1
|
Zhai Y, Liu P, Hu X, Fan C, Cui X, He Q, He D, Ma X, Hu G. Artesunate, EDTA, and colistin work synergistically against MCR-negative and -positive colistin-resistant Salmonella. eLife 2025; 13:RP99130. [PMID: 39918863 PMCID: PMC11805504 DOI: 10.7554/elife.99130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2025] Open
Abstract
Discovering new strategies to combat the multidrug-resistant bacteria constitutes a major medical challenge of our time. Previously, artesunate (AS) has been reported to exert antibacterial enhancement activity in combination with β-lactam antibiotics via inhibition of the efflux pump AcrB. However, combination of AS and colistin (COL) revealed a weak synergistic effect against a limited number of strains, and few studies have further explored its possible mechanism of synergistic action. In this article, we found that AS and EDTA could strikingly enhance the antibacterial effects of COL against mcr-1- and mcr-1+ Salmonella strains either in vitro or in vivo, when used in triple combination. The excellent bacteriostatic effect was primarily related to the increased cell membrane damage, accumulation of toxic compounds and inhibition of MCR-1. The potential binding sites of AS to MCR-1 (THR283, SER284, and TYR287) were critical for its inhibition of MCR-1 activity. Additionally, we also demonstrated that the CheA of chemosensory system and virulence-related protein SpvD were critical for the bacteriostatic synergistic effects of the triple combination. Selectively targeting CheA, SpvD, or MCR using the natural compound AS could be further investigated as an attractive strategy for the treatment of Salmonella infection. Collectively, our work opens new avenues toward the potentiation of COL and reveals an alternative drug combination strategy to overcome COL-resistant bacterial infections.
Collapse
Affiliation(s)
- Yajun Zhai
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Henan Agricultural UniversityZhengzhouChina
| | - Peiyi Liu
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Henan Agricultural UniversityZhengzhouChina
| | - Xueqin Hu
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Henan Agricultural UniversityZhengzhouChina
| | - Changjian Fan
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Henan Agricultural UniversityZhengzhouChina
| | - Xiaodie Cui
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Henan Agricultural UniversityZhengzhouChina
| | - Qibiao He
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Henan Agricultural UniversityZhengzhouChina
| | - Dandan He
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Henan Agricultural UniversityZhengzhouChina
| | - Xiaoyuan Ma
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Henan Agricultural UniversityZhengzhouChina
| | - Gongzheng Hu
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Henan Agricultural UniversityZhengzhouChina
| |
Collapse
|
2
|
Hitzler SUJ, Fernández-Fernández C, Montaño DE, Dietschmann A, Gresnigt MS. Microbial adaptive pathogenicity strategies to the host inflammatory environment. FEMS Microbiol Rev 2025; 49:fuae032. [PMID: 39732621 PMCID: PMC11737513 DOI: 10.1093/femsre/fuae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/19/2024] [Accepted: 12/27/2024] [Indexed: 12/30/2024] Open
Abstract
Pathogenic microorganisms can infect a variety of niches in the human body. During infection, these microbes can only persist if they adapt adequately to the dynamic host environment and the stresses imposed by the immune system. While viruses entirely rely on host cells to replicate, bacteria and fungi use their pathogenicity mechanisms for the acquisition of essential nutrients that lie under host restriction. An inappropriate deployment of pathogenicity mechanisms will alert host defence mechanisms that aim to eradicate the pathogen. Thus, these adaptations require tight regulation to guarantee nutritional access without eliciting strong immune activation. To work efficiently, the immune system relies on a complex signalling network, involving a myriad of immune mediators, some of which are quite directly associated with imminent danger for the pathogen. To manipulate the host immune system, viruses have evolved cytokine receptors and viral cytokines. However, among bacteria and fungi, selected pathogens have evolved the capacity to use these inflammatory response-specific signals to regulate their pathogenicity. In this review, we explore how bacterial and fungal pathogens can sense the immune system and use adaptive pathogenicity strategies to evade and escape host defence to ensure their persistence in the host.
