1
|
Zhu J, Chen Y, Liu X, Sun Z, Zhang J, Shen T, Niu Y, Xiao Z. Zebrafish as a model for olfactory research: A systematic review from molecular mechanism to technology application. Food Chem 2025; 487:144698. [PMID: 40373719 DOI: 10.1016/j.foodchem.2025.144698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/25/2025] [Accepted: 05/08/2025] [Indexed: 05/17/2025]
Abstract
Zebrafish with unique biological traits can serve as an ideal model for studying olfactory mechanisms. This review analyzes their olfactory system, focusing on the regulation of receptor gene expression, mechanisms of odor recognition, and research methodologies including behavioral assays, molecular docking, and biotechnological approaches. Current limitations include predominantly qualitative data, insufficient cross-species comparisons, and unclear mechanisms of environmental modulation. Nevertheless, zebrafish models show significant potential in deciphering human olfaction and applications in neuroscience, biotechnology, healthcare, food safety, and environmental monitoring. Future research should establish cross-species olfactory databases, standardize behavioral assessments, and resolve technical bottlenecks to advance applications in precision medicine, food quality control, and pollutant detection.
Collapse
Affiliation(s)
- JianCai Zhu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - YingQian Chen
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - XiaoJie Liu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - ZhenChun Sun
- Guizhou Academy of Tobacco Science, Guiyang 550081, China
| | - Jing Zhang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - TianYin Shen
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - YunWei Niu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China.
| | - ZuoBing Xiao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
2
|
Algin O, Cetinkaya K, Oto C, Ayberk G. Evaluation of the Glymphatic System in Rabbits Using Gadobutrol-Enhanced MR Cisternography With T1 and T2 Mapping. NMR IN BIOMEDICINE 2025; 38:e5314. [PMID: 39721674 DOI: 10.1002/nbm.5314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/21/2024] [Accepted: 12/08/2024] [Indexed: 12/28/2024]
Abstract
PURPOSE We aimed to characterize and further understand CSF circulation and outflow of rabbits. To our knowledge, there is no research on contrast material-enhanced MR cisternography (CE-MRC) with T1 and T2 mapping in the rabbit model using a clinical 3-T MR unit without a stereotaxic frame. MATERIALS AND METHODS Twenty-one rabbits were included in the study. The CE-MRC exams with T1/T2 mappings were categorized into approximate time points based on an intention-to-scan approach: precontrast, less than 4 h after contrast, 24 h after contrast, and 24 to 120 h after gadobutrol. The presence of contrast media in the head and neck structures was scored with a 3-point scale (present, score: 2; absent, score: 0; and inconsistent, score: 1). T1 and T2 estimates were directly derived by drawing regions of interest on the corresponding maps. RESULTS Gadobutrol accumulation was detected in the CSF near the cribriform plate and nasal areas on early-phase postcontrast images of all animals. These contrast material accumulations completely disappeared on the images obtained in postcontrast ≥ 24 h. The lowest T1 and T2 estimates in olfactory and cerebral areas were observed on early-phase images. Significant correlations were observed between the enhancement of the bladder and the medial portion of the sclera and the enhancement of inner ear structures, olfactory regions, turbinates, nasal cavities, and cranial subarachnoid spaces. The T1 and T2 estimates of the septum and olfactory bulb were generally lower than those measured in the frontal and parietal lobes on early-phase images. DISCUSSION Our findings, which indicate an absence of clearly visible arachnoid granulations in rabbits, support the significance of olfactory outflow and the glymphatic system as highlighted in recent literature. Glymphatic transport can be more effectively demonstrated using T1 mapping in rabbits. The anatomical and physiological differences between human and rodent central nervous systems must be considered when translating experimental results from rabbits to humans.
Collapse
Affiliation(s)
- Oktay Algin
- Department of Radiology, Medical Faculty, Ankara University, Ankara, Türkiye
- Interventional MR Clinical R&D Institute, Ankara University, Ankara, Altındag, Türkiye
- National MR Research Center, Bilkent University, Ankara, Türkiye
| | - Kadir Cetinkaya
- Neurosurgery Department, Tokat Government Hospital, Tokat, Türkiye
| | - Cagdas Oto
- Department of Radiology, Medical Faculty, Ankara University, Ankara, Türkiye
- Interventional MR Clinical R&D Institute, Ankara University, Ankara, Altındag, Türkiye
- National MR Research Center, Bilkent University, Ankara, Türkiye
- Department of Anatomy, Veterinary Faculty, Ankara University, Ankara, Türkiye
| | - Gıyas Ayberk
- Neurosurgery Department, Medical Faculty, Yıldırım Beyazıt University, Ankara, Türkiye
| |
Collapse
|
3
|
Fong LHN, Nong SZ, Wu AMS, Fong DKC. Scent-driven Selective Attention on Gambling Outcome: Implications for Responsible Gambling. J Gambl Stud 2024; 40:1823-1838. [PMID: 39126590 DOI: 10.1007/s10899-024-10346-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2024] [Indexed: 08/12/2024]
Abstract
Many casinos diffuse a pleasant ambient scent into their facilities as a customer experience management practice, but the ethics of this scenting process is questionable. Although the effect of a pleasant scent on cognitive, emotional, and behavioral responses has been well-documented, its effect on attention during gambling has yet to be explored. Grounded in the tenets of the top-down control of attention and cross-modal correspondence between vision and olfaction, we conduct two eye-tracking experiments that involve different electronic casino games including video slots and live Cussec. The findings consistently show that pleasant ambient scent prolongs attention and induces more frequent attention to the win/loss areas on the video screen. The findings add to the implications related to responsible gambling by inspiring the stakeholders to consider the use of ambient scent in the gambling environment. Theoretically, the findings offer insights into scent as the catalyst that directs attention to goal-related information, while scent and goal do not need to be congruent in traits.
