37:109936. [PMID: 34731609 PMCID: PMC8578703 DOI: 10.1016/j.celrep.2021.109936] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 07/31/2021] [Accepted: 10/13/2021] [Indexed: 11/26/2022] Open
Abstract
Depression symptoms are often found in patients suffering from chronic pain, a phenomenon that is yet to be understood mechanistically. Here, we systematically investigate the cellular mechanisms and circuits underlying the chronic-pain-induced depression behavior. We show that the development of chronic pain is accompanied by depressive-like behaviors in a mouse model of trigeminal neuralgia. In parallel, we observe increased activity of the dopaminergic (DA) neuron in the midbrain ventral tegmental area (VTA), and inhibition of this elevated VTA DA neuron activity reverses the behavioral manifestations of depression. Further studies establish a pathway of glutamatergic projections from the spinal trigeminal subnucleus caudalis (Sp5C) to the lateral parabrachial nucleus (LPBN) and then to the VTA. These glutamatergic projections form a direct circuit that controls the development of the depression-like behavior under the state of the chronic neuropathic pain.
Collapse
Affiliation(s)
- Ludi Zhang
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Jing Wang
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei 050017, China; Department of Pharmacochemistry, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050091, China
| | - Chenxu Niu
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Yu Zhang
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Tiantian Zhu
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Dongyang Huang
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Jing Ma
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Hui Sun
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei 050017, China; Department of Physiology, Binzhou Medical University, YanTai, Shandong 264003, China
| | - Nikita Gamper
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei 050017, China; School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Xiaona Du
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Hailin Zhang
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei 050017, China.
| |
Collapse
|
30
|
Gu J, Hou Z, Zhou X, Wang Q, Chen Y, Zhang J. Activation of 5-HT 1 receptor in Lateral Habenula impaired contextual fear memory and hippocampal LTP in rat. Neurosci Lett 2021; 770:136305. [PMID: 34699942 DOI: 10.1016/j.neulet.2021.136305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 09/14/2021] [Accepted: 10/19/2021] [Indexed: 02/02/2023]
Abstract
Serotonin (5-hydroxytraptamine, 5-HT) is a neurotransmitter plays important roles in emotion and motivation. The action of 5-HT varies across nucleus and the receptor sub-types. Lateral habenula (LHb) in a brain area reciprocally connects with raphe nucleus and plays important roles in emotion and depression. In this study, we aimed to study the role of 5-HT1 receptor in LHb on fear learning. 15 minutes before or immediate after the fear conditioning, 5-Carboxyamidotrypamine maleate salt (5-CT), an agonist of 5-HT1 receptor, was bilaterally delivered into LHb (1μg/μl, 1μl/side) in rats. We found that activation of 5-HT1 receptor in LHb impaired the acquisition but not consolidation of fear memory in rats, which was accompanied by impaired long-term potentiation (LTP) and decreased phosphorylation of α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor (AMPAR) subunit 1 (GluA1) at the Ser845 site in hippocampus. In addition, 5-CT decreased the time spent in center area of the open field and time spent in open arm in elevated plus maze. These results suggest that activation of 5-HT1 receptor in LHb impaired acquisition of hippocampal dependent fear memory and increased anxiety- like behavior in rats.
Collapse
Affiliation(s)
- Jingsheng Gu
- Department of Basic Medicine, Medical School, Kunming University of Science and Technology, Kunming, Yunnan 650550, P.R. China
| | - Zhijie Hou
- Department of Basic Medicine, Medical School, Kunming University of Science and Technology, Kunming, Yunnan 650550, P.R. China
| | - Xiaotao Zhou
- Department of Basic Medicine, Medical School, Kunming University of Science and Technology, Kunming, Yunnan 650550, P.R. China
| | - Qinglei Wang
- Department of Basic Medicine, Medical School, Kunming University of Science and Technology, Kunming, Yunnan 650550, P.R. China
| | - Yanmei Chen
- Department of Basic Medicine, Medical School, Kunming University of Science and Technology, Kunming, Yunnan 650550, P.R. China.
| | - Jichuan Zhang
- Department of Basic Medicine, Medical School, Kunming University of Science and Technology, Kunming, Yunnan 650550, P.R. China.
| |
Collapse
|
31
|
García-Durán L, Flores-Burgess A, Cantero-García N, Puigcerver A, Narváez JÁ, Fuxe K, Santín L, Millón C, Díaz-Cabiale Z. Galanin(1-15) Potentiates the Antidepressant-like Effects Induced by Escitalopram in a Rat Model of Depression. Int J Mol Sci 2021; 22:10848. [PMID: 34639188 PMCID: PMC8509384 DOI: 10.3390/ijms221910848] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/24/2021] [Accepted: 10/04/2021] [Indexed: 12/27/2022] Open
Abstract
Selective 5-HT reuptake inhibitor antidepressants (SSRIs) are the first choice in major depressive disorder (MDD), but 50% of affected patients do not show improvement. Galanin(1-15) [GAL(1-15)] enhanced Fluoxetine antidepressant-like effects in an animal model of depression, the olfactory bulbectomy (OBX); however, further detailed analysis of GAL(1-15) effects as augmentation treatment in OBX rats are needed. In OBX rats, we analysed the effect of GAL(1-15) on Escitalopram (ESC)-mediated responses in behavioural tests related to despair. We studied whether GAL(1-15) effects involved 5-HT1AR using an in vivo model siRNA 5-HT1A knockdown rats. Moreover, we analysed by immunohistochemistry the expression of the immediate-early gene c-Fos (c-Fos IR) after the administration of GAL(1-15)+ESC in OBX rats in several nuclei involved in MDD. GAL(1-15) enhances the antidepressant-like effects of ESC, and the GALR2 antagonist M871 blocked GAL(1-15) mediated actions. The downregulation of 5-HT1AR by siRNA was sufficient to block GAL(1-15) effects. Our immunohistochemistry and principal component analysis (PCA) analysis suggest that two functional networks are involved in these effects; one includes the lateral (LHb) and medial (mHb) habenula, dorsal raphe (DR) and ventral tegmental area (VTA), and the other consists of the dentate gyrus (DG), and prefrontal cortex (PFC). The results open up the possibility of using GAL(1-15) in combination with SSRIs as a novel strategy for treating MDD.
