1
|
Tripathi V, Bhardwaj SK, Kumar V. Neuropeptides and reproductive flexibility in songbirds: A mini review. J Neuroendocrinol 2025:e70030. [PMID: 40288996 DOI: 10.1111/jne.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/13/2025] [Accepted: 03/26/2025] [Indexed: 04/29/2025]
Abstract
Synchronization of physiological and behavioral activities associated with avian reproduction requires corresponding changes in the activity of the hypothalamus-pituitary-gonadal axis. This involves complex brain peptidergic pathways, which show spatial and temporal differences in their expression and distribution during the annual reproductive cycle. The well-studied pathways include gonadotropin-releasing and inhibiting hormones (GnRH, GnIH), neuropeptide Y (NPY), cocaine- and amphetamine-regulated transcript (CART), vasoactive intestinal peptide (VIP) and other peptides like arginine vasotocin (VT), oxytocin (mesotocin), and spexin. Together, these peptides form a neurochemical framework for the integration of both internal and external (environmental) cues; this results in a neuroendocrine response. Conceivably, therefore, the neurochemical framework within which brain peptides possibly interact and perform reproductive regulatory roles might show species differences. Here, we aim to review briefly the roles of these neuropeptides in reproduction in both opportunistically and seasonally breeding birds. Much of the discussion will be based on our own research on the opportunistic breeding zebra finch and the seasonally breeding redheaded bunting, Indian weaverbird, and spotted munia. The summer breeding redheaded bunting and weaverbird are typical photosensitive long-day species, but they show qualitative differences in response to stimulatory photoperiods during the post-reproductive period of their annual cycle. Buntings exhibit absolute photorefractoriness, while weaverbirds exhibit relative photorefractoriness. The autumn breeding spotted munia, on the other hand, is an atypical photosensitive species. It responds to both short and long photoperiods and presumably lacks photorefractoriness.
Collapse
Affiliation(s)
- Vatsala Tripathi
- Department of Zoology, Dyal Singh College, University of Delhi, Delhi, India
- Department of Zoology, Chaudhary Charan Singh University, Meerut, India
| | | | - Vinod Kumar
- Department of Physiology, King George's Medical University, Lucknow, India
| |
Collapse
|
2
|
Cavalcante JC, da Silva FG, Sáenz de Miera C, Elias CF. The ventral premammillary nucleus at the interface of environmental cues and social behaviors. Front Neurosci 2025; 19:1589156. [PMID: 40276575 PMCID: PMC12018337 DOI: 10.3389/fnins.2025.1589156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Accepted: 03/28/2025] [Indexed: 04/26/2025] Open
Abstract
The survival of species heavily depends on social behaviors, which in turn rely on the ability to recognize conspecifics within an appropriate environmental context. These behaviors are regulated by the hypothalamus, which processes signals from both the external environment (such as food availability, photoperiod, and chemical cues from other animals) and the internal state (including sex, estrous cycle stage, nutritional status, and levels of stress). Understanding the brain circuits responsible for specific behaviors in experimental animals is a complex task given the intricate interactions between these factors and the diverse behavioral strategies employed by different species. In this review, we will critically evaluate recent studies focused on the ventral premammillary nucleus (PMv) and discuss findings that reveal the PMv as a key, yet sometimes overlooked, node in integrating external and internal environmental cues. We will examine its structural components, internal connectivity, humoral influences, and associated functions, demonstrating the PMv role in the neural regulation of neuroendocrine responses and social behaviors. While much of the existing research centers on rats and mice as model organisms, we will highlight relevant species differences and include a dedicated section for findings in other species.