Collapse
Affiliation(s)
- Lawrence Hoc Nang Fong
- Faculty of Business Administration and Center for Cognitive and Brain Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR.
| | - Sunny Zhenzhen Nong
- Faculty of Business Administration and Center for Cognitive and Brain Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR
| | - Anise M S Wu
- Faculty of Social Sciences and Center for Cognitive and Brain Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR
| | - Davis Ka Chio Fong
- Faculty of Business Administration and Center for Cognitive and Brain Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR
| |
Collapse
|
4
|
Ruiz-Rubio S, Ortiz-Leal I, Torres MV, Elsayed MGA, Somoano A, Sanchez-Quinteiro P. The Accessory Olfactory Bulb in Arvicola scherman: A Neuroanatomical Study in a Subterranean Mammal. Animals (Basel) 2024; 14:3285. [PMID: 39595335 PMCID: PMC11591111 DOI: 10.3390/ani14223285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/07/2024] [Accepted: 11/10/2024] [Indexed: 11/28/2024] Open
Abstract
The accessory olfactory bulb (AOB) processes chemical signals crucial for species-specific socio-sexual behaviors. There is limited information about the AOB of wild rodents, and this study aims to characterize the neurochemical organization of the AOB in the fossorial water vole (Arvicola scherman), a subterranean Cricetidae rodent. We employed histological, immunohistochemical, and lectin-histochemical techniques. The AOB of these voles exhibits a distinct laminar organization, with prominent mitral cells and a dense population of periglomerular cells. Lectin histochemistry and G-protein immunohistochemistry confirmed the existence of an antero-posterior zonation. Immunohistochemical analysis demonstrated significant expression of PGP 9.5, suggesting its involvement in maintaining neuronal activity within the AOB. In contrast, the absence of SMI-32 labelling in the AOB, compared to its strong expression in the main olfactory bulb, highlights functional distinctions between these two olfactory subsystems. Calcium-binding proteins allowed the characterization of atypical sub-bulbar nuclei topographically related to the AOB. All these features suggest that the AOB of Arvicola scherman is adapted for enhanced processing of chemosensory signals, which may play a pivotal role in its subterranean lifestyle. Our results provide a foundation for future studies exploring the implications of these adaptations, including potential improvements in the management of these vole populations.
Collapse
Affiliation(s)
- Sara Ruiz-Rubio
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of Veterinary, University of Santiago de Compostela, Av. Carballo Calero s/n, 27002 Lugo, Spain; (S.R.-R.); (I.O.-L.); (M.V.T.)
| | - Irene Ortiz-Leal
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of Veterinary, University of Santiago de Compostela, Av. Carballo Calero s/n, 27002 Lugo, Spain; (S.R.-R.); (I.O.-L.); (M.V.T.)
| | - Mateo V. Torres
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of Veterinary, University of Santiago de Compostela, Av. Carballo Calero s/n, 27002 Lugo, Spain; (S.R.-R.); (I.O.-L.); (M.V.T.)
- Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria (IDIS), University of Santiago de Compostela, 15705 Santiago de Compostela, Spain
| | - Mostafa G. A. Elsayed
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Sohag University, Sohag 1646130, Egypt;
| | - Aitor Somoano
- Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), 33300 Villaviciosa, Spain;
| | - Pablo Sanchez-Quinteiro
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of Veterinary, University of Santiago de Compostela, Av. Carballo Calero s/n, 27002 Lugo, Spain; (S.R.-R.); (I.O.-L.); (M.V.T.)
| |
Collapse
|
5
|
Ruiz-Rubio S, Ortiz-Leal I, Torres MV, Somoano A, Sanchez-Quinteiro P. Do fossorial water voles have a functional vomeronasal organ? A histological and immunohistochemical study. Anat Rec (Hoboken) 2024; 307:2912-2932. [PMID: 38112130 DOI: 10.1002/ar.25374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/02/2023] [Accepted: 12/06/2023] [Indexed: 12/20/2023]
Abstract
The fossorial water vole, Arvicola scherman, is an herbivorous rodent that causes significant agricultural damages. The application of cairomones and alarm pheromones emerges as a promising sustainable method to improve its integrated management. These chemical signals would induce stress responses that could interfere with the species regular reproductive cycles and induce aversive reactions, steering them away from farmlands and meadows. However, there is a paucity of information regarding the water vole vomeronasal system, both in its morphological foundations and its functionality, making it imperative to understand the same for the application of chemical communication in pest control. This study fills the existing gaps in knowledge through a morphological and immunohistochemical analysis of the fossorial water vole vomeronasal organ. The study is primarily microscopic, employing two approaches: histological, using serial sections stained with various dyes (hematoxylin-eosin, Periodic acid-Schiff, Alcian blue, Nissl), and immunohistochemical, applying various markers that provide morphofunctional and structural information. These procedures have confirmed the presence of a functional vomeronasal system in fossorial water voles, characterized by a high degree of differentiation and a significant expression of cellular markers indicative of active chemical communication in this species.