Collapse
Affiliation(s)
- Laura García-Durán
- Faculty of Medicine, Institute of Biomedical Research of Malaga, Campus de Teatinos s/n, University of Malaga, 29071 Malaga, Spain; (L.G.-D.); (A.F.-B.); (N.C.-G.); (J.Á.N.)
| | - Antonio Flores-Burgess
- Faculty of Medicine, Institute of Biomedical Research of Malaga, Campus de Teatinos s/n, University of Malaga, 29071 Malaga, Spain; (L.G.-D.); (A.F.-B.); (N.C.-G.); (J.Á.N.)
| | - Noelia Cantero-García
- Faculty of Medicine, Institute of Biomedical Research of Malaga, Campus de Teatinos s/n, University of Malaga, 29071 Malaga, Spain; (L.G.-D.); (A.F.-B.); (N.C.-G.); (J.Á.N.)
| | - Araceli Puigcerver
- Faculty of Psychology, Institute of Biomedical Research of Malaga, Campus de Teatinos s/n, University of Málaga, 29071 Malaga, Spain; (A.P.); (L.S.)
| | - José Ángel Narváez
- Faculty of Medicine, Institute of Biomedical Research of Malaga, Campus de Teatinos s/n, University of Malaga, 29071 Malaga, Spain; (L.G.-D.); (A.F.-B.); (N.C.-G.); (J.Á.N.)
| | - Kjell Fuxe
- Department of Neuroscience, Karolinska Institute, 17177 Stockholm, Sweden;
| | - Luis Santín
- Faculty of Psychology, Institute of Biomedical Research of Malaga, Campus de Teatinos s/n, University of Málaga, 29071 Malaga, Spain; (A.P.); (L.S.)
| | - Carmelo Millón
- Faculty of Medicine, Institute of Biomedical Research of Malaga, Campus de Teatinos s/n, University of Malaga, 29071 Malaga, Spain; (L.G.-D.); (A.F.-B.); (N.C.-G.); (J.Á.N.)
| | - Zaida Díaz-Cabiale
- Faculty of Medicine, Institute of Biomedical Research of Malaga, Campus de Teatinos s/n, University of Malaga, 29071 Malaga, Spain; (L.G.-D.); (A.F.-B.); (N.C.-G.); (J.Á.N.)
| |
Collapse
|
32
|
Wang S, Leri F, Rizvi SJ. Anhedonia as a central factor in depression: Neural mechanisms revealed from preclinical to clinical evidence. Prog Neuropsychopharmacol Biol Psychiatry 2021; 110:110289. [PMID: 33631251 DOI: 10.1016/j.pnpbp.2021.110289] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/25/2021] [Accepted: 02/16/2021] [Indexed: 12/21/2022]
Abstract
Anhedonia is one of the core symptoms of major depressive disorder (MDD), which is often inadequately treated by traditional antidepressants. The modern framework of anhedonia extends the definition from impaired consummatory pleasure or interest in rewards to a broad spectrum of deficits that impact functions such as reward anticipation, approach motivation, effort expenditure, reward valuation, expectation, and reward-cue association learning. Substantial preclinical and clinical research has explored the neural basis of reward deficits in the context of depression, and has implicated mesocorticolimbic reward circuitry comprising the nucleus accumbens, ventral pallidum, ventral tegmental area, amygdala, hippocampus, anterior cingulate, insula, orbitofrontal cortex, and other prefrontal cortex regions. Dopamine modulates several reward facets including anticipation, motivation, effort, and learning. As well, serotonin, norepinephrine, opioids, glutamate, Gamma aminobutyric acid (GABA), and acetylcholine are also involved in anhedonia, and medications targeting these systems may also potentially normalize reward processing in depression. Unfortunately, whereas reward anticipation and reward outcome are extensively explored by both preclinical and clinical studies, translational gaps remain in reward motivation, effort, valuation, and learning, where clinical neuroimaging studies are in the early stages. This review aims to synthesize the neurobiological mechanisms underlying anhedonia in MDD uncovered by preclinical and clinical research. The translational difficulties in studying the neural basis of reward are also discussed.
