1
|
Courault P, Mérida I, Costes N, Redoute J, Zimmer L, Lancelot S. PET imaging of functional 5-HT 1A receptors with [ 18F]F13640: From PET kinetics modeling to static Standardized Uptake Values Ratio. Neuroimage 2025; 310:121110. [PMID: 40064318 DOI: 10.1016/j.neuroimage.2025.121110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 02/25/2025] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
PURPOSE F13640 is a highly selective serotonin 5-HT1A receptor ligand with agonist properties identified as a PET radiopharmaceutical candidate. In previous work, we showed the possibility to use long dynamic PET acquisition (225 min) combined with simplified kinetic modelling for [18F]F13640 quantification. In this work, we assessed the feasibility of static acquisition and quantification using standardized uptake value ratio (SUVR) as an alternative. METHODS Test-retest PET-MRI scans of 225 min were conducted in eight healthy male volunteers. For 17 brain regions, distribution volume ratios (DVR) were calculated from the whole kinetics using Logan plot modelling method with the cerebellum white matter as reference region. For the same regions, SUVR were also calculated from static images, for four 20-minute and four 10-minute time-intervals at various time of uptake. Reliability between SUVR and DVR measures were studied, and test-retest parameters were assessed between PET sessions for each time-interval. RESULTS Reproducibility of measures of SUVR compared to DVR were excellent, whatever the time interval (p < 0.001). For the 20-min. time-intervals, SUVR150-170 showed the best reproducibility and correlation parameters (R2 = 0.95 ± 0.03, intercept = 0.06 ± 0.02, slope = 0.95 ± 0.01). As well, for the 10-min. time-intervals, SUVR150-160 showed the best correlation (R2 = 0.94 ± 0.03, intercept = 0.07 ± 0.02, slope = 0.94 ± 0.01). SUVR reproducibility between test-retest sessions was also excellent for each time-interval. These results were valid for pooled regions as well as at regional level. CONCLUSION This study confirms the feasibility of static acquisitions to facilitate clinical use of the [18F]F13640 radiopharmaceutical to image functional 5-HT1A receptors. This involves off-camera injection, 10 to 20 mins static acquisition duration, and quantification using SUVR, while improving patient comfort.
Collapse
Affiliation(s)
- Pierre Courault
- Lyon Neuroscience Research Center (CRNL), INSERM, CNRS, Université Claude Bernard Lyon1, Lyon, France; Hospices Civils de Lyon (HCL), Lyon, France; CERMEP, Lyon, France.
| | | | - Nicolas Costes
- Lyon Neuroscience Research Center (CRNL), INSERM, CNRS, Université Claude Bernard Lyon1, Lyon, France; CERMEP, Lyon, France
| | | | - Luc Zimmer
- Lyon Neuroscience Research Center (CRNL), INSERM, CNRS, Université Claude Bernard Lyon1, Lyon, France; Hospices Civils de Lyon (HCL), Lyon, France; CERMEP, Lyon, France
| | - Sophie Lancelot
- Lyon Neuroscience Research Center (CRNL), INSERM, CNRS, Université Claude Bernard Lyon1, Lyon, France; Hospices Civils de Lyon (HCL), Lyon, France; CERMEP, Lyon, France
| |
Collapse
|
2
|
Svenningsson P, Odin P, Bergquist F, Wirdefeldt K, Nyholm D, Andréasson M, Markaki I, Johansson AC, Jergil M, Jankosky C, Varney MA, Herbrecht F, Johnson SA, Newman-Tancredi A. NLX-112 Randomized Phase 2A Trial: Safety, Tolerability, Anti-Dyskinetic, and Anti-Parkinsonian Efficacy. Mov Disord 2025. [PMID: 40091754 DOI: 10.1002/mds.30175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/13/2025] [Accepted: 03/03/2025] [Indexed: 03/19/2025] Open
Abstract
BACKGROUND Levodopa-induced dyskinesia (LID) in Parkinson's disease (PD) is associated with 'false neurotransmitter' release of dopamine from serotonin (5-HT) neurons. NLX-112 is a first-in-class, highly selective 5-HT1A receptor agonist which counteracts LIDs in experimental PD models. OBJECTIVES The primary objective was to evaluate the safety and tolerability of NLX-112 compared with placebo in people with PD. The secondary objective was to assess the preliminary efficacy of NLX-112 in reducing LID and its effects on PD symptoms. METHODS Participants received NLX-112 or placebo (2:1 ratio) alongside stable Parkinson's medications, with 22 participants completing the study. Dosing was up-titrated over 28 days to 2 mg/day (1 mg twice daily), stabilized for 14 days (to day 42), and down-titrated for 14 days. Efficacy was measured using the Unified Dyskinesia Rating Scale (UDysRS), Unified Parkinson's Disease Rating Scale (UPDRS), and Clinical Global Impression of Change (CGI-C) following a levodopa challenge (150% of usual dose). RESULTS Adverse events (AEs) were mainly central nervous system (CNS)-related and mostly occurred during up-titration, with no serious AEs in the NLX-112 group. There were no treatment-induced clinically significant changes in vital signs, electrocardiogram, or laboratory parameters. NLX-112 reduced LID from baseline levels: at day 42, UDysRS total score decreased by 6.3 points, whereas placebo group changes were not significant (-2.4). NLX-112 also reduced parkinsonism from baseline values: UPDRS Part 3 scores decreased by 3.7 points, whereas placebo group changes were non-significant (+0.1). In CGI-C assessment, the NLX-112 group showed greater improvement than the placebo group (53% vs. 29%). CONCLUSION These results support further clinical investigation of NLX-112 for treatment of PD LID. © 2025 Neurolixis SAS. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
| | - Per Odin
- Department of Clinical Sciences, Lund University, Skåne University Hospital, Lund, Sweden
| | - Filip Bergquist
- Sahlgrenska Hospital, Gothenburg, Sweden
- Department of Pharmacology, University of Gothenburg, Gothenburg, Sweden
| | - Karin Wirdefeldt
- Department of Neurology, Karolinska University Hospital, Solna, Sweden
| | | | | | | | | | - Måns Jergil
- Clinical Trial Consultants, AB, Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
3
|
Zimmer L, Newman-Tancredi A. Serotonin 5-HT 1A receptor biased agonists: The challenge of translating an innovative neuropharmacological concept into therapeutics. Neuropharmacology 2025; 265:110267. [PMID: 39681214 DOI: 10.1016/j.neuropharm.2024.110267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/24/2024] [Accepted: 12/11/2024] [Indexed: 12/18/2024]
Abstract
Serotonin 5-HT1A receptor agonists are prime candidates for CNS drug discovery due to their involvement physiological and pathological processes relevant to neurology and psychiatry. However, the lack of target specificity of many previously characterized agonists has long been a barrier to pharmacological and therapeutic progress. Some of the obstacles may be overcome through the recent concept of biased agonism, which has attracted considerable attention to the development of novel chemical entities at 5-HT, and particularly 5-HT1A receptors, by specifically targeting intracellular signalling pathways that may themselves be linked to specific brain regions and therapeutic indications. There is now abundant translational data demonstrating distinct molecular and functional pharmacological signatures between different 5-HT1A receptor agonists, opening new opportunities for research in neurology and psychiatry. Nevertheless, important limitations need to be overcome, including understanding the precise molecular basis for biased agonism, the need for improved translatable models, and the currently limited clinical data on biased agonists. Here, we review the current limits of our knowledge of 5-HT1A receptor biased agonists and the limitations of available pharmacological tools, counterbalanced by the translational possibilities and therapeutic perspectives opened by novel, highly selective 5-HT1A receptor drug-candidates. This article is part of the Special Issue on "Ligand Bias".