Collapse
Affiliation(s)
- Sara Ruiz-Rubio
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain
| | - Irene Ortiz-Leal
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain
| | - Mateo V Torres
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain
| | - Aitor Somoano
- Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Villaviciosa, Asturias, Spain
| | - Pablo Sanchez-Quinteiro
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain
| |
Collapse
|
6
|
Ortiz-Leal I, Torres MV, López-Beceiro A, Fidalgo L, Shin T, Sanchez-Quinteiro P. First Immunohistochemical Demonstration of the Expression of a Type-2 Vomeronasal Receptor, V2R2, in Wild Canids. Int J Mol Sci 2024; 25:7291. [PMID: 39000398 PMCID: PMC11241633 DOI: 10.3390/ijms25137291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/20/2024] [Accepted: 06/29/2024] [Indexed: 07/16/2024] Open
Abstract
The mammalian vomeronasal system enables the perception of chemical signals crucial for social communication via the receptor families V1R and V2R. These receptors are linked with the G-protein subunits, Gαi2 and Gαo, respectively. Exploring the evolutionary pathways of V1Rs and V2Rs across mammalian species remains a significant challenge, particularly when comparing genomic data with emerging immunohistochemical evidence. Recent studies have revealed the expression of Gαo in the vomeronasal neuroepithelium of wild canids, including wolves and foxes, contradicting predictions based on current genomic annotations. Our study provides detailed immunohistochemical evidence, mapping the expression of V2R receptors in the vomeronasal sensory epithelium, focusing particularly on wild canids, specifically wolves and foxes. An additional objective involves contrasting these findings with those from domestic species like dogs to highlight the evolutionary impacts of domestication on sensory systems. The employment of a specific antibody raised against the mouse V2R2, a member of the C-family of vomeronasal receptors, V2Rs, has confirmed the presence of V2R2-immunoreactivity (V2R2-ir) in the fox and wolf, but it has revealed the lack of expression in the dog. This may reflect the impact of domestication on the regression of the VNS in this species, in contrast to their wild counterparts, and it underscores the effects of artificial selection on sensory functions. Thus, these findings suggest a more refined chemical detection capability in wild species.
Collapse
Affiliation(s)
- Irene Ortiz-Leal
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of Veterinary, University of Santiago de Compostela, Av. Carballo Calero s/n, 27002 Lugo, Spain
| | - Mateo V Torres
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of Veterinary, University of Santiago de Compostela, Av. Carballo Calero s/n, 27002 Lugo, Spain
| | - Ana López-Beceiro
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of Veterinary, University of Santiago de Compostela, Av. Carballo Calero s/n, 27002 Lugo, Spain
| | - Luis Fidalgo
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of Veterinary, University of Santiago de Compostela, Av. Carballo Calero s/n, 27002 Lugo, Spain
| | - Taekyun Shin
- College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju 63243, Republic of Korea
| | - Pablo Sanchez-Quinteiro
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of Veterinary, University of Santiago de Compostela, Av. Carballo Calero s/n, 27002 Lugo, Spain
| |
Collapse
|
7
|
Ortiz-Leal I, Torres MV, Vargas-Barroso V, Fidalgo LE, López-Beceiro AM, Larriva-Sahd JA, Sánchez-Quinteiro P. The olfactory limbus of the red fox ( Vulpes vulpes). New insights regarding a noncanonical olfactory bulb pathway. Front Neuroanat 2023; 16:1097467. [PMID: 36704406 PMCID: PMC9871471 DOI: 10.3389/fnana.2022.1097467] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 12/20/2022] [Indexed: 01/12/2023] Open
Abstract
Introduction: The olfactory system in most mammals is divided into several subsystems based on the anatomical locations of the neuroreceptor cells involved and the receptor families that are expressed. In addition to the main olfactory system and the vomeronasal system, a range of olfactory subsystems converge onto the transition zone located between the main olfactory bulb (MOB) and the accessory olfactory bulb (AOB), which has been termed the olfactory limbus (OL). The OL contains specialized glomeruli that receive noncanonical sensory afferences and which interact with the MOB and AOB. Little is known regarding the olfactory subsystems of mammals other than laboratory rodents. Methods: We have focused on characterizing the OL in the red fox by performing general and specific histological stainings on serial sections, using both single and double immunohistochemical and lectin-histochemical labeling techniques. Results: As a result, we have been able to determine that the OL of the red fox (Vulpes vulpes) displays an uncommonly high degree of development and complexity. Discussion: This makes this species a novel mammalian model, the study of which could improve our understanding of the noncanonical pathways involved in the processing of chemosensory cues.