Collapse
Affiliation(s)
- Shijing Wang
- Arthur Sommer Rotenberg Suicide and Depression Studies Program, St. Michael's Hospital, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Francesco Leri
- Department of Psychology, University of Guelph, Ontario, Canada
| | - Sakina J Rizvi
- Arthur Sommer Rotenberg Suicide and Depression Studies Program, St. Michael's Hospital, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
33
|
Xiu J, Han R, Liu Z, Li J, Liu S, Shen Y, Ding YQ, Xu Q. Hijacking Dorsal Raphe to Improve Metabolism and Depression-Like Behaviors via BDNF Gene Transfer in Mice. Diabetes 2021; 70:1780-1793. [PMID: 33962999 DOI: 10.2337/db20-1030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 04/29/2021] [Indexed: 11/13/2022]
Abstract
Moods and metabolism modulate each other. High comorbidity of depression and metabolic disorders, such as diabetes and obesity, poses a great challenge to treat such conditions. Here we report the therapeutic efficacy of brain-derived neurotrophic factor (BDNF) by gene transfer in the dorsal raphe nucleus (DRN) in a chronic unpredictable mild stress model (CUMS) of depression and models of diabetes and obesity. In CUMS, BDNF-expressing mice displayed antidepressant- and anxiolytic-like behaviors, which are associated with augmented serotonergic activity. Both in the diet-induced obesity model (DIO) and in db/db mice, BDNF ameliorated obesity and diabetes, which may be mediated by enhanced sympathetic activity not involving DRN serotonin. Chronic activation of DRN neurons via chemogenetic tools produced similar effects as BDNF in DIO mice. These results established the DRN as a key nexus in regulating depression-like behaviors and metabolism, which can be exploited to combat comorbid depression and metabolic disorders via BDNF gene transfer.
Collapse
Affiliation(s)
- Jianbo Xiu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
- Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Rongrong Han
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
- Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Zeyue Liu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
- Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Jiayu Li
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
- Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Shu Liu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
- Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Yan Shen
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
- Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Yu-Qiang Ding
- State Key Laboratory of Medical Neurobiology and Ministry of Education (MOE) Frontiers Center for Brain Science, Institutes of Brain Science, and Department of Laboratory Animal Science, Fudan University, Shanghai, China
| | - Qi Xu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
- Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
34
|
Cheng H, Qi Y, Lai N, Yang L, Xu C, Wang S, Guo Y, Chen Z, Wang Y. Inhibition of hyperactivity of the dorsal raphe 5-HTergic neurons ameliorates hippocampal seizure. CNS Neurosci Ther 2021; 27:963-972. [PMID: 33955651 PMCID: PMC8265946 DOI: 10.1111/cns.13648] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/08/2021] [Accepted: 04/11/2021] [Indexed: 01/07/2023] Open
Abstract
Aims Epilepsy, frequently comorbid with depression, easily develops drug resistance. Here, we investigated how dorsal raphe (DR) and its 5‐HTergic neurons are implicated in epilepsy. Methods In mouse hippocampal kindling model, using immunochemistry, calcium fiber photometry, and optogenetics, we investigated the causal role of DR 5‐HTergic neurons in seizure of temporal lobe epilepsy (TLE). Further, deep brain stimulation (DBS) of the DR with different frequencies was applied to test its effect on hippocampal seizure and depressive‐like behavior. Results Number of c‐fos+ neurons in the DR and calcium activities of DR 5‐HTergic neurons were both increased during kindling‐induced hippocampal seizures. Optogenetic inhibition, but not activation, of DR 5‐HTergic neurons conspicuously retarded seizure acquisition specially during the late period. For clinical translation, 1‐Hz‐specific, but not 20‐Hz or 100‐Hz, DBS of the DR retarded the acquisition of hippocampal seizure. This therapeutic effect may be mediated by the inhibition of DR 5‐HTergic neurons, as optogenetic activation of DR 5‐HTergic neurons reversed the anti‐seizure effects of 1‐Hz DR DBS. However, DBS treatment had no effect on depressive‐like behavior. Conclusion Inhibition of hyperactivity of DR 5‐HTergic neuron may present promising anti‐seizure effect and the DR may be a potential DBS target for the therapy of TLE.
Collapse
Affiliation(s)
- Heming Cheng
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yingbei Qi
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Nanxi Lai
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Lin Yang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Cenglin Xu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuang Wang
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yi Guo
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhong Chen
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China.,Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
35
|
Zhang Y, Liu Y, Han R, Liu K, Xing Y. Hypoechogenicity of the midbrain raphe detected by transcranial sonography: an imaging biomarker for depression in migraine patients. Ther Adv Neurol Disord 2021; 14:17562864211007708. [PMID: 33912243 PMCID: PMC8047820 DOI: 10.1177/17562864211007708] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 03/14/2021] [Indexed: 12/25/2022] Open
Abstract
Background The high comorbidity of migraine and depression is suggestive of shared risk factors or common mechanisms between the two diseases. In individuals with a depressive disorder, there is a high prevalence of altered midbrain raphe (MBR) echogenicity, detectable via transcranial sonography (TCS), that is suggested to be linked with a dysfunction of the serotoninergic system. In patients with migraine, this alteration has seldom been explored in earlier studies, and conclusions are often lacking. Our study aimed to elucidate whether this alteration is specific to migraine and to determine whether it is related with depression. Methods This study enrolled patients with migraine (n = 100, 72% female) and patients with tension-type headache disorders (TTH) (n = 62, 78.5% female) from a headache clinic. In addition, 79 healthy subjects (79.7% female) were recruited as controls. All participants underwent a standard interview to evaluate headache information and an interview with psychiatrists for depression evaluation. TCS examinations were performed on all participants. Results Patients with migraine had a higher rate of MBR hypoechogenicity (28%) compared with that of healthy controls (15.2%) and that of patients with TTH (12.9%). In patients with migraine, reduced MBR echogenicity was associated with depressive symptoms assessed using the Hamilton Depression Rating Scale (HAM-D). No association between migraine self-medication and MBR echogenicity was found. Conclusion Reduced-echoic MBR detected by TCS is prevalent in migraine patients and is associated with depressive symptoms. TCS-detected hypoechogenic MBR abnormality could be an imaging biomarker of depressive symptoms in patients with migraine.