Collapse
Affiliation(s)
- Sophia U J Hitzler
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, 07745 Jena, Germany
| | - Candela Fernández-Fernández
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, 07745 Jena, Germany
| | - Dolly E Montaño
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, 07745 Jena, Germany
| | - Axel Dietschmann
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, 07745 Jena, Germany
| | - Mark S Gresnigt
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, 07745 Jena, Germany
| |
Collapse
|
3
|
Simbu S, Orchard A, van de Venter M, van Vuuren S. Ibuprofen as an adjuvant to conventional antimicrobials and essential oil compounds against skin pathogens. J Appl Microbiol 2024; 135:lxae186. [PMID: 39068502 DOI: 10.1093/jambio/lxae186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/15/2024] [Accepted: 07/26/2024] [Indexed: 07/30/2024]
Abstract
AIMS Antimicrobial resistance continues to be a growing concern, resulting in increased use of drug combinations. Antibiotic adjuvants are an emerging strategy that may potentiate an antibiotics efficacy. Ibuprofen's polypharmacological properties have been investigated for their antimicrobial and host-modulating potential. This study aimed to investigate the potential of a novel multidrug combination involving ibuprofen, essential oil compounds (EOCs), and conventional antimicrobials against skin pathogens. METHODS AND RESULTS The minimum inhibitory concentrations of ibuprofen, conventional antimicrobials, and EOCs were determined and then combined and tested against 14 (reference and clinical) skin pathogens. The cytotoxicity was analysed using the MTT assay, whilst the anti-inflammatory effects were evaluated using lipopolysaccharide activated RAW264.7 murine macrophages. Four pairwise (Ibuprofen and antibiotic) (ΣFIC 0.33-0.50) and three triple (Ibuprofen and antibiotic with EOC) (ΣFIC 0.44-0.47) synergistic antimicrobial interactions were identified. These combinations demonstrated cell viability of 77.59%-100%. No combination significantly reduced nitric oxide production. CONCLUSION The results from this study provide insight into the potential of a multidrug combination involving ibuprofen with conventional antimicrobials and EOCs against common skin pathogens.
Collapse
Affiliation(s)
- Shivar Simbu
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, Parktown, 2193, South Africa
| | - Ané Orchard
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, Parktown, 2193, South Africa
| | - Maryna van de Venter
- Department of Biochemistry and Microbiology, Nelson Mandela University, Gqeberha, 6031, South Africa
| | - Sandy van Vuuren
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, Parktown, 2193, South Africa
| |
Collapse
|
4
|
Peng Z, Tang J. Intestinal Infection of Candida albicans: Preventing the Formation of Biofilm by C. albicans and Protecting the Intestinal Epithelial Barrier. Front Microbiol 2022; 12:783010. [PMID: 35185813 PMCID: PMC8847744 DOI: 10.3389/fmicb.2021.783010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 12/30/2021] [Indexed: 12/12/2022] Open
Abstract
The large mortality and morbidity rate of C. albicans infections is a crucial problem in medical mycology. Because the generation of biofilms and drug resistance are growing concerns, the growth of novel antifungal agents and the looking for newer objectives are necessary. In this review, inhibitors of C. albicans biofilm generation and molecular mechanisms of intestinal epithelial barrier protection are elucidated. Recent studies on various transcription elements; quorum-sensing molecules; host responses to adherence; and changes in efflux pumps, enzymes, bud to hyphal transition, and lipid profiles have increased the knowledge of the intricate mechanisms underlying biofilm resistance. In addition, the growth of novel biomaterials with anti-adhesive nature, natural products, drugs, bioactive compounds, proteins, lipids, and carbohydrates are being researched. Recently, more and more attention has been given to various metal nanoparticles that have also appeared as antibiofilm agents in C. albicans. The intestinal epithelial obstacle exerts an crucial effect on keeping intestinal homeostasis and is increasingly associated with various disorders associated with the intestine such as inflammatory bowel disease (IBD), irritable bowel syndrome, metabolic syndrome, allergies, hepatic inflammation, septic shock, etc. However, whether their involvement in the prevention of other intestinal disorders like IBD are useful in C. albicans remains unknown. Further studies must be carried out in order to validate their inhibition functions in intestinal C. albicans. This provides innovates ideas for intestinal C. albicans treatment.
Collapse
Affiliation(s)
- Ziyao Peng
- Department of Trauma-Emergency and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Jianguo Tang
- Department of Trauma-Emergency and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Interplay between Candida albicans and Lactic Acid Bacteria in the Gastrointestinal Tract: Impact on Colonization Resistance, Microbial Carriage, Opportunistic Infection, and Host Immunity. Clin Microbiol Rev 2021; 34:e0032320. [PMID: 34259567 PMCID: PMC8404691 DOI: 10.1128/cmr.00323-20] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Emerging studies have highlighted the disproportionate role of Candida albicans in influencing both early community assembly of the bacterial microbiome and dysbiosis during allergic diseases and intestinal inflammation. Nonpathogenic colonization of the human gastrointestinal (GI) tract by C. albicans is common, and the role of this single fungal species in modulating bacterial community reassembly after broad-spectrum antibiotics can be readily recapitulated in mouse studies. One of the most notable features of C. albicans-associated dysbiotic states is a marked change in the levels of lactic acid bacteria (LAB). C. albicans and LAB share metabolic niches throughout the GI tract, and in vitro studies have identified various interactions between these microbes. The two predominant LAB affected are Lactobacillus species and Enterococcus species. Lactobacilli can antagonize enterococci and C. albicans, while Enterococcus faecalis and C. albicans have been reported to exhibit a mutualistic relationship. E. faecalis and C. albicans are also causative agents of a variety of life-threatening infections, are frequently isolated together from mixed-species infections, and share certain similarities in clinical presentation-most notably their emergence as opportunistic pathogens following disruption of the microbiota. In this review, we discuss and model the mechanisms used by Lactobacillus species, E. faecalis, and C. albicans to modulate each other's growth and virulence in the GI tract. With multidrug-resistant E. faecalis and C. albicans strains becoming increasingly common in hospital settings, examining the interplay between these three microbes may provide novel insights for enhancing the efficacy of existing antimicrobial therapies.