Collapse
Affiliation(s)
- Luc Zimmer
- Université Claude Bernard Lyon 1, Inserm, CNRS, Lyon Neuroscience Research Center, Lyon, France; Hospices Civils de Lyon, Lyon, France.
| | | |
Collapse
|
4
|
Depoortère RY, McCreary AC, Vidal B, Varney MA, Zimmer L, Newman-Tancredi A. Pharmacodynamic, pharmacokinetic and rat brain receptor occupancy profile of NLX-112, a highly selective 5-HT 1A receptor biased agonist. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:991-1002. [PMID: 39096379 DOI: 10.1007/s00210-024-03323-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/22/2024] [Indexed: 08/05/2024]
Abstract
NLX-112 (i.e., F13640, befiradol) exhibits nanomolar affinity, exceptional selectivity and full agonist efficacy at serotonin 5-HT1A receptors. NLX-112 shows efficacy in rat, marmoset and macaque models of L-DOPA induced dyskinesia (LID) in Parkinson's disease and has shown clinical efficacy in a Phase 2a proof-of-concept study for this indication. Here we investigated, in rats, its pharmacodynamic, pharmacokinetic (PK) and brain 5-HT1A receptor occupancy profiles, and its PK properties in the absence and presence of L-DOPA. Total and free NLX-112 exposure in plasma, CSF and striatal ECF was dose-proportional over the range tested (0.04, 0.16 and 0.63 mg/kg i.p.). NLX-112 exposure increased rapidly (Tmax 0.25-0.5h) and exhibited approximately threefold longer half-life in brain than in plasma (1.1 and 3.6h, respectively). At a pharmacologically relevant dose of 0.16 mg/kg i.p., previously shown to elicit anti-LID activity in parkinsonian rats, brain concentration of NLX-112 was 51-63 ng/g from 0.15 to 1h. In microPET imaging experiments, NLX-112 showed dose-dependent reduction of 18F-F13640 (i.e., 18F-NLX-112) brain 5-HT1A receptor labeling in cingulate cortex and striatum, regions associated with motor control and mood, with almost complete inhibition of labeling at the dose of 0.63 mg/kg i.p.. Co-administration of L-DOPA (6 mg/kg s.c., a dose used to elicit LID in parkinsonian rats) together with NLX-112 (0.16 mg/kg i.p.) did not modify PK parameters in rat plasma and brain of either NLX-112 or L-DOPA. Here, we demonstrate that NLX-112's profile is compatible with 'druggable' parameters for CNS indications, and the results provide measures of brain concentrations and 5-HT1A receptor binding parameters relevant to the anti-dyskinetic activity of the compound.
Collapse
Affiliation(s)
| | - Andrew C McCreary
- Brains On-Line, Groningen, Netherlands
- GW Pharmaceuticals, Cambridge, UK
| | - Benjamin Vidal
- Université Claude Bernard Lyon 1, Lyon Neuroscience Research Center, CNRS, INSERM, CERMEP-Imaging Platform, Bron, France
| | - Mark A Varney
- Neurolixis SAS, 2 Rue Georges Charpak, 81100, Castres, France
| | - Luc Zimmer
- Université Claude Bernard Lyon 1, Lyon Neuroscience Research Center, CNRS, INSERM, CERMEP-Imaging Platform, Bron, France
- Hospices Civils de Lyon, Lyon, France
| | | |
Collapse
|
5
|
Giorgioni G, Bonifazi A, Botticelli L, Cifani C, Matteucci F, Micioni Di Bonaventura E, Micioni Di Bonaventura MV, Giannella M, Piergentili A, Piergentili A, Quaglia W, Del Bello F. Advances in drug design and therapeutic potential of selective or multitarget 5-HT1A receptor ligands. Med Res Rev 2024; 44:2640-2706. [PMID: 38808959 DOI: 10.1002/med.22049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/14/2024] [Accepted: 05/03/2024] [Indexed: 05/30/2024]
Abstract
5-HT1A receptor (5-HT1A-R) is a serotoninergic G-protein coupled receptor subtype which contributes to several physiological processes in both central nervous system and periphery. Despite being the first 5-HT-R identified, cloned and studied, it still represents a very attractive target in drug discovery and continues to be the focus of a myriad of drug discovery campaigns due to its involvement in numerous neuropsychiatric disorders. The structure-activity relationship studies (SAR) performed over the last years have been devoted to three main goals: (i) design and synthesis of 5-HT1A-R selective/preferential ligands; (ii) identification of 5-HT1A-R biased agonists, differentiating pre- versus post-synaptic agonism and signaling cellular mechanisms; (iii) development of multitarget compounds endowed with well-defined poly-pharmacological profiles targeting 5-HT1A-R along with other serotonin receptors, serotonin transporter (SERT), D2-like receptors and/or enzymes, such as acetylcholinesterase and phosphodiesterase, as a promising strategy for the management of complex psychiatric and neurodegenerative disorders. In this review, medicinal chemistry aspects of ligands acting as selective/preferential or multitarget 5-HT1A-R agonists and antagonists belonging to different chemotypes and developed in the last 7 years (2017-2023) have been discussed. The development of chemical and pharmacological 5-HT1A-R tools for molecular imaging have also been described. Finally, the pharmacological interest of 5-HT1A-R and the therapeutic potential of ligands targeting this receptor have been considered.
Collapse
Affiliation(s)
- Gianfabio Giorgioni
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Alessandro Bonifazi
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Luca Botticelli
- Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Carlo Cifani
- Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Federica Matteucci
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | | | | | - Mario Giannella
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | | | - Alessia Piergentili
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Wilma Quaglia
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Fabio Del Bello
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| |
Collapse
|
6
|
Courault P, Bouvard S, Bouillot C, Zimmer L, Lancelot S. Preclinical investigation of the effect of stress on the binding of [ 18F]F13640, a 5-HT 1A radiopharmaceutical. Nucl Med Biol 2024; 138-139:108942. [PMID: 39151306 DOI: 10.1016/j.nucmedbio.2024.108942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND [18F]F13640 is a new PET radiopharmaceutical for brain molecular imaging of serotonin 5-HT1A receptors. Since we intend to use this radiopharmaceutical in psychiatric studies, it is crucial to establish possible sensitivity modification of 5-HT1A receptors availability during an acute stress exposure. In this study, we first assessed the cerebrometabolic effects of a new animal model of stress with [18F]FDG and then proceeded to test for effects of this model on the cerebral binding of [18F]F13640, a 5-HT1A receptors PET radiopharmaceutical. METHODS Four groups of male Sprague-Dawley were used to identify the optimal model: "stressed group" (n = 10), "post-traumatic stress disorder (PTSD) group" (n = 9) and "restraint group" (n = 8), compared with a control group (n = 8). All rats performed neuroimaging [18F]FDG μPET-CT to decipher which model was the most appropriate to test effects of stress on radiotracer binding. Subsequently, a group of rats (n = 10) underwent two PET imaging acquisitions (baseline and PTSD condition) using the PET radiopharmaceutical [18F]F13640 to assess influence of stress on its binding. Voxel-based analysis was performed to assess [18F]FDG or [18F]F13640 changes. RESULTS In [18F]FDG experiments, the PTSD group showed a pattern of cerebrometabolic activation in various brain regions previously implicated in stress (amygdala, perirhinal cortex, olfactory bulb and caudate). [18F]F13640 PET scans showed increased radiotracer binding in the PTSD condition in caudate nucleus and brainstem. CONCLUSIONS The present study demonstrated stress-induced cerebrometabolic activation or inhibition of various brain regions involved in stress model. Applying this model to our radiotracer, [18F]F13640 showed few influence of stress on its binding. This will enable to rule out any confounding effect of stress during imaging studies.