Collapse
Affiliation(s)
- YiShui Zhang
- Neuroscience Centre, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Ying Liu
- Neuroscience Centre, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Ruoyun Han
- Neuroscience Centre, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Kangding Liu
- Neuroscience Centre, Department of Neurology, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
| | - Yingqi Xing
- Department of Vascular Ultrasonography, Xuanwu Hospital, Capital Medical University, Centre of Vascular Ultrasonography, Beijing Institute of Brain Disorders, 45 Changchun Road, Xicheng District, Beijing, 100053, China
| |
Collapse
|
36
|
Lv QY, Chen MM, Li Y, Yu Y, Liao H. Brain circuit dysfunction in specific symptoms of depression. Eur J Neurosci 2021; 55:2393-2403. [PMID: 33818849 DOI: 10.1111/ejn.15221] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 03/08/2021] [Accepted: 03/31/2021] [Indexed: 12/17/2022]
Abstract
Since the depressive disorder manifests complex and diverse symptoms clinically, its pathological mechanism and therapeutic options are difficult to determine. In recent years, the advent of optogenetics, chemogenetics and viral tracing techniques, along with the well-established rodent model of depression, has led to a shift in the focus of depression research from single molecules to neural circuits. In virtue of the powerful tools above, psychiatric disorder such as depression could be well related to the disfunction of brain's connection. Moreover, compelling studies also support that the diversity of depressive behaviour could be involved with the discrete changes in a distinct circuit of the brain. Therefore, summarising the differential changes of the neural circuits in mice with depression-like behaviour may provide a better understanding of the causal relationships between neural circuit and depressive behaviour. Here, we focus on the changes in the neural circuitry underlying various depression-like phenotypes, including motivation, despair, social avoidance and comorbid sequelae, which may provide an explanation to circuit-specific discrepancy in depression-like behaviour.
Collapse
Affiliation(s)
- Qun Y Lv
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, China
| | - Ming M Chen
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, China
| | - Yu Li
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, China
| | - Yang Yu
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, China
| | - Hong Liao
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
37
|
Casarrubea M, Davies C, Pierucci M, Colangeli R, Deidda G, Santangelo A, Aiello S, Crescimanno G, Di Giovanni G. The impact of chronic daily nicotine exposure and its overnight withdrawal on the structure of anxiety-related behaviors in rats: Role of the lateral habenula. Prog Neuropsychopharmacol Biol Psychiatry 2021; 105:110131. [PMID: 33039434 DOI: 10.1016/j.pnpbp.2020.110131] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/17/2020] [Accepted: 10/04/2020] [Indexed: 01/03/2023]
Abstract
Tobacco smoking is a serious health problem worldwide and a leading cause of mortality. Nicotine, the addictive component of tobacco, affects a range of emotional responses, including anxiety-related behaviors. Although perceived by smokers to be anxiolytic, evidence suggests that smoking increases anxiety and that mood fluctuates with nicotine intake. Thus, nicotine addiction may depend on easing the psychobiological distress caused by its abuse. The lateral habenula (LHb) has been implicated as a neural substrate for acute nicotine-induced anxiety, but its role in anxiety-like behaviors associated with chronic nicotine exposure has not been explored. Here, we assessed the effect of chronic nicotine exposure and its subsequent overnight withdrawal on anxiety-like behavior using both quantitative and multivariate T-pattern analysis in rats tested using the hole-board apparatus. Additionally, we explored the role of the LHb by comparing the behavioral effects of short-term nicotine withdrawal in chronically treated LHb-lesioned rats. Quantitative analysis revealed increased anxiety-like behavior in chronically treated overnight nicotine-deprived rats, as manifested in reduced general and focused exploratory behaviors, which was eased in animals that received nicotine. Quantitative analysis failed to reveal a role of the LHb in overnight nicotine deprivation-induced anxiety. Conversely, T-pattern analysis of behavioral outcomes revealed that chronic nicotine-treated rats still show anxiety-like behavior following nicotine challenge. Moreover, it demonstrated that the LHb lesion induced a stronger anxiolytic-like response to the acute challenge of nicotine in chronically nicotine-exposed animals, implicating the LHb in the anxiogenic effect of chronic nicotine exposure. These data further highlight the LHb as a promising target for smoking cessation therapies and support the importance of T-pattern analysis for behavioral analysis.
Collapse
Affiliation(s)
- Maurizio Casarrubea
- Laboratory of Behavioral Physiology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Human Physiology Section "Giuseppe Pagano", University of Palermo, Palermo, Italy.
| | - Caitlin Davies
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta; Neuroscience Division, School of Biosciences, Cardiff University, Cardiff, UK
| | - Massimo Pierucci
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Roberto Colangeli
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta; Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Gabriele Deidda
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | | | - Stefania Aiello
- Laboratory of Behavioral Physiology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Human Physiology Section "Giuseppe Pagano", University of Palermo, Palermo, Italy
| | - Giuseppe Crescimanno
- Laboratory of Behavioral Physiology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Human Physiology Section "Giuseppe Pagano", University of Palermo, Palermo, Italy
| | - Giuseppe Di Giovanni
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta; Neuroscience Division, School of Biosciences, Cardiff University, Cardiff, UK.