Collapse
Affiliation(s)
- Irene Ortiz-Leal
- Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain
| | - Mateo V. Torres
- Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain
| | - Víctor Vargas-Barroso
- Cellular Neuroscience, IST Austria (Institute of Science and Technology Austria), Klosterneuburg, Austria
| | | | | | - Jorge A. Larriva-Sahd
- Institute of Neurobiology, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Pablo Sánchez-Quinteiro
- Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain,*Correspondence: Pablo Sanchez-Quinteiro
| |
Collapse
|
8
|
Down a Rabbit Hole: Burrowing Behaviour and Larger Home Ranges are Related to Larger Brains in Leporids. J MAMM EVOL 2022. [DOI: 10.1007/s10914-022-09624-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
AbstractStudies on the evolution of brain size variation usually focus on large clades encompassing broad phylogenetic groups. This risks introducing ‘noise’ in the results, often obscuring effects that might be detected in less inclusive clades. Here, we focus on a sample of endocranial volumes (endocasts) of 18 species of rabbits and hares (Lagomorpha: Leporidae), which are a discrete radiation of mammals with a suitably large range of body sizes. Using 60 individuals, we test five popular hypotheses on brain size and olfactory bulb evolution in mammals. We also address the pervasive issue of missing data, using multiple phylogenetic imputations as to conserve the full sample size for all analyses. Our analyses show that home range and burrowing behaviour are the only predictors of leporid brain size variation. Litter size, which is one of the most widely reported constraints on brain size, was unexpectedly not associated with brain size. However, a constraining effect may be masked by a strong association of litter size with temperature seasonality, warranting further study. Lastly, we show that unreasonable estimations of phylogenetic signal (Pagel’s lamba) warrant additional caution when using small sample sizes, such as ours, in comparative studies.
Collapse
|
9
|
Tomiyasu J, Korzekwa A, Kawai YK, Robstad CA, Rosell F, Kondoh D. The vomeronasal system in semiaquatic beavers. J Anat 2022; 241:809-819. [PMID: 35437747 PMCID: PMC9358757 DOI: 10.1111/joa.13671] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/16/2022] [Accepted: 04/04/2022] [Indexed: 01/15/2023] Open
Abstract
In contrast to the main olfactory system that detects volatile chemicals in the nasal air, the vomeronasal system can detect nonvolatile chemicals as well as volatiles. In the vomeronasal system, chemicals are perceived by the vomeronasal organ (VNO) projecting axons to the accessory olfactory bulb (AOB). Beavers (Castor spp.) are semiaquatic mammals that have developed chemical communication. It is possible that the beaver's anal gland secretions, nonvolatile and insoluble substances, may work as a messenger in the water and that beavers may detect the nonvolatile chemicals floating on the water surface via the VNO. The present study aimed to clarify the specificities of the beaver vomeronasal system by histologically and immunohistochemically analyzing the VNO and AOB of 12 Eurasian beavers (C. fiber). The VNO directly opened to the nasal cavity and was independent of a narrow nasopalatine duct connecting the oral and nasal cavities. The VNO comprised soft tissues including sensory and nonsensory epithelium, glands, a venous sinus, an artery, as well as cartilage inner, and bone outer enclosures. The AOB had distinct six layers, and anti-G protein α-i2 and α-o subunits were, respectively, immunoreactive in rostral and caudal glomeruli layers indicating expressions of V1Rs and V2Rs. According to gene repertories analysis, the beavers had 23 and six intact V1R and V2R genes respectively. These findings suggested that beavers recognize volatile odorants and nonvolatile substances using the vomeronasal system. The beaver VNO was developed as well as in other rodents, and it had two specific morphological features, namely, disadvantaged contact with the oral cavity because of a tiny nasopalatine duct, and a double bone and cartilage envelope. Our results highlight the importance of the vomeronasal system in beaver chemical communication and support the possibility that beavers can detect chemicals floating on the water surface via the VNO.