Collapse
Affiliation(s)
- Pierre Courault
- Lyon Neuroscience Research Center (CRNL), CNRS UMR5292, INSERM U1028, Univ. Lyon 1, Lyon, France; Hospices Civils de Lyon (HCL), Lyon, France; CERMEP-Imaging platform, Groupement Hospitalier Est, Bron, France.
| | - Sandrine Bouvard
- Lyon Neuroscience Research Center (CRNL), CNRS UMR5292, INSERM U1028, Univ. Lyon 1, Lyon, France
| | | | - Luc Zimmer
- Lyon Neuroscience Research Center (CRNL), CNRS UMR5292, INSERM U1028, Univ. Lyon 1, Lyon, France; Hospices Civils de Lyon (HCL), Lyon, France; CERMEP-Imaging platform, Groupement Hospitalier Est, Bron, France
| | - Sophie Lancelot
- Lyon Neuroscience Research Center (CRNL), CNRS UMR5292, INSERM U1028, Univ. Lyon 1, Lyon, France; Hospices Civils de Lyon (HCL), Lyon, France; CERMEP-Imaging platform, Groupement Hospitalier Est, Bron, France
| |
Collapse
|
7
|
The pathophysiology of Post SSRI Sexual Dysfunction - Lessons from a case study. Biomed Pharmacother 2023; 161:114166. [PMID: 36898260 DOI: 10.1016/j.biopha.2022.114166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 12/19/2022] [Accepted: 12/28/2022] [Indexed: 03/12/2023] Open
Abstract
BACKGROUND Although Post-SSRI Sexual Dysfunction (PSSD) has finally been recognized by the European Medicines Agency as a medical condition that can outlast discontinuation of SSRI and SNRI antidepressants, this condition is still largely unknown by patients, doctors, and researchers, and hence, poorly understood, underdiagnosed, and undertreated. OBJECTIVE Becoming familiar with the symptomatology of PSSD and understanding the underlying mechanisms and treatment options. METHOD We applied a design thinking approach to innovation to 1) provide insights into the medical condition as well as the personal needs and pains of a targeted patient; and 2) generate ideas for new solutions from the perspective of this particular patient. These insights and ideas informed a literature search on the potential pathophysiological mechanisms that could underlie the patient's symptoms. RESULTS The 55-year-old male patient developed symptoms of low libido, delayed ejaculation, erectile dysfunction, 'brain zaps', overactive bladder and urinary inconsistency after discontinuation of the SNRI venlafaxine. In many of these symptoms a dysregulation in serotonergic activity has been implicated, with an important role of 5-HT1A receptor downregulation and possible downstream effects on neurosteroid and oxytocin systems. CONCLUSIONS The clinical presentation and development of symptoms are suggestive of PSSD but need further clinical elaboration. Further knowledge of post-treatment changes in serotonergic - and possibly noradrenergic - mechanisms is required to improve our understanding of the clinical complaints and to inform appropriate treatment regimes.
Collapse
|
8
|
Courault P, Lancelot S, Costes N, Colom M, Le Bars D, Redoute J, Gobert F, Dailler F, Isal S, Iecker T, Newman-Tancredi A, Merida I, Zimmer L. [ 18F]F13640: a selective agonist PET radiopharmaceutical for imaging functional 5-HT 1A receptors in humans. Eur J Nucl Med Mol Imaging 2023; 50:1651-1664. [PMID: 36656363 PMCID: PMC10119077 DOI: 10.1007/s00259-022-06103-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 12/27/2022] [Indexed: 01/20/2023]
Abstract
PURPOSE F13640 (a.k.a. befiradol, NLX-112) is a highly selective 5-HT1A receptor ligand that was selected as a PET radiopharmaceutical-candidate based on animal studies. Due to its high efficacy agonist properties, [18F]F13640 binds preferentially to functional 5-HT1A receptors, which are coupled to intracellular G-proteins. Here, we characterize brain labeling of 5-HT1A receptors by [18F]F13640 in humans and describe a simplified model for its quantification. METHODS PET/CT and PET-MRI scans were conducted in a total of 13 healthy male volunteers (29 ± 9 years old), with arterial input functions (AIF) (n = 9) and test-retest protocol (n = 8). Several kinetic models were compared (one tissue compartment model, two-tissue compartment model, and Logan); two models with reference region were also evaluated: simplified reference tissue model (SRTM) and the logan reference model (LREF). RESULTS [18F]F13640 showed high uptake values in raphe nuclei and cortical regions. SRTM and LREF models showed a very high correlation with kinetic models using AIF. As concerns test-retest parameters and the prolonged binding kinetics of [18F]F13640, better reproducibility, and reliability were found with the LREF method. Cerebellum white matter and frontal lobe white matter stand out as suitable reference regions. CONCLUSION The favorable brain labeling and kinetic profile of [18F]F13640, its high receptor specificity and its high efficacy agonist properties open new perspectives for studying functionally active 5-HT1A receptors, unlike previous radiopharmaceuticals that act as antagonists. [18F]F13640's kinetic properties allow injection outside of the PET scanner with delayed acquisitions, facilitating the design of innovative longitudinal protocols in neurology and psychiatry. TRIAL REGISTRATION Trial Registration EudraCT 2017-002,722-21.
Collapse
Affiliation(s)
- Pierre Courault
- Université Claude Bernard Lyon 1, CNRS, INSERM, Lyon Neuroscience Research Center, Lyon, France.,Hospices Civils de Lyon (HCL), Lyon, France
| | - Sophie Lancelot
- Université Claude Bernard Lyon 1, CNRS, INSERM, Lyon Neuroscience Research Center, Lyon, France.,Hospices Civils de Lyon (HCL), Lyon, France.,CERMEP, Bron, France
| | - Nicolas Costes
- Université Claude Bernard Lyon 1, CNRS, INSERM, Lyon Neuroscience Research Center, Lyon, France.,CERMEP, Bron, France
| | | | - Didier Le Bars
- Hospices Civils de Lyon (HCL), Lyon, France.,CERMEP, Bron, France
| | | | - Florent Gobert
- Université Claude Bernard Lyon 1, CNRS, INSERM, Lyon Neuroscience Research Center, Lyon, France.,Hospices Civils de Lyon (HCL), Lyon, France
| | | | - Sibel Isal
- Hospices Civils de Lyon (HCL), Lyon, France
| | | | | | | | - Luc Zimmer
- Université Claude Bernard Lyon 1, CNRS, INSERM, Lyon Neuroscience Research Center, Lyon, France. .,Hospices Civils de Lyon (HCL), Lyon, France. .,CERMEP, Bron, France.
| |
Collapse
|
9
|
Fu H, Rong J, Chen Z, Zhou J, Collier T, Liang SH. Positron Emission Tomography (PET) Imaging Tracers for Serotonin Receptors. J Med Chem 2022; 65:10755-10808. [PMID: 35939391 DOI: 10.1021/acs.jmedchem.2c00633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) and 5-HT receptors (5-HTRs) have crucial roles in various neuropsychiatric disorders and neurodegenerative diseases, making them attractive diagnostic and therapeutic targets. Positron emission tomography (PET) is a noninvasive nuclear molecular imaging technique and is an essential tool in clinical diagnosis and drug discovery. In this context, numerous PET ligands have been developed for "visualizing" 5-HTRs in the brain and translated into human use to study disease mechanisms and/or support drug development. Herein, we present a comprehensive repertoire of 5-HTR PET ligands by focusing on their chemotypes and performance in PET imaging studies. Furthermore, this Perspective summarizes recent 5-HTR-focused drug discovery, including biased agonists and allosteric modulators, which would stimulate the development of more potent and subtype-selective 5-HTR PET ligands and thus further our understanding of 5-HTR biology.