| |
Collapse
|
38
|
Fakhoury M. Optogenetics: A revolutionary approach for the study of depression. Prog Neuropsychopharmacol Biol Psychiatry 2021; 106:110094. [PMID: 32890694 DOI: 10.1016/j.pnpbp.2020.110094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/13/2020] [Accepted: 08/30/2020] [Indexed: 10/24/2022]
Abstract
Depression is a severe and chronic mental disorder that affects millions of individuals worldwide. Symptoms include depressed mood, loss of interest, reduced motivation and suicidal thoughts. Even though findings from genetic, molecular and imaging studies have helped provide some clues regarding the mechanisms underlying depression-like behaviors, there are still many unanswered questions that need to be addressed. Optogenetics, a technique developed in the early 2000s, has proved effective in the study and treatment of depression and depression-like behaviors and has revolutionized already known experimental techniques. This technique employs light and genetic tools to either inhibit or excite specific neurons or pathways within the brain. In this review paper, an up-to-date understanding of the use of optogenetics in the study of depression-like behaviors is provided, along with suggestions for future research directions.
Collapse
Affiliation(s)
- Marc Fakhoury
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut Campus, Lebanon.
| |
Collapse
|
39
|
Biselli T, Lange SS, Sablottny L, Steffen J, Walther A. Optogenetic and chemogenetic insights into the neurocircuitry of depression-like behaviour: A systematic review. Eur J Neurosci 2021; 53:9-38. [PMID: 31633833 DOI: 10.1111/ejn.14603] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 09/13/2019] [Accepted: 10/14/2019] [Indexed: 12/13/2022]
Abstract
Major depressive disorder (MDD) and its treatment are challenges for global health. Optogenetics and chemogenetics are driving MDD research forward by unveiling causal relations between cell-type-specific control of neurons and depressive-like behaviour in rodents. Using a systematic search process, in this review, a set of 43 original studies applying optogenetic or chemogenetic techniques in rodent models of depression was identified. Our aim was to provide an examination of all available studies elucidating central neuronal mechanisms leading to depressive-like behaviour in rodents and thereby unveiling the most promising routes for future research. A complex interacting network of relevant structures, in which central circuitries causally related to depressive-like behaviour are implicated, has been identified. As most relevant structures emerge: medial prefrontal cortex, anterior cingulate cortex, amygdala, nucleus accumbens, ventral tegmental area, hippocampus and raphe nuclei. Further evidence, though examined by only few studies, emerges for structures like the lateral habenula, or medial dorsal thalamus. Most of the identified brain areas have previously been associated with MDD neuropathology, but now evidence can be provided for causal pathological mechanisms within a complex cortico-limbic reward circuitry. However, the studies also show conflicting results concerning the mechanisms underlying the causal involvement of specific circuitries. Comparability of studies is partly limited since even small deviations in methodological approaches lead to different outcomes. Factors influencing study outcomes were identified and need to be considered in future studies (e.g. frequency used for stimulation, time and duration of stimulation, limitations of applied animal models of MDD).
Collapse
Affiliation(s)
- Tom Biselli
- Biological Psychology, TU Dresden, Dresden, Germany
| | | | | | | | - Andreas Walther
- Biological Psychology, TU Dresden, Dresden, Germany
- Clinical Psychology and Psychotherapy, University of Zurich, Zurich, Switzerland
| |
Collapse
|
40
|
Levinstein MR, Coffey KR, Marx RG, Lesiak AJ, Neumaier JF. Stress induces divergent gene expression among lateral habenula efferent pathways. Neurobiol Stress 2020; 13:100268. [PMID: 33344721 PMCID: PMC7739173 DOI: 10.1016/j.ynstr.2020.100268] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 11/05/2020] [Accepted: 11/10/2020] [Indexed: 11/06/2022] Open
Abstract
The lateral habenula (LHb) integrates critical information regarding aversive stimuli that shapes decision making and behavioral responses. The three major LHb outputs innervate dorsal raphe nucleus (DRN), ventral tegmental area (VTA), and the rostromedial tegmental nucleus (RMTg). LHb neurons that project to these targets are segregated and nonoverlapping, and this led us to consider whether they have distinct molecular phenotypes and adaptations to stress exposure. In order to capture a time-locked profile of gene expression after repeated forced swim stress, we used intersectional expression of RiboTag in rat LHb neurons and next-gen RNA sequencing to interrogate the RNAs actively undergoing translation from each of these pathways. The “translatome” in the neurons comprising these pathways was similar at baseline, but diverged after stress, especially in the neurons projecting to the RMTg. Using weighted gene co-expression network analysis, we found one module, which had an overrepresentation of genes associated with phosphoinositide 3 kinase (PI3K) signaling, comprising genes downregulated after stress in the RMTg-projecting LHb neurons. Reduced PI3K signaling in RMTg-projecting LHb neurons may be a compensatory adaptation that alters the functional balance of LHb outputs to GABAergic vs. monoaminergic neurons following repeated stress exposure.