Collapse
|
6
|
Motaung TE, Peremore C, Wingfield B, Steenkamp E. Plant-associated fungal biofilms-knowns and unknowns. FEMS Microbiol Ecol 2021; 96:5956487. [PMID: 33150944 DOI: 10.1093/femsec/fiaa224] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/03/2020] [Indexed: 02/07/2023] Open
Abstract
Nearly all microbes, including fungi, grow firmly attached to surfaces as a biofilm. Yet, attention toward fungal interactions with plants and the environment is dedicated to free-floating (planktonic) cells. Fungal biofilms are generally thought to configure interactions across and among plant populations. Despite this, plant fungal biofilm research lags far behind the research on biofilms of medically important fungi. The deficit in noticing and exploring this research avenue could limit disease management and plant improvement programs. Here, we provide the current state of knowledge of fungal biofilms and the different pivotal ecological roles they impart in the context of disease, through leveraging evidence across medically important fungi, secondary metabolite production, plant beneficial functions and climate change. We also provide views on several important information gaps potentially hampering plant fungal biofilm research, and propose a way forward to address these gaps.
Collapse
Affiliation(s)
- Thabiso E Motaung
- University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | - Chizné Peremore
- University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | - Brenda Wingfield
- University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | - Emma Steenkamp
- University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| |
Collapse
|
7
|
Mochochoko BM, Ezeokoli OT, Sebolai O, Albertyn J, Pohl CH. Role of the high-affinity reductive iron acquisition pathway of Candida albicans in prostaglandin E2 production, virulence, and interaction with Pseudomonas aeruginosa. Med Mycol 2021; 59:869-881. [PMID: 33862618 DOI: 10.1093/mmy/myab015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 01/06/2021] [Accepted: 03/03/2021] [Indexed: 02/06/2023] Open
Abstract
Components of the iron reductive pathway of Candida albicans have been implicated in the production of prostaglandin E2 (PGE2) and virulence. However, it is unknown whether other components of this pathway influence PGE2. We investigated the role of the iron reductive pathway of C. albicans in biofilm formation, PGE2 production, and virulence in Caenorhabditis elegans. Additionally, as the co-occurrence of C. albicans and Pseudomonas aeruginosa in host tissues is frequent and involves competition for host-associated iron, we examined the effects of this interaction. Deletion of multicopper oxidase gene, FET99, and iron permease genes, FTH1 and FTH2, affected biofilm metabolic activity, and for the FTH2 mutant, also biofilm morphology. Deletion of CCC1 (vacuolar iron transporter) and CCC2 (P-type ATPase copper importer) also influenced biofilm morphology. For PGE2 production, deletion of FET99, FTH1, FTH2, CCC1, and CCC2 caused a significant reduction by monomicrobial biofilms, while FTH2deletion caused the highest reduction in polymicrobial biofilms. URA3 positive mutants of FET99 and FTH2 demonstrated attenuated virulence in C. elegans, potentially due to the inability of mutants to form hyphae in vivo. Deductively, the role of the iron reductive pathway in PGE2 synthesis is indirect, possibly due to their role in iron homeostasis. LAY SUMMARY Iron uptake is vital for disease-causing microbes like Candida albicans. Using strains deficient in some iron-uptake genes, we show that iron-uptake genes, especially FET99 and FTH2, play a role in biofilm formation, prostaglandin production, and virulence in the nematode infection model.
Collapse
Affiliation(s)
- Bonang M Mochochoko
- Pathogenic Yeast Research Group, Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein 9300, South Africa
| | - Obinna T Ezeokoli
- Pathogenic Yeast Research Group, Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein 9300, South Africa
| | - Olihile Sebolai
- Pathogenic Yeast Research Group, Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein 9300, South Africa
| | - Jacobus Albertyn
- Pathogenic Yeast Research Group, Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein 9300, South Africa
| | - Carolina H Pohl
- Pathogenic Yeast Research Group, Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein 9300, South Africa
| |
Collapse
|
8
|
Fourie R, Cason ED, Albertyn J, Pohl CH. Transcriptional response of Candida albicans to Pseudomonas aeruginosa in a polymicrobial biofilm. G3-GENES GENOMES GENETICS 2021; 11:6134339. [PMID: 33580263 PMCID: PMC8049422 DOI: 10.1093/g3journal/jkab042] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 02/05/2021] [Indexed: 01/05/2023]
Abstract
Candida albicans is frequently co-isolated with the Gram-negative bacterium, Pseudomonas aeruginosa. In vitro, the interaction is complex, with both species influencing each other. Not only does the bacterium kill hyphal cells of C. albicans through physical interaction, it also affects C. albicans biofilm formation and morphogenesis, through various secreted factors and cell wall components. The present study sought to expand the current knowledge regarding the interaction between C. albicans and P. aeruginosa, using transcriptome analyses of early static biofilms. Under these conditions, a total of 2,537 open reading frames (approximately 40% of the C. albicans transcriptome) was differentially regulated in the presence of P. aeruginosa. Upon deeper analyses it became evident that the response of C. albicans toward P. aeruginosa was dominated by a response to hypoxia, and included those associated with stress as well as iron and zinc homeostasis. These conditions may also lead to the observed differential regulation of genes associated with cell membrane synthesis, morphology, biofilm formation and phenotypic switching. Thus, C. albicans in polymicrobial biofilms with P. aeruginosa have unique transcriptional profiles that may influence commensalism as well as pathogenesis.