Collapse
Affiliation(s)
- Hualong Fu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Jian Rong
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, Massachusetts 02114, United States.,Department of Radiology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Zhen Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jingyin Zhou
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Thomas Collier
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, Massachusetts 02114, United States.,Department of Radiology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Steven H Liang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, Massachusetts 02114, United States.,Department of Radiology, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
10
|
Mangeant R, Dubost E, Cailly T, Collot V. Radiotracers for the Central Serotoninergic System. Pharmaceuticals (Basel) 2022; 15:571. [PMID: 35631397 PMCID: PMC9143978 DOI: 10.3390/ph15050571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 12/10/2022] Open
Abstract
This review lists the most important radiotracers described so far for imaging the central serotoninergic system. Single-photon emission computed tomography and positron emission tomography radiotracers are reviewed and critically discussed for each receptor.
Collapse
Affiliation(s)
- Reynald Mangeant
- Centre d’Etudes et de Recherche sur le Médicament de Normandie (CERMN), UNICAEN, Normandie Univ., 14000 Caen, France; (R.M.); (E.D.)
- Institut Blood and Brain @ Caen Normandie (BB@C), Boulevard Henri Becquerel, 14000 Caen, France
| | - Emmanuelle Dubost
- Centre d’Etudes et de Recherche sur le Médicament de Normandie (CERMN), UNICAEN, Normandie Univ., 14000 Caen, France; (R.M.); (E.D.)
- Institut Blood and Brain @ Caen Normandie (BB@C), Boulevard Henri Becquerel, 14000 Caen, France
| | - Thomas Cailly
- Centre d’Etudes et de Recherche sur le Médicament de Normandie (CERMN), UNICAEN, Normandie Univ., 14000 Caen, France; (R.M.); (E.D.)
- Institut Blood and Brain @ Caen Normandie (BB@C), Boulevard Henri Becquerel, 14000 Caen, France
- UNICAEN, IMOGERE, Normandie Univ., 14000 Caen, France
- CHU Côte de Nacre, Department of Nuclear Medicine, 14000 Caen, France
| | - Valérie Collot
- Centre d’Etudes et de Recherche sur le Médicament de Normandie (CERMN), UNICAEN, Normandie Univ., 14000 Caen, France; (R.M.); (E.D.)
- Institut Blood and Brain @ Caen Normandie (BB@C), Boulevard Henri Becquerel, 14000 Caen, France
| |
Collapse
|
11
|
Vidal B, Levigoureux E, Chaib S, Bouillot C, Billard T, Newman-Tancredi A, Zimmer L. Different Alterations of Agonist and Antagonist Binding to 5-HT1A Receptor in a Rat Model of Parkinson’s Disease and Levodopa-Induced Dyskinesia: A MicroPET Study. JOURNAL OF PARKINSONS DISEASE 2021; 11:1257-1269. [DOI: 10.3233/jpd-212580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background: The gold-standard treatment for Parkinson’s disease is L-DOPA, which in the long term often leads to levodopa-induced dyskinesia. Serotonergic neurons are partially responsible for this, by converting L-DOPA into dopamine leading to its uncontrolled release as a “false neurotransmitter”. The stimulation of 5-HT1A receptors can reduce involuntary movements but this mechanism is poorly understood. Objective: This study aimed to investigate the functionality of 5-HT1A receptors using positron emission tomography in hemiparkinsonian rats with or without dyskinesia induced by 3-weeks daily treatment with L-DOPA. Imaging sessions were performed “off” L-DOPA. Methods: Each rat underwent a positron emission tomography scan with [18F]F13640, a 5-HT1AR agonist which labels receptors in a high affinity state for agonists, or with [18F]MPPF, a 5-HT1AR antagonist which labels all the receptors. Results: There were decreases of [18F]MPPF binding in hemiparkinsonian rats in cortical areas. In dyskinetic animals, changes were slighter but also found in other regions. In hemiparkinsonian rats, [18F]F13640 uptake was decreased bilaterally in the globus pallidus and thalamus. On the non-lesioned side, binding was increased in the insula, the hippocampus and the amygdala. In dyskinetic animals, [18F]F13640 binding was strongly increased in cortical and limbic areas, especially in the non-lesioned side. Conclusion: These data suggest that agonist and antagonist 5-HT1A receptor-binding sites are differently modified in Parkinson’s disease and levodopa-induced dyskinesia. In particular, these observations suggest a substantial involvement of the functional state of 5-HT1AR in levodopa-induced dyskinesia and emphasize the need to characterize this state using agonist radiotracers in physiological and pathological conditions.
Collapse
Affiliation(s)
- Benjamin Vidal
- Lyon Neuroscience Research Center, Université de Lyon, Université Claude Bernard Lyon 1, CNRS, INSERM, Lyon, France
| | - Elise Levigoureux
- Lyon Neuroscience Research Center, Université de Lyon, Université Claude Bernard Lyon 1, CNRS, INSERM, Lyon, France
- Hospices Civils de Lyon, Lyon, France
| | - Sarah Chaib
- Lyon Neuroscience Research Center, Université de Lyon, Université Claude Bernard Lyon 1, CNRS, INSERM, Lyon, France
- Hospices Civils de Lyon, Lyon, France
| | | | - Thierry Billard
- CERMEP-Imaging Platform, Bron, France
- Institute of Chemistry and Biochemistry, Université de Lyon, CNRS, Villeurbanne, France
| | | | - Luc Zimmer
- Lyon Neuroscience Research Center, Université de Lyon, Université Claude Bernard Lyon 1, CNRS, INSERM, Lyon, France
- Hospices Civils de Lyon, Lyon, France
- CERMEP-Imaging Platform, Bron, France
| |
Collapse
|
12
|
Newman-Tancredi A, Depoortère RY, Kleven MS, Kołaczkowski M, Zimmer L. Translating biased agonists from molecules to medications: Serotonin 5-HT 1A receptor functional selectivity for CNS disorders. Pharmacol Ther 2021; 229:107937. [PMID: 34174274 DOI: 10.1016/j.pharmthera.2021.107937] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/01/2021] [Accepted: 06/17/2021] [Indexed: 12/18/2022]
Abstract
Biased agonism (or "functional selectivity") at G-protein-coupled receptors has attracted rapidly increasing interest as a means to improve discovery of more efficacious and safer pharmacotherapeutics. However, most studies are limited to in vitro tests of cellular signaling and few biased agonists have progressed to in vivo testing. As concerns 5-HT1A receptors, which exert a major control of serotonergic signaling in diverse CNS regions, study of biased agonism has previously been limited by the poor target selectivity and/or partial agonism of classically available ligands. However, a new generation of highly selective, efficacious and druggable agonists has advanced the study of biased agonism at this receptor and created new therapeutic opportunities. These novel agonists show differential properties for G-protein signaling, cellular signaling (particularly pERK), electrophysiological effects, neurotransmitter release, neuroimaging by PET and pharmacoMRI, and behavioral tests of mood, motor activity and side effects. Overall, NLX-101 (a.k.a. F15599) exhibits preferential activation of cortical and brain stem 5-HT1A receptors, whereas NLX-112 (a.k.a. befiradol or F13640) shows prominent activation of 5-HT1A autoreceptors in Raphe nuclei and in regions associated with motor control. Accordingly, NLX-101 is potently active in rodent models of depression and respiratory control, whereas NLX-112 shows promising activity in models of Parkinson's disease across several species - rat, marmoset and macaque. Moreover, NLX-112 has also been labeled with 18F to produce the first agonist PET radiopharmaceutical (known as [18F]-F13640) for investigation of the active state of 5-HT1A receptors in rodent, primate and human. The structure-functional activity relationships of biased agonists have been investigated by receptor modeling and novel compounds have been identified which exhibit increased affinity at 5-HT1A receptors and new profiles of cellular signaling bias, notably for β-arrestin recruitment versus pERK. Taken together, the data suggest that 5-HT1A receptor biased agonists constitute potentially superior pharmacological agents for treatment of CNS disorders involving serotonergic mechanisms.