Collapse
Affiliation(s)
- Marjorie R Levinstein
- Graduate Program in Neuroscience, University of Washington, Seattle, WA, USA.,Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - Kevin R Coffey
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - Russell G Marx
- Graduate Program in Neuroscience, University of Washington, Seattle, WA, USA.,Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - Atom J Lesiak
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA.,Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - John F Neumaier
- Graduate Program in Neuroscience, University of Washington, Seattle, WA, USA.,Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA.,Department of Pharmacology, University of Washington, Seattle, WA, USA
| |
Collapse
|
41
|
Vigil FA, Carver CM, Shapiro MS. Pharmacological Manipulation of K v 7 Channels as a New Therapeutic Tool for Multiple Brain Disorders. Front Physiol 2020; 11:688. [PMID: 32636759 PMCID: PMC7317068 DOI: 10.3389/fphys.2020.00688] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 05/27/2020] [Indexed: 12/12/2022] Open
Abstract
K v 7 ("M-type," KCNQ) K+ currents, play dominant roles in controlling neuronal excitability. They act as a "brake" against hyperexcitable states in the central and peripheral nervous systems. Pharmacological augmentation of M current has been developed for controlling epileptic seizures, although current pharmacological tools are uneven in practical usefulness. Lately, however, M-current "opener" compounds have been suggested to be efficacious in preventing brain damage after multiple types of insults/diseases, such as stroke, traumatic brain injury, drug addiction and mood disorders. In this review, we will discuss what is known to date on these efforts and identify gaps in our knowledge regarding the link between M current and therapeutic potential for these disorders. We will outline the preclinical experiments that are yet to be performed to demonstrate the likelihood of success of this approach in human trials. Finally, we also address multiple pharmacological tools available to manipulate different K v 7 subunits and the relevant evidence for translational application in the clinical use for disorders of the central nervous system and multiple types of brain insults. We feel there to be great potential for manipulation of K v 7 channels as a novel therapeutic mode of intervention in the clinic, and that the paucity of existing therapies obligates us to perform further research, so that patients can soon benefit from such therapeutic approaches.
Collapse
Affiliation(s)
- Fabio A Vigil
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX, United States
| | - Chase M Carver
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX, United States
| | - Mark S Shapiro
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX, United States
| |
Collapse
|
42
|
Khan AR, Geiger L, Wiborg O, Czéh B. Stress-Induced Morphological, Cellular and Molecular Changes in the Brain-Lessons Learned from the Chronic Mild Stress Model of Depression. Cells 2020; 9:cells9041026. [PMID: 32326205 PMCID: PMC7226496 DOI: 10.3390/cells9041026] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/14/2020] [Accepted: 04/19/2020] [Indexed: 02/07/2023] Open
Abstract
Major depressive disorder (MDD) is a severe illness imposing an increasing social and economic burden worldwide. Numerous rodent models have been developed to investigate the pathophysiology of MDD. One of the best characterized and most widely used models is the chronic mild stress (CMS) model which was developed more than 30 years ago by Paul Willner. More than 2000 published studies used this model, mainly to assess novel compounds with potential antidepressant efficacy. Most of these studies examined the behavioral consequences of stress and concomitant drug intervention. Much fewer studies focused on the CMS-induced neurobiological changes. However, the stress-induced cellular and molecular changes are important as they may serve as potential translational biomarkers and increase our understanding of the pathophysiology of MDD. Here, we summarize current knowledge on the structural and molecular alterations in the brain that have been described using the CMS model. We discuss the latest neuroimaging and postmortem histopathological data as well as molecular changes including recent findings on microRNA levels. Different chronic stress paradigms occasionally deliver dissimilar findings, but the available experimental data provide convincing evidence that the CMS model has a high translational value. Future studies examining the neurobiological changes in the CMS model in combination with clinically effective antidepressant drug intervention will likely deliver further valuable information on the pathophysiology of MDD.
Collapse
Affiliation(s)
- Ahmad Raza Khan
- Centre of Biomedical Research, Sanjay Gandhi Post Graduate Institute (SGPGI) Campus, Lucknow-226017, U.P, India;
| | - Lili Geiger
- Neurobiology of Stress Research Group, Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary;
- Department of Laboratory Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Ove Wiborg
- Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark;
| | - Boldizsár Czéh
- Neurobiology of Stress Research Group, Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary;
- Department of Laboratory Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary
- Correspondence:
| |
Collapse
|
43
|
Hu H, Cui Y, Yang Y. Circuits and functions of the lateral habenula in health and in disease. Nat Rev Neurosci 2020; 21:277-295. [PMID: 32269316 DOI: 10.1038/s41583-020-0292-4] [Citation(s) in RCA: 299] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2020] [Indexed: 12/14/2022]
Abstract
The past decade has witnessed exponentially growing interest in the lateral habenula (LHb) owing to new discoveries relating to its critical role in regulating negatively motivated behaviour and its implication in major depression. The LHb, sometimes referred to as the brain's 'antireward centre', receives inputs from diverse limbic forebrain and basal ganglia structures, and targets essentially all midbrain neuromodulatory systems, including the noradrenergic, serotonergic and dopaminergic systems. Its unique anatomical position enables the LHb to act as a hub that integrates value-based, sensory and experience-dependent information to regulate various motivational, cognitive and motor processes. Dysfunction of the LHb may contribute to the pathophysiology of several psychiatric disorders, especially major depression. Recently, exciting progress has been made in identifying the molecular and cellular mechanisms in the LHb that underlie negative emotional state in animal models of drug withdrawal and major depression. A future challenge is to translate these advances into effective clinical treatments.