Collapse
Affiliation(s)
- Ruan Fourie
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, 9301, South Africa
| | - Errol D Cason
- Department of Animal Wildlife and Grassland Sciences, University of the Free State, Bloemfontein, 9301, South Africa
| | - Jacobus Albertyn
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, 9301, South Africa
| | - Carolina H Pohl
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, 9301, South Africa
| |
Collapse
|
9
|
Tan TG, Lim YS, Tan A, Leong R, Pavelka N. Fungal Symbionts Produce Prostaglandin E 2 to Promote Their Intestinal Colonization. Front Cell Infect Microbiol 2019; 9:359. [PMID: 31681635 PMCID: PMC6813641 DOI: 10.3389/fcimb.2019.00359] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 10/03/2019] [Indexed: 02/04/2023] Open
Abstract
Candida albicans is a ubiquitous fungal symbiont that resides on diverse human barrier surfaces. Both mammalian and fungal cells can convert arachidonic acid into the lipid mediator, prostaglandin E2 (PGE2), but the physiological significance of fungus-derived PGE2 remains elusive. Here we report that a C. albicans mutant deficient in PGE2 production suffered a loss of competitive fitness in the murine gastrointestinal (GI) tract and that PGE2 supplementation mitigated this fitness defect. Impaired fungal PGE2 production affected neither the in vitro fitness of C. albicans nor hyphal morphogenesis and virulence in either systemic or mucosal infection models. Instead, fungal production of PGE2 was associated with enhanced fungal survival within phagocytes. Consequently, ablation of colonic phagocytes abrogated the intra-GI fitness boost conferred by fungal PGE2. These observations suggest that C. albicans has evolved the capacity to produce PGE2 from arachidonic acid, a host-derived precursor, to promote its own colonization of the host gut. Analogous mechanisms might undergird host-microbe interactions of other symbiont fungi.
Collapse
Affiliation(s)
- Tze Guan Tan
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | | | | | | | - Norman Pavelka
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
10
|
Fourie R, Pohl CH. Beyond Antagonism: The Interaction Between Candida Species and Pseudomonas aeruginosa. J Fungi (Basel) 2019; 5:jof5020034. [PMID: 31010211 PMCID: PMC6617365 DOI: 10.3390/jof5020034] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/18/2019] [Accepted: 04/18/2019] [Indexed: 12/11/2022] Open
Abstract
There are many examples of the interaction between prokaryotes and eukaryotes. One such example is the polymicrobial colonization/infection by the various opportunistic pathogenic yeasts belonging to the genus Candida and the ubiquitous bacterium, Pseudomonas aeruginosa. Although this interaction has simplistically been characterized as antagonistic to the yeast, this review highlights the complexity of the interaction with various factors influencing both microbes. The first section deals with the interactions in vitro, looking specifically at the role of cell wall components, quorum sensing molecules, phenazines, fatty acid metabolites and competition for iron in the interaction. The second part of this review places all these interactions in the context of various infection or colonization sites, i.e., lungs, wounds, and the gastrointestinal tract. Here we see that the role of the host, as well as the methodology used to establish co-infection, are important factors, influencing the outcome of the disease. Suggested future perspectives for the study of this interaction include determining the influence of newly identified participants of the QS network of P. aeruginosa, oxylipin production by both species, as well as the genetic and phenotypic plasticity of these microbes, on the interaction and outcome of co-infection.
Collapse
Affiliation(s)
- Ruan Fourie
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein 9301, South Africa.
| | - Carolina H Pohl
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein 9301, South Africa.
| |
Collapse
|
11
|
Abstract
Eicosanoids are bioactive lipid mediators generated in almost all mammalian cells from the oxidation of arachidonic acid and other related twenty-carbon polyunsaturated fatty acids (PUFA). Eicosanoids regulate various physiological functions, including cellular homoeostasis and modulation of inflammatory responses in mammals. The mode of action of these lipid mediators depend on their binding to different G-protein coupled receptors. The three main enzymatic pathways associated with their production are the COX pathway, LOX pathway and cytochrome P450 pathway. Interestingly, investigations have also revealed that several human pathogenic fungi are capable of producing these bioactive lipid mediators; however, the exact biosynthetic pathways and their function in pathogenicity are not yet extensively characterized. The aim of the current review is to summarize the recent discoveries pertaining to eicosanoid production by human pathogenic yeasts with a special focus on the opportunistic human fungal pathogen Candida parapsilosis.