Collapse
Affiliation(s)
| | | | | | | | - Luc Zimmer
- Université Claude Bernard Lyon1, Lyon, France; Hospices Civils de Lyon, Lyon, France; Lyon Neuroscience Research Center, CNRS-INSERM, France
| |
Collapse
|
13
|
Colom M, Vidal B, Fieux S, Redoute J, Costes N, Lavenne F, Mérida I, Irace Z, Iecker T, Bouillot C, Billard T, Newman-Tancredi A, Zimmer L. [ 18F]F13640, a 5-HT 1A Receptor Radiopharmaceutical Sensitive to Brain Serotonin Fluctuations. Front Neurosci 2021; 15:622423. [PMID: 33762906 PMCID: PMC7982540 DOI: 10.3389/fnins.2021.622423] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/17/2021] [Indexed: 12/30/2022] Open
Abstract
Introduction Serotonin is involved in a variety of physiological functions and brain disorders. In this context, efforts have been made to investigate the in vivo fluctuations of this neurotransmitter using positron emission tomography (PET) imaging paradigms. Since serotonin is a full agonist, it binds preferentially to G-protein coupled receptors. In contrast, antagonist PET ligands additionally interact with uncoupled receptors. This could explain the lack of sensitivity to serotonin fluctuations of current 5-HT1A radiopharmaceuticals which are mainly antagonists and suggests that agonist radiotracers would be more appropriate to measure changes in neurotransmitter release. The present study evaluated the sensitivity to endogenous serotonin release of a recently developed, selective 5-HT1A receptor PET radiopharmaceutical, the agonist [18F]F13640 (a.k.a. befiradol or NLX-112). Materials and Methods Four cats each underwent three PET scans with [18F]F13640, i.e., a control PET scan of 90 min, a PET scan preceded 30 min before by an intravenous injection 1 mg/kg of d-fenfluramine, a serotonin releaser (blocking challenge), and a PET scan comprising the intravenous injection of 1 mg/kg of d-fenfluramine 30 min after the radiotracer injection (displacement challenge). Data were analyzed with regions of interest and voxel-based approaches. A lp-ntPET model approach was implemented to determine the dynamic of serotonin release during the challenge study. Results D-fenfluramine pretreatment elicited a massive inhibition of [18F]F13640 labeling in regions known to express 5-HT1A receptors, e.g., raphe nuclei, hippocampus, thalamus, anterior cingulate cortex, caudate putamen, occipital, frontal and parietal cortices, and gray matter of cerebellum. Administration of d-fenfluramine during PET acquisition indicates changes in occupancy from 10% (thalamus) to 31% (gray matter of cerebellum) even though the dissociation rate of [18F]F13640 over the 90 min acquisition time was modest. The lp-ntPET simulation succeeded in differentiating the control and challenge conditions. Conclusion The present findings demonstrate that labeling of 5-HT1A receptors with [18F]F13640 is sensitive to serotonin concentration fluctuations in vivo. Although the data underline the need to perform longer PET scan to ensure accurate measure of displacement, they support clinical development of [18F]F13640 as a tool to explore experimental paradigms involving physiological or pathological (neurological or neuropsychiatric pathologies) fluctuations of extracellular serotonin.
Collapse
Affiliation(s)
- Matthieu Colom
- Lyon Neuroscience Research Center, INSERM, CNRS, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France.,Hospices Civils de Lyon, Lyon, France
| | - Benjamin Vidal
- Lyon Neuroscience Research Center, INSERM, CNRS, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Sylvain Fieux
- Lyon Neuroscience Research Center, INSERM, CNRS, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | | | | | | | | | | | | | | | | | | | - Luc Zimmer
- Lyon Neuroscience Research Center, INSERM, CNRS, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France.,Hospices Civils de Lyon, Lyon, France.,CERMEP-Imagerie du Vivant, Bron, France.,Institut National des Sciences et Techniques Nucléaires, Gif-sur-Yvette, France
| |
Collapse
|
14
|
Pereira-Sousa J, Ferreira-Lomba B, Bellver-Sanchis A, Vilasboas-Campos D, Fernandes JH, Costa MD, Varney MA, Newman-Tancredi A, Maciel P, Teixeira-Castro A. Identification of the 5-HT 1A serotonin receptor as a novel therapeutic target in a C. elegans model of Machado-Joseph disease. Neurobiol Dis 2021; 152:105278. [PMID: 33516872 DOI: 10.1016/j.nbd.2021.105278] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/15/2021] [Accepted: 01/24/2021] [Indexed: 12/18/2022] Open
Abstract
Machado-Joseph disease (MJD) or Spinocerebellar ataxia type 3 (SCA3) is a progressive neurodegenerative disorder that affects movement coordination leading to a premature death. Despite several efforts, no disease-modifying treatment is yet available for this disease. Previous studies pinpointed the modulation of serotonergic signaling, through pharmacological inhibition of the serotonin transporter SERT, as a promising therapeutic approach for MJD/SCA3. Here, we describe the 5-HT1A receptor as a novel therapeutic target in MJD, using a C. elegans model of ATXN3 proteotoxicity. Chronic and acute administration of befiradol (also known as NLX-112), a highly specific 5-HT1A agonist, rescued motor function and suppressed mutant ATXN3 aggregation. This action required the 5-HT1A receptor orthologue in the nematode, SER-4. Tandospirone, a clinically tested 5-HT1A receptor partial agonist, showed a limited impact on animals' motor dysfunction on acute administration and a broader receptor activation profile upon chronic treatment, its effect depending on 5-HT1A but also on the 5-HT6/SER-5 and 5-HT7/SER-7 receptors. Our results support high potency and specificity of befiradol for activation of 5-HT1A/SER-4 receptors and highlight the contribution of the auto- and hetero-receptor function to the therapeutic outcome in this MJD model. Our study deepens the understanding of serotonergic signaling modulation in the suppression of ATXN3 proteotoxicity and suggests that a potent and selective 5-HT1A receptor agonist such as befiradol could constitute a promising therapeutic agent for MJD.
Collapse
Affiliation(s)
- Joana Pereira-Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory Braga/Guimarães, Portugal; Behavioral & Molecular Lab (Bn'ML), University of Minho, Braga, Portugal
| | - Bruna Ferreira-Lomba
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory Braga/Guimarães, Portugal
| | - Aina Bellver-Sanchis
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory Braga/Guimarães, Portugal
| | - Daniela Vilasboas-Campos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory Braga/Guimarães, Portugal
| | - Jorge H Fernandes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory Braga/Guimarães, Portugal
| | - Marta D Costa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory Braga/Guimarães, Portugal
| | | | | | - Patrícia Maciel
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory Braga/Guimarães, Portugal.
| | - Andreia Teixeira-Castro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory Braga/Guimarães, Portugal.