Collapse
Affiliation(s)
- Hailan Hu
- Department of Psychiatry of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China. .,The MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou, China. .,NHC and CAMS Key Laboratory of Medical Neurobiology, Mental Health Center, Zhejiang University, Hangzhou, China. .,Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, China. .,Fountain-Valley Institute for Life Sciences, Guangzhou, China.
| | - Yihui Cui
- The MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou, China
| | - Yan Yang
- The MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou, China
| |
Collapse
|
44
|
Cheng Z, Cui R, Ge T, Yang W, Li B. Optogenetics: What it has uncovered in potential pathways of depression. Pharmacol Res 2020; 152:104596. [DOI: 10.1016/j.phrs.2019.104596] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/29/2019] [Accepted: 12/11/2019] [Indexed: 01/07/2023]
|
45
|
Metzger M, Souza R, Lima LB, Bueno D, Gonçalves L, Sego C, Donato J, Shammah-Lagnado SJ. Habenular connections with the dopaminergic and serotonergic system and their role in stress-related psychiatric disorders. Eur J Neurosci 2019; 53:65-88. [PMID: 31833616 DOI: 10.1111/ejn.14647] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/28/2019] [Accepted: 12/09/2019] [Indexed: 12/19/2022]
Abstract
The habenula (Hb) is a phylogenetically old epithalamic structure differentiated into two nuclear complexes, the medial (MHb) and lateral habenula (LHb). After decades of search for a great unifying function, interest in the Hb resurged when it was demonstrated that LHb plays a major role in the encoding of aversive stimuli ranging from noxious stimuli to the loss of predicted rewards. Consistent with a role as an anti-reward center, aberrant LHb activity has now been identified as a key factor in the pathogenesis of major depressive disorder. Moreover, both MHb and LHb emerged as new players in the reward circuitry by primarily mediating the aversive properties of distinct drugs of abuse. Anatomically, the Hb serves as a bridge that links basal forebrain structures with monoaminergic nuclei in the mid- and hindbrain. So far, research on Hb has focused on the role of the LHb in regulating midbrain dopamine release. However, LHb/MHb are also interconnected with the dorsal (DR) and median (MnR) raphe nucleus. Hence, it is conceivable that some of the habenular functions are at least partly mediated by the complex network that links MHb/LHb with pontomesencephalic monoaminergic nuclei. Here, we summarize research about the topography and transmitter phenotype of the reciprocal connections between the LHb and ventral tegmental area-nigra complex, as well as those between the LHb and DR/MnR. Indirect MHb outputs via interpeduncular nucleus to state-setting neuromodulatory networks will also be commented. Finally, we discuss the role of specific LHb-VTA and LHb/MHb-raphe circuits in anxiety and depression.
Collapse
Affiliation(s)
- Martin Metzger
- Department of Physiology & Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Rudieri Souza
- Department of Physiology & Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Leandro B Lima
- Department of Physiology & Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Debora Bueno
- Department of Physiology & Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Luciano Gonçalves
- Department of Human Anatomy, Federal University of the Triângulo Mineiro, Uberaba, Brazil
| | - Chemutai Sego
- Department of Physiology & Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Jose Donato
- Department of Physiology & Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Sara J Shammah-Lagnado
- Department of Physiology & Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
46
|
Fu R, Mei Q, Shiwalkar N, Zuo W, Zhang H, Gregor D, Patel S, Ye JH. Anxiety during alcohol withdrawal involves 5-HT2C receptors and M-channels in the lateral habenula. Neuropharmacology 2019; 163:107863. [PMID: 31778691 DOI: 10.1016/j.neuropharm.2019.107863] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 11/21/2019] [Accepted: 11/23/2019] [Indexed: 01/09/2023]
Abstract
Anxiety disorders often co-occur with alcohol use disorders, but the mechanisms underlying this comorbidity remain elusive. Previously, we reported that rats withdrawn from chronic alcohol consumption (Post-EtOH rats) exhibited robust anxiety-like behaviors (AB), which were accompanied by neuronal hyperexcitability, and the downregulation of M-type potassium channels (M-channels) in the lateral habenula (LHb); and that serotonin (5-HT) stimulated LHb neurons via type 2C receptors (5-HT2CRs). Also, 5-HT2CR activation is known to inhibit M-current in mouse hypothalamic neurons. The present study investigated whether LHb 5-HT2CRs and M-channels contribute to AB in adult male Long-Evans rats. We used the intermittent-access to 20% ethanol two-bottle free-choice drinking paradigm to induce dependence. We measured AB with the elevated plus-maze, open-field, and marble-burying tests at 24 h withdrawal. We found that intra-LHb infusion of SB242084, a selective 5-HT2CR antagonist alleviated AB and reduced the elevated c-Fos expression in the LHb of Post-EtOH rats. By contrast, intra-LHb infusion of the selective 5-HT2CR agonist WAY161503 induced AB and increased c-Fos expression in the LHb in alcohol-naive but not Post-EtOH rats. Also, intra-LHb SB242084 significantly reduced self-administration of alcohol intake in the operant chambers. Furthermore, both 5-HT2CR protein levels and 5-HIAA/5-HT ratio was increased in the LHb of Post-EtOH rats. Finally, intra-LHb SB242084 increased LHb KCNQ2/3 membrane protein expression in Post-EtOH rats. Collectively, these results suggest that enhanced LHb 5-HT2CR signaling that interacted with M-channels triggers AB in Post-EtOH rats and that 5-HT2CRs may be a promising target for treating comorbid anxiety disorders in alcoholics.