Collapse
Affiliation(s)
- Judney Cley Cavalcante
- Laboratory of Neuroanatomy, Department of Morphology, Center of Biosciences, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Fabiano Gomes da Silva
- Laboratory of Neuroanatomy, Department of Morphology, Center of Biosciences, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Cristina Sáenz de Miera
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Carol Fuzeti Elias
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
3
|
BaHammam AS. From Wings to Wellness: A Research Agenda Inspired by Migratory Bird Adaptations for Sleep and Circadian Medicine. Nat Sci Sleep 2025; 17:583-595. [PMID: 40225285 PMCID: PMC11993173 DOI: 10.2147/nss.s519493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 04/01/2025] [Indexed: 04/15/2025] Open
Abstract
Migratory birds demonstrate remarkable temporal plasticity, adapting their circadian rhythms and sleep patterns to meet the demands of long-distance migration. This perspective explores how insights from avian temporal adaptations could inform novel research directions in human sleep and circadian medicine. Birds' ability to maintain precise temporal organization through multiple coordinated oscillators, particularly during migratory periods, provides a valuable framework for understanding circadian flexibility. Drawing from recent advances in avian chronobiology, we propose several research priorities for human applications, including biomarker-guided chronotherapy, circuit-specific interventions, and optimization of environmental cue timing. We explore how birds' sophisticated control of sleep architecture and metabolic regulation during migration might inspire new approaches to managing circadian disruptions in humans. Neuroimaging studies of human temporal adaptability, guided by avian insights, could reveal network-level mechanisms underlying circadian plasticity. Of particular interest is the parallel between avian unihemispheric sleep and human hemispheric asymmetry during sleep, suggesting the evolutionary conservation of adaptive sleep mechanisms. While acknowledging the fundamental differences between avian and human circadian systems, we outline specific research directions that could translate avian temporal adaptability principles into therapeutic strategies for circadian disorders. While these avian-inspired hypotheses require rigorous validation, and some may not prove viable, embracing creative exploration remains essential for advancing our understanding of human circadian biology and guiding the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Ahmed Salem BaHammam
- Department of Medicine, University Sleep Disorders Center, King Saud University, Riyadh, Saudi Arabia
- University Sleep Disorders Center, King Saud University Medical City, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Yadav A, Rani S. Role of differential food treatment on hypothalamic NPY expression and migratory phenology of redheaded bunting ( Emberiza bruniceps). Chronobiol Int 2024; 41:1503-1515. [PMID: 39588758 DOI: 10.1080/07420528.2024.2429659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 11/03/2024] [Accepted: 11/10/2024] [Indexed: 11/27/2024]
Abstract
The present study explores the effect of differential food treatment on the migratory phenology of redheaded bunting (Emberiza bruniceps). Birds were divided into four groups (N = 10 each) on the basis of the food provided. Group I was fed with seeds of Setaria italica (kakuni), while group II was provided with protein-rich diet (combination of; 3 parts egg white and 1 part kakuni seeds). Likewise, group III birds received fat-rich food (i.e. 3 parts sesame seeds and 1 part kakuni seeds). Birds in group IV were provided with all three food items mentioned above separately. The experiment continued until the appearance of 7 cycles of zugunruhe. The results reveal a significant impact of food on locomotor activity and food intake behavior of birds, although the physiological response as demonstrated by a gain in body mass, fat score, and gonadal recrudescence was mainly influenced by the LHS. Besides the behavioral and physiological responses, the hypothalamic expression of neuropeptide Y (NPY) in infundibular complex (INc) was significantly high for group IV, highlighting the importance of "variety" in food intake. Thus, the present study suggests a significant role of food in influencing seasonal responses via hypothalamic NPY stimulation.