| |
Collapse
|
15
|
Razakarivony O, Newman-Tancredi A, Zimmer L. Towards in vivo imaging of functionally active 5-HT 1A receptors in schizophrenia: concepts and challenges. Transl Psychiatry 2021; 11:22. [PMID: 33414418 PMCID: PMC7791062 DOI: 10.1038/s41398-020-01119-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 11/13/2020] [Accepted: 11/20/2020] [Indexed: 12/18/2022] Open
Abstract
The serotonin 5-HT1A receptor has attracted wide attention as a target for treatment of psychiatric disorders. Although this receptor is important in the pharmacological mechanisms of action of new-generation antipsychotics, its characterization remains incomplete. Studies based on in vitro molecular imaging on brain tissue by autoradiography, and more recently in vivo PET imaging, have not yielded clear results, in particular due to the limitations of current 5-HT1A radiotracers, which lack specificity and/or bind to all 5-HT1A receptors, regardless of their functional status. The new concept of PET neuroimaging of functionally active G-protein-coupled receptors makes it possible to revisit PET brain exploration by enabling new research paradigms. For the 5-HT1A receptor it is now possible to use [18F]-F13640, a 5-HT1A receptor radioligand with high efficacy agonist properties, to specifically visualize and quantify functionally active receptors, and to relate this information to subjects' pathophysiological or pharmacological state. We therefore propose imaging protocols to follow changes in the pattern of functional 5-HT1A receptors in relation to mood deficits or cognitive processes. This could allow improved discrimination of different schizophrenia phenotypes and greater understanding of the basis of therapeutic responses to antipsychotic drugs. Finally, as well as targeting functionally active receptors to gain insights into the role of 5-HT1A receptors, the concept can also be extended to the study of other receptors involved in the pathophysiology or therapy of psychiatric disorders.
Collapse
Affiliation(s)
- Oriane Razakarivony
- grid.25697.3f0000 0001 2172 4233Université de Lyon, Lyon Neuroscience Research Center, INSERM, CNRS, Lyon, France ,grid.413852.90000 0001 2163 3825Hospices Civils de Lyon, Lyon, France
| | | | - Luc Zimmer
- Université de Lyon, Lyon Neuroscience Research Center, INSERM, CNRS, Lyon, France. .,Hospices Civils de Lyon, Lyon, France. .,CERMEP-Imagerie du Vivant, Bron, France. .,French National Institute for Nuclear Science and Technology, CEA Saclay, Gif-sur-Yvette, France.
| |
Collapse
|
16
|
Depoortere R, Johnston T, Fox S, Brotchie J, Newman-Tancredi A. The selective 5-HT1A receptor agonist, NLX-112, exerts anti-dyskinetic effects in MPTP-treated macaques. Parkinsonism Relat Disord 2020; 78:151-157. [DOI: 10.1016/j.parkreldis.2020.08.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/27/2020] [Accepted: 08/07/2020] [Indexed: 12/18/2022]
|
17
|
Lin CY, Sparks A, Lee YS. Improvement of lower urinary tract function by a selective serotonin 5-HT 1A receptor agonist, NLX-112, after chronic spinal cord injury. Exp Neurol 2020; 332:113395. [PMID: 32615138 DOI: 10.1016/j.expneurol.2020.113395] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/15/2020] [Accepted: 06/25/2020] [Indexed: 12/20/2022]
Abstract
Spinal cord injury (SCI) above the lumbosacral level results in lower urinary tract dysfunction, including (1) detrusor hyperreflexia, wherein bladder compliance is low, and (2) a lack of external urethral sphincter (EUS) control, leading to detrusor-sphincter dyssynergia (DSD) with poor voiding efficiency. Experimental studies in animals have shown a dense innervation of serotonergic (5-HT) fibers and multiple 5-HT receptors in the spinal reflex circuits that control voiding function. Here, we investigated the efficacy of NLX-112 (a.k.a. befiradol or F13640), in regulating lower urinary tract function after T8 contusive SCI in rats. NLX-112 is a very potent, highly-selective, and fully efficacious 5-HT1A receptor agonist, which has been developed for the treatment of L-DOPA-induced dyskinesia in Parkinson's disease patients. We performed urodynamics tests and external urethral sphincter electromyogram recordings to assess lower urinary tract function while NLX-112 was infused through the femoral vein in rats with chronic complete SCI or contusive SCI. The dose response studies indicated that NLX-112 was able to improve voiding behavior by regulating both detrusor and EUS activity. These included improvements in voiding efficiency, reduction of detrusor hyperactivity, and phasic activity of EUS during the micturition period. In addition, the application of a selective 5-HT1A receptor antagonist, WAY100635, reversed the improved detrusor and EUS activity elicited by NLX-112. In summary, the current data suggest that pharmacological activation of 5-HT1A receptors by NLX-112 may constitute a novel therapeutic strategy to treat neurogenic bladder after SCI.
Collapse
Affiliation(s)
- Ching-Yi Lin
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Alexander Sparks
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Yu-Shang Lee
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
18
|
Fisher R, Hikima A, Morris R, Jackson MJ, Rose S, Varney MA, Depoortere R, Newman-Tancredi A. The selective 5-HT 1A receptor agonist, NLX-112, exerts anti-dyskinetic and anti-parkinsonian-like effects in MPTP-treated marmosets. Neuropharmacology 2020; 167:107997. [PMID: 32057799 PMCID: PMC7103782 DOI: 10.1016/j.neuropharm.2020.107997] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/03/2020] [Accepted: 02/09/2020] [Indexed: 11/16/2022]
Abstract
l-DOPA is the gold-standard pharmacotherapy for treatment of Parkinson's disease (PD) but can lead to the appearance of troubling dyskinesia which are attributable to 'false neurotransmitter' release of dopamine by serotonergic neurons. Reducing the activity of these neurons diminishes l-DOPA-induced dyskinesia (LID), but there are currently no clinically approved selective, high efficacy 5-HT1A receptor agonists. Here we describe the effects of NLX-112, a highly selective and efficacious 5-HT1A receptor agonist, on LID in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated marmosets, a non-human primate model of PD. NLX-112 exhibited modest plasma half-life (~2h) and marked plasma protein binding (96%). When administered to parkinsonian marmosets with l-DOPA (7 mg/kg p.o.), NLX-112 (0.025, 0.1 and 0.4 mg/kg p.o.) reduced LID scores at early time-points after administration, whilst only minimally interfering with the l-DOPA-induced reversal of motor disability. In contrast, the prototypical 5-HT1A receptor agonist, (+)8-OH-DPAT (0.6 and 2 mg/kg p. o.), reduced LID but also abolished l-DOPA's anti-disability activity. Administered by itself, NLX-112 (0.1, 0.2 mg/kg p.o.) produced very little dyskinesia or locomotor activity, but reduced motor disability scores by about half the extent elicited by l-DOPA, suggesting that it may have motor facilitation effects of its own. Both NLX-112 and (+)8-OH-DPAT induced unusual and dose-limiting behaviors in marmoset that resembled 'serotonin behavioral syndrome' observed previously in rat. Overall, the present study showed that NLX-112 has anti-LID activity at the doses tested as well as reducing motor disability. The data suggest that additional investigation of NLX-112 is desirable to explore its potential as a treatment for PD and PD-LID.