Collapse
Affiliation(s)
- Rao Fu
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, 07103, USA
| | - Qinghua Mei
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, 07103, USA
| | - Nimisha Shiwalkar
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, 07103, USA
| | - Wanhong Zuo
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, 07103, USA
| | - Haifeng Zhang
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, 07103, USA
| | - Danielle Gregor
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, 07103, USA
| | - Shivani Patel
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, 07103, USA
| | - Jiang-Hong Ye
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, 07103, USA.
| |
Collapse
|
47
|
Coccurello R. Anhedonia in depression symptomatology: Appetite dysregulation and defective brain reward processing. Behav Brain Res 2019; 372:112041. [DOI: 10.1016/j.bbr.2019.112041] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 12/22/2022]
|
48
|
Li W, Zuo W, Wu W, Zuo QK, Fu R, Wu L, Zhang H, Ndukwe M, Ye JH. Activation of glycine receptors in the lateral habenula rescues anxiety- and depression-like behaviors associated with alcohol withdrawal and reduces alcohol intake in rats. Neuropharmacology 2019; 157:107688. [PMID: 31254534 PMCID: PMC6677595 DOI: 10.1016/j.neuropharm.2019.107688] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/18/2019] [Accepted: 06/26/2019] [Indexed: 01/03/2023]
Abstract
The lateral habenula (LHb) is activated by a range of aversive states including those related to alcohol withdrawal and has glycine receptors (GlyRs), a sensitive target of alcohol. However, whether GlyRs in the LHb contribute to alcohol-related behaviors is unknown. Here, we report that rats experiencing withdrawal from chronic alcohol consumption showed higher anxiety and sensitivity to stress compared to their alcohol-naïve counterparts. Intra-LHb injection of glycine attenuated these aberrant behaviors and reduced alcohol intake upon alcohol re-access. Glycine's effect was blocked by strychnine, a GlyR antagonist, indicating that it was mediated by strychnine-sensitive GlyRs. Conversely, intra-LHb strychnine elicited anxiety- and depression-like behaviors in Naïve rats but not in withdrawal rats. Additionally, both the frequency and the amplitude of the spontaneous IPSCs were lower in LHb neurons in slices of withdrawal rats compared to naïve rats. Also, there were sporadic strychnine-sensitive synaptic events in some LHb neurons. Bath perfusion of strychnine induced a depolarizing inward current and increased action potential firings in LHb neurons. By contrast, bath perfusion of glycine or sarcosine, a glycine transporter subtype 1 inhibitor, inhibited LHb activity. Collectively, these data reveal that LHb neurons are under the tonic glycine inhibition both in physiological and pathological conditions. Activation of GlyRs reverses LHb hyperactivity, alleviates aberrant behaviors, and reduces alcohol intake, thus highlighting the GlyRs in the LHb as a potential therapeutic target for alcohol-use disorders.
Collapse
Affiliation(s)
- Wenting Li
- Department of Anesthesiology, Pharmacology, & Physiology, and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, USA
| | - Wanhong Zuo
- Department of Anesthesiology, Pharmacology, & Physiology, and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, USA
| | - Wei Wu
- Department of Anesthesiology, Pharmacology, & Physiology, and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, USA
| | - Qi Kang Zuo
- Department of Anesthesiology, Pharmacology, & Physiology, and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, USA
| | - Rao Fu
- Department of Anesthesiology, Pharmacology, & Physiology, and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, USA
| | - Liangzhi Wu
- Department of Anesthesiology, Pharmacology, & Physiology, and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, USA
| | - Haifeng Zhang
- Department of Anesthesiology, Pharmacology, & Physiology, and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, USA
| | - Michael Ndukwe
- Department of Anesthesiology, Pharmacology, & Physiology, and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, USA
| | - Jiang-Hong Ye
- Department of Anesthesiology, Pharmacology, & Physiology, and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, USA.
| |
Collapse
|
49
|
Bueno D, Lima LB, Souza R, Gonçalves L, Leite F, Souza S, Furigo IC, Donato J, Metzger M. Connections of the laterodorsal tegmental nucleus with the habenular‐interpeduncular‐raphe system. J Comp Neurol 2019; 527:3046-3072. [DOI: 10.1002/cne.24729] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Debora Bueno
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo São Paulo Brazil
| | - Leandro B. Lima
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo São Paulo Brazil
| | - Rudieri Souza
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo São Paulo Brazil
| | - Luciano Gonçalves
- Department of Human AnatomyFederal University of the Triângulo Mineiro Uberaba Brazil
| | - Fernanda Leite
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo São Paulo Brazil
| | - Stefani Souza
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo São Paulo Brazil
| | - Isadora C. Furigo
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo São Paulo Brazil
| | - Jose Donato
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo São Paulo Brazil
| | - Martin Metzger
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo São Paulo Brazil
| |
Collapse
|
50
|
Stress transforms lateral habenula reward responses into punishment signals. Proc Natl Acad Sci U S A 2019; 116:12488-12493. [PMID: 31152135 DOI: 10.1073/pnas.1903334116] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Neuronal activity in the lateral habenula (LHb), a brain region implicated in depression [C. D. Proulx, O. Hikosaka, R. Malinow, Nat. Neurosci. 17, 1146-1152 (2014)], decreases during reward and increases during punishment or reward omission [M. Matsumoto, O. Hikosaka, Nature 447, 1111-1115 (2007)]. While stress is a major risk factor for depression and strongly impacts the LHb, its effect on LHb reward signals is unknown. Here we image LHb neuronal activity in behaving mice and find that acute stress transforms LHb reward responses into punishment-like neural signals; punishment-like responses to reward omission also increase. These neural changes matched the onset of anhedonic behavior and were specific to LHb neurons that distinguished reward and its omission. Thus, stress distorts LHb responsivity to positive and negative feedback, which could bias individuals toward negative expectations, a key aspect of the proposed pathogenesis of depression [A. T. Beck, Depression: Clinical, Experimental, and Theoretical Aspects, sixth Ed (1967)].
Collapse
|