Collapse
Affiliation(s)
- Anupama Yadav
- Center for Biological Timekeeping, Department of Zoology, University of Lucknow, Lucknow, India
| | - Sangeeta Rani
- Center for Biological Timekeeping, Department of Zoology, University of Lucknow, Lucknow, India
| |
Collapse
|
5
|
Singh O, Basu S, Srivastava A, Pradhan DR, Dandapat P, Bathrachalam C, Singru PS. Cocaine- and Amphetamine-Regulated Transcript Peptide in the Central Nervous System of the Gecko, Hemidactylus leschenaultii: Molecular Characterization, Neuroanatomical Organization, and Regulation by Neuropeptide Y. J Comp Neurol 2024; 532:e25672. [PMID: 39380327 DOI: 10.1002/cne.25672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/03/2024] [Accepted: 09/16/2024] [Indexed: 10/10/2024]
Abstract
Neuropeptide cocaine- and amphetamine-regulated transcript (CART) is widely expressed in the brains of teleosts, amphibians, birds, and mammals and has emerged as a conserved regulator of energy balance across these vertebrate phyla. However, as yet, there is no information on CART in the reptilian brain. We characterized the cDNA encoding CART and mapped CART-containing elements in the brain of gecko, Hemidactylus leschenaultii (hl) using a specific anti-CART antiserum. We report a 683-bp hlcart transcript containing a 336-bp open reading frame, which encodes a putative 111-amino acid hl-preproCART. The 89-amino acid hl-proCART generated from hl-preproCART produced two putative bioactive hl-CART-peptides. These bioactive CART-peptides were > 93% similar with those in rats/humans. Although reverse transcription-polymerase chain reaction (RT-PCR) detected hlcart-transcript in the brain, CART-containing neurons/fibers were widely distributed in the telencephalon, diencephalon, mesencephalon, rhombencephalon, spinal cord, and retina. The mitral cells in olfactory bulb, neurons in the paraventricular, periventricular, arcuate (Arc), Edinger-Westphal, and brainstem nuclei were intensely CART-positive. In view of antagonistic roles of neuropeptide Y (NPY) and CART in energy balance in the framework of mammalian hypothalamus, we probed CART-NPY interaction in the hypothalamus of H. leschenaultii. Double immunofluorescence showed a dense NPY-innervation of Arc CART neurons. Ex vivo hypothalamic slices treated with NPY/NPY-Y1-receptor agonist significantly reduced hlcart-mRNA levels in the Arc-containing tissues and CART-ir in the dorsal-Arc. However, CART-ir in ventral-Arc was unaffected. NPY via Y1-receptors may regulate energy balance by inhibiting dArc CART neurons. This study on CART in a reptilian brain fills the current void in literature and underscores the conserved feature of the neuropeptide across the entire vertebrate phyla.
Collapse
Affiliation(s)
- Omprakash Singh
- School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, Jatni, Odisha, India
- Homi Bhabha National Institute, Training School Complex, Mumbai, Maharashtra, India
| | - Sumela Basu
- School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, Jatni, Odisha, India
- Homi Bhabha National Institute, Training School Complex, Mumbai, Maharashtra, India
| | - Abhinav Srivastava
- School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, Jatni, Odisha, India
- Homi Bhabha National Institute, Training School Complex, Mumbai, Maharashtra, India
| | - Dipti R Pradhan
- School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, Jatni, Odisha, India
| | - Pallabi Dandapat
- School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, Jatni, Odisha, India
| | - Chandramohan Bathrachalam
- School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, Jatni, Odisha, India
| | - Praful S Singru
- School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, Jatni, Odisha, India
- Homi Bhabha National Institute, Training School Complex, Mumbai, Maharashtra, India
| |
Collapse
|
6
|
Bhargava S, Shetye K, Shewale S, Sawant N, Sagarkar S, Subhedar N. Mate calling alters expression of neuropeptide, cocaine- and amphetamine- regulated transcript (CART) in the brain of male frog Microhyla nilphamariensis. Neuropeptides 2023; 102:102380. [PMID: 37690194 DOI: 10.1016/j.npep.2023.102380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/22/2023] [Accepted: 09/03/2023] [Indexed: 09/12/2023]
Abstract
Croaking is a unique component of reproductive behaviour in amphibians which plays a key role in intraspecies communication and mate evaluation. While gonadal hormones are known to induce croaking, central regulation of sound production is less studied. Croaking is a dramatic, transient activity that sets apart an animal from non-croaking individuals. Herein, we aim at examining the profile of the neuropeptide cocaine- and amphetamine-regulated transcript (CART) in actively croaking and non-croaking frog Microhyla nilphamariensis. In anurans, this peptide is widely expressed in the areas inclusive of acoustical nuclei as well as areas relevant to reproduction. CART immunoreactivity was far more in the preoptic area (POA), anteroventral tegmentum (AV), ventral hypothalamus (vHy), pineal (P) and pituitary gland of croaking frog compared to non-croaking animals. On similar lines, tissue fragments collected from the mid region of the brain inclusive of POA, vHy, AV, pineal and pituitary gland of croaking frog showed upregulation of CART mRNA. However, CART immunoreactivity in the neuronal perikarya of raphe (Ra) was completely abolished during croaking activity. The data suggest that CART signaling in the brain may be an important player in mediating croaking behaviour in the frog.