Collapse
Affiliation(s)
- Jumpei Tomiyasu
- Department of Biodiversity ProtectionInstitute of Animal Reproduction and Food Research, Polish Academy of SciencesOlsztynPoland
| | - Anna Korzekwa
- Department of Biodiversity ProtectionInstitute of Animal Reproduction and Food Research, Polish Academy of SciencesOlsztynPoland
| | - Yusuke K. Kawai
- Department of Veterinary MedicineObihiro University of Agriculture and Veterinary MedicineObihiroJapan
| | - Christian A. Robstad
- Department of Natural Sciences and Environmental Health, Faculty of Technology, Natural Sciences and Maritime SciencesUniversity of South‐Eastern NorwayTelemarkNorway
| | - Frank Rosell
- Department of Natural Sciences and Environmental Health, Faculty of Technology, Natural Sciences and Maritime SciencesUniversity of South‐Eastern NorwayTelemarkNorway
| | - Daisuke Kondoh
- Department of Veterinary MedicineObihiro University of Agriculture and Veterinary MedicineObihiroJapan
| |
Collapse
|
10
|
Kondoh D, Kawai YK, Watanabe K, Muranishi Y. Artiodactyl livestock species have a uniform vomeronasal system with a vomeronasal type 1 receptor (V1R) pathway. Tissue Cell 2022; 77:101863. [DOI: 10.1016/j.tice.2022.101863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/07/2022] [Accepted: 06/28/2022] [Indexed: 10/17/2022]
|
11
|
Comparative Neuroanatomical Study of the Main Olfactory Bulb in Domestic and Wild Canids: Dog, Wolf and Red Fox. Animals (Basel) 2022; 12:ani12091079. [PMID: 35565506 PMCID: PMC9106054 DOI: 10.3390/ani12091079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/15/2022] [Accepted: 04/21/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary The study of the morphological, physiological and molecular changes associated with the domestication process has been one of the most interesting unresolved neuroanatomical issues. The olfactory system deserves special attention since both wild and domestic canids are macrosmatic mammals with very high olfactory capacities. Nevertheless, the question remains open as to whether domestication involuted the sense of smell in domestic dogs. Further, there is a lack of comparative morphological information on the olfactory bulb, the first structure integrating olfactory sensory information in the brain. To provide comparative information on the domestication process, we studied the olfactory bulb of dogs and their two most important wild ancestors: the wolf and the fox. The study was carried out by macroscopic dissection and histological and immunohistochemical techniques and has allowed us to verify, first of all, that the three species present olfactory bulbs corresponding to a macrosmatic animal, but that there are noticeable differences not only in size, which was already known, but also in the cellularity and intensity of the immunohistochemical pattern characteristic of each species. These variations point to a reduction of the olfactory system as a consequence of the selection pressure associated with the domestication of animals. Abstract The sense of smell plays a fundamental role in mammalian survival. There is a considerable amount of information available on the vomeronasal system of both domestic and wild canids. However, much less information is available on the canid main olfactory system, particularly at the level of the main olfactory bulb. Comparative study of the neuroanatomy of wild and domestic canids provides an excellent model for understanding the effects of selection pressure associated with domestication. A comprehensive histological (hematoxylin–eosin, Nissl, Tolivia and Gallego’s Trichrome stains), lectin (UEA, LEA) and immunohistochemical (Gαo, Gαi2, calretinin, calbindin, olfactory marker protein, glial fibrillary acidic protein, microtubule-associated protein 2) study of the olfactory bulbs of the dog, fox and wolf was performed. Our study found greater macroscopic development of the olfactory bulb in both the wolf and fox compared to the dog. At the microscopic level, all three species show a well-developed pattern of lamination and cellularity typical of a macrosmatic animal. However, greater development of cellularity in the periglomerular and mitral layers of wild canids is characteristic. Likewise, the immunohistochemical study shows comparable results between the three species, but with a noticeably higher expression of markers in wild canids. These results suggest that the reduction in encephalization experienced in dogs due to domestication also corresponds to a lower degree of morphological and neurochemical differentiation of the olfactory bulb.
Collapse
|
12
|
Neuroanatomical and Immunohistological Study of the Main and Accessory Olfactory Bulbs of the Meerkat ( Suricata suricatta). Animals (Basel) 2021; 12:ani12010091. [PMID: 35011198 PMCID: PMC8749820 DOI: 10.3390/ani12010091] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 12/30/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary In wild mammals, chemical senses are crucial to survival, but sensory system information is lacking for many species, including the meerkat (Suricata suricatta), an iconic mammal with a marked social hierarchy that has been ambiguously classified in both canid and felid families. We studied the neuroanatomical basis of the meerkat olfactory and accessory olfactory bulbs, aiming to provide information on the relevance of both systems to the behaviors of this species and contributing to improving its taxonomic classification. The accessory olfactory bulb serves as the integration center of vomeronasal information. When examined microscopically, the accessory olfactory bulb of the meerkat presents a lamination pattern more defined than observed in dogs and approaching the pattern described in cats. The degree of lamination and development in the meerkat main olfactory bulb is comparable to the general pattern observed in mammals but with numerous specific features. Our study supports the functionality of the olfactory and vomeronasal integrative centers in meerkats and places this species within the suborder Feliformia. Our study also confirms the importance of chemical signals in mediating the social behaviors of this species and provides essential neuroanatomical information for understanding the functioning of their chemical senses. Abstract We approached the study of the main (MOB) and accessory olfactory bulbs (AOB) of the meerkat (Suricata suricatta) aiming to fill important gaps in knowledge regarding the neuroanatomical basis of olfactory and pheromonal signal processing in this iconic species. Microdissection techniques were used to extract the olfactory bulbs. The samples were subjected to hematoxylin-eosin and Nissl stains, histochemical (Ulex europaeus agglutinin, Lycopersicon esculentum agglutinin) and immunohistochemical labelling (Gαo, Gαi2, calretinin, calbindin, olfactory marker protein, glial fibrillary acidic protein, microtubule-associated protein 2, SMI-32, growth-associated protein 43). Microscopically, the meerkat AOB lamination pattern is more defined than the dog’s, approaching that described in cats, with well-defined glomeruli and a wide mitral-plexiform layer, with scattered main cells and granular cells organized in clusters. The degree of lamination and development of the meerkat MOB suggests a macrosmatic mammalian species. Calcium-binding proteins allow for the discrimination of atypical glomerular subpopulations in the olfactory limbus between the MOB and AOB. Our observations support AOB functionality in the meerkat, indicating chemosensory specialization for the detection of pheromones, as identified by the characterization of the V1R vomeronasal receptor family and the apparent deterioration of the V2R receptor family.