Collapse
Affiliation(s)
- Tanmoy Chakraborty
- Interdisciplinary Excellence Centre, Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Renáta Tóth
- Interdisciplinary Excellence Centre, Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Attila Gácser
- Interdisciplinary Excellence Centre, Department of Microbiology, University of Szeged, Szeged, Hungary.,MTA-SZTE "Lendület" "Mycobiome" Research Group, University of Szeged, Szeged, Hungary
| |
Collapse
|
12
|
Characterization of a novel antibiofilm effect of nitric oxide-releasing aspirin (NCX-4040) on Candida albicans isolates from denture stomatitis patients. PLoS One 2017; 12:e0176755. [PMID: 28493889 PMCID: PMC5426659 DOI: 10.1371/journal.pone.0176755] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 04/17/2017] [Indexed: 12/16/2022] Open
Abstract
Candida albicans biofilms play a key role in denture stomatitis, one of the most common oral pathologies in elderly people. Because biofilms are highly resistant to antifungals, new pharmacological strategies are needed. Aspirin and nitric oxide-donor molecules have both shown antibiofilm effects on C. albicans, making them promising candidates for treatment. In this study, we evaluated the antifungal/antibiofilm effect of a nitric-oxide releasing aspirin (NO-ASA) on C. albicans isolates from denture stomatitis patients in vitro. Disk diffusion assays showed that while NO-ASA had no antifungal effect, the drug potentiated fluconazole inhibition zone diameters, increasing the effect of fluconazole by 20–30% (p<0.05). The effect of NO-ASA on the morphogenesis of C. albicans was evaluated using light microscopy after inducing hyphae formation. For all clinical strains assayed, 125 μM NO-ASA significantly decreased the number of filamentous cells present (p<0.01). Adhesion to abiotic surfaces, a critical event for biofilm formation, was evaluated in 96-well polystyrene plates using crystal violet assay; 125 μM NO-ASA significantly inhibited adhesion. Biofilms were observed with scanning electron microscopy (SEM) and quantified using XTT reduction assay. NO-ASA decreased biofilm formation (IC50 ranging from 300 μM to 700 μM), consistent with SEM findings of altered biofilm microarchitecture. PGE2 and carboxy-PTIO (an NO scavenger) both blocked the antibiofilm effects of NO-ASA, suggesting that the efficacy of NO-ASA may be associated with both inhibition of PGE2 synthesis and release of NO. NO-ASA is a promising novel antibiofilm agent for treating fluconazole-resistant strains of C. albicans.
Collapse
|
13
|
Fourie R, Ells R, Kemp G, Sebolai OM, Albertyn J, Pohl CH. Pseudomonas aeruginosa produces aspirin insensitive eicosanoids and contributes to the eicosanoid profile of polymicrobial biofilms with Candida albicans. Prostaglandins Leukot Essent Fatty Acids 2017; 117:36-46. [PMID: 28237086 DOI: 10.1016/j.plefa.2017.01.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 12/16/2016] [Accepted: 01/24/2017] [Indexed: 11/22/2022]
Abstract
The interaction of clinically relevant microorganisms is the focus of various studies, e.g. the interaction between the pathogenic yeast, Candida albicans, and the bacterium, Pseudomonas aeruginosa. During infection both release arachidonic acid, which they can transform into eicosanoids. This study evaluated the production of prostaglandin E2, prostaglandin F2α and 15-hydroxyeicosatetraenoic acid by biofilms of P. aeruginosa and C. albicans. The influence of co-incubation, acetylsalicylic acid and nordihydroguaiaretic acid on biofilm formation and eicosanoid production was evaluated. Acetylsalicylic acid decreased colony forming units of P. aeruginosa, but increased metabolic activity and eicosanoid production of the cells. In contrast to prostaglandin E2, prostaglandin F2a production by C. albicans was insensitive to acetylsalicylic acid, indicating that different enzymes are responsible for their production in this yeast. Nordihydroguaiaretic acid inhibited biofilm formation by P. aeruginosa, however co-incubation provided protection against this inhibitor. Production of these eicosanoids could affect pathogen-clearance and infection dynamics and this previously uncharacterized facet of interaction could facilitate novel therapeutic intervention against polymicrobial infection.