Collapse
Affiliation(s)
- Shobha Bhargava
- Department of Zoology, Savitribai Phule Pune University, Ganeshkhind, Pune 411 007, India.
| | - Ketaki Shetye
- Department of Zoology, Savitribai Phule Pune University, Ganeshkhind, Pune 411 007, India
| | - Swapnil Shewale
- Department of Zoology, Savitribai Phule Pune University, Ganeshkhind, Pune 411 007, India
| | - Nitin Sawant
- Department of Zoology, Savitribai Phule Pune University, Ganeshkhind, Pune 411 007, India
| | - Sneha Sagarkar
- Department of Zoology, Savitribai Phule Pune University, Ganeshkhind, Pune 411 007, India
| | - Nishikant Subhedar
- Indian Institute of Science Education and Research, Ganeshkhind, Pune 411 008, India
| |
Collapse
|
7
|
Liddle TA, Stevenson TJ, Majumdar G. Photoperiodic regulation of avian physiology: From external coincidence to seasonal reproduction. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2022; 337:890-901. [PMID: 35535960 DOI: 10.1002/jez.2604] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/22/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
Seasonal cycles of environmental cues generate variation in the timing of life-history transition events across taxa. It is through the entrainment of internal, endogenous rhythms of organisms to these external, exogenous rhythms in environment, such as cycling temperature and daylight, by which organisms can regulate and time life history transitions. Here, we review the current understanding of how photoperiod both stimulates and terminates seasonal reproduction in birds. The review describes the role of external coincidence timing, the process by which photoperiod is proposed to stimulate reproductive development. Then, the molecular basis of light detection and the photoperiodic regulation of neuroendocrine timing of seasonal reproduction in birds is presented. Current data indicates that vertebrate ancient opsin is the predominant photoreceptor for light detection by the hypothalamus, compared to neuropsin and rhodopsin. The review then connects light detection to well-characterized hypothalamic and pituitary gland molecules involved in the photoperiodic regulation of reproduction. In birds, Gonadotropin-releasing hormone synthesis and release are controlled by photoperiodic cues via thyrotropin-stimulating hormone-β (TSHβ) independent and dependent pathways, respectively. The review then highlights the role of D-box and E-box binding motifs in the promoter regions of photoperiodic genes, in particular Eyes-absent 3, as the key link between circadian clock function and photoperiodic time measurement. Based on the available evidence, the review proposes that at least two molecular programs form the basis for external coincidence timing in birds: photoperiodic responsiveness by TSHβ pathways and endogenous internal timing by gonadotropin synthesis.