Collapse
Affiliation(s)
- Ria Fisher
- Faculty of Life Sciences and Medicine, Hodgkin Building, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Atsuko Hikima
- Faculty of Life Sciences and Medicine, Hodgkin Building, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Rebecca Morris
- Faculty of Life Sciences and Medicine, Hodgkin Building, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Michael J Jackson
- Faculty of Life Sciences and Medicine, Hodgkin Building, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Sarah Rose
- Faculty of Life Sciences and Medicine, Hodgkin Building, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Mark A Varney
- Neurolixis SAS, 2 Rue Georges Charpak, 81100, Castres, France
| | | | | |
Collapse
|
19
|
Zimmer L. [PET imaging for better understanding of normal and pathological neurotransmission]. Biol Aujourdhui 2019; 213:109-120. [PMID: 31829931 DOI: 10.1051/jbio/2019025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Indexed: 11/14/2022]
Abstract
Positron emission tomography imaging is still an expanding field of preclinical and clinical investigations exploring the brain and its normal and pathological functions. In addition to technological improvements in PET scanners, the availability of suitable radiotracers for unexplored pharmacological targets is a key factor in this expansion. Many radiotracers (or radiopharmaceuticals, when administered to humans) have been developed by multidisciplinary teams to visualize and quantify a growing numbers of brain receptors, transporters, enzymes and other targets. The development of new PET radiotracers still represents an exciting challenge, given the large number of neurochemical functions that remain to be explored. In this article, we review the development context of the first preclinical radiotracers and their passage to humans. The main current contributions of PET radiotracers are described in terms of imaging neuronal metabolism, quantification of receptors and transporters, neurodegenerative and neuroinflammatory imaging. The different approaches to functional imaging of neurotransmission are also discussed. Finally, the contributions of PET imaging to the research and development of new brain drugs are described.
Collapse
Affiliation(s)
- Luc Zimmer
- Centre de Recherche en Neurosciences de Lyon (CNRS - INSERM - Université Claude Bernard Lyon 1), Lyon, France - CERMEP-Imagerie du Vivant, Hospices Civils de Lyon, Bron, France - Institut National des Sciences et Techniques Nucléaires, CEA, Saclay, France
| |
Collapse
|
20
|
Vidal B, Bolbos R, Redouté J, Langlois JB, Costes N, Newman-Tancredi A, Zimmer L. Pharmacological MRI to investigate the functional selectivity of 5-HT 1A receptor biased agonists. Neuropharmacology 2019; 172:107867. [PMID: 31783063 DOI: 10.1016/j.neuropharm.2019.107867] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/13/2019] [Accepted: 11/25/2019] [Indexed: 01/03/2023]
Abstract
The emerging concept of "biased agonism" denotes the phenomenon whereby agonists can preferentially direct receptor signalling to specific intracellular responses among the different transduction pathways, thus potentially avoiding side effects and improving therapeutic effects. The aim of this study was to investigate biased agonism by using pharmacological magnetic resonance imaging (phMRI). The cerebral blood oxygen level dependent (BOLD) signal changes induced by increasing doses of two serotonin 5-HT1A receptor biased agonists, NLX-112 and NLX-101, were mapped in anaesthetized rats. Although both compounds display high affinity, selectivity and agonist efficacy for 5-HT1A receptors, NLX-101 is known to preferentially activate post-synaptic receptors, whereas NLX-112 targets both pre- and post-synaptic receptors. We used several doses of agonists in order to determine if the regional selectivity of NLX-101 was dose-dependent. NLX-112 and NLX-101 induced different positive and negative hemodynamic changes patterns at equal doses. Importantly, NLX-101 had no significant effect in regions expressing pre-synaptic receptors contrary to NLX-112. NLX-112 also produced higher BOLD changes than NLX-101 in the orbital cortex, the somatosensory cortex, and the magnocellular preoptic nuclei. In other regions such as the retrosplenial cortex and the dorsal thalamus, the drugs had similar effects. In terms of functional connectivity, NLX-112 induced more widespread changes than NLX-101. The present phMRI study demonstrates that two closely-related agonists display notable differences in their hemodynamic "fingerprints". These data support the concept of biased agonism at 5-HT1A receptors and raise the prospect of identifying novel therapeutics which exhibit improved targeting of brain regions implicated in neuropsychiatric disorders. This article is part of the special issue entitled 'Serotonin Research: Crossing Scales and Boundaries'.
Collapse
Affiliation(s)
- Benjamin Vidal
- Université de Lyon, Lyon Neuroscience Research Center, INSERM, CNRS, Bron, France
| | | | | | | | | | | | - Luc Zimmer
- Université de Lyon, Lyon Neuroscience Research Center, INSERM, CNRS, Bron, France; CERMEP-Imagerie du Vivant, Bron, France; Hospices Civils de Lyon, Lyon, France; National Institute for Nuclear Science and Technology, Saclay, France.
| |
Collapse
|
21
|
18F-F13640 PET imaging of functional receptors in humans. Eur J Nucl Med Mol Imaging 2019; 47:220-221. [DOI: 10.1007/s00259-019-04473-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 07/30/2019] [Indexed: 10/26/2022]
|
22
|
Levigoureux E, Vidal B, Fieux S, Bouillot C, Emery S, Newman-Tancredi A, Zimmer L. Serotonin 5-HT 1A Receptor Biased Agonists Induce Different Cerebral Metabolic Responses: A [ 18F]-Fluorodesoxyglucose Positron Emission Tomography Study in Conscious and Anesthetized Rats. ACS Chem Neurosci 2019; 10:3108-3119. [PMID: 30576601 DOI: 10.1021/acschemneuro.8b00584] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Serotonin 5-HT1A receptors constitute an attractive therapeutic target for various psychiatric or neurodegenerative disorders. These receptors are expressed in multiple brain regions on different neuronal populations and can be coupled with distinct G-protein subtypes; such functional diversity complicates the use of 5-HT1A ligands in several pathologies where it would be desirable to stimulate the receptors in a precise region. Therefore, using "biased agonists" able to target specifically certain subpopulations of 5-HT1A receptors would enable achievement of better therapeutic benefit. Several 5-HT1A receptor biased agonists are currently in development, including NLX-101 (aka F15599) and NLX-112 (aka F13640, befiradol), with preclinical data suggesting that they preferentially target different populations of 5-HT1A receptors. However, most previous studies used invasive and regionally limited approaches. In this context, [18F]-fluorodesoxyglucose (FDG)-positron emission tomography (PET) imaging constitutes an interesting technique as it enables noninvasive mapping of the regional brain activity changes following a pharmacological challenge in conscious animals. We report here the evaluation of cerebral glucose metabolism following intraperitoneal injection of different doses of NLX-112 or NLX-101 in conscious or isoflurane-anesthetized rats. The biased agonists produced different metabolic "fingerprints" with distinct regional preferences, consistent with previous studies. At equal doses, the effect of NLX-101 was less marked than NLX-112 in the piriform cortex, in the striatum (in terms of inhibition), and in the pontine nuclei and the cerebellum (in terms of activation); furthermore, only NLX-112 increased the glucose metabolism in the parietal cortex, whereas only NLX-101 induced a clear activation in the colliculi and the frontal cortex, which may be related to its distinctive procognitive profile. Both agonist effects were almost completely unapparent in anesthetized animals, underlining the importance of studying serotonergic neurotransmission in the conscious state. In this regard, [18F]FDG-PET imaging seems very complementary with other functional imaging techniques such as pharmacological MRI.