Collapse
Affiliation(s)
- Ruan Fourie
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
| | - Ruan Ells
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa; National Control Laboratory for Biological Products, University of the Free State, Bloemfontein, South Africa
| | - Gabré Kemp
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
| | - Olihile M Sebolai
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
| | - Jacobus Albertyn
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
| | - Carolina H Pohl
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa.
| |
Collapse
|
14
|
Liu X, Wang D, Yu C, Li T, Liu J, Sun S. Potential Antifungal Targets against a Candida Biofilm Based on an Enzyme in the Arachidonic Acid Cascade-A Review. Front Microbiol 2016; 7:1925. [PMID: 27999568 PMCID: PMC5138225 DOI: 10.3389/fmicb.2016.01925] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 11/16/2016] [Indexed: 11/21/2022] Open
Abstract
Candida is an important opportunistic fungal pathogen, especially in biofilm associated infections. The formation of a Candida biofilm can decrease Candida sensitivity to antifungal drugs and cause drug resistance. Although many effective antifungal drugs are available, their applications are limited due to their high toxicity and cost. Seeking new antifungal agents that are effective against biofilm-associated infection is an urgent need. Many research efforts are underway, and some progress has been made in this field. It has been shown that the arachidonic acid cascade plays an important role in fungal morphogenesis and pathogenicity. Notably, prostaglandin E2 (PGE2) can promote the formation of a Candida biofilm. Recently, the inhibition of PGE2 has received much attention. Studies have shown that cyclooxygenase (COX) inhibitors, such as aspirin, ibuprofen, and indomethacin, combined with fluconazole can significantly reduce Candida adhesion and biofilm development and increase fluconazole susceptibility; the MIC of fluconazole can be decrease from 64 to 2 μg/ml when used in combination with ibuprofen. In addition, in vivo studies have also confirmed the antifungal activities of these inhibitors. In this article, we mainly review the relationship between PGE2 and Candida biofilm, summarize the antifungal activities of COX inhibitors and analyze the possible antifungal activity of microsomal prostaglandin E synthase-1 (MPGES-1) inhibitors; additionally, other factors that influence PGE2 production are also discussed. Hopefully this review can disclose potential antifungal targets based on the arachidonic acid cascade and provide a prevailing strategy to alleviate Candida albicans biofilm formation.
Collapse
Affiliation(s)
- Xinning Liu
- Department of Clinical Pharmacy, Taishan Medical University Taian, China
| | - Decai Wang
- Department of Clinical Pharmacy, Taishan Medical University Taian, China
| | - Cuixiang Yu
- Respiration Medicine, Qianfoshan Hospital Affiliated to Shandong University Jinan, China
| | - Tao Li
- Intensive Care Unit, Qianfoshan Hospital Affiliated to Shandong University Jinnan, China
| | - Jianqiao Liu
- General Practice, Shandong Provincial Hospital Jinnan, China
| | - Shujuan Sun
- Pharmaceutical Department, Qianfoshan Hospital Affiliated to Shandong University Jinnan, China
| |
Collapse
|
15
|
Nimesulide inhibits pathogenic fungi: PGE2-dependent mechanisms. Folia Microbiol (Praha) 2016; 62:169-174. [PMID: 27866353 DOI: 10.1007/s12223-016-0483-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 11/13/2016] [Indexed: 10/20/2022]
Abstract
Certain non-steroidal anti-inflammatory drugs can inhibit fungal growth, fungal prostaglandin E2 production, and enzyme activation. This study aims to investigate the antifungal effect of nimesulide against pathogenic filamentous fungi and yeast. The experiments detailed below were also designed to investigate whether the action is dependent on E2 fungal prostaglandins. Our data showed that nimesulide exhibited potent antifungal activity, mainly against Trichophyton mentagrophytes (ATCC 9533) and Cryptococcus neoformans with MIC values of 2 and 62 μg/mL, respectively. This drug was also able to inhibit the growth of clinic isolates of filamentous fungi, such as Aspergillus fumigatus, and dermatophytes, such as T. rubrum, T. mentagrophytes, Epidermophyton floccosum, Microsporum canis, and M. gypseum, with MIC values ranging from 112 to 770 μg/mL. Our data also showed that the inhibition of fungal growth by nimesulide was mediated by a mechanism dependent on PGE2, which led to the inhibition of essential fungal enzymes. Thus, we concluded that nimesulide exerts a fungicidal effect against pathogenic filamentous fungi and yeast, involving the inhibition of fungal prostaglandins and fungal enzymes important to the fungal growth and colonization.
Collapse
|
16
|
Fourie R, Ells R, Swart CW, Sebolai OM, Albertyn J, Pohl CH. Candida albicans and Pseudomonas aeruginosa Interaction, with Focus on the Role of Eicosanoids. Front Physiol 2016; 7:64. [PMID: 26955357 PMCID: PMC4767902 DOI: 10.3389/fphys.2016.00064] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 02/11/2016] [Indexed: 12/20/2022] Open
Abstract
Candida albicans is commonly found in mixed infections with Pseudomonas aeruginosa, especially in the lungs of cystic fibrosis (CF) patients. Both of these opportunistic pathogens are able to form resistant biofilms and frequently infect immunocompromised individuals. The interaction between these two pathogens, which includes physical interaction as well as secreted factors, is mainly antagonistic. In addition, research suggests considerable interaction with their host, especially with immunomodulatory lipid mediators, termed eicosanoids. Candida albicans and Pseudomonas aeruginosa are both able to utilize arachidonic acid (AA), liberated from the host cells during infection, to form eicosanoids. The production of these eicosanoids, such as Prostaglandin E2, by the host and the pathogens may affect the dynamics of polymicrobial infection and the outcome of infections. It is of considerable importance to elucidate the role of host-produced, as well as pathogen-produced eicosanoids in polymicrobial infection. This review will focus on in vitro as well as in vivo interaction between C. albicans and P. aeruginosa, paying special attention to the role of eicosanoids in the cross-talk between host and the pathogens.