Collapse
Affiliation(s)
- Timothy Adam Liddle
- Laboratory of Seasonal Biology, Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Tyler John Stevenson
- Laboratory of Seasonal Biology, Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Gaurav Majumdar
- Laboratory of Seasonal Biology, Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| |
Collapse
|
8
|
Hadawale KN, Shewale SA, Shetye KC, Sagarkar S, Sakharkar AJ, Bhargava SY. Reproductive phase related variations in the expression of neuropeptide, cocaine- and amphetamine- regulated transcript (CART) in the brain and pituitary gland of adult male Microhyla ornata. Neurosci Lett 2022; 786:136783. [PMID: 35810962 DOI: 10.1016/j.neulet.2022.136783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 06/06/2022] [Accepted: 07/05/2022] [Indexed: 10/17/2022]
Abstract
Cocaine- and amphetamine-regulated transcript (CART) peptide is a multifaceted neuropeptide involved in several physiological functions including appetite and reproduction. While studies in mammals, aves and fishes suggest evolutionary conserved role of CART, the information in amphibian is scanty. We have investigated the reproductive phase related variations of CART in the brain of adult male Microhyla ornata. Seasonal changes in the expression of CART peptide were noticed in the brain and pituitary of M. ornata. Significant differences were observed in the nucleus infundibularis ventralis (NIV), epiphysis (E), anteroventral tegmental region (AV), raphe nucleus (Ra) of the brain and pars intermedia (PI), pars distalis (PD) of the pituitary. Compared to the pre-breeding and post-breeding seasons, increase in CART immunoreactivity was seen in E, NIV, AV, Ra of brain and PI, PD of pituitary gland of animals collected during breeding season. Similarly, highest mRNA levels of CART were also observed in the breeding season in the middle region of brain that includes hypothalamus and pituitary gland. Variation in the levels of CART peptide and mRNA in the brain of M. ornata suggests its conserved role in seasonal control of appetite and reproduction.
Collapse
Affiliation(s)
- Kavita N Hadawale
- Department of Zoology, Savitribai Phule Pune University, Ganeshkhind Road, Pune 411 007, India
| | - Swapnil A Shewale
- Department of Zoology, Bhavan's Hazarimal Somani College, Chowpatty, Mumbai 400 007, India
| | - Ketaki C Shetye
- Department of Zoology, Savitribai Phule Pune University, Ganeshkhind Road, Pune 411 007, India
| | - Sneha Sagarkar
- Department of Zoology, Savitribai Phule Pune University, Ganeshkhind Road, Pune 411 007, India
| | - Amul J Sakharkar
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune 411 007, India
| | - Shobha Y Bhargava
- Department of Zoology, Savitribai Phule Pune University, Ganeshkhind Road, Pune 411 007, India.
| |
Collapse
|
9
|
Михеев РК, Романцова ТИ, Трошина ЕА, Григорян ОР, Андреева ЕН, Шереметьева ЕВ, Абсатарова ЮС, Мокрышева НГ. [Cocaine-amphetamine regulated transcript (CART) - promising omics breakthrough in the endocrinology]. PROBLEMY ENDOKRINOLOGII 2022; 68:4-8. [PMID: 35488751 PMCID: PMC9112847 DOI: 10.14341/probl12872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 01/26/2022] [Accepted: 01/25/2022] [Indexed: 12/16/2022]
Abstract
BACKGROUND The cocaine-amphetamine regulated transcript has been discovered long time ago (circa over 25 years ago) but still stays not enough investigated. Just during last five years scientist's society started providing interest to the genomic, proteomic and metabolic essence of the cocaine-amphetamine regulated transcript. AIM The evaluation of historical pathway and perspectives of the cocaine-amphetamine regulated transcript medical investigations. MATERIALS AND METHODS The literature search has been provided via Russian (eLibrary, CyberLeninka.ru) and international (PubMed, Cochrane Library) databases and among articles on Russian and English languages. The main criteria for article selection was free access and 2019-2021 years of publishing. Although the introduction is based on the articles published in 1989. The present article was created according to the federal project «Central and peripheral pathophysiological mechanisms of adipose tissue diseases and their clinical and hormonal manifestations патофизиологические механизмы развития болезней жировой ткани с учетом клинических и гормональных характеристик» (2020-2022)RESULTS AND CONCLUISON: It is necessary to keep on investigating genomic, proteomic and metabolomic markers because they contain important clues for successful resistance against human diseases. The 21st century is the era of transformation from simple clinical medicine to personalized science. For example, researches in the area of cocaine-amphetamine regulated transcript may result in invention of genetic medicine against dangerous metabolic diseases.