Collapse
|
13
|
Ortiz-Leal I, Torres MV, Villamayor PR, Fidalgo LE, López-Beceiro A, Sanchez-Quinteiro P. Can domestication shape Canidae brain morphology? The accessory olfactory bulb of the red fox as a case in point. Ann Anat 2021; 240:151881. [PMID: 34896556 DOI: 10.1016/j.aanat.2021.151881] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 01/08/2023]
Abstract
BACKGROUND The accessory olfactory bulb (AOB) is the first integrative center of the vomeronasal system (VNS), and the general macroscopic, microscopic, and neurochemical organizational patterns of the AOB differ fundamentally among species. Therefore, the low degree of differentiation observed for the dog AOB is surprising. As the artificial selection pressure exerted on domestic dogs has been suggested to play a key role in the involution of the dog VNS, a wild canid, such as the fox, represents a useful model for studying the hypothetical effects of domestication on the AOB morphology. METHODS A comprehensive histological, lectin-histochemical, and immunohistochemical study of the fox AOB was performed. Anti-Gαo and anti-Gαi2 antibodies were particularly useful, as they label the transduction cascade of the vomeronasal receptor types 1 (V1R) and 2 (V2R), respectively. Other employed antibodies included those against proteins such as microtubule-associated protein 2 (MAP-2), tubulin, glial fibrillary acidic protein, growth-associated protein 43 (GAP-43), olfactory marker protein (OMP), calbindin, and calretinin. RESULTS The cytoarchitecture of the fox AOB showed a clear lamination, with neatly differentiated layers; a highly developed glomerular layer, rich in periglomerular cells; and large inner cell and granular layers. The immunolabeling of Gαi2, OMP, and GAP-43 delineated the outer layers, whereas Gαo and MAP-2 immunolabeling defined the inner layers. MAP-2 characterized the somas of AOB principal cells and their dendritic trees. Anti-calbindin and anti-calretinin antibodies discriminated neural subpopulations in both the mitral-plexiform layer and the granular cell layer, and the lectin Ulex europeus agglutinin I (UEA-I) showed selectivity for the AOB and the vomeronasal nerves. CONCLUSION The fox AOB presents unique characteristics and a higher degree of morphological development compared with the dog AOB. The comparatively complex neural basis for semiochemical information processing in the fox compared with that observed in dogs suggests loss of AOB anatomical complexity during the evolutionary history of dogs and opens a new avenue of research for studying the effects of domestication on brain structures.
Collapse
Affiliation(s)
- Irene Ortiz-Leal
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain
| | - Mateo V Torres
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain
| | - Paula R Villamayor
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain
| | - Luis Eusebio Fidalgo
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain
| | - Ana López-Beceiro
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain
| | - Pablo Sanchez-Quinteiro
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain.
| |
Collapse
|
14
|
Does a third intermediate model for the vomeronasal processing of information exist? Insights from the macropodid neuroanatomy. Brain Struct Funct 2021; 227:881-899. [PMID: 34800143 PMCID: PMC8930919 DOI: 10.1007/s00429-021-02425-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/07/2021] [Indexed: 12/27/2022]
Abstract
The study of the α-subunit of Gi2 and Go proteins in the accessory olfactory bulb (AOB) was crucial for the identification of the two main families of vomeronasal receptors, V1R and V2R. Both families are expressed in the rodent and lagomorph AOBs, according to a segregated model characterized by topographical anteroposterior zonation. Many mammal species have suffered from the deterioration of the Gαo pathway and are categorized as belonging to the uniform model. This scenario has been complicated by characterization of the AOB in the tammar wallaby, Notamacropus eugenii, which appears to follow a third model of vomeronasal organization featuring exclusive Gαo protein expression, referred to as the intermediate model, which has not yet been replicated in any other species. Our morphofunctional study of the vomeronasal system (VNS) in Bennett’s wallaby, Notamacropus rufogriseus, provides further information regarding this third model of vomeronasal transduction. A comprehensive histological, lectin, and immunohistochemical study of the Bennett’s wallaby VNS was performed. Anti-Gαo and anti-Gαi2 antibodies were particularly useful because they labeled the transduction cascade of V2R and V1R receptors, respectively. Both G proteins showed canonical immunohistochemical labeling in the vomeronasal organ and the AOB, consistent with the anterior–posterior zonation of the segregated model. The lectin Ulex europaeus agglutinin selectively labeled the anterior AOB, providing additional evidence for the segregation of vomeronasal information in the wallaby. Overall, the VNS of the Bennett’s wallaby shows a degree of differentiation and histochemical and neurochemical diversity comparable to species with greater VNS development. The existence of the third intermediate type in vomeronasal information processing reported in Notamacropus eugenii is not supported by our lectin-histochemical and immunohistochemical findings in Notamacropus rufogriseus.