Collapse
Affiliation(s)
- Elise Levigoureux
- Université de Lyon, Université Claude Bernard Lyon 1, Lyon Neuroscience Research Center, CNRS UMR5292, INSERM U1028, Lyon 69677, France
- Hospices Civils de Lyon, Lyon 69677, France
| | - Benjamin Vidal
- Université de Lyon, Université Claude Bernard Lyon 1, Lyon Neuroscience Research Center, CNRS UMR5292, INSERM U1028, Lyon 69677, France
| | - Sylvain Fieux
- Université de Lyon, Université Claude Bernard Lyon 1, Lyon Neuroscience Research Center, CNRS UMR5292, INSERM U1028, Lyon 69677, France
| | | | - Stéphane Emery
- Université de Lyon, Université Claude Bernard Lyon 1, Lyon Neuroscience Research Center, CNRS UMR5292, INSERM U1028, Lyon 69677, France
- Hospices Civils de Lyon, Lyon 69677, France
| | | | - Luc Zimmer
- Université de Lyon, Université Claude Bernard Lyon 1, Lyon Neuroscience Research Center, CNRS UMR5292, INSERM U1028, Lyon 69677, France
- Hospices Civils de Lyon, Lyon 69677, France
- CERMEP-Imaging Platform, Bron 69677, France
| |
Collapse
|
23
|
1,3-Dioxane as a scaffold for potent and selective 5-HT 1AR agonist with in-vivo anxiolytic, anti-depressant and anti-nociceptive activity. Eur J Med Chem 2019; 176:310-325. [PMID: 31112892 DOI: 10.1016/j.ejmech.2019.05.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/27/2019] [Accepted: 05/06/2019] [Indexed: 12/19/2022]
Abstract
A series of compounds generated by ring expansion/opening and molecular elongation/simplification of the 1,3-dioxolane scaffold were prepared and tested for binding affinity at 5-HT1AR and α1 adrenoceptors. The compounds with greater affinity were selected for further functional studies. N-((2,2-diphenyl-1,3-dioxan-5-yl)methyl)-2-(2-methoxyphenoxy)ethan-1-ammonium hydrogen oxalate (12) emerged as highly potent full agonist at the 5-HT1AR (pKi 5-HT1A = 8.8; pD2 = 9.22, %Emax = 92). The pharmacokinetic data in rats showed that the orally administered 12 has a high biodistribution in the brain compartment. Thus, 12 was further investigated in-vivo, showing an anxiolytic and antidepressant effect. Moreover, in the formalin test, 12 was able to decrease the late response to the noxious stimulus, indicating a potential use in the treatment of chronic pain.
Collapse
|
24
|
Lindberg A, Lu S, Nag S, Schou M, Liow JS, Zoghbi SS, Frankland MP, Gladding RL, Morse CL, Takano A, Amini N, Elmore CS, Lee YS, Innis RB, Halldin C, Pike VW. Synthesis and evaluation of two new candidate high-affinity full agonist PET radioligands for imaging 5-HT 1B receptors. Nucl Med Biol 2019; 70:1-13. [PMID: 30811975 DOI: 10.1016/j.nucmedbio.2019.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/17/2019] [Accepted: 01/21/2019] [Indexed: 11/17/2022]
Abstract
INTRODUCTION The serotonin 1B receptor subtype is of interest in the pathophysiology and treatment of depression, anxiety, and migraine. Over recent years 5-HT1B receptor binding in human brain has been examined with PET using radioligands that are partial but not full agonists. To explore how the intrinsic activity of a PET radioligand may affect imaging performance, two high-affinity full 5-HT1B receptor agonists (AZ11136118, 4; and AZ11895987, 5) were selected from a large compound library and radiolabeled for PET examination in non-human primates. METHODS [11C]4 was obtained through Pd(0)-mediated insertion of [11C]carbon monoxide between prepared iodoarene and homochiral amine precursors. [11C]5 was obtained through N-11C-methylation of N-desmethyl precursor 6 with [11C]methyl triflate. [11C]4 and [11C]5 were studied with PET in rhesus or cynomolgus monkey. [11C]4 was studied with PET in mice and rats to measure brain uptake and specific binding. Ex-vivo experiments in rats were performed to identify whether there were radiometabolites in brain. Physiochemical parameters for [11C]4 (pKa, logD and conformational energetics) were evaluated. RESULTS Both [11C]4 and [11C]5 were successfully produced in high radiochemical purity and in adequate amounts for PET experiments. After intravenous injection of [11C]4, brain radioactivity peaked at a low level (0.2 SUV). Pretreatment with tariquidar, an inhibitor of the brain P-gp efflux transporter, increased brain exposure four-fold whereas pretreatment with a high pharmacological dose of the 5-HT1B antagonist, AR-A000002, had no effect on the binding. Ex-vivo experiments in rats showed no radiometabolites entering brain. [11C]5 also failed to enter monkey brain under baseline conditions. CONCLUSIONS [11C]4 and [11C]5 show too low brain uptake and specific binding to be useful PET radioligands. Low brain uptake is partly ascribed to efflux transporter action as well as unfavorable conformations.
Collapse
Affiliation(s)
- Anton Lindberg
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-17176 Stockholm, Sweden; Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892-1003, USA.
| | - Shuiyu Lu
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892-1003, USA
| | - Sangram Nag
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-17176 Stockholm, Sweden
| | - Magnus Schou
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-17176 Stockholm, Sweden; PET Science Centre, Precision Medicine and Genomics, IMED Biotech Unit, AstraZeneca, SE-17176 Stockholm, Sweden
| | - Jeih-San Liow
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892-1003, USA
| | - Sami S Zoghbi
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892-1003, USA
| | - Michael P Frankland
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892-1003, USA
| | - Robert L Gladding
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892-1003, USA
| | - Cheryl L Morse
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892-1003, USA
| | - Akihiro Takano
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-17176 Stockholm, Sweden
| | - Nahid Amini
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-17176 Stockholm, Sweden
| | - Charles S Elmore
- Isotope Chemistry, Early Chemical Development, Pharmaceutical Sciences, IMED Biotech Unit, AstraZeneca, SE-43250 Göteborg, Sweden
| | - Yong Sok Lee
- Center for Molecular Modeling, Center for Information Technology, National Institutes of Health, Bethesda, MD 20892-5624, USA
| | - Robert B Innis
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892-1003, USA
| | - Christer Halldin
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-17176 Stockholm, Sweden
| | - Victor W Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892-1003, USA
| |
Collapse
|
25
|
Shalgunov V, van Waarde A, Booij J, Michel MC, Dierckx RAJO, Elsinga PH. Hunting for the high-affinity state of G-protein-coupled receptors with agonist tracers: Theoretical and practical considerations for positron emission tomography imaging. Med Res Rev 2018; 39:1014-1052. [PMID: 30450619 PMCID: PMC6587759 DOI: 10.1002/med.21552] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/02/2018] [Accepted: 10/19/2018] [Indexed: 12/15/2022]
Abstract
The concept of the high‐affinity state postulates that a certain subset of G‐protein‐coupled receptors is primarily responsible for receptor signaling in the living brain. Assessing the abundance of this subset is thus potentially highly relevant for studies concerning the responses of neurotransmission to pharmacological or physiological stimuli and the dysregulation of neurotransmission in neurological or psychiatric disorders. The high‐affinity state is preferentially recognized by agonists in vitro. For this reason, agonist tracers have been developed as tools for the noninvasive imaging of the high‐affinity state with positron emission tomography (PET). This review provides an overview of agonist tracers that have been developed for PET imaging of the brain, and the experimental paradigms that have been developed for the estimation of the relative abundance of receptors configured in the high‐affinity state. Agonist tracers appear to be more sensitive to endogenous neurotransmitter challenge than antagonists, as was originally expected. However, other expectations regarding agonist tracers have not been fulfilled. Potential reasons for difficulties in detecting the high‐affinity state in vivo are discussed.
Collapse
Affiliation(s)
- Vladimir Shalgunov
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Aren van Waarde
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jan Booij
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Martin C Michel
- Department of Pharmacology, Johannes Gutenberg University, Mainz, Germany
| | - Rudi A J O Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Department of Nuclear Medicine, Ghent University, University Hospital, Ghent, Belgium
| | - Philip H Elsinga
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
26
|
Staroń J, Bugno R, Hogendorf AS, Bojarski AJ. 5-HT1A receptor ligands and their therapeutic applications: review of new patents. Expert Opin Ther Pat 2018; 28:679-689. [DOI: 10.1080/13543776.2018.1514011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Jakub Staroń
- Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Ryszard Bugno
- Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Adam S. Hogendorf
- Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | | |
Collapse
|