Collapse
Affiliation(s)
- Р. К. Михеев
- Национальный медицинский исследовательский центр эндокринологии
| | - Т. И. Романцова
- Первый московский государственный медицинский университет им. И.М. Сеченова (Сеченовский университет)
| | - Е. А. Трошина
- Национальный медицинский исследовательский центр эндокринологии
| | - О. Р. Григорян
- Национальный медицинский исследовательский центр эндокринологии
| | - Е. Н. Андреева
- Национальный медицинский исследовательский центр эндокринологии
| | | | | | - Н. Г. Мокрышева
- Национальный медицинский исследовательский центр эндокринологии
| |
Collapse
|
10
|
Mitra S, Basu S, Singh O, Lechan RM, Singru PS. Cocaine- and amphetamine-regulated transcript peptide- and dopamine-containing systems interact in the ventral tegmental area of the zebra finch, Taeniopygia guttata, during dynamic changes in energy status. Brain Struct Funct 2021; 226:2537-2559. [PMID: 34392422 DOI: 10.1007/s00429-021-02348-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 07/21/2021] [Indexed: 12/21/2022]
Abstract
The mesolimbic dopamine (DA)-pathway regulates food-reward, feeding-related behaviour and energy balance. Evidence underscores the importance of feeding-related neuropeptides in modulating activity of these DA neurons. The neuropeptide, CART, a crucial regulator of energy balance, modulates DA-release, and influences the activity of ventral tegmental area (VTA) DAergic neurons in the mammalian brain. Whether CART- and DA-containing systems interact at the level of VTA to regulate energy balance, however, is poorly understood. We explored the interaction between CART- and DA-containing systems in midbrain of the zebra finch, Taeniopygia guttata, an interesting model to study dynamic changes in energy balance due to higher BMR/daytime body temperature, and rapid responsiveness of the feeding-related neuropeptides to changes in energy state. Further, its midbrain DA-neurons share similarities with those in mammals. In the midbrain, tyrosine hydroxylase-immunoreactive (TH-i) neurons were seen in the substantia nigra (SN) and VTA [anterior (VTAa), mid (VTAm) and caudal (VTAc)]; those in VTA were smaller. In the VTA, CART-immunoreactive (CART-i)-fibers densely innervated TH-i neurons, and both CART-immunoreactivity (CART-ir) and TH-immunoreactivity (TH-ir) responded to energy status-dependent changes. Compared to fed and fasted birds, refeeding dramatically enhanced TH-ir and the percentage of TH-i neurons co-expressing FOS in the VTA. Increased prepro-CART-mRNA, CART-ir and a transient appearance of CART-i neurons was observed in VTAa of fasted, but not fed birds. To test the functional interaction between CART- and DA-containing systems, ex-vivo superfused midbrain-slices were treated with CART-peptide and changes in TH-ir analysed. Compared to control tissues, CART-treatment increased TH-ir in VTA but not SN. We propose that CART is a potential regulator of VTA DA-neurons and energy balance in T. guttata.
Collapse
Affiliation(s)
- Saptarsi Mitra
- School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, P.O. Jatni, Khurda, Odisha, 752050, India.,Homi Bhabha National Institute, Mumbai, 400094, India
| | - Sumela Basu
- School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, P.O. Jatni, Khurda, Odisha, 752050, India.,Homi Bhabha National Institute, Mumbai, 400094, India
| | - Omprakash Singh
- School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, P.O. Jatni, Khurda, Odisha, 752050, India.,Homi Bhabha National Institute, Mumbai, 400094, India
| | - Ronald M Lechan
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Tupper Research Institute, Tufts Medical Center, Boston, MA, USA.,Department of Neuroscience, Tufts University School of Medicine, Boston, USA
| | - Praful S Singru
- School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, P.O. Jatni, Khurda, Odisha, 752050, India. .,Homi Bhabha National Institute, Mumbai, 400094, India.