Collapse
|
15
|
Wu J, Zhou M, Qin K, Liao S, Tang C, Ruan Y, Hu X, Long F, Mo K, Kuang H, Deng R. Microscopic anatomical atlas study on the lateral ventricles of the rabbit cerebrum and its related structures. TRANSLATIONAL RESEARCH IN ANATOMY 2021. [DOI: 10.1016/j.tria.2021.100140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
16
|
Villamayor PR, Robledo D, Fernández C, Gullón J, Quintela L, Sánchez-Quinteiro P, Martínez P. Analysis of the vomeronasal organ transcriptome reveals variable gene expression depending on age and function in rabbits. Genomics 2021; 113:2240-2252. [PMID: 34015461 DOI: 10.1016/j.ygeno.2021.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/23/2021] [Accepted: 05/14/2021] [Indexed: 10/21/2022]
Abstract
The vomeronasal organ (VNO) is a chemosensory organ specialized in pheromone detection that shows a broad morphofunctional and genomic diversity among mammals. However, its expression patterns have only been well-characterized in mice. Here, we provide the first comprehensive RNA sequencing study of the rabbit VNO across gender and sexual maturation stages. We characterized the VNO transcriptome, updating the number and expression of the two main vomeronasal receptor families, including 128 V1Rs and 67 V2Rs. Further, we defined the expression of formyl-peptide receptor and transient receptor potential channel families, both known to have specific roles in the VNO. Several sex hormone-related pathways were consistently enriched in the VNO, highlighting the relevance of this organ in reproduction. Moreover, whereas juvenile and adult VNOs showed significant transcriptome differences, male and female did not. Overall, these results contribute to understand the genomic basis of behavioural responses mediated by the VNO in a non-rodent model.
Collapse
Affiliation(s)
- P R Villamayor
- Department of Zoology Genetics and Physical Anthropology, Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain; Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain
| | - D Robledo
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - C Fernández
- Department of Zoology Genetics and Physical Anthropology, Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain
| | - J Gullón
- Conejos Gallegos, COGAL SL, Rodeiro, Pontevedra, Spain
| | - L Quintela
- Department of Animal Pathology, Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain
| | - P Sánchez-Quinteiro
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain.
| | - P Martínez
- Department of Zoology Genetics and Physical Anthropology, Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain
| |
Collapse
|
17
|
Villamayor PR, Arana ÁJ, Coppel C, Ortiz-Leal I, Torres MV, Sanchez-Quinteiro P, Sánchez L. A comprehensive structural, lectin and immunohistochemical characterization of the zebrafish olfactory system. Sci Rep 2021; 11:8865. [PMID: 33893372 PMCID: PMC8065131 DOI: 10.1038/s41598-021-88317-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 04/12/2021] [Indexed: 12/30/2022] Open
Abstract
Fish chemosensory olfactory receptors allow them to detect a wide range of water-soluble chemicals, that mediate fundamental behaviours. Zebrafish possess a well-developed sense of smell which governs reproduction, appetite, and fear responses. The spatial organization of functional properties within the olfactory epithelium and bulb are comparable to those of mammals, making this species suitable for studies of olfactory differentiation and regeneration and neuronal representation of olfactory information. The advent of genomic techniques has been decisive for the discovery of specific olfactory cell types and the identification of cell populations expressing vomeronasal receptors. These advances have marched ahead of morphological and neurochemical studies. This study aims to fill the existing gap in specific histological, lectin-histochemical and immunohistochemical studies on the olfactory rosette and the olfactory bulb of the zebrafish. Tissue dissection and microdissection techniques were employed, followed by histological staining techniques, lectin-histochemical labelling (UEA, LEA, BSI-B4) and immunohistochemistry using antibodies against G proteins subunits αo and αi2, growth-associated protein-43, calbindin, calretinin, glial-fibrillary-acidic-protein and luteinizing-hormone-releasing-hormone. The results obtained enrich the available information on the neurochemical patterns of the zebrafish olfactory system, pointing to a greater complexity than the one currently considered, especially when taking into account the peculiarities of the nonsensory epithelium.