Collapse
Affiliation(s)
- Ruan Fourie
- Pathogenic Yeast Research Group, Department of Microbial, Biochemical and Food Biotechnology, University of the Free State Bloemfontein, South Africa
| | - Ruan Ells
- Pathogenic Yeast Research Group, Department of Microbial, Biochemical and Food Biotechnology, University of the Free StateBloemfontein, South Africa; National Control Laboratory, University of the Free StateBloemfontein, South Africa
| | - Chantel W Swart
- Pathogenic Yeast Research Group, Department of Microbial, Biochemical and Food Biotechnology, University of the Free State Bloemfontein, South Africa
| | - Olihile M Sebolai
- Pathogenic Yeast Research Group, Department of Microbial, Biochemical and Food Biotechnology, University of the Free State Bloemfontein, South Africa
| | - Jacobus Albertyn
- Pathogenic Yeast Research Group, Department of Microbial, Biochemical and Food Biotechnology, University of the Free State Bloemfontein, South Africa
| | - Carolina H Pohl
- Pathogenic Yeast Research Group, Department of Microbial, Biochemical and Food Biotechnology, University of the Free State Bloemfontein, South Africa
| |
Collapse
|
17
|
Candida albicans mutant construction and characterization of selected virulence determinants. J Microbiol Methods 2015; 115:153-65. [DOI: 10.1016/j.mimet.2015.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 06/09/2015] [Accepted: 06/10/2015] [Indexed: 11/22/2022]
|
18
|
Role of pathogen-derived cell wall carbohydrates and prostaglandin E2 in immune response and suppression of fish immunity by the oomycete Saprolegnia parasitica. Infect Immun 2014; 82:4518-29. [PMID: 25114122 DOI: 10.1128/iai.02196-14] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Saprolegnia parasitica is a freshwater oomycete that is capable of infecting several species of fin fish. Saprolegniosis, the disease caused by this microbe, has a substantial impact on Atlantic salmon aquaculture. No sustainable treatment against saprolegniosis is available, and little is known regarding the host response. In this study, we examined the immune response of Atlantic salmon to S. parasitica infection and to its cell wall carbohydrates. Saprolegnia triggers a strong inflammatory response in its host (i.e., induction of interleukin-1β1 [IL-1β1], IL-6, and tumor necrosis factor alpha), while severely suppressing the expression of genes associated with adaptive immunity in fish, through downregulation of T-helper cell cytokines, antigen presentation machinery, and immunoglobulins. Oomycete cell wall carbohydrates were recognized by fish leukocytes, triggering upregulation of genes involved in the inflammatory response, similar to what is observed during infection. Our data suggest that S. parasitica is capable of producing prostaglandin [corrected] E2 (PGE2) in vitro, a metabolite not previously shown to be produced by oomycetes, and two proteins with homology to vertebrate enzymes known to play a role in prostaglandin biosynthesis have been identified in the oomycete genome. Exogenous PGE2 was shown to increase the inflammatory response in fish leukocytes incubated with cell wall carbohydrates while suppressing genes involved in cellular immunity (gamma interferon [IFN-γ] and the IFN-γ-inducible protein [γ-IP]). Inhibition of S. parasitica zoospore germination and mycelial growth by two cyclooxygenase inhibitors (aspirin and indomethacin) also suggests that prostaglandins may be involved in oomycete development.
Collapse
|
19
|
Combination of fluconazole with non-antifungal agents: A promising approach to cope with resistant Candida albicans infections and insight into new antifungal agent discovery. Int J Antimicrob Agents 2014; 43:395-402. [DOI: 10.1016/j.ijantimicag.2013.12.009] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 12/18/2013] [Accepted: 12/19/2013] [Indexed: 12/29/2022]
|
20
|
Pohl CH, Kock JLF. Oxidized fatty acids as inter-kingdom signaling molecules. Molecules 2014; 19:1273-85. [PMID: 24448067 PMCID: PMC6270766 DOI: 10.3390/molecules19011273] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 01/16/2014] [Accepted: 01/16/2014] [Indexed: 12/27/2022] Open
Abstract
Oxylipins or oxidized fatty acids are a group of molecules found to play a role in signaling in many different cell types. These fatty acid derivatives have ancient evolutionary origins as signaling molecules and are ideal candidates for inter-kingdom communication. This review discusses examples of the ability of organisms from different kingdoms to “listen” and respond to oxylipin signals during interactions. The interactions that will be looked at are signaling between animals and plants; between animals and fungi; between animals and bacteria and between plants and fungi. This will aid in understanding these interactions, which often have implications in ecology, agriculture as well as human and animal health.