| |
Collapse
|
11
|
Shewale SA, Deshbhratar SM, Ravikumar A, Bhargava SY. Cocaine and amphetamine regulated transcript peptide (CART) in the tadpole brain: Response to different energy states. Neuropeptides 2021; 88:102152. [PMID: 33932859 DOI: 10.1016/j.npep.2021.102152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 04/04/2021] [Accepted: 04/18/2021] [Indexed: 12/18/2022]
Abstract
Cocaine- and amphetamine-regulated transcript peptide (CART) is an anorexigenic neuropeptide known to play a key role in energy homeostasis across the vertebrate phyla. In the current study, we have investigated the response of the CART immunoreactive system to varying energy states in the brain of a tadpole model. The pro-metamorphic tadpoles of Euphlyctis cyanophlyctis were fasted, or intracranially injected with glucose or 2-deoxy-d-glucose (2DG; an antagonist to glucose inducing glucoprivation) and the response of the CART containing system in various neuroanatomical areas was studied using immunohistochemistry. Glucose administration increased the CART immunoreactivity in the entopeduncular neurons (EN), preoptic area (POA), ventral hypothalamus (vHy) and the Edinger Westphal nucleus (EW) while CART positive cells decrease in response to fasting and glucoprivation. A substantial decrease in CART was noted in the EW nucleus of tadpoles injected with 2DG. These regions might contain the glucose-sensing neurons and regulate food intake in anurans. Therefore, we speculate that the function of central CART and its antagonistic action with NPY in food and feeding circuitry of anurans is evolutionary conserved and might be responsible for glucose homeostasis.
Collapse
Affiliation(s)
- Swapnil A Shewale
- Department of Zoology, Savitribai Phule Pune University, Ganeshkhind, Pune 411 007, India; Department of Zoology, Bhavan's Hazarimal Somani College, Chowpatty, Mumbai 400 007, India
| | - Shantaj M Deshbhratar
- Department of Zoology, Bhavan's Hazarimal Somani College, Chowpatty, Mumbai 400 007, India
| | - Ameeta Ravikumar
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Ganeshkhind, Pune 411 007, India
| | - Shobha Y Bhargava
- Department of Zoology, Savitribai Phule Pune University, Ganeshkhind, Pune 411 007, India.
| |
Collapse
|
12
|
Photoperiodically driven transcriptome-wide changes in the hypothalamus reveal transcriptional differences between physiologically contrasting seasonal life-history states in migratory songbirds. Sci Rep 2021; 11:12823. [PMID: 34140553 PMCID: PMC8211672 DOI: 10.1038/s41598-021-91951-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 06/03/2021] [Indexed: 02/07/2023] Open
Abstract
We investigated time course of photoperiodically driven transcriptional responses in physiologically contrasting seasonal life-history states in migratory blackheaded buntings. Birds exhibiting unstimulated winter phenotype (photosensitive state; responsive to photostimulation) under 6-h short days, and regressed summer phenotype (photorefractory state; unresponsiveness to photostimulation) under 16-h long days, were released into an extended light period up to 22 h of the day. Increased tshβ and dio2, and decreased dio3 mRNA levels in hypothalamus, and low prdx4 and high il1β mRNA levels in blood confirmed photoperiodic induction by hour 18 in photosensitive birds. Further, at hours 10, 14, 18 and 22 of light exposure, the comparison of hypothalamus RNA-Seq results revealed transcriptional differences within and between states. Particularly, we found reduced expression at hour 14 of transthyretin and proopiomelanocortin receptor, and increased expression at hour 18 of apolipoprotein A1 and carbon metabolism related genes in the photosensitive state. Similarly, valine, leucine and isoleucine degradation pathway genes and superoxide dismutase 1 were upregulated, and cocaine- and amphetamine-regulated transcript and gastrin-releasing peptide were downregulated in the photosensitive state. These results show life-history-dependent activation of hypothalamic molecular pathways involved in initiation and maintenance of key biological processes as early as on the first long day.
Collapse
|