Collapse
Affiliation(s)
- Paula R Villamayor
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of Veterinary, University of Santiago de Compostela, Av Carballo Calero s/n, 27002, Lugo, Spain
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain
| | - Álvaro J Arana
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain
| | - Carlos Coppel
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain
| | - Irene Ortiz-Leal
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of Veterinary, University of Santiago de Compostela, Av Carballo Calero s/n, 27002, Lugo, Spain
| | - Mateo V Torres
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of Veterinary, University of Santiago de Compostela, Av Carballo Calero s/n, 27002, Lugo, Spain
| | - Pablo Sanchez-Quinteiro
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of Veterinary, University of Santiago de Compostela, Av Carballo Calero s/n, 27002, Lugo, Spain.
| | - Laura Sánchez
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain
- Preclinical Animal Models Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| |
Collapse
|
18
|
Ortiz‐Leal I, Torres MV, Villamayor PR, López‐Beceiro A, Sanchez‐Quinteiro P. The vomeronasal organ of wild canids: the fox (Vulpes vulpes) as a model. J Anat 2020; 237:890-906. [PMID: 32584430 PMCID: PMC7542198 DOI: 10.1111/joa.13254] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/20/2020] [Accepted: 05/22/2020] [Indexed: 01/30/2023] Open
Abstract
The vomeronasal system (VNS) has been extensively studied within specific animal families, such as Rodentia. However, the study of the VNS in other families, such as Canidae, has long been neglected. Among canids, the vomeronasal organ (VNO) has only been studied in detail in the dog, and no studies have examined the morphofunctional or immunohistochemical characteristics of the VNS in wild canids, which is surprising, given the well-known importance of chemical senses for the dog and fox and the likelihood that the VNS plays roles in the socio-reproductive physiology and behaviours of these species. In addition, characterising the fox VNS could contribute to a better understanding of the domestication process that occurred in the dog, as the fox would represent the first wild canid to be studied in depth. Therefore, the aim of this study was to analyze the morphological and immunohistochemical characteristics of the fox VNO. Tissue dissection and microdissection techniques were employed, followed by general and specific histological staining techniques, including with immunohistochemical and lectin-histochemical labelling strategies, using antibodies against olfactory marker protein (OMP), growth-associated protein 43 (GAP-43), calbindin (CB), calretinin (CR), α-tubulin, Gαo, and Gαi2 proteins, to highlight the specific features of the VNO in the fox. This study found significant differences in the VNS between the fox and the dog, particularly concerning the expression of Gαi2 and Gαo proteins, which were associated with the expression of the type 1 vomeronasal receptors (V1R) and type 2 vomeronasal receptors (V2R), respectively, in the vomeronasal epithelium. Both are immunopositive in foxes, as opposed to the dog, which only expresses Gαi2. This finding suggests that the fox possesses a well-developed VNO and supports the hypothesis that a profound transformation in the VNS is associated with domestication in the canid family. Furthermore, the unique features identified in the fox VNO confirm the necessity of studying the VNS system in different species to better comprehend specific phylogenetic aspects of the VNS.
Collapse
Affiliation(s)
- Irene Ortiz‐Leal
- Department of Anatomy, Animal Production and Clinical Veterinary SciencesFaculty of VeterinaryUniversity of Santiago de CompostelaLugoSpain
| | - Mateo V. Torres
- Department of Anatomy, Animal Production and Clinical Veterinary SciencesFaculty of VeterinaryUniversity of Santiago de CompostelaLugoSpain
| | - Paula R. Villamayor
- Department of Anatomy, Animal Production and Clinical Veterinary SciencesFaculty of VeterinaryUniversity of Santiago de CompostelaLugoSpain
| | - Ana López‐Beceiro
- Department of Anatomy, Animal Production and Clinical Veterinary SciencesFaculty of VeterinaryUniversity of Santiago de CompostelaLugoSpain
| | - Pablo Sanchez‐Quinteiro
- Department of Anatomy, Animal Production and Clinical Veterinary SciencesFaculty of VeterinaryUniversity of Santiago de CompostelaLugoSpain
| |
Collapse
|
19
|
The vomeronasal system of the newborn capybara: a morphological and immunohistochemical study. Sci Rep 2020; 10:13304. [PMID: 32764621 PMCID: PMC7411026 DOI: 10.1038/s41598-020-69994-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 07/22/2020] [Indexed: 12/11/2022] Open
Abstract
The vomeronasal system (VNS) is responsible for the perception mainly of pheromones and kairomones. Primarily studied in laboratory rodents, it plays a crucial role in their socio-sexual behaviour. As a wild rodent, the capybara offers a more objective and representative perspective to understand the significance of the system in the Rodentia, avoiding the risk of extrapolating from laboratory rodent strains, exposed to high levels of artificial selection pressure. We have studied the main morphological and immunohistochemical features of the capybara vomeronasal organ (VNO) and accessory olfactory bulb (AOB). The study was done in newborn individuals to investigate the maturity of the system at this early stage. We used techniques such as histological stains, lectins-labelling and immunohistochemical characterization of a range of proteins, including G proteins (Gαi2, Gαo) and olfactory marking protein. As a result, we conclude that the VNS of the capybara at birth is capable of establishing the same function as that of the adult, and that it presents unique features as the high degree of differentiation of the AOB and the active cellular migration in the vomeronasal epithelium. All together makes the capybara a promising model for the study of chemical communication in the first days of life.
Collapse
|