Collapse
Affiliation(s)
- Carolina H Pohl
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa.
| | - Johan L F Kock
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa.
| |
Collapse
|
21
|
Ells R, Kemp G, Albertyn J, Kock JL, Pohl CH. Phenothiazine is a potent inhibitor of prostaglandin E2production byCandida albicansbiofilms. FEMS Yeast Res 2013; 13:849-55. [DOI: 10.1111/1567-1364.12093] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 09/05/2013] [Accepted: 09/07/2013] [Indexed: 11/28/2022] Open
Affiliation(s)
- Ruan Ells
- Department of Microbial; Biochemical and Food Biotechnology; University of the Free State; Bloemfontein South Africa
| | - Gabré Kemp
- Department of Microbial; Biochemical and Food Biotechnology; University of the Free State; Bloemfontein South Africa
| | - Jacobus Albertyn
- Department of Microbial; Biochemical and Food Biotechnology; University of the Free State; Bloemfontein South Africa
| | - Johan L.F. Kock
- Department of Microbial; Biochemical and Food Biotechnology; University of the Free State; Bloemfontein South Africa
| | - Carolina H. Pohl
- Department of Microbial; Biochemical and Food Biotechnology; University of the Free State; Bloemfontein South Africa
| |
Collapse
|
22
|
Arachidonic acid metabolites in pathogenic yeasts. Lipids Health Dis 2012; 11:100. [PMID: 22873782 PMCID: PMC3475069 DOI: 10.1186/1476-511x-11-100] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 08/03/2012] [Indexed: 01/18/2023] Open
Abstract
Although most of what is known about the biology and function of arachidonic acid metabolites comes from the study of mammalian biology, these compounds can also be produced by lower eukaryotes, including yeasts and other fungi. It is also in this group of organisms that the least is known about the metabolic pathways leading to the production of these compounds as well as the functions of these compounds in the biology of fungi and yeasts. This review will deal with the discovery of oxylipins from polyunsaturated fatty acids, and more specifically the arachidonic acid derived eicosanoids, such as 3-hydroxy eicosatetraenoic acid, prostaglandin F2α and prostaglandin E2, in yeasts starting in the early 1990s. This review will also focus on what is known about the metabolic pathways and/or proteins involved in the production of these compounds in pathogenic yeasts. The possible roles of these compounds in the biology, including the pathology, of these organisms will be discussed.
Collapse
|
23
|
Sciadonic acid modulates prostaglandin E2 production by epithelial cells during infection with C. albicans and C. dubliniensis. Prostaglandins Other Lipid Mediat 2012; 97:66-71. [DOI: 10.1016/j.prostaglandins.2011.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 11/15/2011] [Accepted: 12/02/2011] [Indexed: 12/24/2022]
|
24
|
Antifungal activity of some cyclooxygenase inhibitors on Candida albicans: PGE2-dependent mechanism. Folia Microbiol (Praha) 2011; 56:349-52. [DOI: 10.1007/s12223-011-0049-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2011] [Accepted: 06/15/2011] [Indexed: 10/18/2022]
|
25
|
Kock JLF, Swart CW, Pohl CH. The anti-mitochondrial antifungal assay for the discovery and development of new drugs. Expert Opin Drug Discov 2011; 6:671-81. [PMID: 22646155 DOI: 10.1517/17460441.2011.575358] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
INTRODUCTION New targets and drugs are constantly searched for to effectively combat fungal infections and diseases such as cancer. Mitochondria, as the main powerhouses of eukaryotic cells, must be regarded as important targets for the development of new therapies. This has lead to the development of a fungal assay that shows potential in the selection of new antifungal and anticancer drugs as well as the identification of compounds that are toxic to human mitochondria. AREAS COVERED In this review the authors discuss the development of a potential method of drug discovery that targets mitochondrial function. The authors cover the application of new nanotechnology as well as fungal systematic research where the link between fungal fruiting structures, cell growth, increased mitochondrial activity and susceptibility to a variety of anti-mitochondrial drugs is assessed. EXPERT OPINION This assay shows potential to select anti-mitochondrial drugs as a first screen. This should be followed up by more specific in vitro and in vivo tests to pinpoint the type of anti-mitochondrial activity exerted by these drugs, if any. This is because the possibility exists that compounds regarded as anti-mitochondrial may not inhibit mitochondrial function but other fruiting structure developmental stages and therefore yield false positives. To enhance our knowledge on how these drugs act at the structural level, the authors recommend Nano Scanning Auger Microscopy as the tool of choice.
Collapse
Affiliation(s)
- J Lodewyk F Kock
- University of the Free State, Department of Microbial , Biochemical and Food Biotechnology, Bloemfontein , South Africa +27514012249 ; +27514019376 ;
| | | | | |
Collapse
|